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Abstract. We consider radially symmetric solutions of the Ginzburg-
Landau equation (without magnetic field) in dimension 2. Such solutions
are called vortices and are specified by their winding number at infinity
(vorticity). For a given vorticity n we prove existence and uniqueness
(modulo symmetry transformations) of an n-vortex and show that for
n = 0,41 such vortices are stable while for |n| > 2, unstable. We
introduce the renormalized Ginzburg-Landau energy and use it for the
existence and uniqueness proof. Our stability proof is novel and uses
the concept of symmetry breaking and its consequence in the form of
zero modes of the linearized equation.
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1. Introduction

This paper starts our study of the Ginzburg-Landau and related equations. By the

former we mean the equation

—AY+ ([9*=1)p = 0 (1.1)
for 1): R? — C subject to the boundary condition

|| = 1 as |z| — oo uniformly in & = |z—| . (1.2)

The origin of this boundary condition is dictated by the physical interpretation of this
equation (see below).* This boundary condition allows one to introduce the degree of

as the index of 1), considered as a vector field on R?, at oco:

degyp = - - farg) (1.3)

for R sufficiently large (so that |1| # 0 on the circle || = R). The mathematical problem
here is to study solutions to Eqn (1.1) for a given deg1) = n.

In Physics Eqn (1.1) describes a superfluid and deg) # 0 corresponds to rotation of
this superfluid. A similar equation, namely the one in which the role of deg ) is played by
the magnetic flux, is used to study superconductors. More generally, such equations arise
as the equation for critical points of the free energy functional (Ginzburg-Landau energy
functional) describing the matter near phase transitions (see e.g. [ZJ]).

In this paper we present some general mathematical facts about this equation, the
most important of which is analysis of the symmetry breaking and introduction of the
renormalized Ginzburg-Landau energy functional, and study the simplest solutions of (1.1).

The latter are solutions of the form

(@) = fO(r)em?, (1.4)

* The maximum principle implies that |¢)| < 1 (see Appendix A).
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where (r,0) are the polar coordinates of z (w.r.t. the origin z = 0). These are the most
symmetric solutions and following [JT] we call them radially symmetric solutions (or n-
vortices). Clearly deg (™) = n. We prove existence of such solutions and their uniqueness
in the class of functions of the form (1.4) (which is, probably, a known fact, but the one
we could not locate in the literature) and classify them as minima and saddle points of the
renormalized energy functional. Namely we show that

(a) For |n| =1, (™ are strict local minima.

(b) For |n| > 2, 9™ are saddle points.
Besides, it follows from the definition that for n = 0, a strict absolute minimum is given
by 99 = z for any z € C with |z| = 1.

In order to keep the arguments as simple as possible we develop them for Eqn (1.1)
only. In fact, these arguments are rather general and applicable to a large class of non-

linear equations. For instance, they hold for equations of the form

A = p([p*)p

under various assumptions on the function p on [0,00). To begin with we assume that p
is continuously differentiable, has a single zero at s = 1 (or any other positive point) and
(s = 1)p(s) > 0 if s # 1. The existence result holds if P(s) > c¢(1 — s)§ for some ¢, > 0.
Here P(s) is defined by P’(s) = p(s) and P(1) = 0. The partial convexity result, and,

consequently, uniqueness result hold if
p(s) 2 0.

The latter condition suffices also for stability result (a), above. Instability result (b)
requires more precise information about the function p(s).

After this paper was completed we found that some of the statements it contains were
proven elsewhere. In particular, the result that )| < 1 was obtained in [BMR]. Theorem

4.1 on relation between the standard Ginzburg-Landau energy and the degree was proven
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in [C, BMR]. The existence of radially symmetric solutions and their uniqueness for each
n in the class of functions of the form (1.4) was proven in [H] (see also Appendix in [BBH]
and references therein). The fact that only radially symmetric solutions with n = 0, +1
are local minimizers was established in [LL, M] for the problem in a ball and in [S], as in
our case, for R?. In fact, [S] has shown more: that any minimizer (in the sense of [S]) must
have a single zero. The methods in the listed papers are different from ours. In addition,
it was shown in [BMR] that for any solution, 9, to (1.1) of degree n, [(|1|? —1)2 = 27n?.
Existence of radial vortices and their properties for the Ginzburg-Landau equation coupled

to a magnetic field were proven in [JT].

Acknowledgement. The second author is grateful to H. Brezis, G.-M. Graf, S.
Resnick, L. Seco and G.M. Zhislin for useful discussions and to H. Brezis, in addition,
for pointing out the results and papers mentioned in the previous paragraph. We decided
not to change the introduction after we learned about these results in order to keep for
ourselves a memento of the time of our innocence.

Part of this paper was written while the second author was visiting the IMA, University
of Minnesota and both authors, the E. Schrodinger Institute, Wien. The authors are

grateful to both places for their hospitality.

2. Symmetry breaking

The purpose of this section is to set up a stage for utilizing some concepts, which first
appeared in quantum field theory, for non-linear differential equations. First we note that
the symmetry group, Gsym, of Eqn (1.1), i.e. the maximal group of transformations, g, of

¥ s.t., if ¢ is a solution to (1.1), then so is g1, is
Gsym = R? x O(2) x U(1) x Charge , (2.1)

where R? acts as translations of the spatial variable z, ¥(z) — ¥(z — h), h € R%, O(2),

as rotations of the spatial variable z, ¥(z) — ¥(R~'z), R € O(2), U(1), as gauge trans-
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formations, ¥ (xz) — Ap(z), A € U(1) (i.e. A € C and |A| = 1) and, finally, the discrete
group Charge (of charge transformations) acts as 1) — . Again the first two groups R2
and O(2), which constitute the group of rigid motions of R?, act on the underlying domain
space of map v, while the other two groups, on the target space of .

By the symmetry group G of a solution 1) we understand the largest subgroup of
Gsym which leaves v fixed i.e. Gy = {9 € Gsym | g¢ = 9¥}. Then the part of Ggym broken
by ¢ is Gsym/Gy, which, in general, is not a subgroup of Gsym, but can be identified
with one in our situation. We will also talk about (one parameter) subgroup H C Ggym
preserved (or brokem) by 1 meaning by this that hy) = ¢ Yh € H (or hyp # ¢ Vh € H,
h # id, in the latter case we might choose to ignore a discrete subgroup of H preserved by
).

As an example, the subgroup of translations, R?, is preserved iff v is independent of
z. This happens only if degy = 0 and the solution 1) in this case is ¥ = €'*, o € R.
This solution preserves also the subgroup of rotations but breaks the gauge and Charge
subgroups. As a result we have,in fact, a whole continuum of solutions. The next simplest

class of solutions are radially symmetric solutions, i.e. solutions of the form
b (@) = fM(r)e?, (2.2)

where, recall, (r,6) are polar coordinates of z (w.r.t. the origin) and f(™)(r) satisfies the

ordinary differential equation

(—Ar+r—2)f+(f -1)f =0, (2.3)
where A, is the radial laplacian in dimension 2, i.e. A,f = 18,(rd,f). Clearly deg (") =
n. The symmetry group of (™, n #£ 0, is

I'x U(1)™0(2) , (2.4)

where T is the discrete subgroup of O(2) of rotations by the angles 22& € Z, and

U(1)"02) = {u(@)"r(p) | ¢ €[0,27]}, (2.5)

6



—sing cosy
and u(p)y(z) = €9)(z). Thus 1)(™ breaks the translation subgroup, R?, the rotation sub-

where r(¢)¢(z) = ¥ (R(p) 'z) with R(y), the rotation by the angle ¢, i.e ( cosip sy ) ,I
group O(2)/T (or the corresponding gauge subgroup) and the charge subgroup.

3. Linearized equation

Given an equation F'(1) = 0 and its solution 1), the linearization of this equation

around 1) is the equation

DF ()¢ = 0, (3.1)

where DF (1) is the tangent map (or differential, or Fréchet derivative, or gradient map)

of F' at ¢g. The latter is defined as

DE()E = o F)

3
A=0

where 9, is a path starting at v, with the velocity &, i.e. ¥y = 1 and %@/}A‘A =& If
=0

F maps a topological space X into a topological space Y, then DF(1)y) maps Ty, X into

Tr(yy)Y where Ty, X is the tangent space for X at vy i.e.

. 0
Ty X = {€|3path g in X s.t. o = Y and 54| = ¢}

and similarly for Tr(y,)Y. In our case, X = {1 € C*(R?) | 4 satisfies (1.2)} and

F(y) = Ay + (9 - 1)y (3-3)
and consequently
DF($)¢ = —A&+ (2197 = 1)E+9%¢ . (3.4)
As we see here, for complex 1, DF (1) is only a real linear operator. The linearization of
Eqn (1.1) around 1y is
—A&+ (20ho* —1)E+95€ = 0. (3.5)
We have the following elementary but crucial for our application result:
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Theorem 3.1. Let ¢y be a solution to the equation F(v)) = 0 breaking an one parameter
subgroup ¢(s) € Gsym (the symmetry group of this equation). Let T' be the generator of
g(s). Then Ty solves the linearized equation DF ()¢ = 0.

Proof. By the definition of Gsym, ¥s = g(s)¢o solves F(3p) = 0. Therefore, by the
definition of DF () and T,

0 = S F@.)| _ = DF()Td . 0

Applying this result to our situation and observing that the generators of translations,
rotations and gauge tranformations are V,, 10,, —x20, = Op and ¢, respectively, we arrive

at the following important observation.

Corollary 3.2. The functions 9, %™, 8,,9™ and i1)(™ solve the linearized equation
Lyw(€) = 0, (3.6)
where L, is the tangent map to (3.3) at v:
Ly(€) = —A&+ (2" — g+ €. (3.7)

For future needs we present

Lemma 3.3. We have

1 ’ n :
(n) — Z () _ 2 £(n)) i(n+1)0
0™ = (£ = T1)e

1 ’ n :
Liemy LM em)) itn—1)0
+5 (£ + 2f0)e (3.8)
and
() — _ S pm) _ T ) i(n+1)0
Ony 2(f o )e
ey L P oem)) in—1)0
5 (10 + 25 e . (3.9)



Proof. Using the representation (™ = (e and the relation

Vo(z) = % , where J = <(1) _01> ; (3.10)

we obtain

vy = f(n)'feino +f(n)i_nﬂein9 )
T roT

Taking into account that

1 . .
1 = rcosf = 57‘(6“9 + e %)
and
xo = rsinf = ir(ew — e~ )
27 ’
we derive easily (3.8) and (3.9). 0O

4. Renormalized energy functional

It is a straightforward observation that Eqn (1.1) is the equation for critical points of

the following functional

ew) = 5 [ (VP +500P - 1?). (4.1)

Indeed, if we define the variational derivative, 9,& (), of € by

Re [ €0,60) = )], «2)

for any path 1) s.t. 1y = ¥ and %1/1)\‘)\_0 = ¢, then the Lh.s. of Eqn (1.1) is equal to

OyE(Y) = 05E () for £(3h) given in (4.1).
(4.1) is the celebrated Ginzburg-Landau (free) energy. However, there is a problem

with it in our context.



Theorem 4.1. Let 1) be an arbitrary C! vector field on R? s.t. || — 1 as |z|] — oo

uniformly in & = ﬁ and deg1 # 0. Then E(¢) = oco.

Proof. Let ¢ = fe'¥ with f = |¢|. Then

VY[ = [VfIP+ £ Vel?

[wee > [ v,

Moreover, by the condition on f = |¢|, there is R s.t. f > % for all |x| > R. Hence

1
/ Ve > 2 / Vol .
2 Jiz|>R

On the other hand, the relation [ dy = 2wdeg1) implies that

|z[=r

and therefore

27
2rldegyl < 1 [ (VY9
0

< r(27r/02ﬂ|V<p|2d0)% ,

by the Schwarz inequality. Thus

2m 2m(deg )2
| 1vepa > O (43)
which yields
*1
/|V¢|2 > 7r(deg¢)2/ —rdr = oo . O
R T

The proof above actually shows how to save the energy functional, which is an impor-

tant variational tool. We renormalize it as follows. Let x(z) be a smooth real function on

R? s.t.
1 for|z|>2
x(@) = 0 for|z|] <1 (44)
Define
d 2
Eun¥) = 5 [ (1997 = Bt (i) ) (1.5
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where

P(u) = %(u—1)2. (4.6)

We list here the most important properties of E.en(10). Below ¢ = arg1p.

(a) Ogéren(¥)) = =A% + P'(|9[?)3).

(b) Vn let M, = {¢ — fei* | [ L|1— f2| < oo, f is continuous and f(0) = 0,
EE

[IV(e—nb)|r~! < oo and [|V(p—nb)]? < oo}. Then Eren () < 00 Vi) € M,.

(c) We have the following bound from below

1 2 1 4 2
) 2 Epan @+ 5 [ (190"~ 51Vl (@7
where for Q C R?,
d 2
eatw) = 3 [ (1997 - E s Py o (45)

Properties (a) and (b) are straightforward, while to prove (c), we minimize

W) = [¢*Vel* + P(jy[*)

w.r.t. |¢| to obtain that
1
W) = (1-5IVel) Vel

This together with (4.3) yields (4.7). O

We call Een the renormalized Ginzburg-Landau (GL) energy functional.

5. Partial convexity of &, (1))
The main result of this section is the following

Theorem 5.1. Assume ) is a critical point of Een and 1 is s.t. ny~! is C* and is
either real or imaginary or has proportional real and imaginary parts. Then dfpg (n) =

88—;25(1/1-1—)\7)) R > 0.
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Proof. We present the proof only for the case of 71)~! = h real, which is of the

interest for us. The proof of the other cases is similar. We show that in this case

e = [(THPIWE +20P) > 0. (5.1)

Observe that
P2EM) = Re / nLy(n) | (5.2)

where L, is given by (3.7):

Ly(n) = —An+ (24> — 1)n+ 7 . (5.3)

We compute the r.h.s. of the expression above. We start with
Re(hip, A(hp)) = Re(, h[A, hl¢)

+ Re(th, R2AY) .

Next, since h is real,

Re(t, h[A,hlyp) = %(w, [h, [A, R ) .

Since
[A,h] = 2Vh-V + Ah,
we obtain
[h,[A,B]] = —2|VA]*.
Hence
Re(ap, [A, ) = — / VR (5.4)

Now Eqn (1.1) yields
Re(y, R?Ap) = (¢, K ([¢[* - 1)y)

- / B2 (1t — [9]2) .
Hence

~Re(lub M) = [ (VHPIE + K2 = Blu)
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Recalling (5.3), we obtain
Re [ nLy(n) = Re [ (VHPIOF + K0P = 12w

+ 2P = Dnl* + 9% .
Remembering that n = h, we arrive at (5.1).

6. Existence of radially symmetric vortices

The main result of this section is

Theorem 6.1. For any n, there is a unique radially symmetric vortex of degree n.

This theorem follows directly from the following stronger result and a simple argument

showing that any radially symmetric vortex of degree n can be written, up to a symmetry

transformation, in the form (1.4) with f(® real.

Theorem 6.2. For any n, the functional £(f) = &en(fe'™®) has a unique minimizer

among real f s.t. £(f) < oo. This minimizer f™ | is radially symmetric and monotonically

increasing and f(™ e is an n-vortex, i.e. solution to Eqn (1.1) of degree n.

Proof. Let ¢ = fe™ with f real. Then

IVy|* = [Vf]* +n’ f2| VO]

(this is true, in general, only if f is either real or radially symmetric or both). Hence

_ 1 2, M L o 2 42
&) = 5 [ {197+ 5 =0+ (2 - 0 }ea
First of all we note that £(f) is bounded from below. Indeed
i
r2 2 - r

and therefore, since xy = 1 for |z| > 2, we have
1

1
£ = = L) g2 - .o d?
() = 5 /W{ o+ /W{ Yz
1 o2 1 2_”_4 2
> /w{ o+ | /MZZ{IVJ"I o &

(6.1)

(6.2)



Next, we show that, if 0 < f <1, then

2
&) = 5 [ {1Vl - Trxeme+ 36} (63

where £ =1 — f. Indeed, |V f| = |VE|, (1 — f2)2 =£2(2—¢€)2 > €2 if £ <1 and, finally

2 2 2

n n n
(=% = Fxaf’+ Sxe(ff - X)
n? n? 2n?
> r_2Xr21(f2 - 1) = _T_2Xr21£(2 - 5) > _r—2X2r£ .

Let M = {f real | £(f) < co}. Since £(f) is bounded from below on M, there is a

minimizing sequence f,, € M for &:

lim &(fn) = inf E(v) . (6.4)

m—»00 veEM

Without a loss of generality we can take 0 < f,, < 1. Otherwise we pass from f,, to
fm(z) = min (|f($)|, 1). Since
E(f) < E(fm)

{f!.} would be also a minimizing sequence.

Since 0 < f,, < 1, we have due to (6.3) that

/ (Venl? + em?)dPz < K |

where &,, = 1 — f,, for some fixed K < co. Hence by the Banach-Alaoglu theorem {¢,,}
is weakly comapct in H;(R?) and by the Kondrashov-Sobolev embedding theorem {¢,,} is
compact in L?({2) for any compact Q2 C R2. Hence using a diagonalization procedure we
can find a subsequence {&,,/} s.t.

e — & weakly in Hy(R?)

¢ — &0 a.e. in R?
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as m’ — oo. Let fo =1—¢&. Since [ |V¢|? is weakly lower semicontinuous in H;(R?) and

since by the Fatou lemma

lim [ V() > / lim V(€m)

m’— 00 m’—o00

- [vie

where V(§) = 2 ((1 — €)% — 1)2 > 0, we have that

lm &(fm) > E(fo) -

m’ —o0

On the other hand since fj is real and £(fy) < 0o, we have that fy € M and therefore

E(fo) > 12{/1 E(v). The last two inequalities yield

inf E) = E(fo) . (6.5)

vEM

Next, we want to show that f; is radially symmetric and monotonically increasing.
The method of symmetric rearrangement, applied to the function 1 — |f|, seems to yield
only that there exists a radially symmetric monotonically increasing minimizer. So we do

— 2m —
the problem from scratch. Let u = 4/ f2, where g(r) = 5= of g(r,0)df. Then f2 = u? and
f§ =t
and
Ve fol2 > [Veul*.

The last inequality implies that [ |V fo|?d?z > [ |V,u|?rdr with the inequality taking

place only if fy is independent of §. Hence

E(fo) = E(u)

and the equality holds only if fj is radially symmetric. Since fj is a minimizer we conclude

that it must be radially symmetric.
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Now we show that f} > 0. Differentiating the equation £'(fp) = 0 w.r. to r, we obtain

,, 1y, 3n?
(&) + )0 = 5to (6.6)
where f} = % fo and
2
E"(fo) = —Ar+ 2—2 +3f5 1.

Since fj is the minimizer we have that £”(fp) > 0. Since fy > 0, the maximum principle
(see [GT, Str, Thm B.4]) applied to Eqn (6.6) (take h = fy in Thm B.4 of [Str]) yields
that fj > 0.

Next, fo satisfies the Euler-Lagrange equation

(—A+Z—§)f+(f2—1)f — 0.

Since fj is radially symmetric, we have that V fy - V8 = 0. Thus

2
Alfoe™®) = (Afo—Z5fo)e™

and therefore fye'™? satisfies the equation

Ay + ([P -1)p = 0.

Since deg(foe'™?) = n, we have proven that (i) &cn(1) has a minimizer on the set {fe? |
f real and Een(fei™) < oo} and (ii) any minimizer of En(¢) on this set has f radially
symmetric and monotonically increasing. A partial convexity result of Section 5 implies

that £(f), for f real, is strictly convex. Hence £ has a unique minimizer. O

7. Hessian

Before proceeding to the last and key section of this paper, which classifies the critical
points of the renormalized Ginzburg-Landau functional, e, (1)), we present a few gener-

alities about Hessians of functionals, used there. Let ¢ ,, be a two parameter variation of

1 along & and 7, i.e. Yoo = ¥,

0 D?ihy,
= ga %"ﬁ)\,u =1 and z

9, )
Nk A=p=0 ONOp Ia=p=0

}\:p,:
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Then the second variation of £ at ¢ along £ and 7 is computed as

E (o) B )
Wuu A=p=0 Re/”LdJ(E) ,

where Ly is the tangent map for the map ¢ — 9;€(¢)), i.e. in the case of (4.5), it is given
by (3.4).
Now it is natural to define X = {9 | &ren(¥) < 00}. Then Ty X can be identified with

the linear space

{¢€ € LA(RY) | /|Re(e_i‘p§)|2 < oo and /|V§|2 < oo}, (7.1)

where ¢ = arg1). Note that the quadratic form Re [ 7Ly (£) is well defined on this space.

Indeed, we have
Re [ nL4(¢) = Re [ V7. Ve
+9 / PRe(e=n)Re(e=9€) < oo .

Note that if for £ we define ? = (E—), then

Re [ 7€ = 3(7,9), (7.2)

where the inner product on the r.h.s. is a standard one:

@9 = [aa-(})

~ [onm- (§) (73

with & = Re& and & = Im¢, etc. Let Ty X = {€ | £ € T, X} and define Hess £(1)), the

Hessian of £ at v, as a map on T%X given through the relation

(7 HessEW)E) = 505 En)|

— Re [ nLy(©) (7.4)

A=p=0
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where 1, , is a two parameter variation of 1 specified above. Otherwise it can be written

as
05 EW) 05 ,E()
I b
Hesa2(¥) (%8(@ %s(w)) |
Observe also that (7.2) and (7.4) imply that

HessE(W) € = Lyt . (7.6)

In the case of £(¢) given by (4.5) we have

_ 2 _ 2
Hess £(1)) = ( A*fﬁ;”' L _A+1§|w|2_1) . (7.7)

Finally we note an important symmetry relation

Re / nLy(€) = Re / Lo, (7.8)

which implies that Hess £(%)) is symmetric w.r.t. inner product (7.3).
Eqn (7.6) shows that

NullHess £(7)) = Null Ly, .

Denote by Sym Null Hess £(¢) the maximal null space of Hess £(¢)) due to the symmetry
breaking, i.e. Sym Null Hess E(y)) = {m | L generator of a one parameter subgroup of
Gsym broken by ¥} N ﬁX . Then

1 is a local minimum of £ <> Hess £(¢)) > 0 and

NullHess £(1) = Sym Null Hess £(v))

and

1 is a saddle point of £ <+ Hess (1) has a negative eigenvalue.

Due to (7.6) these statements can be reformulated in terms of L.

8. Classification of radially symmetric vortices

Now we want to take a closer look at radially symmetric solutions to (1.1) as critical

points of the renormalized GL energy functional. The main result of this section is
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Theorem 8.1. (™ are local minima of E.en(1p) for n = 0,+1 and are saddle points for

|n| > 2.

The problem is to understand the spectrum of the Hessian of &en (1), Hess Eren(10). To

fix ideas we assume that n > 0. The case n < 0 is obtained by observing that (™) = (=7,
We begin with an elementary harmonic analysis of the linearization operator L)
closely related to Hess Eren(10). We consider £(z) as a function of the polar coordinates r
and 0, i.e. a function on RT x S, and, abusing notation, keep the same notation for the
new function, £(r,0) = &(x). This function can be expanded in the Fourier series in 0, i.e.

o0
£(r0) = Y &(r)e™, (8.1)
k=—oc0

where the Fourier coefficients are given by

27
&(r) = (2m)! &(r,0)e""*0dp
0
Consider a map 7 of measurable functions & R? — C into measurable functions

§ = &b (Z &k ) If ¢’s are endowed with inner product (7.2), then 7 is unitary, provided
an 2n—k

é ’s are endowed with the inner product

(78 = Re<nn,sn>+1§Re<(_5’“ (2 )

€2n—k €2n—k

We define the real linear operator f}w(n) on functions é by
LywmmE = TLymé . (8.2)

Theorem 8.2. The operator 131/)(") is block diagonal of the form

Lym€ = @Lff()n) (— 2 > ; (8.3)

k>n £2n—k

where the operators prk()n) are given by
® —Ay + ’:—2 + 2|7v/)(")|2 -1 |’¢’in)|2 _ (8.4)
() |1/)(n)|2 A, + (2711‘;21:) + 2|,¢)(n)|2 1
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Here A, is the radial Laplacian : A, f = %ar (ro,f).
Proof. First of all we claim that
k? 2 2 27
(Lyw (€)= —Are+ 56+ QA = D%+ ey . (85)
Indeed, since A = A, + r=293, we have that
]{:2
(—Ak = —An&k + T_ka : (8.6)
Moreover, we have
2 1 2m . — .
(,(/}(n) g)k — |w(n)|2(2ﬂ_)—§ / e2’m0£e—zk0d6
0

2
= |p™2(2m) "2 i geTi2n=k0gg — |pM|ZE, .

( (Lym &), ) _® (_Ek >
T )~ )

which, due to (8.2), yields (8.3). O

Eqn (8.5) implies

Note that I:,/,(n) is defined on the space @ (L*(R",rdr) ® L*(R*,rdr)) D 7TyX.
k>n
To keep the exposition as simple as possible we consider here only the L2-spectral theory.

How to extend our conclusions to the L*-spaces can be gleaned from Appendix B.

Theorem 8.3. (a) L")

e > 0 and 0 is not an eigenvalue.

(b) Lfﬁt)l) > 0 and 0 is its non-degenerate eigenvalue due to breaking of the transla-

tional symmetry.

(c) prk()n) > 0 for k£ > 3n and 0 is not an eigenvalue.

(d) prk()n), for n + 2 < k < 2n, has a negative eigenvalue.
(k) _

(e) cont spec Ly =

Proof. We omit the subindex (™ at Lq(pk()n) and write L(*) for prk()n).

[0, 00) for any k.
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(a) Recall that the fact that /(™ breaks up the rotational (= gauge) symmetry implies

that

Ly (™) = 0.

After separating out the angular variable this implies
n2 2
(_Ar+ 2+f(7l) _1)-f(n) =0, (8.7)
r

where, recall, f(*) = |¢(")]|. Since f(®) > 0, bounded and ¢ L?(R*,rdr), we conclude that

the ordinary differential operator
2

_Ar+n_2+f(n)2_1
T

is non-negative and 0 is not its eigenvalue (see Appendix B). This implies the same prop-
erties for the operator —A, + Z—z + ?)f(")2 — 1. On the other hand using that 2n — k =n
for kK = n we compute for R = <_1 1)

1 1
RL™WR™ = L, (8.8)
where
A+ (n)?* _1
L - ( + 7 +3f O ) . (8.9)
0 —Ar+ %4+ M -1

By a result above the operator L is non-negative and 0 is not its eigenvalue. This implies
statement (a).

Note parenthetically that, due to (8.7), there is a positive solution, ( f(on)), to the

equation
L<€1> =0. (8.10)
&2
A different way to arrive at this conclusion is by using that
o = if
k>n
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(b) Statement (b) is proven similarly to (a), but instead of the zero mode due to
breaking the gauge group we use the zero mode due to breaking the translation group.
The zero mode due to breaking the translational symmetry is Vi(*). Due to Lemma

3.3 and since n —1 = 2n — k for k = n+ 1, 9,,9(™ contain only the £ = n + 1 block,

(n+1,n—1):
02,0 = @ g™ b nta (8.12)
k>n

and

O, ™) = ED —ig™ 6 41 (8.13)

k>n
(n) _n p(n)

where ¢g(®) = %(f w7 ) Hence

f) 42 fn)

0 = L0 ™) = @@L g6 n1a
k>n

and therefore

LHgm — ¢, (8.14)

The zero mode 0., (") leads to the same equation.
%f(n)
fny

R= <_11 1) Since f(™ > 0 and ™’ > 0, r > 0, the vector Rg(™) has positive entries.

Now observe that Rg(™ = ( ), where R is the orthogonal transformation given by

It is shown in Appendix B that the latter fact and Eqn (8.14) imply that 0 is the lowest

eigenvalue of L("*t1) and it is non-degenerate. This and statement (e) imply statement

(b).
(c) Statement (c) follows from (b) and the inequality
(k) _ 7(n+1) B ) 0
L™ — L = :) (he2m)?—(n_1)? | > 0 (8.15)
po)

valid for k > 3n.
(d) Note that for n = 0,1, the set of k’s s.t. n+2 < k < 3n — 1 is empty. So we let

n > 2. We consider only the easiest case k = 2n, the (2n,0) block. This case is already
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enough in order to draw the desirable conclusions from the present theorem. In this case

1om) (-Ar +4nn 4 of 1 Fo° )

We use the variational criterion in order to prove existence of a negative eigenvalue

for L"), In other words we find n = (";0") s.t.

(LPMp ) < 0. (8.17)

In order to capitalize on the fact that the operator standing in the right bottom corner of
matrix (8.16) is smaller than the one standing in the left-top corner, we take 7 of the form

(0 ) In this case we have
70

(L) = (=A + 2™ =)o, m0) - (8.18)

Next, it can be shown numerically that for n > 2

7.2

) < - (8.19)

2 4 n?
7'+2

Using this we compute for ny = e~ /2 with u = 0.3169,
(A + 2™ — 1)ng,mo) = —0.27911 . (8.20)

This implies (8.17) for n = (,_,22,,), which yields that L(™ has a negative eigenvalue.

(e) As |z| — oo, we have that

() —A+1 1 -
L —>< T aLy) = Lo (8.21)

Since the continuous spectrum is determined by a neighbourhood of oo, we have that
contspec L) = spec Ly . (8.22)

Now we diagonalize Ly by finding the eigenvalues of its symbol matrix:

pPP4+1-X 1

(2 SN2 1 —
. 21y = @PHI=A -1 =0,
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This implies \; = p? + 2 and Ay = p?. Hence Ly can be transformed by a rotation in R?

-A+2 0
0 -A )

) = [2,00) U0, 00), which together with (8.22) yields

to the form

-A+2 0
0 —A
(e). O

Thus spec Ly = spec (

Proof of Theorem 8.1. For n = 0, 1, statement (d) of Theorem 8.3 is vacuous, since
there is no k’s satisfying n+2 < k < 3n— 1. Consequently, due to Theorem 8.2, for n = 1,
iw(") > 0 with the zero modes due to the symmetry breaking. For n > 2, statement (d)

and Theorem 8.2 imply that the operator IA%(") has a negative eigenvalue. 0

Appendix A. [¢]| <1
The following theorem is the main result of this appendix (cf. [JT, BGP, BMR, Z]).
Theorem. If1) is a solution to (1.1)—(1.2), then || < 1.
Proof. Let ¢ = fe*¥, where f = |¢|. Then multiplying Eqn (1.1) by e~% and taking
the real part of the result, we obtain
—Af+IVOPf (P -1f = 0. (A1)
Let D={z €R?| f > 1}. Then on D

Af = [VePf+ (= 1f > 0.

Hence f is a subharmonic on the open set D. Therefore it reaches its maximum either on
0D or at co. Since f =1 on 9D and at oo we conclude that f < 1 on D which leads to a
conflict with the definition of D.

Let u =1 — f and rewrite equation (A.1l) as an equation for u:

(~A+ 2+ fju = [VoPf 2 0.
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Since 0 <wu <1 and u — 0 as |z| — 0o, we have by a maximum principle (see [GT]) that

u>0,ie f<I1. O

Appendix B. Perron-Frobenius argument

In this appendix we investigate the relation between positive solutions of (systems of)
ordinary differential equations and their spectra. Results of this sort belong to the realm
of the Perron-Frobenius theory. Our results extend somewhat the existing theory (see [GJ,

RSIV]). Below r = |z|.

Theorem B.1. Let V(z) be a positive bounded function on R?, s.t. V(z) = O(r~2) as

r — oo and let o > 0. If the equation
e
(-a+5-v@)y =0

has a positive, bounded solution, 11, then the spectrum of the operator —A + 5 — V(x)
on LP(R?), 2 < p < oo, is [0,00) and any other solution of the above equation is of the

form const - ;.

Before proceeding to the proof we describe our machinery. Consider the Birman-

Schwinger-type operator function
K(\) = ViR,\V7 | (B.1)
where Ro(A\) = (Lo — A\)™', Lo = —A+ %, for A < 0. Then 1 solves the equation
(L-=XNy =0,
where L= —-A+ 5 —V(x), iff p = V21 solves the equation
KXNe = ¢
and conversely, if ¢ solves the latter equation, then

¥ = Ro(\Vigp (B.2)
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solves the former. Moreover, since V2 < C(r)~1, we conclude that if ¢ € LP(R?), then
o =V3pe L2(R?) and if ¢ € L2(R?), then for A < 0, [¢)(z)| < Ce~ VP,
We will consider K()\) on L2(R*,rdr). Then K()) > 0, bounded and monotonically

decreasing as A < 0 decreases. One has the following elementary

Lemma B.2. (i) \ is an eigenvalue of L iff 1 is an eigenvalue of K (\). (ii) A is the lowest

eigenvalue of L iff 1 is the largest eigenvalue of K ().

Proof. Statement (i) was already proven above. We prove (ii). If K()\) has an
eigenvalue p > 1, then, by the monotonicity property of K(\), there is a number \g < A
s.t. K(Ao) has an eigenvalue 1 and therefore )\ is an eigenvalue of L. Thus A cannot be
the lowest eigenvalue of L. In the opposite direction, if L has an eigenvalue \g < A, then

K ()\p) has an eigenvalue 1 and therefore K(\) has an eigenvalue > 1. O

Next, by standard results (see [RSIV, Theorems XIII.44 and XIII.45]) K(A) with
A < 0 is positivity improving, i.e. K(A)¢ > 0 (modulo a set of zero measure), whenever
¢ > 0. With a little more work one can show the same for A = 0. This implies (see
[RSIV, Theorem XIII.43]) that the eigenfunction of K()\), corresponding to the largest
eigenvalue, is positive (and, which is not used here, that the largest eigenvalue itself is
non-degenerate).

Now we are ready to proceed to the proof of Theorem B.1.

Proof of Theorem B.1. Since essspec L = [0,00), L can have only isolated eigen-
values of finite multiplicities on R™. Assume L has negative eigenvalues. Let \g < 0
be its lowest eigenvalue. Then 1 is the largest eigenvalue of K()\g). Let ¢g > 0 be the
corresponding eigenfunction. Then 1y = Ro()\o)V%QOO > 0 is an eigenfunction of L, it is
exponentially bounded together with its derivatives to the second order. Let 7 be the

solution to L1 = 0 mentioned in the theorem. Then

0 > do [dowr = [ Luon
— /¢0L¢1 =0, (B-3)

26



which is a contradiction. Hence L does not have negative eigenvalues.

Assume now that L has a zero eigenvalue. Then 1 is the largest eigenvalue of K(0).
Let ¢o > 0 be the corresponding eigenfunction. Then the function g := Ly 1V%<,00 is
positive and solves the equation L1y = 0. Let €. be a bounded domain in R? s.t. 9y > ¢
on 2., € > 0. Let 1 be the solution to the equation Li) = 0 mentioned in the theorem.
Then 1, = Yo — ap1 > 0 in . for a > 0 sufficiently small and there is ag > 0 s.t. g, > 0
and 1), is not strictly positive in Q. (ap = sup{®a|ts > 0 in Q2.}). On the other hand by
the strong maximum principle for L + b, where b > sup V + 1, ¢, = $(L + b)3, > 0.

Thus we arrived at the contradiction. O

Now consider matrix-operators (or operator-valued matrices). Let L be a (2 x 2)-
matrix operator on X, , = LP(R?)® L%(R?) for some 2 < p, g < oo, of the form L = Ly—V,

where

Ly, — <—A +0W1(ac) N +0W2(x)> , (B.4)

with W;(z) bounded for 7 # 0 and such that for some a; > 0, 8; and v; > 0, Wj(z) =
%—FO(%) as 7 — 0 and W;(z) =’yj—|—%+0(ri3) as r — oo, and

v — %G 1) (B.5)

with %(al + az) > a > 0. Moreover, we assume that §; > 0 if y; = 0. This operator
generalizes slightly the operator RL(" DR~ where, recall, L(¥) = Lff()n) is given by (8.4)
and R = <_11 1) We just dropped some irrelevant details from the definition of the
latter. There is one important property of the operator L which we want to mimic. We

assume that

—A + W](Iﬂ) Z 0

and 0 is not its eigenvalue, 7 = 1,2. Indeed, compute

RL(n+1)R—1 — _Ar + (71;{-—21)2 + f(n)2 -1 9
0 A+ D 350 g

(1
r2\1 1/ °
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We have shown in the proof of Theorem 8.3(a) that —A,+ ’T"—z +f(™*_1 > 0. Consequently,
—A,+ (":f—zl)z + f(")2 —1>0and —A,+ (";L%f +3f(”)2 —1 > 0 and 0 is not an eigenvalue
of these operators. These are the properties of RL(™™VR~1 which are encoded in the
above assumption. In what follows the inequality ¢ > 0 for ¥ = (i;) € R? means that

1,92 > 0 (modulo a set of zero measure). We say in this case that 1) is positive. Similarly
%f(n)

for 1 > 0. Recall that the operator RL("*1) R~1 has an eigenfunction Rg(™ = ( iy

) >0,
corresponding to the eigenvalue 0. The next theorem shows that this fact implies that 0
is the lowest point of the spectrum of the operator RL("*1) R~ (and therefore of L("*1)

and is a non-degenerate eigenvalue of this operator, which completes the proof of part (b)

of Theorem 8.3.

Theorem B.3. Let the equation Lg = 0, where L = Ly — V', with Ly and V, given by
(B.4) and (B.5), have a positive solution in X, ;. Then 0 is the lowest point of the spectrum
of L in X, 4 and it is a non-degenerate eigenvalue. If the above-mentioned positive solution

is not in X, 4, then 0 is not an eigenvalue.

Proof. There is a direct proof of this theorem which uses the (self-adjoint) variational
principle in combination with the strong maximum principle, but we prefer to give a proof
which is close to the one of Theorem B.1. First we introduce the Birman-Schwinger type

operator family,

K(\) = VIR)\)V? , (B.6)

where R()\) = (Ly — A\)~1. We consider these operators on Y = L?(R?) @ L%(R?). By the
assumption on —A + W;(z), Lo > 0 on Y and 0 is not its eigenvalue. Thus K()) is well
defined for A < 0 on a dense set in Y, as a family of non-negative operators, monotonically
decreasing as A < 0 decreases. We show at the end of this proof that K()), with A < 0,
is bounded (note that it is not compact as required in other applications of the Birman-
Schwinger operators). It is straightforward to show that it has all the properties stated in

Lemma B.2. Thus Lemma B.2 holds for the operators L and K()).
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Again it is a standard result (see e.g. [RSIV]) that for A < 0, R(\) is positivity
improving in each entry (modulo a set of zero measure), i.e. (R()\)cp)i > 0, provided

w; > 0and p; Z0,7=1,2. Since

N|=

vi- 2 (1)) (B.7)

~ V2r \1 1
has positive entries, this implies that K () is positivity improving, i.e. K(A)p >0if ¢ >0
and ¢ # 0. With some extra work one shows that K(0) is positivity improving.

To conclude our agument we follow the proof of Theorem XIII.43 from [RSIV] and
Theorem 2.3.2 from [GJ]. We adopt the notation |f| = (I}C;I) for f = (}2) Let ¢ be an
eigenfunction of K () corresponding to the highest eigenvalue, p, of K(\). Without loss

of generality it can be taken to be real. We claim that |p| is also an eigenfunction of

+ (%) > 0 and

K()) corresponding to the same eigenvalue. Let ¢ = (g;) Then ‘(‘%1)
(%)

This implies K(A)|¢| > |¢|, which yields that

+ (cpog) > 0 and therefore K()‘)‘ (%)

> |[KO)(%)

and K[ (9)] = [KO)(2)

p2

(lel, K(Nlel) = (o], IK(A)el)
> (o, K(Np) = pllel” .
Since p is the maximal eigenvalue of K (), |¢| must be an eigenfunction of K (\) with the

eigenvalue pu, as claimed. Now we show that ¢ must have a definite sign. Indeed, write

@ =@y — p_, where ¢ > 0. Then the equation

(lol, KN)le) = (o, K(N)p)

implies that
(4, K(N)p—) + (o, K(N)p4) = 0.

Since K(A\)p+ > 0 if o+ > 0 and ¢+ # 0, we conclude that either ¢, = 0 or ¢_ = 0.
Thus every eigenfunction of K (\) corresponding to an eigenvalue p is, modulo a constant

multiplier, positive. Since linear combinations of eigenfunctions with the same eigenvalue
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is an eigenfunction itself, we conclude that the eigenvalue ;¢ must be simple. Finally using
Lemma 6.2, we pass from K(\) to L to obtain that the lowest eigenvalue of L is non-
degenerate and the corresponding eigenfunction is positive. This eigenvalue must be 0.
Indeed, if it were negative, the corresponding eigenfunction would have an exponential
decay and therefore would be orthogonal to the positive solution of Lg = 0, mentioned in
the theorem. The latter is clearly impossible (cf. Eqn (B.3)). This contradiction proves
the theorem.

In conclusion we prove that the operators K(\) defined in (B.6) are bounded for A < 0.
Due to (B.7), it suffices to show that 1(—A + W; —X)'1 extends to a bounded operator
for j = 1,2 and A < 0. We drop the subindex j for a moment. This will not cause a
confusion since a entering (B.5) and (B.7) does not appear in the rest of the proof. To fix

ideas we assume v = 0 and therefore 3 > 0. The case of v > 0 and arbitrary (3 is even

simpler. We also denote T':= —A + W — X\, A < 0. We use the representation

2
[yt = (T
r ¢

Using a smooth partition of unity x? + x3 = 1, where ; is supported in » < 2 and x3 is

supported in r > 1, we transform the r.h.s. as

1 1 1 1 1
< >u = <r_2X% + r—2X§>u = —(aTx2)u + B<X2TX2>U

r2 «a

_ é<xl(—A — A+ U1)X1>u — %<X2(—A — A+ U2)X2>u ,

where u = T_%cp,

and
U2:W_£:0(i> as r — oo .

This equation implies



The IMS formula (see [CFKS]) yields then that

L < max(é,%){<T>u+2mv»a|u\|2

- é HX¢|Ui|%UH2} :

Recall now that u = T~ 2¢. A fairly standard analysis shows that |Vy1|>*T~2 and
x:i|Us]|2T~2 are bounded operators. Moreover, (T}, = ||¢||2. Thus the r.h.s. is bounded

by const - [|||2. Hence %T_% is a bounded operator and therefore so is 27~ 1. O

Remark. One can show directly that et~ is positivity improving. Indeed, since L
is diagonal, standard arguments (see [RSIV, Theorem XIII.45) are applicable and show
that e~*L0 is positivity improving entrywise. Next, since all the entries of V are positive,

then so are the entries of etV (in fact an explicit computation yields that

(e%—l)(i i)%—id ). (B.8)

1% tL —tLo+tV

Therefore etV is positivity preserving and, moreover, e~t = ¢ is positivity im-

proving, as can be shown using the Trotter product formula.
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