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In this paper we present a self-contained and detailed exposition of the new
renormalization group technique proposed in [1, 2]. Its main feature is that the
renormalization group transformation acts directly on a space of operators rather
than on objects such as a propagator, the partition function, or correlation functions.

We apply this renormalization transformation to a Hamiltonian describing the
physics of an atom interacting with the quantized electromagnetic field, and we prove
that excited atomic states turn into resonances when the coupling between electrons
and field is nonvanishing. � 1998 Academic Press
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I. INTRODUCTION

In this paper we give a detailed and mathematically self-contained presenta-
tion of the new renormalization group technique proposed in [1, 2].

The mathematical problems we address in this paper are encountered
in the quantum theory of atoms and molecules coupled to the quantized
electromagnetic field. As explained in [1, 2], our task is to explore spectral
properties of Hamiltonians that generate the time evolution of systems of
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electrons (``particles'') bound to static nuclei and interacting with the
quantized radiation field (``bosons''). In paper [2] we justify studying the
following simplified quantum mechanical model system.

The Hilbert space of pure state vectors of the system is given by

H=Hel �Fb[L2(Rd)], (I.1)

where Hel , the ``particle Hilbert space'', is some separable Hilbert space (for
a single electron, e.g., given by L2(X)�C2, X$Rd, in the Schro� dinger
representation), and Fb #Fb[L2(Rd)] is the Fock space of the quantized
radiation field, i.e., Fb is the Hilbert space of symmetric tensors of arbitrary
rank (``multi-boson states'') over the one-boson Hilbert space L2(Rd). Here
Rd is the momentum space of one boson (while X$Rd is the physical
configuration space). The Fock space Fb carries a unique, unitary,
irreducible representation of the canonical commutation relations between
creation- and annihilation operators, a-(k), a(k),

[a(k), a(k$)]=[a-(k), a-(k$)]=0, [a(k), a-(k$)]=$(k&k$), (I.2)

for arbitrary k, k$ # Rd, in the sense of operator-valued distributions. The
boson Fock space contains a special unit vector, 0, the vacuum vector,
which is characterized, up to a phase, by the equations

a(k) 0=0, for all k # Rd (I.3)

(``lowest-weight condition''). The vacuum vector is a cyclic vector for the
polynomial algebra generated by creation-and annihilation operators smeared
out with test functions; (the representation of the commutation relations (I.2)
on Fb is uniquely characterized by unitarity, the lowest-weight condition (I.3),
and the cyclicity of 0).

The time evolution of the system is generated by a Hamilton operator
Hg(%=0), which is a self-adjoint operator defined on a dense domain in H.
The family of operators Hg(%) is defined by

Hg(%) :=Hel �1+e&%1�Hf+W (%)
g , (I.4)

where Hel denotes the particle Hamiltonian,

Hf :=| |(k) a-(k) a(k) dk (I.5)

is the (free) boson field Hamiltonian, which is self-adjoint on its natural
domain D(Hf)�Fb[L2(Rd)], where the dispersion | is given by |(k) :=|k| #,
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#>0 (note that #=1 and d=3 for physical photons). The term W (%)
g is of

the form

W (%)
g = :

1�M+N�2

gM+NW (%)
M, N , (I.6)

W (%)
M, N=| GM, N(k1 , ..., kM , k� 1 , ..., k� N ; %)

�a-(k1) } } } a-(kM) a(k� 1) } } } a(k� N) dk1 } } } dkM dk� 1 } } } dk� N , (I.7)

where GM, N are functions with values in the operators on Hel and g is a
coupling constant. It describes the interactions between the particle(s) and
the boson field. The parameter %, a complex number with |Im %| small, is
introduced, in order to reveal the resonance structure of the spectrum of Hg ;
the physical value of % is %=0. Exploring properties of the spectrum of Hg(%),
in particular of Hg(0), is the main purpose of the present paper. For a detailed
summary of our results, our methods, and background material, as well as
references to related work see [2].

Next, we define Hel , Hf , and W (%)
g more precisely and describe the basic

assumptions underlying our analysis.

I.1. Assumptions on the Model and Main Result

We assume that Hel is a self-adjoint operator on a dense domain of definition
D(Hel)�Hel with a standard spectrum, _(Hel), i.e., _(Hel) contains isolated
eigenvalues e0<e1<e2< } } } �7, of finite multiplicity without any accumu-
lation point below 7 and (absolutely) continuous spectrum contained in
[7, �) (see Fig. 1). These spectral properties are typical for Schro� dinger
operators, &2x+V(x), describing the dynamics of nonrelativistic point
particles (see e.g. [3, 8]). We wish to study the spectrum of Hg(%) in the
vicinity of one of the eigenvalues, ej , of Hel . For simplicity, we assume ej

to be non-degenerate and isolated by $>0 from the other spectrum of Hel .
The two parameters # (the power in the dispersion relation |) and d (the

dimension of the photon momentum space) will affect the perturbation
theory that we shall develop. For this reason, we want to keep their values
unspecified. Of course, we ensure that our results cover the physically relevant

FIG. 1. The spectrum of Hel .
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case. In contrast, polarization degrees of freedom, which physical photons
possess, do not have any effect on the present results and are neglected.

Fixing % :=i�, 0<�<?�2, we observe that H0(%)=Hg=0(%) in (I.4) is a
non-self-adjoint, but normal operator on H with spectrum _(H0(%))=
_(Hel)+e&%_(Hf) (see Fig. 2).

As illustrated in Fig. 2, the eigenvalues e0 , e1 , e2 , ..., ej , ... of Hel are
eigenvalues of H0(%), as well. They are not isolated from the remaining
spectrum anymore, however, and one cannot apply standard perturbation
theory to study their fate when the perturbation is switched on, g>0.
Indeed, the main achievement in the present work is to construct a pertur-
bation theory for eigenvalues which are not isolated from continuous
spectrum.

We remark that H0(%) (trivially) is an analytic family of type A [6, 8]
for % in a sufficiently small neighborhood of zero. Under suitable analyticity
assumptions on W (%)

g , which we state in Hypothesis H-2 below, this extends
to Hg(%) for small values of g. One may thus obtain the analytic continuation
of matrix elements (9 | [Hg(%=0)&z]&1 8) from z # C+ across the real
axis into z # C& , by studying that of (9 | [Hg(%=i�)&z]&1 8) for
0<�<?�2 and 9, 8 taken from a universal dense set D�H. By means
of this meromorphic continuation, we can identify spectral properties of
Hg(%=i�) such as eigenvalues and continuous spectrum, with poles, branch
points and cuts on the domain of analyticity of the meromorphic continuation
of matrix elements of the physically relevant resolvent [Hg(%=0)&z]&1. This
procedure is known in mathematics as complex scaling and is described,
e.g., in [3, 5, 8].

We turn to the specification of Wg #W (%)
g . We assume that, for k # Rd,

G1, 0(k), G0, 1(k), and their adjoints are quadratic forms on Hel with form
domain containing D( |Hel |

1�4). Likewise, G2, 0(k, k$), G0, 2(k, k$), G1, 1(k, k$),
are assumed to be bounded operators on Hel , for all k, k$ # Rd.

Before we specify our bounds on the norms of the coupling functions,
Gm, n(k1 , ..., km+n), in a Hypothesis, we introduce natural dimensionless
units, in order to rewrite the Hamiltonian of the system in a simpler form:
We introduce the distance $ of the eigenvalue ej to the rest of the spectrum
of Hel as our unit of energy. This enables us to set $=1, throughout the
following.

FIG. 2. The spectrum of H0(%).
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In order to see that we are not loosing generality in setting $=1, we apply
a unitary scale transformation, 1' , to Hg : This transformation unitarily
implements the scaling of boson momenta,

k [ '1�#k, k # Rd, '>0, (I.8)

on the Fock space Fb[L2(Rd)] and is determined by the properties that
1'0=0,

1' a-(k) 1*'='&(d�2#)a-(n&(1�#)k), and
(I.9)

1'a(k) 1*'='&(d�2#)a('&(1�#)k).

Note that 1' is obtained by lifting the operator f (k) [ 'd�2#f ('1�#k), defined
on the one-particle space, L2(Rd), to the Fock space. Thus, using |(k)=|k| #

and choosing ' :=$, we observe that

1'Hf1*'='Hf=$Hf , (I.10)

and, for 1�M+N�2,

W (resc)
M, N #$&1(1�1') WM, N(1�1 '*) (I.11)

=| G (resc)
M, N (k1 , ..., kM , k� 1 , ..., k� N)

�a-(k1) } } } a-(kM) a(k� 1) } } } a(k� N) dk1 } } } dkM dk� 1 } } } dk� N ,

(I.12)

where

G (resc)
M, N (k1 , ..., kM+N) :=$(d(M+N)�2#)&1GM, N($1�#k1 , ..., $1�#kM+N). (I.13)

So, defining H (resc)
g :=$&1(1�1') Hg(1�1'*) and W (resc)

g :=
�1�M+N�2 gM+N W (resc)

M, N , we find that

H (resc)
g =$&1Hel �1+e&% 1�Hf+W (resc)

g . (I.14)

The benefit of passing from Hg to H (resc)
g is that the eigenvalue $&1e j of

the rescaled particle Hamiltonian H (resc)
el :=$&1Hel is now separated by a

distance 1 from the rest of its spectrum. Moreover, by a trivial energy shift,
we may replace $&1e j , by zero.

We formulate our assumptions and henceforth drop the superscript
``(resc)''.
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Hypothesis 1. Zero is a non-degenerate isolated eigenvalue of Hel with
normalized eigenvector .el , separated by a distance 1 from the rest of its
spectrum, i.e.,

Ker(Hel)=span[.el], dist[0, _(Hel)"[0]]=1. (I.15)

Next we give the precise assumptions on the coupling functions GM, N ,
which also depend on % # C in practical applications.

Hypothesis 2. There exists a non-negative function J�0 such that, for
all k, k$ # Rd and M+N=1 (i.e., (M, N)=(0, 1) or (M, N)=(1, 0)),

&( |Hel |+1)&1�4 GM, N(k)( |Hel |+1)&1�4&Hel�J(k), (I.16)

and, for M+N=2 (i.e., (M, N)=(2, 0), (M, N)=(1, 1), or (M, N)=(0, 2)),

&GM, N(k, k$)&Hel�J(k) J(k$). (I.17)

If GM, N additionally depend on % # C, then the maps % [ GM, N are assumed
to be bounded analytic in a complex neighborhood of %=0 with respect to the
norms specified in (I.16) and (I.17).

Moreover, J is a square integrable function obeying

41 :={| [1+|(k)&1] J2(k) d dk=
1�2

<�. (I.18)

Under the assumptions of Hypothesis H-2 the map % [ Hg(%) defines an
analytic family of type A in a complex neighborhood of %=0. Thus we
obtain the analytic continuation of the resolvent (Hg(%=0)&z)&1 across
the real axis from the deformed resolvent (Hg(%=i�)&z)&1 for 0<�<?�2
sufficiently small. (Note that if .el is the ground state of the particle
Hamiltonian Hel , i.e., j=0, then %=0.)

Although we do not give a proof here, we shall make it plausible to the
reader that Hypothesis H-2 is both necessary and sufficient for the applica-
tion in atomic physics discussed in [2]. First, every factor of a- or a in Wg

accounts for a factor of H 1�2
f in its relative bound with respect to H0 . (This

is made precise in Chapter III). So, Hypothesis H-2 guarantees that, for
M+N=1,

|(� | WM, N�) |�const&( |Hel |+1)1�4� (Hf+1)1�4 �&2, (I.19)

and that, for M+N=2,

|(� | W2�) |�const &1� (Hf+1)1�2 �&2. (I.20)
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These bounds are sufficient to ensure the boundedness of Wg relative to H0 .
Requiring that G0, 1(k) and G1, 0(k) are bounded would, however, not allow
for the main application in atomic physics, where these coefficients are bounded
relatively to - &2, only. This is exactly what is required in (I.16), because
in atomic physics Hel is comparable to &2 and, hence, ( |H el |+1)1�2 is
comparable to - &2+1. For an explicit specification of Hel and GM, N

derived from a model of nonrelativistic quantum electrodynamics we refer
the reader to [2].

It turns out that the properties of J assumed in Hypothesis H-2 are not
sufficient for the convergence of the renormalization group developed in
Chapter IV. Indeed, one of the central aspects of the present work in the
search for the weakest possible condition on J that still admits a convergent
renormalization group analysis. We have found the following hypothesis to be
sufficient.

Hypothesis 3. There exists a positive number +>0 such that the func-
tion J in Hypothesis H-2 additionally obeys

45 := sup
k # Rd

[|(k) (d�2#)&1&(+�2) J(k)]<�. (I.21)

Note that if the coupling functions are non-vanishing and thus 41 , 45>0,
then we may additionally assume without loss of generality that

41�1 and 45�1, (I.22)

by replacing the coupling constant g by min[41 , 45]g, if necessary.
Next we describe our main result. We assume Hypotheses H-1, H-2, and

H-3. In these hypotheses, the parameters

+>0, 41�1, 45�1, 0<�<?�2 (I.23)

are specified, and we consider these fixed, henceforth. Moreover, for purely
technical reasons, we assume +�2. Using these parameters, we define
additional constants Cd , 46 , g0 , \0 , \, !, and = by

Cd :=d#&1?d�21[(d�2)+1]&1, (I.24)

\0 :=2&1�2 sin(��2), (I.25)

\ :=min[C&1
d , 2&8�+], = :=\1�2�12 800 (I.26)

! :=min[C &1�2
d \ (3++)�4, C &1

d ], (I.27)
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46 :=
41 45(1+- 2Cd )

sin(��2)
. (I.28)

g0 :=
\1�2

(1.28) } (106) } 46

min {- 6400 } \1�2
0 ,

!
2

,
!Cd\1�2

25 = . (I.29)

Our main result is the following theorem.

Theorem I.1. Assume Hypotheses H-1, H-2, H-3, and Condition (I.23).
Let 0<g�g0 . Then

(i) the operator Hg(%) has a simple eigenvalue, E(�)=E(�)(g, %)
corresponding to an eigenvector 9(�)=9(�)(g, %) # H;

(ii) the eigenvalue E(�) and the eigenvector 9(�) can be constructed
by iterating a renormalization map, R\ , on a ball in a Banach space of
effective Hamiltonians;

(iii) if additionally g�\(3++)�2g0 then the spectrum, _(Hg(%)), of
Hg(%) is located as follows:

_(Hg(%)) & D\0 �2 �E(�)+K(�) , (I.30)

where D\0�2=[z # C: |z|�\0 �2] is the disk of radius \0 �2 about the origin,
and K(�) �C is the cuspidal domain defined by

K(�) :=[T(�)(r)+` | 0�r<1, |`|�78=\&9�2 } r1+(+�4)], (I.31)

where T(�) # C 0([0, 1], C) is a Lipschitz continuous curve in C defined
in (V.72). It satisfies T(�)[0]=0 and arg (T(�))=&�+O(g).

Assertion (i) in Theorem I.1 is proven in Theorem V.10 and Assertion
(iii) in Theorem V.7. The proof of Theorem I.1 is based on the renormali-
zation group map R\ that we construct in Chapter IV. We outline some of
the key ideas involved.

I.2. The General Strategy of the Renormalization Group Construction

I.2.1. Passing from a single operator to a Banach space of operators.
First we construct an effective operator, H(0)[z], from the Hamiltonian
Hg(%)&z in (I.4) in several steps. We decimate the degrees of freedom
corresponding to the particles and to the photons of energies �\0 , where
0<\0<1 is defined in (I.25). Next, we rescale the photon momenta as
k [ \1�#

0 k and the energies as E [ \&1
0 E. In addition, we change the

spectral parameter z as z [ e%\&1
0 z. Let

P0=Pel �/[Hf<\0], (I.32)
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where Pel=|.el) (.el | is the orthogonal projection onto the eigenspace of the
atomic Hamiltonian Hel corresponding to the eigenvalue zero (see Hypothesis
H-1), and /[Hf<\0] is the spectral projection of Hf onto the subspace of
vectors in Fock space with field energy <\0 . The decimation is done with the
help of the Feshbach map, FP , for a given projection P (see Eq. (II.1)),

FP(H)=PHP&PHP� (P� HP� )&1 P� HP, (I.33)

where P� :=1&P, and the invertibility of P� HP� on Ran P� is assumed. FP

maps operators on a given space (on which P is defined) into operators
on Ran P. A key point is that the map FP is isospectral (in the sense of
Theorem II.1 below), i.e.,

z # _*(H) � 0 # _*(H&z) � 0 # _*(FP(H&z)) (I.34)

where _*=_ or _*=_pp . Applying the Feshbach map FP0
, we obtain the

effective Hamiltonian

e&i�[FP0
(Hg(%)&z)+zP0], (I.35)

where z belongs to the disk D\0�2 , i.e., |z|�\0�2. Since Pel is one-
dimensional, we can view the operator in (I.35) as acting on the Hilbert
space /[Hf<\0] Fb[L2(Rd )].

Next, we rescale the photon momenta as

k [ \1�#
0 k (I.36)

by means of the unitary dilation 1\0 , where 1' is defined in (I.9), and we
rescale the energies as E [ \&1

0 E, passing from the operator in (I.35) to a
unitarily equivalent Hamiltonian, \0Heff[`], which is defined by

Pel �Heff[`] :=
e&i�

\0

1\0
(FP0

(Hg(%)&`)+` /[Hf<\0]) 1*\0
, (I.37)

for all ` # D\0�2 , on the Hilbert space

Hred :=/[Hf<1] Fb[L2(Rd)]#Ran /[Hf<1]. (I.38)

Just like the photon momenta, we rescale the spectral parameter, z. We
introduce the bijection

Z(0) : D\0 �2 � D1�2 , ` [
ei�

\0

` (I.39)

(see Fig. 3), and we define

H(0)[Z(0)(`)] :=Heff[`], (I.40)
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FIG. 3. First rescaling of the spectral parameter.

for all ` # D\0�2 . Composing these two operations, we explicitly have

Pel �H(0)[z]=
e&i�

\0

1\0
(FP0

(Hg(%)&Z&1
(0) [z])+Z&1

(0) [z] /[Hf<\0]) 1*\0
,

(I.41)

on Hred , for all z # D1�2 :=[ |z|�1�2].
After rescaling of the photon momenta and the spectral parameter,

we expand the resolvent P� 0(P� 0Hg(%) P� 0&`)&1 P� 0 , where P� 0=1&P0 , in
FP0

(Hg(%)&`) of (I.41), in powers of P� 0WgP� 0 . Using a straightforward
generalization of Wick's theorem, we show that the operator H(0)[z] can
be represented in the form

H(0)[z] :=/[Hf<1](E(0)[z] } 1+T(0)[z; Hf]+W(0)[z]) /[Hf<1],

(I.42)

where E(0)[z] # C is a number, T(0)[z; Hf] is a function of Hf , and W(0)[z]=
�M+N�1 W (0)

M, N[z] is a sum of ``Wick monomials'' of the form

W (0)
M, N[z]=| dk(M) dk� (N)a-(k(M)) w (0)

M, N[z; Hf ; k(M), k� (N)] a(k� (N)), (I.43)

for M+N�1. Here, we use the shorthand notation

k(M) :=(k1 , ..., kM) # RdM, dk(M) := `
M

i=1

d dki , (I.44)

a-(k (M)) := `
M

i=1

a-(ki), |(k(M)) := :
M

i=1

|(ki). (I.45)

In Section III.2, we show that, for each z # D1�2 , H(0)[z] belongs to a
certain Banach space, W$2 , of Hamiltonians on Hred=/[Hf<1] Fb , which
we now define.
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The Banach space W$2 , defined as

W$2 :=C�T� �
M+N�1

W2(M, N), (I.46)

depends on three parameters 0<\<1�16, 0<!<1, and +>0 (the scaling
parameter in Hypothesis H-3), which we collect in the triple

2=(+, \, !). (I.47)

In (I.46),

T :=[T : [0, 1] � C | &T $&�<�, T(0)=0] (I.48)

denotes the Lipschitz continuous functions on [0, 1] that vanish at the
origin. Furthermore, W2(M, N) is the Banach space of functions

wM, N : [0, 1]_BM
1 _BN

1 � C, (I.49)

Lipschitz continuous in the first variable and such that

&wM, N&2<�, (I.50)

where Br :=[k # R2 | |k|�r], BM
r is the cartesian product of M copies of Br

with BM
1 for M=0 omitted, and &wM, N&2 is the norm defined by

&wM, N&2 :=max[!&(M+N) &wM, N& (�)
2 ,

(Cd!\1�2)&(M+N) &�rwM, N& (1)
2 ], (I.51)

where

&wM, N& (�)
2 := sup

[0, 1]_B1
M+N { |wM, N[r; k(M), k� (N)]|

`
M

i=1

|(k i)
(d�2#)&1&(+�2) `

N

j=1

|(k� j)
(d�2#)&1&(+�2)= (I.52)

and

&wM, N& (1)
2 := sup

[0, 1] {| |wM, N[r; k(M), k� (N)]|

`
M

i=1

d dk i

|(ki)
(d�2#)+(+�2) `

N

j=1

d dk� j

|(k� j)
(d�2#)+(+�2)= . (I.53)
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We denote elements of �M+N�1 W2(M, N) by W
�

#[wM, N]M+N�1 . The
linear space W$2 is a Banach space with norm given by

&(E, T, W
�

)&$2 :=max[ |E|, &T $&� , &W
�

&2 := max
M+N�1

&wM, N &2], (I.54)

for (E, T, W
�

) # W$2 .
To every element (E, T, W

�
) # W$2 we assign the operator

H :=/[Hf<1](E } 1+T[Hf]+W) /[Hf<1] (I.55)

on Hred , where W=�M+N�1 WM, N , with

WM, N=| dk(M) dk� (N)a-(k(M)) wM, N[Hf ; k (M), k� (N)] a(k� (N)). (I.56)

Clearly, H in (I.55) uniquely determines an element (E, T, W
�

) # W$2 , and
H#(E, T, W

�
) # W$2 whenever this appears to be convenient. Furthermore,

operators of the form (I.56) are called (M, N)-monomials and the functions
wM, N entering their definition, coupling functions of WMN . Since the corre-
spondence between W=�M+N�1 WM, N and W

�
# �M+N�1 W2(M, N) is

one-to-one, as well, we also write W instead of W
�

whenever this appears
to be convenient.

To control the z-dependence of the operators H[z] # W$2 , we introduce
the Banach space, W2 , of analytic families of bounded operators, H: D1�2

� B[Hred], parametrized by elements H[z]#(E[z], T[z], W
�

[z]) # W$2
with the property that

&H[ } ]&2 := sup
z # D1

&H[z]&$2<�. (I.57)

I.2.2. (Unprojected ) renormalization map on W2 . In order to elucidate
general features of the infrared renormalization problem studied in this
paper, we first introduce a formal renormalization map, R� \ , defined on a
subset of the Banach space W2 and then sketch some properties of orbits
under iterations of the map R� \ by identifying the fixed points of R� \ and
the stable and unstable manifolds through these fixed points. We define a
cylinder C� �W$2 by

C� :=[H[z] # W$2 | |arg E[z]|<%0 , |�rT[z]&*|�$, |arg *|<%0 ,

|*|>0, &W[z]&$2�=, |arg z|�4%0]. (I.58)

where $ and = are small constants (depending on *), and %0>0 is
sufficiently large.
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The map R� \ is defined by

R� \(H)[z] :=\&11\[F/[Hf<\](H[z]&z)+z/[Hf<\]] 1*\ , (I.59)

for H[z] # C� . The renormalization map R� \ has the following properties:

(1) The fixed points of R� \ are the operators in

FP :=[*Hf | |arg *|<%0]. (I.60)

(2) At a point *Hf # FP (*{0, |arg *|<%0), the space W2 can be
split into a direct sum, R�M�I, of a one-dimensional subspace, R, of
relevant perturbations, defined by

R :=E[z] } 1, (I.61)

a one-dimensional subspace of marginal perturbations,

M :=[+Hf | + # C], (I.62)

and a co-dimension-2 subspace, I, of irrelevant perturbations, defined by

I :=[W
�

| &W
�

&2<�]. (I.63)

(3) The expansion rate of R� \ in the direction of R is given by \&1,
in the direction of M it is =0, and the contraction rate of R� \ in the
direction of I is �\+�2. An orbit of an operator in C� is sketched in Fig. 4.

Our interest in the renormalization map R� \ lies in the circumstance that
it is isospectral in the sense of Theorem II.1. Of course, the low-lying

FIG. 4. Orbit under R� starting at H0 .
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spectrum of H[z] is related to the spectrum of R� \(H)[z] by some invertible
map, C � C. Thus, in order to study, e.g., the resolvent set of a family
H[z] # C� , we may study the resolvent set of R� n

\(H)[z]. Since the perturbation
W=�M+N�1 WM, N becomes small under iterations of R� \ , the operators
R� n

\(H)[z] are simpler to analyze than the original operator H[z].
A difficulty in analyzing orbits of families of operators in C� under iterations

of R� \ is the divergence of such orbits in the direction of the relevant perturba-
tions, R. This difficulty can be avoided by projecting orbits along R onto the
stable manifold of R� \ and by successive fine-tuning of the initial value of
the spectral parameter, z, in such a way that it approaches an eigenvalue
of the operator Hg(%). Some details of our construction of such a modified
renormalization map, R\ , are described in the next subsection.

I.2.3. Projected Renormalization Map on W2 . We define a polydisc, B($, =),
of operators in W2 by

B($, =) :=[(E, T, W
�

) # W2 | |�rT&1|�$, &W
�

&2�=, |E|�=]. (I.64)

Next, we pick H # B(1�8, 1�16) and define

Z: U(in) � D1�2 , ` [
1
\

(`&E[`]), (I.65)

where

U(in) :=[` # D1�2 | |`&E[`]|�\�2] (I.66)

(see Fig. 5). We observe that ` # U(in), H # B(1�8, 1�16), and 0<\�1�16
imply that |`|�|E[`]|+|`&E[`]|�1�4. Thus,

U(in)�D1�4 . (I.67)

Then Cauchy's estimate with contour on �D1�2 yields that

|�` Z(`)&1|�4 sup
` # D1�2

[ |E[`]|]< 1
2 . (I.68)

This proves that Z: U(in) � D1�2 is a bijection.
We now proceed to defining a projected renormalization map, R\ . For

H # B(1�8, 1�16) and z # D1�2 , we set

R\(H)[z]&z :=(S\ b D\)[H[Z&1(s)]&Z&1(z)], (I.69)

where

D\(X) :=F/\
(X) and (I.70)

S\(Y) :=\&11\Y1*\ , (I.71)
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FIG. 5. Rescaling of the spectral parameter.

with /\ #/[Hf<\]. We note that D\ is a decimation map, projecting out
all degrees of freedom corresponding to energies �\, while S\ changes the
maximal energy scale back to unity. More explicitly, R\(H) is given by

R\(H)[z]=
1
\

1\[F/\(H[Z&1(z)]&Z&1(z))

&(E[Z&1(z)]+Z&1(z)) /\] 1*\ . (I.72)

Our strategy in applying the projected renormalization map, R\ , is as
follows. First, we demonstrate in Section III.2 that the initial operator
family H(0)[z], defined in (I.41), belongs to B(1�16, 1�16),

H(0) # B( 1
16 , 1

16). (I.73)

Then we show that R\ maps B($, =) into B($+'=, '=) with '<1�2, provided
\ is sufficiently small,

R\ : B($, =) � B($+'=, '=). (I.74)

This obviously enables us to iterate R\ on H(0)[z], for suitable values
of z # D1�2 ,

H(n)[z]#(E(n)[z], T(n)[z], W
�

(n)[z]) :=Rn
\(H (0))[z]. (I.75)

The isospectral property of R\ guarantees that

Z&1
(n) [z] # _*(Hg(%)) � 0 # $*(H(n)[z]&z), (I.76)
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where

Z&1
(n) :=Z&1

(0) b Z&1
(1) b } } } b Z&1

(n) : D1�2 � U (in)
(n) , (I.77)

with Z(0)(`)=e i�\&1
0 ` on D\0�2 , and, for n�1,

Z(n) : U (in)
(n) � D1�2 , ` [

1
\

(`&E(n&1)[`]), (I.78)

where

U(in)
(n) :=[` # D1�2 | |`&E(n&1)[`]|�\�2]. (I.79)

I.3. Organization of the Paper

Our paper is organized as follows. In Chapter II we introduce the Feshbach
map which we apply the first time to Hg(%) in Chapter III to eliminate the
particle and high photon-energy degrees of freedom. The resulting operator,
suitably rescaled, is the initial operator H0) (defined in (I.41)) for the iteration
of R\ . The proof that H(0) actually lies in the ball B(1�16, 1�16) about Hf is
given in Chapter IV. In Chapter IV we show that R\ is a contraction in the
sense that it maps B($, =) into B($+'=, '=), with '�1�2. From this contrac-
tion property, we derive Assertions (i) and (ii) of Theorem I.1 in Section V.

Our paper has three appendices. In Appendix A, we develop two algebraic
tools, the Pull-trough formula and a generalized form of Wick's theorem,
which are used to rewrite H(0) in the form prescribed by (I.42)�(I.43). In
Appendix B, we derive the basic norm bound for M, N-monomials of the
form (I.43), which is one of the building blocks of our analysis. Finally, in
Appendix C we compute integrals over simplices with special attain paid to
their behaviour as the number of integration variables gets large.

II. THE FESHBACH MAP

In this chapter we develop an important ingredient of our analysis: the
Feshbach Map, deriving from the Feshbach projection method. On a formal
level, at least for the perturbation of finitely degenerate, isolated eigen-
values, it can be found in almost every textbook on Quantum Mechanics,
e.g., [7]. To meet our aim of developing a perturbation theory for non-
isolated eigenvalues, however, we need to formulate the Feshbach projection
method in a framework that provides sufficient generality. Before doing so, we
remark that this method is known in the physics literature under the name
Feshbach projection method, while to mathematicians the Grushin Problem or
Krein's Formula may be more familiar, but are essentially identical.
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To formulate the method (here, we use the terminology of [6], especially
Ch. VI), we require the following: a separable Hilbert space H, a (bounded,
but not necessarily orthogonal) projection P=P2 whose complement is
denoted by P� :=1&P, a closed operator H0 which is densely defined on
D�H with D$Ran P and which commutes with P, i.e., P� H0P=PH0P� =0,
an operator W which is defined on D, and which is relatively H0 -bounded
in a sense made precise below. Furthermore, we set H :=H0+W.

With these ingredients, we (formally) define the Feshbach map FP by

FP(H&z) :=P(H&z) P&PHP� (P� HP� &zP� )&1 P� HP

=P(H0&z)+PWP&PWP� [P� H0+P� WP� &zP� ]&1 P� WP.

(II.1)

To give meaning to the right side of (II.1) and to make the Feshbach
projection method work, it is sufficient to assume that P� HP� &z is invertible
on P� H and that the operators

(P� HP� &z)&1 P� , PWP� (P� HP� &z)&1, (P� HP� &z)&1 P� WP,

PWP� (P� HP� &z)&1 P� WP, PWP (II.2)

extend to bounded operators on H. Indeed, (II.2) implies that FP(H&z)
is a closed operator on PH because FP(H&z)&PH0 is bounded and PH0

is closed on PH. Thus, we may regard FP as a map from the operators on
H into the operators on PH. The virtue of FP is that it provides an
isospectral map from a class of operators on H into the operators on PH.
More precisely, assuming (II.2), we can reconstruct the full resolvent
(H&z)&1 on H from [FP(H&z)]&1 on PH and, if neither exists, we can
reconstruct the kernel of H&z from the kernel of FP(H&z), and vice versa.
Yet, FP(H&z) poses a potentially simpler spectral problem, as compared
to H, since PH is contained in H. The tradeoff is the non-linear dependence
of the new operator FP(H&z) on the spectral parameter z.

Theorem II.1 (Feshbach Projection Method). Assume that P� HP� &z is
invertible on P� H and that

(P� HP� &z)&1 P� , PWP� (P� HP� &z)&1, (P� HP� &z)&1 P� WP,

PWP� (P� HP� &z)&1 P� WP, PWP (II.3)

all extend to bounded operators on H. Then

(a) the operator FP(H&z) is invertible on PH if and only if H&z is
invertible on H. In this case [FP(H&z)]&1=P(H&z)&1 P.
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(b) if H�=z�, for some eigenvector 0{� # H, then the projected
vector 0{P� # PH solves FP(H&z) P�=0,

(c) if FP(H&z) .=0, for some eigenvector 0{.=P. # PH, then
the vector 0{� # H, defined by � :=[P&(P� HP� &z)&1 P� WP] ., solves
H�=z�.

(d) dim Ker[H&z]=dim Ker[FP(H&z)]. (II.4)

Proof. Passing from H to H0 to H+z and H0+z, respectively, we may
henceforth assume that z=0.

(a) Let us first assume that H is invertible on H. Then

FP(H) PH &1P=[PHP&PHP� (P� HP� )&1 P� HP] PH &1P

=PH(1&P� ) H&1P&PHP� (P� HP� )&1 P� H(1&P� ) H &1P

=P&PHP� H &1P+PHP� (P� HP� )&1 P� HP� H &1P=P.

(II.5)

Similarly, PH&1PFP(H)=P. So we conclude that FP(H)&1=PH&1P.
Conversely, assume that FP(H)&1 exists on PH. Then the operator R

on H, defined below, is bounded.

PRP :=FP(H)&1 (II.6)

PRP� :=&FP(H)&1 PWP� (P� HP� )&1, (II.7)

P� RP :=&(P� HP� )&1 P� WPFP(H)&1, (II.8)

P� RP� :=(P� HP� )&1+(P� HP� )&1 P� WPFP(H)&1 PWP� (P� HP� )&1. (II.9)

Somewhat involved but straightforward algebra yields RH=HR=1, and
thus r=H &1, proving (a).

(b) Assume H�=0, for some 0{� # H. Using P=1&P� , it is easily
checked that this implies FP(H) P�=0. Moreover, 0=P� H�=P� HP� �+
P� WP� which is equivalent to P� �=&(P� HP� )&1 P� WP�. Thus, we get

&P�&�(1+&(P� HP� )&1 P� WP&)&1 &�&>0, (II.10)

which yields (b).

(c) Assume that 0{.=P. # PH solves FP(H).=0, and set � :=
[P&(P� HP� )&1 P� WP] .. A simple computation shows that H�=0. We
also have P�=P., implying P.=[1+(P� HP� )&1 P� WP] �. Hence,

&�&�(1+&(P� HP� )&1 P� WP&)&1 &.&>0, (II.11)

which yields (c).

(d) This part follows by linearity from (II.10) and (II.11). K
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Next, we derive Assumption (II.3) in Theorem II.1 from more explicit
conditions on the perturbation W and the unperturbed operator H0 . In
fact, in Lemmata II.2 and II.3 below, we give two independent sets of
conditions on W to justify (II.3). In Lemma II.2, we assume W to be a
relatively bounded perturbation of the operator H0 . In contrast, in
Lemma II.3, H0 is required to be normal and m-sectorial, and W is treated
as a relatively bounded perturbation of the closed sectorial form corre-
sponding to H0 in Lemma II.3. The main example for H0 and P which
meets all these requirements is H0=T(A), where T is a function of a
positive operator A�0 which obeys |T $(r)&1|<<1, and P=/2(A) is the
spectral projection of A onto an interval 2�R. It depends on the context
which set of conditions is more convenient to work with. In the present paper,
it is more natural to formulate the renormalization scheme in Chapter IV
using Lemma II.3.

Lemma II.2 Assume H0 to be a closed operator, densely defined on D�H

and P to be a bounded projection commuting with H0 (as explained above).
Suppose that R0 :=(H0&z)&1 exists on P� H, and assume that

&WP� R0&<1, &WP&<�. (II.12)

Then H is a closed operator with dense domain D�H, and FP(H&z) defines
a closed operator with dense domain PD�PH. Moreover, P� HP� &z is
invertible on P� H, and

(P� HP� &z)&1 P� , PWP� (P� HP� &z)&1, (P� HP� &z)&1 P� WP,

PWP� (P� HP� &z)&1 P� WP, PWP (II.13)

all define bounded operators on H.

Proof. To prove that H is closed, we write H=H0+WP� +WP. By
assumption, WP is bounded and WP� is relatively H0 -bounded with bound
strictly smaller than one. It follows (see, e.g., [6, Ch. VI]) that H is closed
on the same domain D�H as H0 is.

Next, we construct (P� HP� &z)&1 P� and W(P� HP� &z)&1 P� from Neumann
series

(P� HP� &z)&1 P� = :
�

n=0

(&1)n R0P� (WP� R0)n, (II.14)

W(P� HP� &z)&1 P� = :
�

n=0

(&1)n WP� R0P� (WP� R0)n, (II.15)
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which converge to bounded operators because &WP� R0&<1 and &R0P� &<�.
We complete the construction of the operators in (II.13) by observing that

&(P� HP� &z)&1 P� WP&�&(P� HP� &z)&1P� & }&WP&<�, (II.16)

&PWP� (P� HP� &z)&1 P� WP&�&PWP� (P� HP� &z)&1 P� & }&WP&<�, (II.17)

&PWP&�&P& }&WP&<�. (II.18)

Thus, FP(H&z)&PH0 is bounded and FP(H&z) is closed on PD/PH

since PH0 is. K

Lemma II.3. Assume H0 to be a normal, m-sectorial operator, densely
defined on D�H and P to be a bounded projection commuting with H0 (as
explained above). Suppose that R0 :=(H0&z)&1 and, thus, R1�2

0 :=|H0&z| &1�2

exists on P� H, and assume that

&R1�2
0 P� WP� R1�2

0 &<1 (II.19)

and

&R1�2
0 P� WP&, &PWP� R1�2

0 &, &PWP&<�. (II.20)

Then H is a closed m-sectorial operator with dense domain D$�H, and
Fp(H) defines a closed operator with dense domain PD$�PH. Moreover,
P� HP� &z is invertible on P� H, and

(P� HP� &z)&1 P� , PWP� (P� HP� &z)&1, (P� HP� &z)&1 P� WP,

PWP� (P� HP� &z)&1 P� WP, PWP (II.21)

all define bounded operators on H.

Proof. To prove that H is closed, we first consider the quadratic form
associated with H0&z which is closed and sectorial, since H0 is closed and
m-sectorial. The bounds (II.19) and (II.20) guarantee that W is a relatively
(H0&z)-bounded perturbation with relative form bound strictly smaller
than 1. It follows (see e.g. [6, Ch. VI]) that H is a closed sectorial quadratic
form with form domain Q which arises from a unique closed m-sectorial
operator H with dense domain D$.

Next, we construct AP� (P� HP� &z)&1 P� B, for arbitrary bounded A and B,
using

AP� (P� HP� &z)&1 P� B

=AP� R1�2
0 (U+R1�2

0 P� WP� R1�2
0 )&1 P� R1�2

0 P� B

=AP� R1�2
0 P� _ :

�

n=0

U*(&R1�2
0 P� WP� R1�2

0 U*)n& P� R1�2
0 P� B, (II.22)
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where U*=U&1 :=|H0&z| (H0&z)&1 P� is the unitary on P� H resulting
from the polar decomposition. Condition (II.19) together with &U*&=1
ensures the norm-convergence of the series in (II.22), and we may estimate

&AP� (P� HP� &z)&1 P� B&�C } &AP� R1�2
0 & }&R1�2

0 P� B&, (II.23)

for some finite constraint C. Inserting A :=1 or A :=PW, and B :=1 or
B :=WP, the assumption (II.20) and &R0P� &<� yields the boundedness of
the operators in (II.21).

Turning to Fp(H&z), the bounds in (II.21) imply that Fp(H&z)&PH0

is bounded. Thus, FP(H&z) is closed on PD, since PH0 is. K

III. ELIMINATION OF PARTICLE-AND HIGH PHOTON-ENERGY
DEGREES OF FREEDOM

In this chapter, we perform the first step of our renormalization group
analysis. Recall from Subsection I.2.1 the construction of an effective
operator, H(0)[z], defined in (I.41), that we obtain in several steps from the
Hamiltonian Hg&z in (I.4). We decimate the degrees of freedom corre-
sponding to the particles and to the photons of energies �\0 by means of
the Feshbach map FP0

, introduced in Eqn. (II.1). Here

P0=Pel �/[Hf<\0], (III.1)

where Pel=|.el) (.el | is the orthogonal projection onto the one-dimen-
sional eigenspace C.el of the atomic Hamiltonian Hel corresponding to the
eigenvalue zero (see Hypothesis H-1), and /[Hf<\0] is the spectral
projection of Hf onto the subspace of vectors in Fock space with field
energy <\0 . Then, we rescale photon momenta as k [ \1�#

0 k, by means of
the unitary dilatation 1\0

defined in (I.9), and we rescale the energies as
E [ \&1

0 E. In addition, we change the spectral parameter z as Z(0) : z [ e%\&1
0 z.

Carrying out these steps as described in Eqns. (I.32)�(I.41), we obtain a
family, z [ H(0)[z], of effective Hamiltonian operators,

Pel �H(0)[z]

=
e&i�

\0

1\0
[FP0

(Hg&Z&1
(0) [z])+Z&1

(0) [z] /[Hf<\0]] 1*\0
, (III.2)

on Hred=Ran /[Hf<1]. Since the Feshbach map is isospectral, in the
sense of Theorem II.1, the following crucial property guarantees that the
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analysis of the spectrum of Hg is equivalent to the analysis of the spectrum
of H(0) . Indeed, Theorem II.1 implies that

z # _*(Hg) � 0 # _*(Hg&z)

� 0 # _*(H(0)[Z(0)(z)]&Z(0)(z)), (III.3)

where _*=_ or _*=_pp , under the assumption that P� 0(Hg&z) P� 0 is
invertible on Ran P� 0 . In Section III.1, we verify this condition for all
z # D\0 �2 :=[ |z|�\0 �2].

Next, we expand the resolvent P� 0(P� 0Hg(%) P� 0&`)&1 P� 0 , where P� 0=1&P0 ,
entering FP0

(Hg(%)&`) in (III.3), in powers of P� 0Wg P� 0 . Using a straight-
forward generalization of Wick's theorem (which is derived in Appendix A)
and the estimates from Section III.1, we prove the following theorem (which
is our main result of this chapter).

Theorem III.1. Let % :=i� for some 0<�<?�2. Pick 0<\0�\(out)=
2&1�2 sin(��2) and z # D1�2 . Assume Hypotheses H-1, H-2, H-3, and

g46

\1�2
0

�
1

100
, (III.4)

where 41 , 45 , 46 , and Cd are defined in (I.18), (I.21), and (I.22)�(I.28).
Then, for z # D1�2 , H (0)[z] is well-defined and representable in the form

H(0)[z]=/1(E(0)[z]+T(0)[z]+W(0)[z]) /1 # W$2 , (III.5)

where /1 #/[Hf<1], and the coupling functions of W(0)[z],

w (0)
M, N : D1�2 _[0, 1)_BM

1 _BN
1 � C, (III.6)

obey the following estimates, for 2#(+, \, 100g46).

&w (0)
M, N[z]& (�)

2 �2, (III.7)

&�rw (0)
M, N[z]& (1)

2 �25, (III.8)

for M+N�1, and the components E(0)[z] and T(0)[z; } ] obey the estimate

|E(0)[z]|�2 \100g46

\1�2
0 +

2

, (III.9)

|T(0)[z; r]&r|�4 \100g46

\1�2
0 +

2

, (III.10)

|�rT(0)[z; r]&1|�25 \100g46

\1�2
0 +

2

. (III.11)
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Theorem III.1 has the following important consequence.

Corollary III.2 Under the same hypotheses of Theorem III.1, and for
g>0 so small that

$ :=25(100g46\&1�2
0 )� 1

8 , (III.12)

= :=100g46 max[200g46 \&1
0 , 2!&2, 25C &1

d !&1\&1�2]� 1
16 , (III.13)

one has that

H(0) # B($, =). (III.14)

III.1. Domain of the Feshbach Map FP0

In this section, we investigate the Feshbach map FP0
, which is the only

non-trivial ingredient entering the definition of H(0) . In particular, we verify
the assumptions of Theorem II.1, thus establishing that H(0)[z] is well-defined,
for all z # D1�2 .

Recall from the introduction that the eigenvalue ej=0 was assumed to
be non-degenerate and isolated by a distance 1 from the rest of the spectrum
of Hel , and that the continua in _(H0) generated by Hf are branching off the
real axis at an angle 0>&�>&?�2 into the lower half-plane. We investigate
spectral parameters contained in D\ (out) , where D\ :=[z # C | \�|z|] and

\(out) :=
1

- 2
sin \�

2+<1. (III.15)

We pick 0<\0�\ (out) and 0<$$<��2 to specify two subsets, U (in)
(0) and

U(out)
(0) , of D\(out) (see Fig. 3),

U (out)
(0) ($$) :=[e&i(�+#)r # C | \0 �2�r�\(out), $$�|#|�?] (III.16)

U (in)
(0) :=[` # C | |!|�\0 �2]=D\0�2 . (III.17)

The two regions U (out)
(0) ($$) and U (in)

(0) serve different purposes: First, for all
z # U (out)

(0) ($$) and sufficiently large $$>0, we show directly that Hg&z has
a bounded inverse. Secondly, for all z # U (in)

(0) =D\0�2 , we show that the spectral
properties of Hg&z can be determined from those of H(0)[Z(0)(z)].

The validity of Assumption (II.12) of Theorem II.1, which ensures the
convergence of the Neumann series, crucially depends on the parameter
41�1 that we defined in Hypothesis H-2 as

41 :={| [1+|(k)&1] J2(k) d dk=
1�2

<�. (III.18)
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The first main result of this section is

Theorem III.3. Let % :=i�, for some 0<�<?�2, and pick 0<\0�
\(out)=2&1�2 sin(��2) and 0<$$<��2. Define P0 , U (out)

(0) and U (in)
(0) as in

(III.16)�(III.17) above. Assume Hypotheses H-1, H-2, and

g<
\1�2

0 sin(��2)
2441

. (III.19)

Then, for 1�M+N�2,

&R1�2
0 P� 0WM, NP� 0R1�2

0 &�
4M+N

1 Y(z)
\1�2

0 sin(��2)
, (III.20)

&R1�2
0 P� 0 WM, NP0 &�

4M+N
1 Y(z)1�2

sin(��2)
, (III.21)

&P0WM, NP� 0R1�2
0 &�

4M+N
1 Y(z)1�2

sin(��2)
, (III.22)

&P0WM, N P0&�4M+N
1 \1�2

0 , (III.23)

where

Y(z) :={
sin(��2)
sin($$�2)

1

for z # U (out)
0 ($$),

for z # U (in)
0 ,

(III.24)

and R1�2
0 :=|H0&z| &1�2. Furthermore,

(a) if, in addition, 0<$$<� is chosen large enough, so that sin($$)>
2441 g\&1�2 sin(��2), then Hg&z has a bounded inverse for all z # U (out)

(0) ($$).

(b) for all z # U (in)
(0) , Hg&z is isospectral to FP0

(Hg&z) in the sense of
Theorem II.1. Here, FP0

(Hg&z) is the operator on /[Hf<\0] Fb[L2(Rd)]
that results from the Feshbach projection method with projection P0 .

Proof. First, we derive Estimates (III.20), (III.21), and (III.23) from
Lemma III.4 and Lemma III.5. We denote

A :=|Hel | �1+1�Hf+\0 . (III.25)
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Then we estimate

&R1�2
0 P� 0WM, NP� 0 R1�2

0 &�&A&1�2WM, NA&1�2& }&R1�2
0 P� 0A1�2&2, (III.26)

&R1�2
0 P� 0WM, NP0&�&A&1�2WM, NA&1�2& }&R1�2

0 P� 0A1�2& }&P0 A1�2&,

(III.27)

&P0WM, NP� 0 R1�2
0 &�&A&1�2WM, NA&1�2& }&R1�2

0 P� 0A1�2& }&P0 A1�2&,

(III.28)

&P0WM, NP0&�&A&1�2WM, NA&1�2& }&P0A&. (III.29)

Next, we invoke Lemma III.5 below. Note that &A&1�2WM, N A&1�2& refers
to the case M= p, N=q (hence p+q�1), and m=n=0 in Lemma III.5.
Thus (III.42) below applies and yields

&A&1�2WM, N A&1�2&�4M+N
1 \&1�2

0 . (III.30)

Bounds (III.20), (III.21), and (III.23) are obtained by inserting Lemma
III.4 and (III.30) into (III.26)�(III.29).

Second, we establish (b), assuming that z # U (in)
(0) . Inequalities (III.21)

and (III.23) clearly imply that R1�2
0 P� 0 WgP0 , P0WgP� 0R1�2

0 and P0Wg P0

are bounded operators. To demonstrate (b) it thus remains to show that
the norm &R1�2

0 P� 0WgP� 0 R1�2
0 & is strictly smaller than one, appealing to

Lemma II.3 and Theorem II.1. We remark that by Assumption (III.19) we
have

g41�(24)&1 \1�2
0 sin(��2)�4�1�24, (III.31)

and thus maxM+N�1[gM+N4M+N
1 ]= g41 . This, in turn, implies

&R1�2
0 P� 0WgP� 0R1�2

0 &�
6 maxl�1[gl4 l

1]
\1�2

0 sin(��2)
�1�4, (III.32)

and (b) is proven.
Finally, we prove (a): fixing z # U (out)

(0) ($$), we attempt to construct the
inverse of Hg&z by a Neumann series as in (II.22)

(Hg&z)&1=R1�2
0 _ :

�

n=0

U*(&R1�2
0 WgR1�2

0 U*)n& R1�2
0 , (III.33)

whose convergence is guaranteed by &R1�2
0 WgR1�2

0 &<1. But this last bound
is a simple matter using (III.20), (III.21), (III.23) and

&R0P0&=sup
r>0

|e&i%r&z|&1�
- 2

\0 sin($$�2)
, (III.34)
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which follows from z=e&%+i#t with t>\0 �2 and |#|�$$. Thus

&R1�2
0 Wg R1�2

0 &�6 max
1�M+N�2

[&R1�2
0 P� 0 gM+NWM, N P� 0R1�2

0 &

+&R0P0 &1�2 } &P0 gM+NWM, NP� 0R1�2
0 &

+&R0P0 &1�2 } &R1�2
0 P� 0 gM+NWM, NP0&

+&R0P0 & }&P0 gM+NWM, NP0 &]

�
24

\1�2
0 - 1&cos $$

max
1�M+N�2

[gM+N4M+N
1 ]<1. K

(III.35)

The proof of Theorem III.3 above is based on the estimates in Lemmata
III.4 and III.5, which we state and prove next.

Lemma III.4. Assume Hypothesis H-1, H-2, and % :=i�, 0<�<?�2.
Pick 0<\0�\(out) and 0<$$<��2, and define U (out)

(0) ($$), U (in)
(0) as in

(III.16), (III.17). Denote A :=|Hel | �1+1�Hf+\0 , as in (III.25), and
recall R0 :=(H0&z)&1. Then &P0A&�2\0 and

&R0P� 0 A&�
6Y(z)

- 1&cos �

={3(sin($$�2))&1

3(sin(��2))&1

for z # U (out)
(0) ($$)

for z # U (in)
(0)

(III.36)

Proof. The inequality before (III.36) is trivial. To prove (III.36), we
introduce the orthogonal decomposition P� 0=P� (1)

0 +P� (2)
0 , where

P� (1)
0 :=Pel �/[Hf�\0] and P� (2)

0 :=P� el �1. (III.37)

Note that both R0 and A commute with P� (1)
0 and P� (2)

0 . Thus

&R0P� 0 A&=max[&R0P� (1)
0 A&, &R0 P� (2)

0 A&]. (III.38)

First, we consider Ran[P� (2)
0 ] and z # Uout)

(0) ($$) _ U (in)
(0) �D\(out) . Then

|z|�1�- 2 sin(��2), which yields

&R0P� (2)
0 A&� sup

r>0
|t|�1

} |t|+r+\0

t+e&i�r&z }�
3 - 2

- 1&cos �
�

3
sin(��2)

. (III.39)
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Second, we consider Ran[P� (1)
0 ]. Fix z # U (out)

(0) ($$). Then z=e&�+#t with
|#|�$$ and t�0. Hence,

&R0P� (1)
0 A&� sup

r�\0
} r+\0

e&i�r&z }�sup
r>0 }

2r
r+e&i#t }�

- 2
sin($$�2)

. (III.40)

Finally, on Ran[P� (1)
0 ] and for z # U (in)

(0) , we have that

&R0P� (1)
0 A&� sup

r�\0
} r+\0

e&i�r&z }� sup
r�\0

} r+\0

r&\0 �2 }�4�
3

sin(��2)
. K

(III.41)

Next, we impose suitable conditions on J so that every factor of a- or a
in Wg accounts for a factor of H 1�2

f in the relative bound.

Lemma III.5. Assume Hypotheses H-1 and H-2 with \0�1. Pick two
reals |, |~ �0, and non-negative integers m, n, p, q�0, such that m+n+
p+q=1 or m+n+ p+q=2. Furthermore, fix k(m) :=(k1 , ..., km) # (Rd)m

and k� (n) :=(k� 1 , ..., k� n) # (Rd)n. Let A :=|Hel | �1+1�Hf+\0 as in
(III.25). Denote dx( p) :=> p

j=1 d dx j , and a-(x ( p)) :=> p
j=1 a-(xj). Then,

"(A+|)&1�2 \| dx( p)dx~ (q)Gm+ p, n+q(k(m), x( p); k� (n), x~ (q))

�a-(x( p)) a(x~ (q))+ (A+|~ )&1�2"
�4m+n+ p+q

1 \&(1+$p+q, 0)�2
0 `

m

j=1

J(kj) `
n

j=1

J(k� j). (III.42)

Proof. We first remark that it suffices to prove (III.42) for |=|~ =0.
For convenience, we temporarily write k :=k(m), k� :=k� (n), x :=x( p), x~ :=x~ (q),
and Gk, k� (x; x~ ) :=Gm+ p, n+q(k(m), x( p); k� (n), x~ (q)). We pick a pair ,, � # H

and study

A,, �= }�, } A&1�2 \| dx dx~ Gk, k� (x; x~ )�a-(x) a(x~ )+ A&1�2��}
�| dx dx~ &1� [(Hf+|x)&p�2 a(x)] ,&

_&1� [(Hf+|~ x)&q�2 a(x~ )] �&

_&[1� (Hf+|x)] p�2 (A+|x)&1�2 [Gk, k� (x; x~ )�1]

_(A+|~ x)&1�2 [1� (Hf+|~ x)]q�2&, (III.43)
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where |x :=� p
j=1 |(xj), |~ x :=�q

j=1 |(x~ j) and, furthermore, we use the
fact that A&1�2a-(x)=a-(x)(A+|x)&1�2 and a(x~ ) A&1�2=(A+|~ x)&1�2 a(x~ ).
We refer to these identities later as Pull-Through Formulae, established in
Lemma A.1. By Schwarz' inequality, we further estimate

A,, ��B1�2
p (,) B1�2

q (�)

_{| C 2
k, k� (x, x~ ) `

p

j=1

|(xj)
&1 d dx j `

q

j=1

|(x~ j)
&1 d dx~ j=

1�2

, (III.44)

where

Ck, k� (x, x~ ) :=&[1� (Hf+|x)] p�2 (A+|x)&1�2

_[Gk, k� (x; x~ )�1](A+|~ x)&1�2 [1� (Hf+|~ x)]q�2&, (III.45)

and (remember a(x)=a(x( p))=> p
j=1 a(xj))

Bp(,) :=| &1� (Hf+|x)&p�2 a(x( p)) ,&2 `
p

j=1

|(xj) dxj

=| �a(x ( p&1)) , } 1�
Hf

[Hf+|(x1)+ } } } +|(xp&1)] p

_a(x( p&1)) ,� `
p&1

j=1

|(xj) d dxj

�| (a(x ( p&1)) , | 1� [Hf+|(x1)+ } } } +|(xp&1)]1& p

_a(x( p&1)) ,) `
p&1

j=1

|(xj) d dx j

=Bp&1(,)� } } } �B0(,)=&,&2. (III.46)

As an intermediate result we thus have that, for p+q�1, or for p=q=0,

"A&1�2 | dx( p) dx~ (q)Gm+ p, n+q(k(m), x( p); k� (n), x~ (q))�a-(x( p)) a(x~ (q)) A&1�2"
�{| C 2

k, k� (x, x~ ) `
p

j=1

|(x j)
&1 d dxj `

q

j=1

|(x~ j)
&1 d dx~ j=

1�2

. (III.47)

So, it suffices to show that

Ck, k� (x, x~ )�\&(1�2)&(1�2) $p+q, 0
0 (1+|x)1�2 (1+|~ x)1�2 } ` J, (III.48)
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where we abbreviated > J :=>m
j=1 J(kj) > p

j=1 J(xj) >n
j=1 J(k� j) >q

j=1J(x~ j).
Indeed, using 1+|x�> p

j=1 [1+|(xj)], 1+|~ x�>q
j=1 [1+|(x~ j)], and

41�1, (III.42) derives from (III.48).
To verify (III.48), we first notice that the operator estimated in (III.45)

may be represented as a direct integral over the spectrum of Hf . We may
thus regard Hf as a positive number r, say, and the norm, Ck, k� (x, x~ ), of
this operator is given by the supremum over r�0. Thus, we obtain

Ck, k� (x, x~ )=sup
r�0

[(r+|x) p�2 (r+|~ x)q�2 &( |Hel |+\0+r+|x)&1�2

_Gk, k� (x; x~ )( |Hel |+\0+r+|~ x)&1�2&Hel
]. (III.49)

We distinguish two cases: First, we consider m+ p+n+q=1. Then
Hypothesis H-2 gives

&( |Hel |+1)&1�4 Gk, k� (x; x~ )( |Hel |+1)&1�4&Hel
�` J. (III.50)

We insert (III.50) in (III.49) and get

Ck, k� (x, x~ )�` J } sup
t, t~ , r�0 {

(r+|x) p�2 (r+|~ x)q�2 (t+1)1�4 (t~ +1)1�4

(t+\0+r+|x)1�2 (t~ +\0+r+|~ x)1�2 = .

(III.51)

Since \0�1, we immediately obtain, for p=q=0,

Ck, k� (x, x~ )�` J } \sup
t�0 {

(t+1)1�4

(t+\0)1�2=+
2

�\&1
0 ` J. (III.52)

For p=1 and q=0, we distinguish r�\0 from r<\0 . If r�\0 then
r+|x�\&1

0 r(1+|x) yields

(r+|x)1�2 (t+1)1�4 (t~ +1)1�4

(t+\0+r+|x)1�2 (t~ +\0+r)1�2�
\&1�2

0 r1�2(1+|x)1�2

(t+\0+r+|x)1�4 (t~ +\0+r)1�4

�\&1�2
0 } (1+|x)1�2, (III.53)

while, for r<\0 , we obtain the same result by minimizing the following
expression over t, t~ �0:
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(r+|x)1�2 (t+1)1�4 (t~ +1)1�4

(t+\0+r+|x)1�2 (t~ +\0+r)1�2

�
(\0+|x)1�2 (t+1)1�4 (t~ +1)1�4

(t+\0+|x)1�2 (t~ +\0)1�2

�
(\0+|x)1�2 max[1, (\0+|x)]1�4 max[1, \0]1�4

(\0+|x)1�2 \1�2
0

=\&1�2
0 } max[1, (\0+|x)]1�4�\&1�2

0 } (1+|x)1�2. (III.54)

Of course, the estimate for the case p=0, q=1 is similar.
Second, we consider the case m+ p+n+q=2, for which Hypothesis

H-2 gives

&Gk, k� (x; x~ )&Hel�` J. (III.55)

Thus, we obtain

Gk, k� (x, x~ )�` J } sup
r�0 {

(r+|x) p�2 (r+|~ x)q�2

(\0+r+|x)1�2 (\0+r+|~ x)1�2= . (III.56)

For p+q�1, we observe that the right side of (III.56) is smaller than the
right side of (III.51), which we bound in (III.52)�(III.54). It remains to
consider p+q=2. The case p=q=1 is trivial, and we only consider p=2,
q=0, since the case p=0, q=2 is similar. So, assuming p=2 and q=0, we
estimate

r+|x

(\0+r+|x)1�2 (\0+r)1�2�\r+|x

r+\0 +
1�2

�max{1,
|x

\0 =
1�2

, (III.57)

which is obviously smaller than \&1�2
0 } (1+|x)1�2. Collecting all these estimates,

we observe that we have established (III.48) in all possible cases. K

III.2. The Operator H(0)[z]

In this section, we transform the operator H(0)[z] to the generalized
form and estimate its coupling functions.

First, we use a Neumann series expansion to convert FP0
(Hg&z) into a

Wick-ordered form, moving all creation operators a-(kl, j) to the left of
functions of Hf and moving all annihilation operators a(kl $, j $) to the right
of functions of Hf . Counting the number M of creation operators to their
left and the number N of annihilation operators to their right, the sum of
all these functions of Hf form a new (but not yet rescaled) interaction
coefficient w~ M, N .
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In the second step we derive certain L p-bounds on these coefficients and
their derivatives w.r.t. Hf or z. These bounds enable us to control the inter-
action part, the terms with M+N�1, as a relatively bounded perturbation
of the free part of FP0

(Hg&z), the sum of all terms with M=N=0, i.e.,
pure functions of Hf . At this point, we must make use of Hypothesis H-3,
(besides H-1 and H-2). We recall that Hypothesis H-3 demand that there
exist a positive number +>0 such that the smallest number 45�1 which
satisfies, for all k # Rd,

J(k)�45 } |(k)1+(+�2)&(d�2#) (III.58)

is finite. It is convenient to introduce two other parameters, : and ;, given
by

: :=
1
2

(1++)&
1
2 \

d
#

&1+=1+
+
2

&
d
2#

, (III.59)

; :=
1
2

(1++)+
1
2 \

d
#

&1+=
+
2

+
d
2#

. (III.60)

Note that (III.58) now reads

J(k)�45 } |(k):. (III.61)

Third, we eliminate the dependence on \0 of the domains /[Hf<\0] F

and U (in)
(0) =D\0 �2 by rescaling and shifting FP0

[Hg&z) (and thus w~ M, N).
Surpressing its dependence on g and \0 , the resulting operator H(0)[z] acts
on Hred :=/[Hf<1] Fb with z # D1�2 . Indeed, in Appendix B we prove that

H(0) : D1�2=[ |z|�1�2] � B[Hred] (III.62)

defines an analytic family of bounded operators on Hred .
We start working through this program by converting FP0

(Hg&z) into
a Wick-ordered form, moving all creation operators a-(kl, j) to the left of
functions of Hf and moving all annihilation operators a(kl $, j $) to the right
of functions of Hf . This amounts to determining the coupling functions,

w~ (0)
M, N : U (in)

(0) _R+_BM
\0

_BN
\0

� C (III.63)

(recall that B\ :=[k # Rd | |(k)�\]), of the operator H� eff[z], defined by

FP0
(Hg&z)=: Pel � (H� eff[z]&z), (III.64)

for all M+N�0 and z # U (in)
(0) . Later, w~ 0, 0[z; r] is shown to be Lipschitz

continuous with respect to r on U (in)
(0) _[0, \0), and, for M+N�1,

w~ M, N[z; r; k(M); k� (N)] turns out to be bounded and Lipschitz continuous
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with respect to r, i.e., it is differentiable w.r.t. r up to finite jump dis-
continuities in the derivative on U (in)

(0) _[0, \0)_RMd_RNd. Then,
w~ M, N[z; Hf ; k (M); k� (N)] is an operator on Hred defined via the functional
calculus for Hf .

Lemma III.6. Let % :=i� for some 0<�<?�2 and assume Hypothesis H-1,
H-2, and (III.19). Pick 0<\0�\(out) and z # U in)

(0) . Let P0 :=Pel �/\0
[Hf],

P� 0 :=1&P0 and R� 0[Hf] :=P� 0(H0&z). Then, for all M+N�0, w~ M, N ,
defined by (III.63), is given by

w~ M, N[z; r; k(M); k� (N)]

= :
�

L=1

(&1)L&1 :

l=1, ..., L
ml+ pl+nl+ql=1, 2;

$M, � L
l=1 ml

} $N, � L
l=1 nl

_ `
L

l=1
{\m l+ pl

p l +\nl+ql

ql +=
_[D� L[z; Hf ; [W ml , nl

pl , ql
; k (ml)

l ; k� (nl )
l ]L

l=1 ; [R� 0]L&1
l=1 ]] symm

M, N , (III.65)

where

D� L[z; r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1 ; [R� 0]L&1

l=1 ]

:= `
L

l=1

(&g)ml+ pl+nl+ql

_(.el �0 | W m1 , n1
p1 , q1

[k (m1)
1

; k� (n1)
1

] R� 0[Hf+r++1]

_ } } } R� 0[Hf+r++L&1] W mL , nL
pL , qL

[k (mL)
L ; k� (nL)

L ] .el �0) , (III.66)

W ml , nl
pl , ql

[k (ml)
l ; k� (nl)

l ]

:=| dx ( pl )
l dx~ (ql)

l Gml+ pl , nl+ql
[k (ml )

l , x ( pl)
l ; k� (nl )

l , x~ (ql )
l ]�a-(x ( pl)

l ) a(x~ (ql)
l ),

(III.67)

and

+l := :
l

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j ). (III.68)

Proof. We expand FP0
(Hg&z) in a Neumann series whose convergence

is guaranteed by (III.20) and (III.19).
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FP0
(Hg&z)=P0(H0&z)+P0WP0

&P0WP� 0[P� 0(H0&z)+P� 0WP� 0]&1 P� 0 WP0&zP0

=P0(H0&z)& :
�

L=1

(&L)L P0 W(P� 0(H0&z)&1 WP0)L&1

=P0(H0&z)& :
�

L=1

(&1)L :

l=1, ..., L
Ml+Nl=1, 2;

g�L
l=1 ML+NL

_P0WM1+N1
R� 0 } } } R� 0 WML+NL

P0 . (III.69)

The assertion follows directly from an application of Theorem A.4 to every
single term in the last sum on the right side of (III.69). Note that in this
present application, the coefficients wM, N in Theorem A.4 have their values
in the operators on Hel��this does not affect the (purely algebraic) assertion,
since we carefully avoided commutations of these coefficients. K

We come to address our second task: the proof of bounds on the interac-
tion coefficients w~ M, N . We learn from Lemma III.6 that estimates for w~ M, N

can be derived by summing up similar estimates for D� L , as is done below.

Lemma III.7. Require the same hypotheses as in Lemma III.6 and assume
that ml+nl+ pl+ql # [1, 2] for all 1�l�L. Write �L

l=1 ml :=M and
�L

l=1 nl :=N. Then D� L , defined as in (III.66), obeys the following bounds:

|D� L[r; z; [W ml , nl
pl , ql

; k (ml)
l ; k� (nl )

l ]L
l=1 ; [R� 0]L&1

l=1 ]|

� `
L

l=1
\ 3g41

\1�2
0 sin(��2)+

ml+nl+ pl+ql

\1&(M+N)�2
0 4M+N

5

_ `
M

j=1

|(kj)
: `

N

j=1

|(k� j)
:, (III.70)

|�zD� L[r; z; [W ml , nl
pl , ql

; k (ml)
l ; k� (nl )

l ]L
l=1 ; [R� 0]L&1

l=1 ]|

�\ L
\0+ `

L

l=1
\ 3g41

\1�2
0 sin(��2)+

ml+nl+ pl+ql

\1&(M+N)�2
0 4M+N

5

_ `
m

j=1

|(kj)
: `

N

j=1

|(k� j)
:, (III.71)

Proof. To make the argument more transparent, we abbreviate

D� L[ } } } ] :=D� L[r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1 ; [R� 0]L&1

l=1 ] (III.72)

Wl :=W ml , nl
pl , ql

[k (ml)
l ; k� (nl )

l ]. (III.73)
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Using the fact that .el �0=\1�2
0 A&1�2.el �0, we estimate

|D� L[ } } } ]|=\0 |(.el �0 | [A&1�2W1(A++1)&1�2][R� 0[+1](A++1)]

_ } } } [R� 0[+L&1](A++L&1)]

_ } } } [(A++L&1)&1�2 WL A&1�2](.el �0)) |

�\0 } `
L

l=1

&(A++ l&1)&1�2 Wl (A++ l)
&1�2&

_ `
L&1

l=1

&R� 0[+l](A++l)&, (III.74)

where +0 :=+L :=0. Note that &R� 0[Hf++](A++)&�&R� 0[Hf] A&. Thus,
an application of Lemma III.4 and III.5 yields

|D� L[ } } } ]|�\0 } `
L

l=1

3(g41)ml+nl+ pl+ql

sin(��2) \ (1+$pl+ql , 0)�2
0

} `
M

j=1

J(k j) `
N

j=1

J(k� j). (III.75)

Now, we observe that ml+ pl+nl+ql�1 implies that 1+$pl+ql , 0�
2(ml+nl)+ pl+ql and, hence,

(g41)ml+nl+ pl+ql

\ (1�2)+(1�2) $pl+ql , 0
0

�\g41

\1�2
0 +

ml+nl+ pl+ql

} \&(1�2)(ml+nl)
0

. (III.76)

To prove (III.71), we note that �zR� 0[Hp++l]=&R� 2
0[Hp++ l]. Thus we

obtain from Leibniz' rule

�zD� L[ } } } ]=& :
L&1

l=1

D� L[r; z; [Wj , k (mj)
j ; k� (nj)

j ]L
j=1 ;

[(R� 0) l&1
j=1 , R� 2

0 , (R� 0)L&1
j=l+1]]. (III.77)

Then (III.71) follows from estimating each term in the sum in (III.77) as
in (III.74), taking into account, in addition, that

&R� 2
0[Hp++](A++)&�\&1

0 } &R� 0[Hf] A&2. K (III.78)

We recall the definition of the constraint Cd , which is the volume of the
d-dimensional unit ball times d�#, where # is the exponent in |(k)=|k| #.

Cd :=
d?d�2

#1[(d�2)+1]
, (III.79)

Note that

|
R d

f [|(k)] dk=Cd } |
�

0
f [|] (d�#)&1 d|. (III.80)
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Lemma III.8 Require the hypotheses of Lemma III.6, and assume, in addition,
that Hypothesis H-3 holds and that ml+nl+ pl+ql�1, for all 1�l�L.
Write �L

l=1 ml :=M and �L
l=1 nl :=N. For any 0<r<\0 , D� L (defined as

in (III.66)) obeys the following bound.

|
B \0

M+N
|�rD� L[r; z; [W ml , nl

pl , ql
; k (ml )

l ; k� (nl )
l ]L

l=1 ; [R� 0]L&1
l=1 ]| `

M

j=1

dkj

|(kj)
; `

N

j=1

dk� j

|(k� j)
;

�4L\(M+N)�2
0 `

L

l=1
\6g4145(1+- 2Cd )

\1�2
0 sin(��2) +

ml+ pl+nl+ql

, (III.81)

where Br :=[k | |(k)�r].

Proof. First, we recall that

R� 0[Hf]=[P� el (Hel &z)�1+e&i�P� el � Hf]
&1+Pel �

/[Hf�\0]
e&i�Hf&z

.

(III.82)

Thus, its (B[Hred]-valued) distributional derivative is given by

�Hf
R� 0[Hf]=e&i�R� 2

0[Hf]+(e&i�\0&z)&1 Pel �$[Hf&\0]. (III.83)

Using the abbreviation (III.72) and (III.73) again, Leibniz' rule in conjunc-
tion with (III.82) gives

�D� L[ } } } ]

= :
L&1

l=1

D� L[r; z; [Wj ; k (mj)
j ; k� (nj)

j ]L
j=1 ; [(R� 0) l&1

j=1 , �Hf
R� 0 , (R� 0)L&1

j=l+1]]

= &e&i��zD� [ } } } ]+(e&i�\0&z)&1

_ :
L&1

l=1

D� L[r; z; [Wj ; k (mj)
j ; k� (nj)

j ]L
j=1 ; [(R� 0) l&1

j=1 , Pel �$[ } &\0], (R� 0)L&1
j=l+1]]

= &e&i��zD� L[ } } } ]+
1

(e&i�\0&z)

_ :
L&1

l=1

D� L[ } } } (Pel �$[ } &\0]) l } } } ], (III.84)

using the shorthand notation

D� L[ } } } (Pel �$[ } &\0]) l } } } ]

=D� L[r; z; [Wj ; k (mj)
j ; k� (nj)

j ]L
j=1 ; [(R� 0) l&1

j=1 , Pel �$[ } &\0], (R� )L&1
j=l+1]].

(III.85)
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The $-function in the last sum of (III.84) is too singular, to be estimated
directly. We rather make the dependence of D� L[ } } } (Pel �$[ } &\0]l } } } ]
on $ explicit by means of the recurrence relation (A.47). For fixed 1�l
�L&1 and V :=� l

j=1 v j , U :=�L
j=l+1 uj , this recurrence relation gives

D� L[ } } } (Pel �$[ } &\0]) l } } } ]

= :
qj

vj=0,
j=1, ..., l

:
pj

uj=0,
j=l+1, ..., L

| `
l

j=1 {dy~ (vj)
j \q j

vj += `
L

j=l+1 {dy (uj)
j \qj

uj+=
_D� l[r+|�l (k(m)); z; [Wj ; k (mj)

j ; k� (nj)
j , y~ (vj)

j ] l
j=1 ; [R� 0] l&1

j=1]

_$ _r+ :
l

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j )+|( y(U))&\0&

_(a( y~ (V )) a-( y(U)))

_D� L&1[r+|�l (k� (n)); z; [Wj ; k (mj)
j , y (uj)

j ; k� (nj)
j ]L

j=l+1 ; [R� 0]L&1
j=l+1].

(III.86)

Now the assumption r<\0 becomes important because it implies

N�l+M>l+U := :
l

j=1

nj+ :
L

j=l+1

m j+U�1 (III.87)

in (III.86). Formally, the term in (III.86) with N�l+M>l+U=0 vanishes
since we would have $[r&\0] in (III.86) which is supported at r=\0 .
Rigorously, (III.87) follows from first expanding D� L[ } } } ] by means of the
recurrence relation (A.47) (before differentiating it). Then we get a similar
formula as (III.86) for D� L[ } } } ] except that

$ _r+ :
l

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j )+|( y(U))&\0&

is replaced by

/ _r+ :
l

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j )+|( y(U))�\0& .

For N�l+M>l+U=0 this gives /[r�\0] which vanishes for r<\0 , and
there is nothing to differentiate, to begin with.

Next, we integrate (III.86) against >M
j=1 dkj �|(kj)

; >N
j=1 dk� j �|(k� j)

;. We
insert for D� l[ } } } ] and D� L&l[ } } } ] the estimate (III.70) and get
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|
B \0

M+N
|D� L[ } } } (Pel �$[ } &\0]) l } } } ]| `

M

j=1

dkj

�(kj)
; `

N

j=1

dk� j

|(k� j)
;

� :
qj

vj=0,
j=1, ..., l

:
pj

uj=0,
j=l+1, ..., L

`
l

j=1
\qj

vj + `
L

j=l+1
\pj

uj+

_ `
L

l=1
\ 3g41

\1�2
0 sin(��2)+

ml+nl+ pl+ql

_/[N�l+M>l+U�1] \2&(1�2)(M+N+U+V)
0 4M+N+U+V

5

_|
B \0

M+N+U+V
(a( y~ (V)) a-( y(U)))

_$ _r+ :
l

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j )+|( y(U))&\0&

_ `
M

j=1

[|(kj)
:&; dkj] `

N

j=1

[|(k� j)
:&; dk� j]

_ `
U

j=1

[|( yj)
: dy j] `

V

j=1

[|( y~ j)
: dy~ j]. (III.88)

Now, (a( y~ (V)) a-( y(U))) =0 unless U=V, and in this case we obtain

(a( y~ (V)) a-( y(U)))=:
?

`
U

j=1

$[ yj& y~ ?( j)], (III.89)

where ? are the permutations of [1, ..., U]. Moreover, :&;=1&(d�#) and
2:=(1++)+1&(d�#). Thus, using (III.80), the integral on the right side
of (III.88) is given by

I :=(U !) |
B \0

M+N+U
$ _r+ :

l

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j )+|( y (U))&\0&

_ `
M

j=1

[|(kj)
:&; dk j] `

N

j=1

[|(k� j)
:&; dk� j] `

U

j=1

[|( yj)
2: dyj]

=(U !) C M+N+U
d } |

B\0
M+N+U

$ _r+ :
N�l+M>l

j=1

|j+ :
U

j=1

|̂j&\0&
_ `

M+N

j=1

d|j `
U

j=1

|̂1++
j d|̂j . (III.90)
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We distinguish the case U=0 and U�1. If U=0 then the constraint
(III.87) reads N�l+M>l�1 and we estimate

I�C M+N
d `

M+N&1

j=1
|

|j�\0

d|j=C M+N
d \M+N&1

0 . (III.91)

Conversely, if U�1 then we compensate for the $-function by first
integrating against d|̂U and obtain

I�(U !) C M+N+U
d \ (1++)+M+N

0

_| /[|̂1+ } } } +|̂U&1�\0] `
U&1

j=1

|̂1++
j d|̂j

�(U !) C M+N+U
d \ (1++) U+M+N

0

_| /[|̂1+ } } } +|̂U&1�\0] `
U&1

j=1

d|̂j

�
U !

(U&1)!
C M+N+U

d \ (2++) U+M+N&1
0

�UC M+N+U
d \M+N+U&1

0 . (III.92)

Here we make use of the fact that the integral over the U&1-dimen-
sional simplex, [(|1 , ..., |U&1) # RU&1

+ | |1+ } } } +|U&1�\0], is given by
\U&1

0 �(U&1)!. Moreover, we used \0�1 in the last inequality. Combining
(III.91) with (III.92), we observe that the following estimate is valid for
all U�0:

I�max[U, 1] C M+N+U
d \M+N+U&1

0 . (III.93)

Furthermore, we observe that 2U��L
l=1 pl+ql and that

:
qj

vj=0 \
q j

v j + } :
pj

uj=0 \
pj

uj+=2 pj+qj, (III.94)

Inserting (III.93) and the last two observations into (III.88), we arrive at

| |D� L[ } } } (Pel �$[ } &\0]) l } } } ]| `
M

j=1

dkj

|(kj)
; `

N

j=1

dk� j

|(k� j)
;

�max[U, 1] 4M+N+2U
5 C M+N+U

d \1+(M+N)�2
0

_ `
L

l=1
\ 6g41

\1�2
0 sin(��2)+

ml+ pl+nl+ql

�\1+(M+N)�2
0 `

L

l=1
\9g4145(1+- Cd )

\1�2
0 sin(��2) +

ml+ pl+nl+ql

(III.95)
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Here, we make use of the fact that, for all U�0,

max[U, 1](Cd42
5)U�(max[1, U] 2&U) } ((1+- Cd ) 45)� L

l=1 pl+ql

�((1+- Cd ) 45)� L
l=1 pl+ql . (III.96)

Next, we insert the estimate (III.71) from Lemma III.7 to estimate the
integral over �zD� [ } } } ] and obtain

| |�zD� L[ } } } ]| `
M

j=1

dkj

|(kj)
; `

N

j=1

dk� j

|(k� j)
;

�L(Cd 45 \1�2
0 )M+N `

L

l=1 \
3g41

\1�2
0 sin(��2)+

ml+ pl+nl+ql

. (III.97)

Finally, we note that |e&i�\0&z|�\0 �2. Thus, in view of (III.84), we
obtain the claim (III.81) by adding (III.97) and 3(L&1)�\0 times (III.95).

K

Having estimated the D� L[ } } } ]'s, we can now easily derive the corre-
sponding estimates for w~ L[ } } } ] by summing up (III.65). This yields the
following lemma.

Lemma III.9. Let % :=i� for some 0<�<?�2. Pick 0<\0�\(out)=
2&1�2 sin(��2) and z # U (in)

(0) . Assume Hypotheses H-1, H-2, H-3 and

g46

\1�2
0

�
1

100
, where 46 :=

4145(1+- 2Cd )
sin(��2)

. (III.98)

Let P0 :=Pel �/\0
[Hf], P� 0 :=1&P0 and R� 0[Hf] :=P� 0(H0&z). Then w~ M, N ,

defined by (III.64), obeys the following estimates for all M+N�0 and
0<r<\0 :

|w~ M, N[r; z; k(M); k� (N)]|

�2\0 \100g46

\0 +
M+N

} \100g46

\1�2
0 +

2$M+N, 0

`
M

j=1

|(kj)
: `

N

j=1

|(k� j)
:, (III.99)

and

|
B \0

M+N
|�rw~ M, N[r; z; k (M); k� (N)]| `

M

j=1

dkj

|(kj)
; `

N

j=1

dk� j

|(k� j)
;

�25 \100g46

\0 +
M+N

} \100g46

\1�2
0 +

2$M+N, 0

. (III.100)
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Proof. We first prove (III.99) by inserting (III.70) into (III.65) which
yields

|w~ M, N[r; z; k(M); k� (N)]|

� :
�

L=L0

:

l=1, ..., L
ml+ pl+nl+ql=1, 2;

$M, � L
l=1 ml

} $N, � L
l=1 nl

} \1&(M+N)�2
0 4M+N

5

_ `
L

l=1
{\ml+ p l

p l +\nl+ql

ql +\ 3g41

\1�2
0 sin(��2)+

ml+nl+ pl+ql

=
_ `

M

j=1

|(k j)
: `

N

j=1

|(k� j)
:, (III.101)

where L0 :=1 for M+N�1 and L0 :=2 in case that M=N=0. Next,

\m+ p
p +\n+q

q +�2m+ p+n+q and
100g41

\1�2
0 sin(��2)

�
100g46

\1�2
0

�1.

(III.102)

Thus

:
m+ p+n+q=1, 2

\m+ p
p +\n+q

q +\ 3g41

\1�2
0 sin(��2)+

m+n+ p+q

�\ 100g41

\1�2
0 sin(��2)+

max[m+n, 1]

:
m+n+ p+q�1

\ 3
50+

m+n+ p+q

=\ 100g41

\1�2
0 sin(��2)+

max[m+n, 1]

} _\ 1
1& 3

50+
4

&1& . (III.103)

Thus, (III.99) results from �L
l=1 max[m+n, 1]�max[M+N, L] which

implies

|w~ M, N[r; z; k (M); k� (N)]|

�2\1&(M+N)�2
0 4M+N

5 } \ 100g41

\1�2
0 sin(��2)+

M+N+2$M+N, 0

_ `
M

j=1

|(kj)
: `

N

j=1

|(k� j)
:. (III.104)

The proof of (III.100) is analogous except that it makes use of ��
L=1 LxL

=x(1&x)2. K
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We come to the third step indicated at the beginning of this chapter:
Elimination of the dependence on \0 of the underlying Hilbert space by
rescaling and changing the spectral parameter. First, we observe that the
family H� eff[z] is related to the desired one, H(0)[z], by

H(0)[z] :=
ei�

\0

1\0
H� eff[Z&1

(0) (z)] 1*\0
, (III.105)

where, recall,

Z(0) : U (in)
(0) � D1�2 , ` [ ei�\&1

0 `. (III.106)

Thus, for any z # D1�2 ,

H(0)[z]=/1(E(0)[z]+T(0)[z; Hf]+W(0)[z]) /1 , (III.107)

where /1 #/[Hf<1] and

E(0)[z]=\&1
0 } w~ 0, 0[Z&1

(0) (z); 0], (III.108)

T(0)[z; Hf]=Hf+\&1
0 [w~ 0, 0[Z&1

(0) (z); \0 r]; &w~ 0, 0[Z&1
(0) (z); 0]], (III.109)

w~ 0, 0[z; s] :=ei�(FP0
(Hg+e&i�s&z)+z) .el �0 , (III.110)

and

w(0)
M, N[z; Hf ; k(M), k� (N)]

:=\ (d�2#)(M+N)&1
0 w~ M, N[Z&1

(0) (z); \0 Hf ; \1�#
0 k(M); \1�#

0 k� (N)]. (III.111)

The last equations and Lemma III.9 imply that Theorem III.1.

IV. THE RENORMALIZATION MAP R\

In this chapter, we present the key tool of our analysis: an inductive
renormalization group construction. The idea underlying our construction
is that by lowering the photon energy scale, thereby decimating the degrees
of freedom of the system, the dynamics of the remaining degrees of freedom
is approximated ever better by the free photon dynamics Hf . Our construc-
tion is realized in terms of a renormalization map, R\ , consisting of a
decimation of degrees of freedom, followed by rescaling by a factor of \&1.
The renormalization map associates to every operator H on the subspace
Hred #Ran [/[Hf<1]]�F an operator R\[H] on Hred with the property
that H&z is invertible if and only if R\[H]&z is, for z belonging to a small
neighborhood of a certain part of _(H) described below.
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IV.1. Construction of the Renormalization Map R\

The renormalization map R\ depends on the scale parameters 0<\<1
and +, !>0, which we collect in the triple

2 :=(+, \, !). (IV.1)

It is defined on a certain subset of a linear space, W2 , of Hamiltonians
on Hred , constructed in (I.46)�(I.57). Here +>0 is the same parameter as in
Hypothesis H-3, and we recall that d is the spatial dimension, |(k)=|k| #,
and the parameters : and ; are defined in (III.59)-(III.60) as

:=
1
2

(1++)&
1
2 \

d
#

&1+=1+
+
2

&
d
2#

,

; :=
1
2

(1++)+
1
2 \

d
#

&1+=
+
2

+
d
2#

.

Furthermore, we recall from (I.64) that the polydisk B($, =)�W2 , on
which the renormalization map R\ is defined, is given by

B($, =) :=[(E, T, W
�

) # W2 | sup
z # D1�2

&T $[z, } ]&1&��$,

sup
z # D1�2

|E[z]|�=, sup
z # D1�2

&W
�

[z]&2�=], (IV.2)

assuming that $�1�8 and =�1�16. In analogy to (III.16)�(III.17), we
define

U(in) :=[z # D1�2 | |z&E[z]|�\�2], (IV.3)

U(out)(&) :=[z # D1�2"U(in) | |arg [z&E[z]]|�&], (IV.4)

We note that H[ } ] # B($, =) and z # U(in) implies that |z|�\�2+|E[z]|
and thus

U(in)�D1�4 , (IV.5)

provided that =, \�1�8. Another simple consequence of H # B($, =) is the
following lemma.

Lemma IV.1 Let T[z; } ] # T with &T $[z; } ]&1&��=�1�6, z # D1�2 ,
and 0�r�1. Then
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(a) for any z # D1�2 ,

(1&$) r�|T[z; r]|�(1+$) r and |arg [T[z; r]]|�$, (IV.6)

(b) for any z # U(out)($$) with $�$$�?�2,

|T[z; r]+E[z]&z|�\ $$&$

3 - 2?+ (r+\), (IV.7)

(c) for any z # U(in) and r�\,

|T[z; r]+E[z]&z|�( 1
6)(r+\). (IV.8)

Proof. Part (a) follows trivially from

|Im T[z; r]|
Re T[z; r]

�
&�rT[z; r]&1&�

1&&�rT[z; r]&1&�
�

$
1&$

�tan $. (IV.9)

To prove (b), we pick z # U(out)($$) and write s } ei. :=z&E[z] with
s�\�2 and |.|�$$. Similarly, we write t } ei� :=T[z; r] with t� 1

2 (1&$)_
(r+\) and |�|�$. Thus, using 1&$�1�3,

|T[z; r]+E[z]&z|=|tei�&sei.|

=- t2+s2&2ts cos(.&�)

�(2)&1�2
- 1&cos(.&�) ( |t|+|s| )

�(18)&1�2
- 1&cos(.&�) (r+\). (IV.10)

Now (b) follows from 1&cos x�x2�? for |x|�?�2.
Finally, we note that |z&E[z]|�\�2, for z # U(in), which, together with

r�\, implies that

|T[z; r]+E[z]&z|�(1&$) r&
\
2

�\1&$
2

&
1
4+ (r+\), (IV.11)

and hence (c). K

The previous lemma has two important consequences. On U(out)($$), it
guarantees the invertibility of H[z]&z, thus identifying z as a point in the
resolvent set \(H[z]) of H[z]. On U(in), it justifies the application of the
Feshbach map F/\ . We make this precise in the following theorem.

Theorem IV.2. Let H#(E, T, W
�

) # B($, =) with \, $, =�1�8, and assume
that =\&1�2�1�90 and !Cd�1.
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(a) H[z]&z is invertible, for all z # U(out)(120=\&1�2+$).

(b) For any z # U(in), the operator /� \H[z] /� \&z is invertible on
/[Hf�\] Hred . Moreover, writing /\ #/\[Hf]#/[Hf<\], the Feshbach
map F/\

(H[z]&z) is defined, and it is invertible on /[Hf<\] Hred if and
only if H[z]&z is invertible on Hred .

Proof. The argument is similar to the proof of Lemma II.3 and Theorem
III.3(a), (b). First we remark that T[z; Hf]+E[z]&z is a normal, bounded
operator because it is defined as a spectral function of Hf . Moreover,
Lemma IV.1(a) guarantees that T[z; Hf]+E[z]&z is m-sectorial and
bounded invertible if z # U(out)(120=\&1�2+$) or if T[z; Hf]+E[z]&z is
restricted to /[Hf�\] Hred and z # U(in). We denote by U the unitary that
results from its polar decomposition, i.e.,

T[z; r]+E[z]&z=U |T[z; r]+E[z]&z|. (IV.12)

To prove (a), we construct the inverse of H[z]&z by a Neumann series,

(H[z]&z)&1=R1�2
0 _ :

�

n=0

U*(&R1�2
0 /1W[z] /1R1�2

0 U*)n& , (IV.13)

for z # U(out)(120=\&1�2), where R1�2
0 :=|T[z; r]+E[z]&z|&1�2. We apply

Theorem B.2 and Lemma IV.1(b) and obtain

&R1�2
0 /1 W[z] /1R1�2

0 &

�&(Hf+\)&1�2 /1W[z] /1(Hf+\)&1�2& } " Hf+\
T[z; Hf]+E[z]&z"

�
2e2= 3 - 2?

\1�2(120=\&1�2&=)
<1, (IV.14)

since !Cd�1. Thus the series in (IV.13) is norm convergent.
Part (b) follows similarly from

(/� \H[z] /� \&z)&1

=R1�2
0 _ :

�

n=0

U*(&R1�2
0 /1 /� \ W[z] /1/� \R1�2

0 U*)n& , (IV.15)

and the estimate

&R1�2
0 /1/� \ W[z] /� \/1R1�2

0 &�
12e2=
\1�2 <1. K (IV.16)
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Next, we rewrite F/\
(H[z]&z), for z # U(in), in a Wick-ordered form

F/\
(H[z]&z)=: H� [z]+E[z]&z (IV.17)

where H� [z]=/\(E� [z]+T� [z; Hf]+W� [z]) /\ and T� , E� , W� and W� M, N ,
with corresponding coupling functions w~ M, N , are defined similarly to (III.63).
The coupling functions w~ M, N are given by the same formulae as (III.65)�
(III.68) in Lemma III.6, except that in (IV.18), below, the summation runs
over all ml , nl , pl , ql�0 such that their sum is �1. More precisely,

w~ M, N[z; r; k(M); k� (N)]

= :
�

L=1

(&1)L&1 :

l=1, ..., L
ml+ pl+nl+ql�1;

$M, � L
l=1 ml

} $N, � L
l=1 nl

_ `
L

l=1 {\
m l+ pl

p l +\nl+ql

ql +=
_[D� L[Hf ; [W ml , nl

pl , ql
; k (ml )

l ; k� (nl)
l ]L

l=1 ; [R� 0]L&1
l=1 ]]symm

M, N . (IV.18)

The definition of D� L is identical to (III.66) except that the expectation
value (.el �0 | ( } ) .el �0) is replaced by (0 | ( } ) 0).

Our next step is to rescale H� [z] by 1\ and to use the map

Z: U(in) � D1�2 , Z(`) :=\&1(`&E[`]). (IV.19)

We remark that Z is bijective provided that H # B($, =) and =�1�8. To see
this, we differentiate Z(`) which yields

\
2

} �`Z(`)=1&�`E[`]. (IV.20)

Since U(in)�D1�4 , by (IV.5), Cauchy's estimate with a contour on �D1�2=
[ |z|=1�2] yields that, for all ` # U(in),

|�` E[`]|�4 sup
D1�2

|E |�4=� 1
2 , (IV.21)

and hence that Z: U(in) � D1�2 is bijective, indeed.
We define the renormalization map R\ by

R\(H)[z]&z :=\&11\F/\
(H[Z&1(z)]&Z&1(z)) 1*\ , (IV.22)

for z # D1�2 .
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IV.2. The Contraction Property of the Renormalization Map R\

We come to the heart of the matter: the contraction property of R\ .
Concretely, we propose to show that

R\ : B($, =) � B($+'=, '=), (IV.23)

where $�1�8, =�1�16, '�1�2, and B($, =) is defined in (IV.2). Obviously,
this property enables us to iterate the renormalization map, yielding a
sequence of analytic families in W2 which converges to a (trivial) fixpoint
of R\ ,

(0, *r, 0
�
)=R\(0, *r, 0

�
), (IV.24)

where * # C"[0]. By a trivial change of scales, we may assume *=1
without loss of generality. Note that (0, r, 0

�
) corresponds to H[z]#Hf ,

the free photon Hamiltonian.
The proof of this contraction property is split into a series of lemmata.

We start with estimating the coupling functions w~ M, N , defined in (IV.18).
To make our argument more transparent, we write

w~ M, N=w~ T
M, N+2w~ M, N , (IV.25)

where

w~ T
M, N[z; r; k(M); k� (N)] :=wM, N[z; r; k(M); k� (N)], (IV.26)

and

2w~ M, N[z; r; k(M); k� (N)]

= :
�

L=2

(&1)L&1 :

l=1, ..., L
ml+ pl+nl+ql�1;

$M, �L
l=1 ml

} $N, � L
l=1 nl

_ `
L

l=1 {\
ml+ pl

pl +\nl+ql

ql +=
_[D� L[Hf ; [W ml , nl

pl , ql
; k (ml)

l ; k� (nl )
l ]L

l=1 ; [R� 0]L&1
l=1 ]] symm

M, N . (IV.27)

Then we have the following lemma

Lemma IV.3. Let (E, T, W
�

) # B($, =) with \, $�1�8, =�1�16, and
assume that !Cd�1, !2Cd�1�16, and =\&1�2�1�320. Then
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|D� L[ } } } ]|�!M+N } \\
6+ } \ 6=

\1�2+
L

} `
L

l=1
{ (!C 1�2

d ) pl+ql

( pl!)
1�2 (ql !)

1�2=
_ `

M

j=1

max[\, |(kj)]&1�2 } `
N

j=1

max[\, |(k� j)]&1�2 (IV.28)

and

&D� L[ } } } ]& (�)
2, \�\\

6+ } \ !
\1�2+

M+N

} \ 6=
\1�2+

L

} `
L

l=1
{ (!C 1�2

d ) pl+ql

( pl !)
1�2 (ql !)1�2=

(IV.29)

where D� L[ } } } ] :=D� L[z; r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl)

l ]L
l=1 : [R� 0]L&1

l=1 ].
Moreover, for M+N�1,

&w~ T
M, N& (�)

2, \ �= } !M+N, (IV.30)

&2w~ M, N& (�)
2, \�2\ \80=

\1�2+
2

\ 4!
\1�2+

M+N

, (IV.31)

&2w~ 0, 0& (�)
2, \�2 \ 6=

\1�2+
2

} (4!C 1�2
d )2. (IV.32)

Proof. Inequality (IV.30) is trivial. To prove (IV.28), we apply (IV.8)
and the fact that +l�|(k� (nl)

1
)+|(k (ml+1)

l+1
) to the estimate analogous to

(III.74) and obtain

|D� L[ } } } ]|�6L&1\ `
L

l=1

&(Hf++l&1+\)&1�2 /1W ml , nl
pl , ql

/1

_(Hf++l+\)&1�2&

�6L&1\ `
L

l=1

&(Hf+|(k (ml )
l )+\)&1�2 /1W ml , nl

pl , ql
/1

_(Hf+|(k� (nl )
l )+\)&1�2&. (IV.33)

Next, we apply Theorem B.1 (with M :=pl and N :=ql). This yields

|D� L[ } } } ]|�6L&1\=L!M+N `
M

j=1

|(kj)
: `

N

j=1

|(k� j)
:

_ `
L

l=1

(min[\+|(k (ml)
l ), 1]&$pl , 0 �2

_min[\+|(k� (nl)
l ), 1]&$ql , 0�2)

_ `
L

l=1
{ \&($pl , 0+$ql , 0)�2(!C 1�2

d 1[++1]1�2)
1[(1++) pl+1]1�2 1[(1++) ql+1]1�2= . (IV.34)

251RENORMALIZATION GROUP ANALYSIS



Now, we claim that

min[\+|(k (ml)
l ), 1]$pl, 0 } min[\+|(k� (nl)

l ), 1]$ql, 0

�\ :
ml

j=1

max[\, |(k l, j)] } `
nl

j=1

max[\, |(k� l, j)]. (IV.35)

We check (IV.35) by inspection: For pl+ql�1, the left side in (IV.35) is
bounded from below by \�1, while \ is an upper bound for its right side.
It remains to consider the case pl=ql=0, in which case we have that
ml+nl�1. We estimate

min[\+|(k (ml )
l ), 1]$pl , 0 } min[\+|(k� (nl )

l ), 1]$ql , 0

�max[|, |(kl, 1), ..., |(kl, ml
)] } max[\, |(k� l, 1), ..., |(k� l, nl

)], (IV.36)

using \, |(kl, j), |(k� l, j)�1. Estimate (IV.35) now directly follows from
(IV.36) and \�1.

We obtain (IV.28) from inserting (IV.35) and

1[1++] p

1[(1++) p+1]
�

1[1] p

1[ p+1]
=

1
p !

(IV.37)

into (IV.34). In turn, (IV.29) follows from (IV.28) and max[\, |(kj)]�\.
To prove (IV.31), we insert (IV.29) into (IV.27) and obtain

&2|~ M, N& (�)
2, \� :

�

L=2

:

l=1, ..., L
ml+nl+ pl+ql�1,

$M, � L
l=1 ml

} $N, � L
l=1 nl

_\ \ !
\1�2+

M+N

} \ 6=
\1�2+

L

_ `
L

l=1
{\ml+ pl

p l +\nl+ql

ql + (!C 1�2
d ) pl+ql

( pl !)
1�2 (q l !)

1�2= . (IV.38)

Since (m+ p)!�2m+ pm ! p !, Eq. (IV.38) is seen to imply that

&2w~ M, N& (�)
2, \�\ } \ 4!

\1�2+
M+N

} :
�

L=2

AL, (IV.39)

where

A :=
6=

\1�2 _\ :
�

m=0

2&m+
2

\ :
�

p=0

(2!C 1�2
d ) p

( p!)1�2 +
2

&1& . (IV.40)
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An application of Schwarz' inequality gives

\ :
�

p=0

(2!C 1�2
d ) p

( p !)1�2 +
2

�\ :
�

p=0

2&p+ } \ :
�

p=0

(8!2Cd) p

p ! +=2 exp[8!2Cd], (IV.41)

and hence

A�
48=
\1�2 } exp[8!2Cd]�

80=
\1�2�

1
2

. (IV.42)

Therefore, ��
L=2 AL=A2(1&A)&1�2A2 and we arrive at (IV.31).

In order to prove (IV.32), we examine (IV.38) again for the special case
that M=N=0. Then we estimate

&2w~ 0, 0& (�)
$, \ � :

�

L=2

:

l=1, ..., L
pl+ql�1,

\ 6=
\1�2+

L

} `
L

l=1
{ (!C 1�2

d ) pl+ql

( pl !)1�2 (ql !)1�2=

� :
�

L=2
\ 6=

\1�2+
L

_\ :
�

p=0

(!C 1�2
d ) p+

2

&1&
L

� :
�

L=2
\ 6=

\1�2+
L

(4!C 1�2
d )L�2 \ 6=

\1�2+
2

(4!C 1�2
d )2, (IV.43)

using again that !C 1�2
d �1�4 and 6=\&1�2�1�2. K

Lemma IV.4. Let (E, T, W
�

) # B($, =) with $�1�8 and =<1�16, and assume
that !Cd�1, !2Cd�1�144, and =\&1�2�1�320. Then, for all M+N�1,

&�rw~ T
M, N & (1)

2, \ �
24=
\1�2 } (!Cd\1�2)M+N, (IV.44)

&�r2w~ M, N & (1)
2, \�12 \90=

\1�2+
2

} (4!Cd\1�2)M+N, (IV.45)

&�r2w~ 0, 0 & (1)
2, \�48 \ 6=

\1�2+
2

} (4!Cd)2, (IV.46)

Proof. As in the proof of Lemma III.8, we first recall that

R� 0[Hf]#R� 0[z; Hf]#
/� \

T+E&z
:=

/[Hf�\]
T[z; HF]+E[z]&z

, (IV.47)
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which implies that

�Hf
R� 0[Hf]=(T[\]+E&z)&1 $(Hf&\)&R� 2

0[Hf] } �Hf
T. (IV.48)

By Leibniz' rule, we thus obtain

�rD� L[ } } } ]= :
L

l=1

D� L[ } } } Wl � �rWl } } } ]

+(T[\]+E&z)&1 (IV.49)

:
L&1

l=1

D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , $(r&\), (R� 0)L&1
j=l+1] } } } ]

(IV.50)

+ :
L&1

l=1

D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , R� 2
0�rT, (R� 0)L&1

j=l+1] } } } ],

(IV.51)

where we abbreviated by

D� L[ } } } W l � �rWl } } } ]

:=D� L[z; Hf ; [(W mj , nj
pj , qj

; k (mj)
j ; k� j

(nj)) l&1
j=1 ,

(�rW ml , nl
pl , ql

; k (ml )
l ; k� (nl)

l ), (W mj , nj
pj , qj

; k (mj)
j ; k� (nj)

j )L
j=l+1]; [R� 0]L&1

j=1 ],

(IV.52)

D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , f l (r), (R� 0)L&1
j=l+1] } } } ]

:=D� L[z; Hf ; [W mj , nj
pj , qj

; k (mj)
j ; k� (nj)

j ]L
j=1 ; [(R� 0) l&1

j=1 , fl (r), (R� 0)L&1
j=l+1]],

(IV.53)

with fl (r) :=$(r&\) and fl (r) :=R� 2
0(r) } �rT, respectively.

We begin with estimating Term (IV.51). Since

&(Hf+\) R� 2
0[Hf] �Hf T[z; Hf]&

�&(Hf+\) R� [Hf]&2 } "/[Hf�\]
Hf+\ " } &�Hf

T[z; Hf]&

�
18(1+=)

\
�

21
\

, (IV.54)
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we obtain as in (IV.34)

|D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , R� 2
0�rT, (R� 0)L&1

j=l+1] } } } ]|

�\ !
\1�2+

M+N

} \ 6=
\1�2+

L

} `
L

l=1

(!C 1�2
d ) pl+ql

( p l !)1�2 (q l!)
1�2 `

M

j=1

|(kj)
: `

N

j=1

|(k� j)
:.

(IV.55)

Inserting �|(k)�\ |(k):&; dk=Cd\, we observe that (IV.55) yields

&D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , R� 2
0 �rT, (R� 0)L&1

j=l+1] } } } ]& (1)
2, \

�(!Cd\1�2)M+N } \ 6=
\1�2+

L

} `
L

l=1

(!C 1�2
d ) pl+ql

( p l !)
1�2 (ql !)1�2 . (IV.56)

Second, we estimate the term in (IV.50). Similarly to (III.86), we again
use the recurrence relation (A.47) to rewrite this term as

D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , $(r&\), (R� 0)L&1
j=l+1] } } } ]

= :
qj

vj=0,
j=1, ..., l

:
pj

uj=0,
j=l+1, ..., L

| `
l

j=1
{dy~ (vj)

j \qj

vj += `
L

j=l+1
{dy (uj)

j \pj

uj+=
_D� l[r+|�l (k(m)); z; [Wj ; k (mj)

j ; k� (nj)
j , y~ (vj)

j ] l
j=1 ; [R� 0] l&1

j=1]

_$ _r+ :
l

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j )+|( y(U))&\0&

_(a( y~ (V )) a-( y(U)))

_D� L&l[r+|�l (k� (n)); z; [Wj ; k (mj)
j , y (uj)

j ; k� (nj)
j ]L

j=l+1 ; [R� 0]L&1
j=l+1].

(IV.57)

where U :=�L
j=1+l u j , V :=� l

j=1 vj , and we have that

M�l+M>l+U := :
l

j=1

nj+ :
L

j=l+1

m j+U�1. (IV.58)

To estimate this term, we closely follow the argument given after (III.86).
We first insert (IV.29) into (IV.57), which yields
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&D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , $(r&\), (R� 0)L&1
j=l+1] } } } ]& (1)

2, \

� :
qj

vj=0,
j=1, ..., l

:
pj

uj=0,
j=l+1, ..., L

`
l

j=1
\qj

vj + `
L

j=l+1
\pj

uj+\
\
6+

2

} \ !
\1�2+

M+N+U+V

_\ 6=
\1�2+

L

} `
l

j=1

(!C 1�2
d )mj+qj&vj

( p j!)
1�2 ((qj&vj)!)

1�2 `
L

j=l+1

(!C 1�2
d ) pj+qj&uj

(( p j&uj)!)1�2 (qj !)1�2

_/[N�l+M>l+U�1] } I (IV.59)

where I denotes the following integral.

I :=(U!) } C M+N+U
d |

�

0
$ _r+ :

N�l+M>l

j=1

| j+ :
U

j=1

|̂j&\&
_ `

M+N

j=1

d|j `
U

j=1

|̂1++
j d|̂j , (IV.60)

as in (III.88)�(III.90). If U=0 then M>l+N�l=1 and

I�C M+N
d \M+N&1. (IV.61)

Conversely, if U�1 then

I�U ! } C M+N+U
d \(1++)+M+N

_|
�

0
/[|̂1+ } } } +|̂w&1�\] `

u&1

j=1

|̂1++
j d|̂j

=
U !

1[(2++)(U&1)+1]
C M+N+U

d } \(2++) U+M+N&1

�
U ! C M+N+U

d \(2++) U+M+N&1

(2U&2)!
(IV.62)

Now we use that (U !)2�2(2U&2)!, which one easily verifies, for U=1
and U=2, by inspection and, for U�3, by induction. This inequality
implies that, for U�1,

I�
2

U ! \
(Cd\)M+N (Cd\2++)U. (IV.63)
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Comparing to (IV.61), we observe that Estimate (IV.63) is valid for U=0,
as well, and thus for all U�0. Inserting (IV.63) into (IV.59) and using that
�N

n=0 ( N
n )=2N, \�1, and 2!C 1�2

d �1�2, we arrive at

&D� L[ } } } [R� 0]L&1
j=1 � [(R� 0) l&1

j=1 , $(r&\), (R� 0)L&1
j=l+1] } } } ]& (1)

2, \

� :
qj

vj=0,
j=1, ..., l

:
pj

uj=0,
j=l+1, ..., L

`
l

j=1
\qj

vj + `
L

j=l+1
\p j

uj+\
\
18+ } (!Cd\1�2)M+N

_\ 6=
\1�2+

L

} `
l

j=1

2&vj } (!C 1�2
d ) pj+qj&vj

( pj !)1�2 ((qj&vj)!)
1�2 `

L

j=l+1

2&uj } (!C 1�2
d ) pj+qj&uj

(( pj&uj)!)
1�2 (qj !)1�2

_max
U # N0

[(U !)&1 } (4!2Cd\1++)U]

�\ \
18+ } (!Cd\1�2)M+N } \ 6=

\1�2+
L

} exp[4!2Cd\1++] } `
L

l=1

(2!C 1�2
d ) pl+ql

�\\
9+ } (!Cd \1�2)M+N } \ 6=

\1�2+
L

} `
L

l=1

(2!C 1�2
d ) pl+ql. (IV.64)

We come to the most difficult part, the estimate on (IV.49). Up to now,
we did not make full use of the inverse factorials that Theorem B.1 yields,
but to estimate (IV.49), we compensate with these inverse factorials for the
many terms that the contractions of creation- and annihilation operators
generate. To this end, we apply (A.46) and obtain

D� L[ } } } W l � �rWl } } } ]

= :
qj

vj=0,
j=1, ..., l&1

:
pj

uj=0,
j=l+1, ..., L

| `
l&1

j=1
{dy~ (vj)

j \q j

vj += `
L

j=l+1
{dy (uj)

j \pj

uj+=

_D� l&1[z; r+|�l (k(m)); [Wj ; k (mj)
j ; k� (nj)

j , y~ (vj)
j ] l&1

j=1 ; [R� 0] l&1
j=1]

_R� 0[+l&1] (a( y~ (V )) �r Wl[*l ; k (ml)
l ; k� (nl )

l ] a-( y(U))) 0 R� 0[+ l]

_D� L&l[z; r+|�l (k� (n)); [Wj ; k (mj)
j , y (uj)

j ; k� (nj)
j ]L

j=l+1 ; [R� 0]L&1
j=l+1].

(IV.65)
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Now, we fully exploit Estimate (IV.28) which yields

|D� l&1[z; r+|�l (k(m)); [Wj ; k (mj)
j ; k� (nj)

j , y~ (vj)
j ] l&1

j=1 ; [R� 0] l&2
j=1]|

�\\
6+\

6=
\1�2+

l&1

`
l&1

j=1
{(!C 1�2

d ) pj+qj&vj (!\&1�2)mj+nj

( pj !)
1�2 ((qj&vj)!)

1�2 =
_ `

l&1

j=1
{`

mj

i=1

|(k j, i)
: `

nj

i=1

|(k� j, i)
:= `

V

j=1
{ !|( y~ j)

:

max[\, |( y~ j)]1�2= (IV.66)

and

|D� L&l[z; r+|�l (k� (n)); [W j ; k (mj)
j , y (uj)

j ; k� (nj)
j ]L

j=l+1 ; [R� 0]L&1
j=l+1]|

�\\
6+\

6=
\1�2+

L&l

`
L

j=l+1
{(!C 1�2

d ) pj+qj&uj (!\&1�2)mj+nj

(( pj&uj)!)
1�2 (qj !)

1�2 =
_ `

L

j=l+1
{`

mj

i=1

|(kj, i)
: `

nj

i=1

|(k� j, i)
:= } `

U

j=1
{ !|( yj)

:

max[\, |( yj)]1�2= .

(IV.67)

Upon inserting (IV.66) and (IV.67) into (IV.65), we obtain, for (k(M), k� (N))
# BM

\ _BN
\ ,

|D� L[ } } } W l � �r Wl } } } ]|

� :
qj

vj=0,
j=1, ..., l&1

:
pj

uj=0,
j=l+1, ..., L

`
l&1

j=1
\q j

vj + `
L

j=l+1
\p j

u j+

_
1
4 \

6=
\1�2+

L&1

(!\&1�2)M+N&ml&nl

_ `
L

j=l+1
{ (!C 1�2

d ) pj+qj&uj

(( pj&ul)!)1�2 (q j !)
1�2= `

l&1

j=1
{ (!C 1�2

d ) pj+qj&vj

( p j !)
1�2 ((q j&v j)!)

1�2=
_ `

M

j=1

|(kj)
: } `

N

j=1

|(k� j)
: } I(k (ml)

l , k� (nl)
l ), (IV.68)
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where

I(k (ml )
l , k� (nl)

l )

:=| |(a( y~ (V )) /1a-(x( pl))

_�rwml+ pl , nl+ql
[z; * l ; k (ml)

l , x ( pl ); k� (nl )
l , x~ (ql )] a(x~ (ql)) /1 a-( y(U))) 0 |

_ `
U

j=1
{ |( yj)

: dyj

max[\, |( yj)]1�2= } `
V

j=1
{ |( y~ j)

: dy~ j

max[\, |( y~ j)]1�2= dx( pl) dx~ (ql)

�/[V& pl=U&ql�1] } \ V !
(V& p l)!+\

U !
(U&q l)!+ } (U&q l)!

_\&( pl+ql )�2 | /1[|(x( pl ))] /1[|(x~ (ql ))]

_sup
r

|�rwml+ pl , nl+ql
[z; r; k (ml )

l , x( pl); k� (nl)
l , x~ (ql )]|

_ `
pl

j=1

[|(x j)
: dxj] `

ql

j=1

[|(x~ j)
: dx~ j]

_| /1[|( y(U&ql ))] `
U&ql

j=1

[|( yj)
2:&1 dyj]. (IV.69)

Here, Wick-ordering of a( y~ (V)) a-(x( pl)) gives rise to the factor V! ((V& pl)!)
&1,

Wick-ordering of a(x~ (ql)) a-( y(U)) gives rise to the factor U ! ((U&q l)!)
&1,

and Wick-ordering of a( y~ (V& pl )) a-( y(U&ql)) accounts for the factor
(U&ql)! on the right side of (IV.69).

Next, we apply Lemma C.3 with ' :=:+;=1++, and we use (B.12).
This yields

I(k (ml )
l , k� (nl )

l )�C U&ql
d \&( pl+ql)�2 } /[V& pl=U&ql�1]

_\ V !
(V& pl)! p (1++) pl

l
+ } \ U !

(U&ql)! q (1++) ql
l

+
_| sup

r
|�r wml+ pl , nl+ql

[z; r; k (ml)
l , x( pl); k� (nl )

l , x~ (ql)]|

_ `
pl

j=1

dxj

|(xj)
; `

ql

j=1

dx~ j

|(x~ j)
; . (IV.70)
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We insert (IV.70) into (IV.68) and integrate against the measure >M
j=1 dk j �

|(kj)
; >N

j=1 dk� j �|(k� j)
; over the region BM

\1�# _BN
\ 1�# . We arrive at

&D� L[ } } } Wl � �rWl } } } ]& (1)
2, \

�
\1�2

24=
:
qj

vj=0,
j=1, ..., l&1

:
pj

uj=0,
j=l+1, ..., L

`
l&1

j=1
{2vj \qj

vj+= `
L

j=l+1
{2uj \p j

uj +=\
6=

\1�2+
L

_(!Cd\&1�2)M+N&ml&nl& pl&ql } (!C 1�2
d )P+Q &�rwl& (1)

2, \ , (IV.71)

denoting Q :=� l&1
j=1 qj and P :=�L

j=l+1 pj . Note that

:
qj

vj=0,
j=1, ..., l&1

`
l&1

j=1
{2vj \q j

vj +== `
l&1

j=1

3qj�3Q, (IV.72)

:
pj

uj=0,
j=l+1, ..., L

`
L

j=l+1
{2uj \pj

uj+== `
L

j=l+1

3 pj�3P. (IV.73)

Thus

&D� L[ } } } Wl � �r Wl } } } ]& (1)
2, \

�\ 6=
\1�2+

L

} (!Cd\&1�2)M+N } (3!C 1�2
d )P+Q, (IV.74)

using that &�rwl& (1)
2 �24=\&1�2 } (!Cd \1�2)&ml&nl& pl&ql and P+Q�U+V.

Adding up (IV.74), (IV.64), and (IV.56) according to (IV.49), we obtain
the bound

&�rD� L[ } } } ]& (1)
2, \�3L } \ 6=

\1�2+
L

} (!Cd\1�2)M+N } `
L

l=1

(3C 1�2
d !) pl+ql.

(IV.75)

We insert this estimate and 3!C1�2
d �1�4 into the series (IV.18), which yields

&�r2w~ M, N& (1)
2, \� :

�

L=2

:

l=1, ..., L
ml+nl+ pl+ql�1

$M, � L
l=1 ml

} $N, � L
l=1 nl

} 3L } \ 6=
\1�2+

L

_(!Cd\1�2)M+N } `
L

l=1
{4&pl&ql \ml+ pl

pl +\nl+ql

ql +=
�(4!Cd\1�2)M+N } :

�

L=2

3L } \ 6=
\1�2+

L

_\ :
�

p=0

2&p+
4

&1&
L

�12 \90=
\1�2+

2

} (4!Cd\1�2)M+N, (IV.76)

since A� :=90=\&1�2�1�2 and thus ��
L=2 LA� L=2A� 2(1&A� )&1�4A� 2.
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Finally, for M=N=0, Equation (IV.75) and the series expansion
(IV.18) yield

&�r2w~ 0, 0& (1)
2, \ � :

�

L=2

:

l=1, ..., L
pl+ql�1

3L } \ 6=
\1�2+

L

} `
L

l=1

(2!C 1�2
d ) pl+ql

� :
�

L=2

3L } \48=!C 1�2
d

\1�2 +
L

�48 \ 6=
\1�2+

2

} (4!C 1�2
d )2, (IV.77)

proving (IV.45). K

We remark that in our derivation of (IV.71), we used the inequality

p !� p(1++)p. (IV.78)

This is one point in our proof where the condition +�0 (here, including
+=0) inevitably enters, namely to compensate large factorials.

Theorem IV.5. Fix +, \, !>0 such that \Cd�1, C 1�2
d !�\(3++)�4, and

\+�2<1�16. Assume that $�1�8 and =\&1�2�1�12800. Then

R\ : B($, =) � B($+'=, '=), (IV.79)

where

' :=4\+�2 \1+
12800=

\1�2 +�8\+�2<
1
2

. (IV.80)

Proof. We assume that (E, T, W
�

) # B($, =), and we write H� #(E� , T� , W�
�

) :=
R\[(E, T, W

�
)]. Equations (IV.17)�(IV.22) imply that

H� [Z(`)]&Z(`) :=\&11\(H� [`]+E[`]&`) 1*\ , (IV.81)

for any ` # U(in), where, as before, we identify H� [ (E� , T� , W�
�

) # W2 by

H� [z]=: /1(T� [z; Hf]+E� [z]+W� [z]) /1 , (IV.82)

T� [z; Hf] :=\&1T[Z&1(z); \Hf]+\&1(w~ 0, 0[Z&1(z); \Hf]

&w~ 0, 0[Z&1(z); 0]), (IV.83)

E� [z] :=\&1w~ 0, 0[Z&1(z); 0], (IV.84)
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W[z] := :
M+N�1

WM, N[z], (IV.85)

WM, N[z] :=| dk(M) dk� (N)a-(k(M)) ŵM, N[z; Hf ; k(M); k� (N)] a(k� (N)), (IV.86)

ŵM, N[z; r; k(M); k� (N)]

:=\(d�2#)(M+N)&1 w~ M, N[\Hf ; Z&1(z); \1�#k(M); \1�#k� (N)]. (IV.87)

We use Lemma IV.3 and Lemma IV.4 and the relations (IV.82)�(IV.87).
First, we examine ŵM, N , for M+N�1. By (IV.87) and (IV.30), we have
that

|ŵT
M, N[Z(z); r; k (M), k� (N)]|

=\(d�2#)(M+N)&1 |w~ T
M, N[z; \r; \1�#k(M); \1�#k� (N)]|

�\(d�2#)(M+N)&1 } &w~ T
MN& (�)

2, \ } `
M

j=1

|(\1�#k j)
: `

N

j=1

|(\1�#k� j)
:

�\(:+(d�2#))(M+N)&1 } &w~ T
MN& (�)

2, \ } `
M

j=1

|(k j)
: `

N

j=1

|(k� j)
:. (IV.88)

Thus, since :+(d�2#)=1+(+�2) and M+N�1,

&ŵT
M, N& (�)

2 �\(1+(+�2))(M+N)&1 &wM, N& (�)
2 �=\+�2!M+N. (IV.89)

Similarly, we get from (IV.31) that

&2ŵM, N & (�)
2 �2(4\(1++)�2)M+N (80=)2 \&1!M+N

�\+�2 \(29) } (102) } =
\1�2 + =!M+N. (IV.90)

Adding up these terms, we obtain

!&(M+N) &ŵM, N& (�)
2 �4\+�2 \1+

12800=
\1�2 + } =. (IV.91)
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Next we compute from (IV.87) that

| |�r ŵM, N[Z(z); r; k(M); k� (N)]| `
M

j=1

dkj

|(k j)
; `

N

j=1

dk� j

|(k� j)
;

=\(d�2#)(M+N) | |�rw~ M, N[z; \r; \1�#k(M); \1�#k� (N)]| `
M

j=1

dk j

|(kj)
; `

N

j=1

dk� j

|(k� j)
;

�\(;&(d�2#))(M+N)

_|
B \

M_B \
N

|�r w~ M, N[z; \r; k(M); k� (N)]| `
M

j=1

dkj

|(kj)
; `

N

j=1

dk� j

|(k� j)
;

�\(+�2)(M+N) } &�r w~ M, N& (1)
2, \ . (IV.92)

Thus, we obtain from (IV.43)�(IV.44) the following estimate.

\1�2

24
(!Cd \1�2)&(M+N) &ŵM, N& (1)

2 �4\+�2 } \1+
4050=
\1�2 + } =. (IV.93)

Putting together (IV.93) and (IV.90), we see that

max
M+N�1

&ŵM, N&2�4\+�2 } \1+
12800=

\1�2 + } =. (IV.94)

Second, we use (IV.84), (IV.32), and !C 1�2
d �\(3++)�4 to estimate

|E� [z]|�\&1 &2w~ 0, 0& (�)
2 �12 \=!C 1�2

d

\ +
2

�4\+�2 \12800=
\1�2 + =. (IV.95)

Since '=4\+�2(1+12800=\&1�2), we obtain

sup
z # D1�2

|E� [z]|�'= and sup
z # D1�2

|W�
�

[z]|$2�'=. (IV.96)

Third, Equation (IV.83) implies that

�rT� [Z(`); r]=�rT[`; \r]+�rw~ 0, 0[`; \r], (IV.97)
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for any ` # U(in), and thus

sup
z # D1�2

&�rT� [z; } ]&1&�

= sup
` # U (in)

&�rT[`; } ]&1&�+ sup
` # U (in)

&�rw~ 0, 0[`; } ]&�

=$+ sup
z # D1�2

&�r2w~ 0, 0[z]& (1)
2, \=$+'=, (IV.98)

using (IV.46) and H # B($, =). By (IV.97) and (IV.98), we arrive that the
assertion that

R\((E, T, W
�

))=(E� , T� , W�
�

) # B($+'=, '=). K (IV.99)

V. ANALYSIS OF THE FLOW GENERATED BY R\

Our next goal is to apply Theorem IV.5 to the starting operator, H(0) ,
defined in (III.105). We show that H(0) fulfills its hypotheses and we may
thus apply R\ to generate H(1) :=R\[H(0)], for which we again verify the
hypotheses of Theorem IV.5 and apply R\ , and so on. In the vein, we produce
a sequence

H(n) :=Rn
\[H(0)], (V.1)

n # N, of ``isospectral'' Hamiltonians, and we locate the spectrum of H(n) on
the energy scale

\n :=\0 } \n, (V.2)

for all n. By the isospectral property, we can then put these pieces of
spectral information together to locate the spectrum on H(0) on arbitrarily
small energy scales.

V.1. Adjustment of the Initial Condition

Recall from Corollary III.2 that

H(0) # B($, =), (V.3)

provided that g>0 is sufficiently small such that

$ :=25(100g46\&1�2
0 )2� 1

8 , (V.4)

= :=100g46 max[200g46\&1
0 , 2!&1, 25C &1

d !&1\&1�2]� 1
16 . (V.5)
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In the following, we require Hypotheses H-1, H-2, H-3, and 0<�<?�2,
0<\0�\(out)=2&1�2 sin(��2), 0<+�2, 41�1, 45�1, and we define

Cd=d#&1?d�21[(d�2)+1]&1, (V.6)

46=41 45(1+- 2Cd )(sin(��2))&1. (V.7)

The following lemma shows for how large a choice of the coupling constant
g>0 the requirements of Theorem IV.5 and of (V.4)�(V.5) are still met.

Lemma V.1. Given 0<+�2, 41�1, 45�1, 0<��?�2, we define Cd ,
46 , $, and = by (V.4)�(V.5), and we set

\0 :=(2&1�2) sin(��2), \ :=min[C &1
d , 2&8�+], (V.8)

! :=min[C &1�2
d \(3++)�4, C &1

d ], = :=\1�2�12 800 (V.9)

g0 :=
\1�2

12800 } 100 } 46

min {- 6400 } \1�2
0 ,

1
2

!,
1

25
Cd !\1�2= . (V.10)

Then, for any 0<g�g0 , the following relations hold true:

\0�- 2&1 sin(��2),
100g46

\1�2
0

�1, (V.11)

\Cd�1, Cd !�1, C 1�2
d !�\(3++)�2, \+�2�1�16, (V.12)

$�1�16, =�1�16, =\&1�2�1�12800. (V.13)

Proof. First, we recall that \0�- 2&1 sin(��2), \Cd�1, Cd !�1, C 1�2
d !

�\(3++)�4, and \+�2�1�16, by definition. Second, we remark that

100g046

\1�2
0

�
- 6400 } \1�2

12800
�

1

2 - 6400
�1. (V.14)

This implies that

=\&1�2�
1

12800
min {- 6400}\1�2

0 ,
!
2

,
Cd!\1�2

25 = max { 2
\1�2

0

100g46

\1�2
0

,
2
!

,
25

Cd!\1�2=
�

1
12800

min {- 6400}\1�2
0 ,

!
2

,
Cd!\1�2

25 = max { 1

- 6400 } \1�2
0

,
2
!

,
25

Cd!\1�2=
�

1
12800

. (V.15)
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Finally, we observe that

=\&1�2�=� 2
25$. (V.16)

So, if =\&1�2�1�12800 then $�1�16 and =�1�16. K

The choice of \0 , \, and ! in (V.8)�(V.9) was made so as to meet the
conditions imposed in (V.11)�(V.13) for the largest possible values of the
coupling constant g. As a consequence of Lemma V.1, we have the following
theorem.

Theorem V.2. Assume Hypothesis H-1, H-2, and H-3, with 0<+�2,
41�1, 45�1, and 0<�<?�2. Define Cd , \0 , \, !, =, $, and g0 by
(V.4)�(V.10), and assume that 0<g�g0 . Then H(0) # B($, =). Furthermore,
defining

H(n) #(E(n) , T(n) , W
�

(n)) :=Rn
\[(E(0) , T(0) , W

�
(0))], (V.17)

Z(n) : U (in)
(n) � D1�2 , z [ \&1(z&E(n&1)[z]), (V.18)

and

U(in)
(n) :=[z # d1�2 | |z&E(n&1)[z]|�\�2], (V.19)

we have that

H(n) # B($+=, 'n=), (V.20)

for all n=1, 2, ....

Proof. Equation (V.20) follows from (V.3) and Theorem IV.5, which is
applicable thanks to Lemma V.1, by iterating

R\ : B($, =) � B($+'=, '=) � B($+'=+'2=, '2=) � } } } , (V.21)

additionally taking into account that ��
n=1 'n�1 since '�1�2. K

V.2. Cuspidal Domains of (Possible) Spectrum

Next, we investigate the convergence of ��
n=0 E(n) . Recall from

(V.18)�(V.19) that, for n=1, 2, ...,

U (in)
(n) =[z # D1�2 | |z&E(n&1)[z]|�\�2], (V.22)

and

Z(n) : U (in)
(n) � D1�2 , z [ \&1(z&E(n&1)[z]). (V.23)
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We use Z(0) from (III.106) to define

Z&1
(n) : D1�2 � U (in)

(0) , Z&1
(n) :=Z&1

(0) b Z&1
(1) b } } } b Z&1

(n) , (V.24)

and

S(n) :=Z&1
(n) (D1�4). (V.25)

Lemma V.3. For all n=1, 2, ...

S(0) $S(1) $S(2) $ } } } $S(n) , (V.26)

\0(
2
5)n�inner rad(S(n))�outer rad(S(n))�\0(

4
3 \)n, (V.27)

where, for A�C, the inner and outer radius of A are defined by inner rad(A)
:=supz, r[r | z+Dr �A] and outer rad(A) :=infz, r[r | z+Dr $A]. More-
over, the number E(�) # C, defined by [E(�)]=�n # N S(n) , is uniquely
determined by the sequence

E(�)= lim
n � �

Z&1
(n) (0). (V.28)

Proof. Since, U (in)
(n) �D1�4 , for n # N0 , we clearly have

S(n+1) =Z&1
(n+1)(D1�4)�Z&1

(n+1)(D1�2)

=Z&1
(n) (U (in)

(n) )�Z&1
(n) (D1�4)=S(n) , (V.29)

and thus (V.26). By the same argument, Z&1
(n) (U (in)

(n) )�Z&1
(n&1)(U

(in)
(n&1))

� } } } �Z&1
(0) (U (in)

(0) ), and |�zE(n) |�4'=�1�4, by Theorem V.2. Thus,
for ` # U (in)

(n) ,

3
4\

|`|�|Z(n)(`)|=\&1 |`&E[`]|�
5

4\
|`|, (V.30)

which implies that

4\
5

|z|�|Z&1
(n) (z)|�

4\
3

|z|, (V.31)

for z # D1�2 . Iterating this estimate, we obtain

outer rad[Z&1
(n) (D1�4)]�

\0

4
} \4\

3 +
n

, (V.32)
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proving the right inequality in (V.27). Next, using again that |�zE(n) |�1�4,
we infer that, for z # D"[0],

|arg [Z&1
(n) (z)]&arg [z]|�?�4, (V.33)

and hence

inner rad[Z&1
(n) (D1�4)]�

\0

4 \2\
5 +

n

. K (V.34)

Having found E(�) , the number in C& that we later identify to be the
resonance energy we sought for, we also wish to determine a deformed
curve, i.e., a function

T(�) : [0, 1] � C& (V.35)

that represents the ``continuous spectrum'' for the perturbed operator Hg(%).
We put ``continuous spectrum'' in quotation marks because we do not prove
the existence of continuous spectrum for Hg(%), but we show that any spectrum
of Hg(%) in U (in)

(0) =D\0 �2 is contained in a cuspidal domain about E(�)+
[T(�)(r) | r # [0, 1]].

Before going into mathematical detail, we motivate and outline the
construction of T(�) . The first difficulty we encounter when trying to define
T(�) is that the functions T(n) depend on both r # [0, 1] and z # D1�2 . We
thus need to impose a sensible condition that determines z=`(n)(r) as a
function of r so that on the nth energy scale, \n+1�r<\n, the curve T(�)[r]
is essentially given by T� (�) , defined by

E(�)+T� (�)[r]=Z&1
(n) (T(n)[`(n)(\&nr); \&nr]). (V.36)

The condition that yields z as a function of r is expressed in terms of
functions

`(n) : [0, 5�16] � D3�8 , (V.37)

for each n # N0 , by the requirement that |`(n)(r)&r|�1�16 and by the fix
point equation

`(n)(r)=T(n)[`(n)(r), r], (V.38)

where T(n) is defined in (V.17). We postpone the discussion of Eqn. (V.38),
and we temporarily ignore the fact that, according to (V.37), `(n) is only
defined on [0, 5�16] rather than [0, 1]. Instead, we insert (V.38) into
(V.36) and obtain

E(�)+T� (�)[r]=Z&1
(n) (`(n)(\&nr)), (V.39)
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for \n+1�r<\n. Equation (V.36) is still not satisfactory because T� (�) may
have jump discontinuities at r=\n. We solve this problem by smoothly
interpolating between Z&1

(n) (`(n)(\&nr)) and Z&1
(n&1)(`(n&1)(\&n+1r)). Namely,

we pick , # C �
0 (R+

0 ) such that ,$�0, ,#1 on [0, 1�4], and ,#0 on
[5�16, �]. We use , to define, for n=0, 1, 2, 3, ...

` (av)
(n) (r) :=,(r) } `(n)(r)+(1&,(r)) } Z(n)(`(n&1)(\r)), (V.40)

where `(&1)(r) :=r and 0�r<1. We emphasize that ` (av)
(n) is defined on the

full interval [0, 1]. Moreover, the curve T(�) defined by

E(�)+T(�)[r]=Z&1
(n) (` (av)

(n) (\&nr)), (V.41)

for \n+1�r<\n, is Lipschitz continuous since ` (av)
(n) has that property and

because

lim
rZ1

[` (av)
(n) (r)]=Z(n)(`(n&1)(\))=Z(n)(` (av)

(n&1)(\)). (V.42)

The key property of ` (av)
(n) , defined by (V.39) and (V.38), is that, for all

z # D1�2 �U (in)
(n) and \�r<1, we have that

|T(n)[z; r]+E(n)[z]&z|�
1
3

|z&` (av)
(n) (r)|&\9=

\ + 'n&1, (V.43)

as is proved in Lemma V.5 below. Thus, if z is sufficiently far away from
the graph of ` (av)

(n) , then (V.43) yields

|T(n)[z; r]+E(n)[z]&z|�c } (r+\), (V.44)

for some constant c>0, and we obtain the invertibility of H(n)[z]&z by
a norm-convergent Neumann series expansion.

We now come to the precise mathematical discussion of T(�) . Recall
that the condition that yields z as a function of r is expressed in terms of
functions

`(n) : [0, 5�16] � D3�8 , (V.45)

for each n # N0 , by the requirement that |`(n)(r)&r|�1�16 and the equation

`(n)(r)=T(n)[`(n)(r), r], (V.46)

where T(n) is defined in (V.17). To see that Equation (V.46) has a unique
solution for every r # [0, 5�16], we set `(n)(r) :=r+$ and 2T({) :=
T(n)[r+{; r]&r. Then, (V.46) reads

$=2T($). (V.47)
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By Cauchy's estimate and =�1�16, we have that

|�z2T(`)|�\1
2

&
5

16
|`|+

&1

} =�
1
2

, (V.48)

for |`|�1�16, and the existence of $ in (V.47) follows from a fix point
argument. Note that `(n) is uniformly Lipschitz-continuous, since T(n) is.

We cast our investigation in a series of small lemmata.

Lemma V.4. For 0�r�5�16 and =, \�1�16,

|Z(n)(`(n&1)(\r))&`(n)(r)|�\3=
\ + } 'n&1. (V.49)

Proof. Using (V.46), we observe that

Z(n)(`(n&1)(\r))&`(n)(r)

=Z(n)(T(n&1)[`(n&1)(\r), \r])&T(n)[`(n)(r), r]

=\&1T(n&1)[`(n&1)(\r), \r]&\&1E(n&1)[` (n&1)(\r)]

&T(n)[`(n)(r), r]

=[T0, (n)[`(n)(r); r]&T(n)[`(n)(r), r]]&\&1E (n&1)[`(n&1)(\r)]

+\&1[T(n&1)[Z&1
(n) (Z(n)(`(n&1)(\r))), \r]

&T(n&1)[Z&1
(n) (`(n)(r)); \r]], (V.50)

where T0, (n)[z; r] :=\&1T (n&1)[Z&1
(n) (z); \r]. From (IV.97) and (IV.46), we

obtain

|T0, (n)[r; `(n)(r)]&T(n)[r; `(n)(r)]|�'n=, (V.51)

|\&1E(n&1)[`(n&1)(\r)]|�'n&1=\&1. (V.52)

Since `(n&1)(\r) # D1�4 and Z&1
(n) (`(n)(r)) # D1�4 , we may apply Cauchy's

estimate (with contour on �D1�2) and get

|T(n&1)[Z&1
(n) (Z(n)(`(n&1)(\r))), \r]&T(n&1)[Z&1

(n) (`(n)(r)), \r]|

�|Z(n)(`(n&1)(\r))&`(n)(r)| } sup
D1�4

|�zZ&1
(n) (z)| } sup

D1�4

|�z T(n&1)[z; \r]|

�
4\
3

} |Z(n)(`(n&1)(\r))&`(n)(r)| } 4 sup
D1�2

|T(n&1)[z; \r]&\r|

�
16=\

3
} |Z(n)(`(n&1)(\r))&`(n)(r)|. (V.53)
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Now, (V.49) follows from inserting (V.51)�(V.53) into (V.50), taking into
account that =�1�16. K

Next, we pick , # C �
0 (R+

0 ) such that ,$�0, ,#1 on [0, 1�4], and ,#0
on [5�16, �]. We use , to define, for n=0, 1, 2, 3, ...

` (av)
(n) (r) :=,(r) } `(n)(r)+(1&,(r)) } Z(n)(`(n&1)(\r)), (V.54)

where `(&1)(r) :=r and 0�r<1.

Lemma V.5. Let z # D1�2 "U (in)
(n) and \�r<1. Then

|T(n)[z; r]+E(n)[z]&z|�
1
3

|z&` (av)
(n) (r)|&\9=

\ + 'n&1. (V.55)

Proof. We define a function Qr : U in)
(n) � D1�2 , for fixed \�r<1, by

Qr(z) :=\&1T(n&1)[z; \r]&Z(n)(z)

=\&1[T(n&1)[z; \r]+E(n&1)[z]&z]. (V.56)

Then, by Cauchy's estimate and U (in)
(n) �D1�4 ,

|�z Qr(z)+\&1|�
8=
\

�
1

2\
. (V.57)

Next, we observe that

|[T(n)[z; r]+E(n)[z]&z]&Qr(Z&1
(n) [z])|

=|T(n)[z; r]&T0, (n)[z; r]+E(n)[z]|�2='n. (V.58)

We come to our analysis of Qr(Z&1
(n) (` (av)

(n) (r))): Note that Qr(`(n&1)(\r))=
\&1E(n&1)(`(n&1)(r)) and hence, by (V.57), (V.31), and Lemma V.4, we
obtain the bound

|Qr(Z&1
(n) (` (av)

(n) (r)))|

�|Qr(Z&1
(n) (` (av)

(n) (r)))&Qr(`(n&1)(\r))|+=\&1'n&1

�\ 3
2\+ } \4\

3 + } |` (av)
(n) (r)&Z(n)(`(n&1)(\r))|+\ =

\+ 'n&1

�\7=
\ + 'n&1. (V.59)
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Inserting (V.59), (V.58) and using again (V.57) and (V.31), we thus obtain

|T(n)[z; r]+E(n)[z]&z|

�|Qr(Z&1
(n) (z))|&2='n

�|Qr(Z&1
(n) (z))&Qr(Z&1

(n) (` (av)
(n) (r)))|&\9=

\ + 'n&1

�\ 1
2\+ } \2\

3 + } |z&` (av)
(n) (r)|&\9=

\ + 'n&1. K (V.60)

We define the analogue U (out)
(0) ($$) as follows.

U (out)
(n) ($$) :=[z # D1�2"U (in)

(n) | \r:

|z&` (av)
(n) (r)|�$$ |z&E(n&1)[z]|]. (V.61)

Theorem V.6. Assume that 108=\&2'n&1�1. Then H(n)[z]&z is invertible
for all z # U (out)

(n) (108=\&2'n&1).

Proof. We use again the polar decomposition

T(n)[z; r]+E(n)[z]&z=U } |T(n)[z; r]+E(n)[z]&z| (V.62)

to construct the inverse of H(n)[z]&z by a Neumann series:

(H(n)[z]&z)&1=R1�2
0 { :

�

n=0

U*(&R1�2
0 /1W(n) /1R1�2

0 U*)n= , (V.63)

where R0 :=|T(n)[z; r]+E(n)[z]&z|&1. Now, from Theorem V.2 and
Theorem B.2, and using that Cd!�1, we obtain

&(Hf+\)&1�2 /1W (n)/1(Hf+\)&1�2&�
2e2=
\1�2 'n. (V.64)

Thus, to establish convergence of the series in (V.63), it remains to be
shown that

" (Hf+\) /1[Hf]
T(n)[z; Hf]+E(n)[z]&z"= sup

0�r<1 {
r+\

|T(n)[z; r]+E(n)[z]&z|=
<

\1�2

2e2=
'&n. (V.65)
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By the definition of U (out)
(n) ($$) and Lemma V.5, and with $$ :=(108) =\&2'n&1,

we have that

|T(n)[z; r]+E(n)[z]&z|�
$$
3

|z&E(n&1)[z]|&\9=
\ + 'n&1

�
$$
6

|z&E(n&1)[z]|, (V.66)

also using that |z&E(n&1)[z]|�\�2�(6�$)$ } (9=�\) 'n&1. In case that
|z&E(n&1)[z]|� 1

2r, we observe that

|z&E(n&1)[z]|� 1
2 max[r, \]� 1

4 (r+\), (V.67)

and thus

|T(n)[z; r]+E(n)[z]&z|�
$$
24

(r+\). (V.68)

Conversely, if |z&E(n&1)[z]|< 1
2r (but |z&E(n&1)[z]|�\�2), we estimate

|T(n)[z; r]+En[z]&z|

�
1
2 \ |T(n)[z; r]&z|&

1
2

r++
1
2

}
$$
6

}
\
2

�
1
2 \1&

1
16

&
1
2+ r+

$$\
24

�
$$
24

(r+\). (V.69)

Thus, (V.65) follows from \�\+�2�1�16 and

24
$$

<
\1�2

2e2=
'&n. K (V.70)

Using the isospectral property of the Feshbach map, we conclude from
Theorem V.6 that the resolvent set, \(Hg(%)), of the dilated Hamiltonian
contains

U (in)
(0) & \(Hg(%))$ .

�

n=0

Z&1
(n) (U (out)

(n+1)(108=\&2'n)). (V.71)

We now return to the definition of T(�) mentioned in (V.35). For all
r # [0, 1], we set

E(�)+T(�)(r) := :
�

n=0

/[\n+1�r<\n] } Z&1
(n) (` (av)

(n) (\&nr)). (V.72)
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Note that T(�) is uniformly Lipschitz-continuous, since `(n) has this
property because \�1�4 and

lim
rZ\n

T(�)(r)=Z&1
(n) (` (av)

(n) (1))=Z&1
(n) b Z(n)(`(n&1)(\))

=Z&1
(n&1)(` (av)

(n&1)(\))=T(�)(\n). (V.73)

Next, we define a cuspidal domain,

K(�)($) :=[T(�)(r)+` | 0�r<1, |`|�$ } r1+(+�4)], (V.74)

for $>0. We claim that the following inclusion holds true.

Theorem V.7. Let _(Hg) :=C"\(Hg) be the spectrum of the Hamiltonian
Hg=Hg(i�) where %=i�, for some 0<�<?�2. Assume Hypotheses H-1, H-2,
and H-3, with 0�+�2, 41�1, 45�1. Define Cd , \0 , \, !, =, $, and g0 by
(V.4)�(V.10), and assume that 0<g�\(3++)�2g0 . Then

_(Hg(%)) & U (in)
(0) �E(�)+K(�)(78=\&9�2). (V.75)

Proof. First, we remark that the choices (V.8)�(V.20) of \0 , \, and +
ensure that \+�4�3�32 and that $$n :=108=\&2'n&1�108=\&1�2 } \(3++)�2�
1�4. Using the last inequality, we obtain from (V.71) that

_(Hg(%)) & U (in)
(0)

�U (in)
(0) > .

�

n=0

Z&1
(n) (U (out)

(n+1)($$n&1))

=\ .
�

n=0

Z&1
(n) (D1�2"U (in)

(n+1))+>\ .
�

n=0

Z&1
(n) (U (out)

(n+1)($$n+1))+
= .

�

n=1

Z&1
(n&1)(D1�2"(U (in)

(n) _ U (out)
(n) ($$n))), (V.76)

using the fact that U (out)
(n) ($$n)�D1�2"U (in)

(n) and that U (in)
(0) is the disjoint

union of Z&1
(n) (D1�2"U (in)

(n+1)), for n # N0 . By (V.76), it suffices to show that,
for every n # N,

Z&1
(n&1)(D1�2"(U (in)

(n) _ U (out)
(n) ($$n)))�E(�)+E(�)(78=\&9�2), (V.77)

in order to prove (V.75). To this end, we pick z # D1�2"(U (in)
(n) _ U (out)

(n) ($$n)).
There then exists 0�r0<1 such that

|z&` (av)
(n) (r0)|<$$n |z&E(n)[z]|. (V.78)
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Note that |`(av)
(n) (r0)|�(1+$) r0�(9�8) r0 , because |�rT(n)&1|�$. Moreover,

|z&E(n)[z]|�\�2 and |En[z]|�= } 'n, and we obtain from (V.78) and
$$n�1�4 that

r0 �\8
9+ } ( |z&E(n)[z]|&|E(n)[z]|&|z&` (av)

(n) (r0)| )

�\8
9+ } \(1&$$n)

\
2

&='n+
=\8

9+ } \(1&$$n)
\
2

&$$n
'\2

108+
�\16

17+ } _1&\1+
1

54+ $$n&\\
2+>

5\
16

. (V.79)

The importance of (V.79) lies in the definition (V.54) of ` (av)
(n) and ` (av)

(n+1) and
the definition (V.72) of T(�) . To see this, we first consider the case that
\�r0<1. Then

E(�)+T(�)(\nr0)=Z&1
(n) (` (av)

(n) (r0)). (V.80)

In case that (5�16) \<r0<\, we have that \n+2�\nr0<\n+1 and thus

E(�)(\nr0)=Z&1
(n+1)(` (av)

(n+1)(\&1r0))

=Z&1
(n) (`(n)(r0))=Z&1

(n) (` (av)
(n) (r0)), (V.81)

since ,(\&1)=0. Inserting (V.80)�(V.81) into (V.78) and using that '�8\+�2,
we get

|Z&1
(n) (z)&E(�)&T(�)(\nr0)|

=|Z&1
(n) (z)&Z&1

(n) [` (av)
(n) (r0)]|

�&�zZ&1
(n) (z)&(�) } |z&`(av)

(n) (r0)|�\4\
3 +

n

} $$n

�\4\
3 +

n

} \108=
\2 + } 'n&1

�\27
2 +\

16
5 +

1+(+�4)

} = } \&3&(3+�4) } \32
3

\+�4+
n

} (\nr0)1+(+�4)

�_27
2 \16

5 +
3�2

=\&9�2& } (\nr0)1+(+�4)<78=\&9�2 } (\nr0)1+(+�4). (V.82)

Thus, Z&1
(n) (z) # K(�)(78=\&9�2). K
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V.3. Existence of Resonances

Our last topic is the proof of the existence of a resonance at E(�) . Our
approach here is more direct and constructive than the one in [2]. To this
end, we introduce a sequence of complex numbers, [&(n)]n # N0

, by setting
&(0) :=E(�) and

&(n) :=Z(n&1)(E(�))

= lim
m � �

[Z&1
(n) b Z&1

(n+1) b } } } b Z&1
(m)(0)] # U (in)

(n) , (V.83)

compare to (V.28). Note that, according to (V.29), we have that &(n) # S(n) ,
and thus

|&(n) |�\4\
3 +

n

. (V.84)

Furthermore, we observe that

&(n+1)=Z(n)(' (n)). (V.85)

Using [&(n)], we define a sequence of operators, [S(n)]n # N0
, by

S(0) :=P0&P� 0(P� 0HgP� 0&E(�))
&1 P� 0WgP0 , (V.86)

and for n # N,

S(n) :=/\&/� \(/� \H (n&1)[&(n)] /� \&&(n))
&1 /� \ W(n&1)[&(n)] /\ . (V.87)

The crucial properties of [S(n)] are collected in the following lemma.

Lemma V.8. Assume the same hypotheses as in Theorem V.2. Then,
for n # N,

&S(0) &�
17
16

, &S(0)&P0 &�
1

16
, (V.88)

&S(n) &�1+\220=
\1�2 + 'n&1, &S(n)&/\ &�\220=

\1�2 + 'n&1, (V.89)

and,

ei�

\0

1\0
(Hg&E(�)) S(0) 1*\0

=H(0)[&(1)]&&(1) , (V.90)

1
\

1\(H(n+1)[&(n)]&&(n)) S(n) 1*\=H(n)[& (n+1)]&&(n+1) , (V.91)

where 1\0
and 1\ are the unitary dilatations defined in (I.9).
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Proof. To derive (V.88), we expand S(0)&P0 in a Neumann series, just
as in Theorem III.3. We obtain

&S(0)&P0&=" :
�

L=1
{\ P� 0

H0&E(�) + (&Wg)=
L

P0"
�&R1�2

0 P� 0& \ :
�

L=1

&R1�2
0 P� 0Wg P� 0R1�2

0 &L&1+ } &R1�2
0 P� 0WgP0 &

�\ 2
\0 +

1�2

{ :
�

L=0
\ 6g41

\1�2
0 sin(��2)+

L

=\ 6g41

sin(��2)1�2+
�

- 2 } (4�3) } 6 } g41

sin(��2)1�2 } \1�2
0

�
1

16
. (V.92)

using (III.19)�(III.24), E(�) # U (in)
(0) , and (V.11). To prove (V.89), we also

expand S(n)&/\ in a Neumann series and obtain

&S(n)&/\ &=" :
�

L=1
{\ /� \

T(n&1)[Hf ; &(n)]+E(n&1)[& (n)]&&(n)+
_(&W(n&1)[&(n)])=

L

/\"
� :

�

L=1
{" (Hf+\) /� \[Hf]

T(n&1)[Hf ; &(n)]+En&1[&(n)]&&(n) "
L+1�2

_&(Hf+\)&1�2 /� \W(n&1)[&(n)] /� \ } (Hf+\)&1�2&L=
�- 6 :

�

L=1
\12e2 } ='n&1

\1�2 +
L

�\220=
\1�2 + } 'n&1, (V.93)

using Theorem B.2, Cd!�1, (IV.8), and Theorem V.2.
To prove (V.90), we observe that

P� 0(Hg&E(�)) S (0) =0, (V.94)

ei�

\0

1\0
P0(Hg&E(�)) S(0)1*\0

=
e i

\0

1\0
FP0

(Hg&E(�)) 1*\0

=H(0)[Z(0)(E(�))]&Z(0)(E(�))

=H(0)[&(1)]&&(1) . (V.95)

The proof of (V.91) is similar. K
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The virtue of the operators S(n) is explicit in (V.91): If (H(n)[& (n+1)]&
&(n+1)) �=0 then also (H(n&1)[&(n)]&&(n))(S(n)1*\1�# �)=0. We already
Used this property in our description of the Feshbach map in Chapter II.
So using (V.90) and (V.91), we construct a sequence of vectors, [9(n)]n # N0

,
which converges to the desired eigenvector of Hg , by setting

9(n) :=S(0)1*0S(1)1*\ 1�# S(2) } } } S (n) 1*\ 1�# 0, (V.96)

where 0 is the Fock vacuum.

Lemma V.9. For all n # N,

&9(n) &�2, (V.97)

&9(n+1)&9(n) &�
250=
\1�2 'n, (V.98)

&(Hg&E(�)) 9(n) &�16\0\1�2 } 'n. (V.99)

Proof. To prove (V.97), we observe that because \+�2�1�16, (V.89),
and because of the unitarity of 1\ ,

&9(n)&�\17
16+ } `

n

j=1
\1+\220=

\1�2 + ' j&1+
�\17

16+ } exp _\220=
\1�2 + } :

n

j=1

' j&1&
�\17

16+ } exp _440=
\1�2 & . (V.100)

Similarly, we observe that

&9(n+1)&9(n)&�\17
16

}
220=
\1�2 + 'n } `

n

j=1
\1+\220=

\1�2 + ' j&1+
�\17 } 220 } =

16 } \1�2 + } exp _440=
\1�2 & } 'n, (V.101)

using in addition that

9(n+1)&9(n)=S010*S(1) } } } S(n)1*\1�# (S (n+1)&/\) 1*\ 1�# 0. (V.102)

Then, (V.97) and (V.98) follow from =\&1�2�1�12800.
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It remains to prove (V.99). From (V.90) and (V.91), we obtain

(Hg&E(�)) 9(n)

=(Hg&E(�)) S(0) 1*(0) S(1) 1*\ 1�# 0

=e&i�\010*(H(0)(&(1))&&(1)) S(1) 1*\ 1�# S(2) 1*\ 1�# } } } S(n) 1*\ 1�# 0

=e&i�\0\10*1*\ 1�# (H(1)(&(2))&&(2)) S(2) 1*\1�# } } } S(n) 1*\1�# 0

= } } } =e&i�\0\n10*(1*\1�#)n (H(n)(&(n+1))&& (n+1)) 0. (V.103)

Since

(H(n)(&(n+1))&&(n+1)) 0

=[W(n)(&(n+1))&(&(n+1)&E(n)(&(n+1)))] 0

=W(n)(&(n+1)) 0&\&1&(n+1) 0, (V.104)

we have that

&(H(n)(&(n+1))&&(n+1)) 0&�2e2= } 'n+\0 } \4\
3 +

n+1

�2(e2=+\0 \) } 'n, (V.105)

and hence (V.99) follows. K

Theorem V.10. Assume the same hypotheses as in Theorem V.2. Then

9(�) := lim
n � �

9 (n) exists and is contained in D(Hg); (V.106)

|(9(�) | 0) |� 2
3 &9(�) &>0, (V.107)

Hg 9(�)=E(�) 9(�) . (V.108)

Proof. By (V.98), [9(n)]n # N converges and by (V.99),

&Hg9(n)&�2 |E(�) |+16, (V.109)

implying that 9(n) # D(Hg), for every n # N. Since Hg is closed, this implies
that 9(�) # D(Hg), s well. This proves (V.106). Eqn. (V.108) then follows
directly from (V.99). Finally,
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&0&9(�)&�&(S (0)&P0) 10*0&+ :
�

n=0

&9(n+1)&9 (n)&

�
1

16
+

500=
\1�2 , (V.110)

and hence (V.107) is proven. K

APPENDIX A. PULL-THROUGH FORMULA AND
WICK'S THEOREM

In this chapter we systematize an algebraic technique that allows us to
convert an arbitrary product of creation operators, annihilation operators,
and functions of Hf into a sum of Wick-ordered products of such operators.
Here, Wick-order means that creation operators stand to the left of the
functions of Hf , and the annihilation operators are to their right. A close
look at FP0

(Hg&z) in part (b) of Theorem III.3 reveals that we have to
deal with these arbitrary (unordered) products, if we seek for more precise
information about its spectral properties.

We turn to the Pull-Through formula, recalling from Chapter III the
definition of P0 , where we used /[Hf<\0], the spectral projection of Hf

onto the interval [0, \0), and /[r<\]#/\[r] denoted the characteristic
function of the interval [0, \). In general, f [Hf] is defined on D(Hf) by
the functional calculus for any measurable function f: Rd � C with f [r]=O(r).
More explicitly, f [Hf] acts in the n-particle sector of Fb[L2(Rd)] as a multi-
plication operator, multiplying

f [Hf] a-(k1) } } } a-(kn)0= f [|(k1)+ } } } +|(kn)] a-(k1) } } } a-(kn) 0.

(A.1)

Using, for example, this representation of f [Hf] as a multiplication
operator, it is easy to check the following

Lemma A.1 (Pull-Through Formula). Let f: Rd � C be measurable,
obeying f [r]=O(r). Then f [Hf] is defined on D(Hf) and, for all k # Rd,

f [Hf] a-(k)=a-(k) f [Hf+|(k)], (A.2)

a(k) f [Hf]= f [Hf+|(k)] a(k), (A.3)

in the sense of operator-valued distributions. Moreover, extending f to the whole
real line by setting f#0 on R&

0 , (A.2) and (A.3) extend to a-(k) f [Hf]=
f [Hf&|(k)] a-(k) and f [Hf] a(k)=a(k) f [Hf&|(k)].
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Next, we present Wick's theorem. To this end, we introduce some notation.
Pick any (_1 , _2 , ..., _N) # [+1, &1]N. For any subset Q/N :=[1, 2, ..., N],
N # N, we denote Q\ :=[ j # Q | _j=\1]. Then, writing a+(k) :=a-(k)
and a&(k) :=a(k), we define the Wick-ordered product v

v } v
v by

v
v `

j # Q

a_j (k j)
v
v := `

j # Q+

a_j (kj) `
j # Q&

a_j (k j). (A.4)

Furthermore, we denote

(A) :=(0 | A0) , (A.5)

for any operator A which has the vacuum 0 in its domain. Wick's theorem
is a simple formula that converts arbitrary products of annihilation-and
creation operators into a sum of Wick-ordered products.

Lemma A.2 (Wick's Theorem). Denote N :=[1, 2, ..., N] and >j # A #
>N

j=1/[ j # A] for any A�N. Then, for any (_1 , _2 , ..., _N) # [+1, &1]N

`
j # N

a_j (k j)= :
Q�N

� `
j # N"Q

a_j (k j)� v
v `

j # Q

a_j (kj)
v
v . (A.6)

Proof. We use an induction in the number of factors, N, observing that
(A.6) is trivial for N=1. Assume that (A.6) holds for all products with up
to N factors, for some N�1 and consider the left side of (A.6) with N+1
factors. The case _N+1=&1 is also simple because the last factor annihilates
the vacuum a_N+1(kN+1)0=0. Thus, denoting a_j

j :=a_j (kj), the induction
hypothesis yields

`
j # N+1

a_j
j = :

Q�N
� `

j # N"Q

a_j
j � v

v `
j # Q

a_j
j

v
v a&

N+1

= :
Q�N

� `
j # N"Q

a_j
j � v

v `
j # Q

a_j
j a&

N+1
v
v

= :
Q�N+1 � `

j # N+1"Q

a_j
j � v

v `
j # Q

a_j
j

v
v . (A.7)

To handle the case _N+1=+1, we use the following convenient represen-
tation of the canonical commutation relation

[a_i
i , a_j

j ]=(a_i
i a_j

j ), (A.8)
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which yields

� `
j # N"Q

a_j
j a+

N+1�= :
k # N"Q

(a_k
k a+

N+1) � `
j # N"(Q _ [k])

a_j
j �. (A.9)

Using the induction hypothesis and again (A.8), we obtain

`
j # N+1

a_j
j =a+

N+1 `
j # N

a_j
j + :

N

k=1

(a_k
k a_N+1

N+1) `
j # N"[k]

a_j
j

= :
Q�N

� `
j # N"Q

a_j
j � v

v `
j # Q

a_j
j a+

N+1
v
v

+ :
N

k=1

:
Q�N"[k]

(a_k
k a_N+1

N+1
) � `

j # N"(Q _ [k])

a_j
j � v

v `
j # Q

a_j
j

v
v .

(A.10)

Now, we observe that for any function F(k, Q)

:
N

k=1

:
Q�N"[k]

F(k, Q)= :
N

k=1

:
Q�N

/[k � Q] F(k, Q)

= :
Q�N

:
k # N"Q

F(k, Q). (A.11)

Inserting (A.11) and (A.9) into the last line of (A.10), we arrive at the
claim:

`
j # N+1

a_j
j = :

Q�N
� `

j # N"Q

a_j
j � v

v `
j # Q

a_j
j a+

N+1
v
v

+ :
Q�N

� `
j # N"Q

a_j
j a+

N+1� v
v `

j # Q

a_j
j

v
v

= :
Q�N+1

� `
j # N+1"Q

a_j
j � v

v `
j # Q

a_j
j

v
v . K (A.12)

Now we combine the Pull-Through formula (Lemma A.1) and Wick's
theorem (Lemma A.2) to derive the following identity.

Lemma A.3. Denote N :=[1, 2, ..., N] and >j # A #>N
j=1 /[ j # A] for

any A�N. Suppose that _j # [+1, &1] and fj[r]=O(r+1) is a measurable
function on R+, for any j=1, 2, ..., N. Then
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`
N

j=1

[a_j (kj) f j[Hf]]

= :
Q�N

`
j # Q+

a+(k j) � `
N

j=1
{[a_j (kj)]/[ j � Q]

_ fj _Hf+r+ :
j

i=1,
i # Q&

|(ki)+ :
N

i= j+1,
i # Q+

|(ki)&=�} r=Hf

`
j # Q&

a&(kj),

(A.13)

where [a_j (kj)]/[ j � Q]=a_j (K& j) for j � Q and [a_j (kj)]/[ j � Q]=1 for j # Q.

Proof. The proof of (A.13) is a lengthy computation using the Pull-
Through formula and Wick's Theorem. For this computation we need to
extend fj (r) :=0 for any r<0 and any j=1, 2, ..., N, so that we may use the
Pull-Through formula backwards, as is indicated in the second part of
Lemma A.1. Again, we denote a_j

j :=a_j (k j) and, furthermore, |j :=|(kj).
Then, we get

`
N

j=1

[a_j
j fj[Hf]]= `

N

j=1

a_j
j `

N

j=1

fj _Hf+ :
N

i= j+1

_i| i&
= :

Q�N
� `

j # N"Q

a_j
j � v

v `
j # Q

a_j
j

v
v `

N

j=1

fj _Hf+ :
N

i= j+1

_ i|i &
= :

Q�N

`
j # Q+

a+
j � `

j # N"Q

a_j
j �

_ `
N

j=1

fj _Hf+ :
N

i= j+1

_i| i+ :
i # Q&

|i & `
j # Q&

a&
j . (A.14)

Next, we use ( f [Hf])= f [0] which implies f [Hf]=( f [Hf+r]) | r=Hf

to move the fj 's into the vacuum expectation value:

� `
j # N"Q

a_j
j � `

N

j=1

f j _Hf+ :
N

i= j+1

_i|i+ :
i # Q&

|i&
=� `

j # N"Q

a_j
j `

N

j=1

f j_r+Hf+ :
N

i= j+1

_i |i+ :
i # Q&

|i&�} r=Hf

=�`
N

j=1
{[a_j

j ]/[ j � Q] } fj _r+Hf+ :
N

i= j+1
i # Q

_ i|i+ :
i # Q&

|i&=�} r=Hf

.

(A.15)
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We finish the proof with the remark that

:
i # Q&

|i+ :
N

i= j+1
i # Q

_i| i = :
i # Q&

|i& :
N

i= j+1
i # Q&

|i+ :
N

i= j+1
i # Q+

|i

= :
j

i=1
i # Q&

|i+ :
N

i= j+1
i # Q+

| i . K (A.16)

We are now ready to formulate the main consequence of the Pull-Through
formula and Wick's Theorem, after having introduced some more notation:
Besides the family fj (r), j # N of measurable functions, we assume below to be
given a family of measurable functions

wM, N : R+_(Rd)M_(Rd)N � C (A.17)

for all M, N # N0 . We assume that wM, N[r; k(M); k� (N)]=O(r), a.e. R(M+N)d,
and hence can be defined via the functional calculus as an operator on D(Hf)
for a.e. k(M), k� (N) by the replacement r � Hf . Here, we abbreviated

k(M) :=(k1 , k2 , ..., kM) # (Rd)M, dk(M) := :
M

j=1

d dk j . (A.18)

Another assumption on wM, N is their symmetry in k(M) and k� (N). More
precisely, we demand that

wM, N[r; k(M); k� (N)]=[wM, N[r; k(M); k� (N)]] symm
M, N

:=
1

M! N !
:
?, ?~

wM, N[r; k (M)
? ; k� (N)

?~ ], (A.19)

where the sum runs over all permutations ? # SM and ?~ # SN , and

k(M)
? :=(k?(1) , k?(2) , ..., k?(M)). (A.20)

We generalize this notations as follows. Given

k(Ml )=(kl, 1 , ..., kl, Ml
) # (Rd)Ml, (A.21)

k� (Nl )
l =(k� l, 1 , ..., k� l, Nl

) # (Rd)Nl, (A.22)
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for all l # [1, 2, ..., L], we write

k(M) :=(k (Ml )
l )L

l=1=(k (M1)
1

, ..., k (ML)
L )

=(k1, 1 , ..., k1, M , k2, 1 , ..., k2, M2 , kL, 1 , ..., kL, Ml), (A.23)

k� (N) :=(k� (Nl )
l )L

l=1=(k� (N1)
1

, ..., k (NL)
L )

=(k� 1, 1 , ..., k� 1, N1
, k� 2, 1 , ..., k� 2, N2

, k� L, 1 , ..., k� L, NL
), (A.24)

where we have set

M := :
L

l=1

Ml and N := :
L

l=1

N l , (A.25)

provided no confusion arises. Note that, for a function f (k (M1)
1

, ..., k (ML)
1

,
k� (N1)

1
, ..., k� (NL)

L ), the symmetrization symbol [ } ]symm
M, N indicates the summation

over all permutations of the M pairs [(l, j) | 1�l�L, 1� j�Ml] and all
permutations of the N pairs [(l, j) | 1�l�L, 1� j�Nl], consistent with
our notation (A.23) and (A.24). Furthermore, we henceforth write

a-(k(M)) := `
M

j=1

a-(k j), a(k(M)) := `
M

j=1

a(kj), (A.26)

|(k(M)) := :
M

j=1

|(kj). (A.27)

Next, assume that m+ p+n+q�1 with m, n, p, q nonnegative integers.
For a given wm+ p, n+q described above, we define

W m, n
p, q [Hf ; k (m); k� (n)]

:=| dx ( p) dx~ (q) a-(x( p)) wm+ p, n+q[Hf ; k(m), x( p); k� (n), x~ (q)] a(x~ (q)).

(A.28)

In particular, we abbreviate Wm, n :=W 0, 0
m, n[Hf], i.e.,

Wm, n :=| dk(m) dk� (n) a-(k(m)) wm, n[Hf ; k (m); k� (n)] a(k� (n)). (A.29)

Now, we are ready to formulate our next result.

Theorem A.4. Assume that wM, N are functions as in (A.17), obeying
(A.19), for all M+N�1 and that f j[r]=O(r) are measurable functions
on R+, for any j # N. Suppose that Ml+Nl�1, for all l=1, 2, ..., L. Then
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WM1 , N1
f1[Hf] WM2 , N2

f2[Hf] } } } fL&1[Hf] WML , NL

= :
M1

m1=0

:
N1

n1=0

} } } :
ML

mL=0

:
NL

nL=0
| `

L

L=1
{dk (Ml&ml )

l dk� (Nl&nl)
l \Ml

ml +\
Nl

nl +=
_a-(k(m))[DL[Hf ; [W ml , nl

Ml&ml , Nl&nl
; k (ml)

l ; k� (nl )
l ]L

l=1 ; [ fl]L&1
l=1 ]]symm

m, n

_a(k� (n)), (A.30)

where

DL[r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1 ; [ fl]L&1

l=1 ]

:=(W m1 , n1
p1 , q1

[Hf+r+*1 ; k (m1)
1

; k� (n1)
1

] f1[Hf+r++1] } } }

} } } _ fL&1[Hf+r++L&1] W mL , nL
pL , qL

[Hf+r+*L ; k (mL)
L ; k� (nL)

L ]) ,

(A.31)

and

*l := :
l&1

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j ), ((A.32)

+l :=*l+|(k� (nl)
l ) and, furthermore, m=�L

l=1 ml , n=�L
l=1 nl .

Before giving the proof of Theorem A.4, we remark that its assertion is
valid without change if we suppose that fj and wM, N have their values in
the bounded operators on Hel , rather than C. This is necessary in one
application.

Proof of Theorem A.4. Inserting WM, N into (A.29), we observe that

WM1 , N1
f1[Hf] WM2 , N2

f2[Hf] } } } fL&1[Hf] WML , NL

=| `
L

l=1

[dk (Ml)
l dk� (Nl)

l ] a-(k (M1)
1

) wM1 , N1
[Hf ; k (M1)

1
; k� (N1)

1
]

_a(k� (N1)
1

) f1[Hf] } } } fL&1[Hf]

_a-(k (ML)
L ) wML , NL

[Hf ; k (ML)
L ; k� (NL)

L ] a(k� (NL)
L ). (A.33)

We apply Lemma A.3 to the product in (A.33) which contains K=
�L

l=1 (Ml+Nl) creation- and annihilation operators. This requires a
summation over the subsets Q�K=[1, 2, ..., K], distinguishing those
creation- and annihilation operators that are Wick-ordered from those that
go into the vacuum expectation value. For our present purpose, it is more
convenient to represent K and Q by
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K= .
+=M, N

.
L

l=1

K+, l , K+, l :=[(+, l, j) | j=1, ..., + l], (A.34)

Q= .
+=M, N

.
L

l=1

Q+, l , Q+, l :=Q & K+, l . (A.35)

Using this representation, the summation over Q�K is replaced by the
multiple summation over Q+, l �K+, l :

:
Q�K

� :
QM, 1�KM, 1

:
QN, 1�KN, 1

} } } :
QM, L�KM, L

:
QN, L�KN, L

. (A.36)

Each subset QM, l �KM, l specifies those m l :=|QM, l |�M l variables
[kl, j | j # QM, l] among k (Ml )

l =(k l, 1 , ..., k l, Ml
) that are Wick-ordered outside

the vacuum expectation value, and those Ml&ml=|KM, l"QM, l | variables
[kl, j | j # KM, l"QM, l] that appear in the vacuum expectation value in (A.13).
For example, one term contributing to the sum over Q�K is given by

Q0
M, l=[1, 2, ..., ml],

(A.37)
KM, l"Q0

M, l=[ml+1, ml+2, ..., Ml],

Q0
N, l=[1, 2, ..., nl],

(A.38)
KN, l"Q0

N, l=[nl+1, nl+2, ..., N l].

We write the contribution this term generates according to (A.13) and
(A.33) in full detail:

| `
L

l=1
{`

ml

j=1

dk l, j `
nl

j=1

dk� l, j= `
L

l=1

`
ml

j=1

a-(k l, j)

_�\| `
M1

j=m1+1

dk1, j `
N1

j=n1+1

dk� 1, j `
M1

j=m1+1

a-(k1, j)

_wM1 , N1
[Hf+r+*1 ; k (M1)

1
; k� (N1)

1
] `

N1

j=n1+1

a(k� 1, j)+
_f1 _Hf+r+*1+ :

n1

j=1

|(k� 1, j)& } } }

_fL&1 _Hf+r+*L&1+ :
nL&1

j=1

|(k� L&1, j)&
_\| `

ML

j=mL+1

dkL, j `
NL

j=nL+1

dk� L, j `
ML

j=mL+1

a-(kL, j)

_wML , NL
[Hf+r+*L ; k (mL)

L ; k� (NL)
L ] `

NL

j=nL+1

a(k� L, j)+� `
L

l=1

`
nl

j=1

a(k� l, j),

(A.39)
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using

*l= :
l&1

l� =1

:
n l�

j=1

|(k� l� , j)+ :
L

l� =l+1

:
ml�

j=1

|(kl� , j). (A.40)

In Eq. (A.39) we rename the integration variables for each l=1, 2, ..., L as
follows:

k (Ml )
l [ (k (ml )

l , xMl&ml
l ),

k� (Nl)
l [ (k� (nl )

l , x~ Nl&nl
l ), =:

� {
kl, 1 [ kl, 1 , ..., kl, ml

[ kl, ml
,

k l, ml+1 [ xl, 1 , ..., k l, Ml
[ xl, Ml&ml

,
k� l, 1 [ k� l, 1 , ..., k� l, nl

[ k� l, nl
,

k� l, nl+1 [ x~ l, 1 , ..., k� l, Nl
[ x~ l, Nl&nl

.

(A.41)

Observe that the definitions for *l given in (A.32) and (A.40) agree, upon
this change of variables, and the term (A.39), which now appears as

A[Ml , ml ; Nl , nl]

=| `
L

l=1

[dk (ml )
l dk� (nl )

l ] `
L

l=1

a-(k (ml)
l )

_(W m1 , n1
M1&m1 , N1&n1

[Hf+r+*1 ; k (m1)
1 ; k� (n1)

1 ]

_f1[Hf+r+*1+|(k� (n1)
1

)] } } }

_ } } } fL&1[Hf+r+*L&1+|(k� (nL&1)
L&1

)]

_W mL , nL
ML&mL , NL&nL

[Hf+r+*L ; k (mL)
L ; k� (nL)

L ]) | r=Hf
`
L

l=1

a(k� (nl)
l ),

(A.42)

resembles the desired result. Now, we go back to (A.39) and observe
that any subset Q�K with |QM, l |=|Q0

M, l |=ml and |QN, l |=|Q0
N, l |=n l

generates the same contribution to the sum as (A.39) does, because we
assumed in (A.19) the functions wMl , Nl

[r; k (Ml )
l : k� (Nl )

l ] to be invariant under
internal permutations of k (Ml )

l =(kl, 1 , ..., kl, Ml
) and k� (Nl)

l =(k� l, 1 , ..., k� l, Nl
).

For any given 1�ml�Ml , there are Ml !(Ml&ml !)&1 (ml !)&1 subsets
QM, l /KM, l such that |QM, l |=ml . Thus, we obtain

WM1 , N1
f1[Hf] WM2 , N2

f2[Hf] } } } fL&1[Hf] WML , NL

= :
M1

m1=0

:
N1

n1=0

} } } :
ML

mL=0

:
NL

nL=0

`
L

l=1
{\Ml

ml +\
Nl

nl += A[Ml , m l ; Nl , nl],

(A.43)
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where A[Ml , ml : Nl , nl] is given in (A.42). We have verified (A.30) except
for one small detail: The symmetrization [ } ] symm

m, n of A[M l , m l ; Nl , nl].
But this again just a change of variables in A[Ml , ml ; Nl , nl]. Namely,
we set m :=�L

l=1 ml and n :=�L
l=1 nl , k(m) :=(k (m1)

1
, ..., k (mL)

L ) and k� (n) :=
(k� (n1)

1
, ..., k� (nL)

L ), perform a permutation of variables (k1 , ..., km) [ (k?(1) , ...,
k?(m)), (k� 1 , ..., k� n) [ (k� ?~ (1) , ..., k� ?~ (n)), and sum up the single contributions
from every pair of permutations (?, ?~ ). This way we get m! n ! copies of the
same integral, thanks to >m

j=1 a-(kj)=>m
j=1a-(k?( j)), >n

j=1 a-(k� j)=
>n

j=1 a-(k� ?~ ( j)). K

We come to the algebraically most involved expression, the recurrence
relation for DL .

Theorem A.5. Assume that wM, N are functions defined in (A.17),
obeying (A.19), for all M+N�1 and that fj[r]=O(r) are measurable
functions on R+, for any j # N. Suppose that ml+ pl+nl+ql�1, for all
l=1, 2, ..., L. As in Theorem A.4, we use (A.28) to define

DL[r; [W ml , nl
pl , ql

; k (ml)
l ; k� (nl )

l ]L
l=1 ; [ fl]L&1

l=1 ]

=(W m1 , n1
p1 , q1

[Hf+r+*1 ; k (m1)
1

; k� (n1)
1

] f1[Hf+r++1] } } }

} } } _ fL&1[Hf+r++L&1] W mL , nL
pL , qL

[Hf+r+*L ; k (mL)
L ; k� (nl

L ]).

(A.44)

where +l :=*l+|(k� (nl )
l ) and

*l := :
l&1

j=1

|(k� (nj)
j )+ :

L

j=l+1

|(k (mj)
j ). (A.45)

Then, for any 1�l�L.

DL[r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1 ; [ f l]L&1

l=1 ]

= :
qj

vj=0,
j=1, ..., l&1

:
pj

uj=0,
j=l+1, ..., L

| `
l&1

j=1 {dy~ (vj)
j \q j

v j += `
L

j=l+1 {dy (uj)
j \pj

uj+=
_Dl&1[r+|�l (k(m)); [W mj , nj+vj

pj , qj&vj
; k (mj)

j ; k� (nj)
j , y~ (vj)

j ] l&1
j=1 ; [ f i] l&2

j=1]

_fl&1[r++l&1+|�l&1( y~ (V ))] } fl[r++l+|�l+1( y(U))]

_� `
l&1

j=1

a( y~ (vj)
j ) W ml , nl

pl , ql
[r+Hf+*l ; k (ml )

l ; k� (nl )
l ] `

l&1

j=1

a-( y (uj)
j )�

_DL&1[r+|�l (k� (n)); [W mj+uj , nj
pj&uj , qj

; k (mj)
j , y (uj)

j ; k� (nj)
j ]L

j=l+1 ; [ f j]L&1
j=l+1],

(A.46)
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and, for any 1�l�L&1

DL[r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1 ; [ fl]L&1

l=1 ]

= :
qj

vj=0,
j=1, ..., l

:
pj

uj=0,
j=l+1, ..., L

| `
l

j=1
{dy~ (vj)

j \qj

vj += `
L

j=l+1
{dy (uj)

j \pj

uj+=
_Dl[r+|�l (k (m)); [W mj , nj+vj

pj , qj&vj
; k (mj)

j ; k� (nj)
j , y~ (vj)

j ] l
j=1 ; [ fj] l&1

j=1]

_fl[r++l+|�l+1( y(U))] �`
l

j=1

a( y~ (vj)
j ) `

L

j=l+1

a-( y (uj)
j )�

_DL&1[r+|�l (k� (n)); [W mj+uj , nj
pj&uj , qj

; k (mj)
j , y (uj)

j ; k� (nj)
j ]L

j=l+1 ;

_[ fj]L&1
j=l+1], (A.47)

where we wrote a :=�L
l=1 al for a=M, N, m, n, V, U and

|�l (x(a)) := :
l

j=1

|(x (aj)
j )= :

l

j=1

:
aj

i=1

|(xj, i), (A.48)

|�l (x(a)) := :
L

j=l

|(x (aj)
j )= :

L

j=l

:
aj

i=1

|(xj, i). (A.49)

Proof. First, we rewrite (A.44) in two different ways as

DL[r; [W ml , nl
pl , ql

; k (ml)
l ; k� (nl )

l ]L
l=1 ; [ fl]L&1

l=1 ]

=(8l&1 | fl&1[Hf+r++ l&1]

_W ml , nl
pl , ql

[Hf+r+*l ; k (ml )
l ; k� (nl )

l ] fl[Hf+r++l] 9l+1)

=(8l | fl[Hf+r++ l] 9l+1), (A.50)

with

8l :=Wml , nl
pl , ql

[Hf+r+*l ; k (ml)
l ; k� (nl )

l ]* f *l&1[Hf+r++ l&1] } } }

} } } _ f1*[Hf+r++1] W m1 , n1
p1 , q1

[Hf+r+*1 ; k (m1)
1

; k� (n1)
1

]* 0, (A.51)

and

9 l :=W ml , nl
pl , ql

[Hf+r+* l ; k (ml)
l ; k� (nl )

l ] fl[Hf+r++l] } } }

} } } _ fL&1[Hf+r++L&1] W mL , nL
pL , qL

[Hf+r+*L ; k (ml )
L ; k� (nL)

L ] 0.

(A.52)
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Next, according to Theorem A.4, we can expand

W ml , nl
pl , ql

[r+* l ; k (ml )
l ; k� (nl)

l ] f [r++ l] } } }

} } } _fL&1[r++L&1] W mL , nL
pL , qL

[r+*L ; k (mL)
L ; k� (nL)

L ]

= :
pj

uj=0
j=l, ..., L

:
qj

vj=0
j=l, ..., L

| `
L

j=l {dy (uj)
j dy~ (vj)

j \p j

uj+\
qj

vj+= `
L

j=l

a-( y (uj)
j )

_(W ml+ul , nl+vl
pl&ul , ql&vl

[Hf+r+*� l ; k (ml)
l , y (ul)

l ; k� (nl)
l , y~ (vl )

l ]

_fl[Hf+r++~ l] } } } fL&1[Hf+r++~ L&1]

_W mL+uL , nL+vL
pL&uL , qL&vL

[Hf+r+*� L ; k (mL)
L , y (uL)

L ; k� (nL)
L , y~ (vL)

L ])

_`
L

j=l

a( y~ (vj)
j ), (A.53)

where +~ l :=*� l+|(k� (nl )
l )+|( y~ (vl )

l ) and

*� j := :
j&1

i=1

|(k� (ni)
i )+ :

j&1

i=l

|( y~ (vi)
i )+ :

L

i= j+1

|(k (mi)
i )+ :

L

i= j+1

|( y (ui)
i )

= :
j&1

i=l

[|(k� (ni)
i )+|( y~ (vi)

i )]+ :
L

i= j+1

[|(k (mi)
i )+|( y (ui)

i )]+|�l&1(k� (n)).

(A.54)

The second identity in (A.54) enables us to rewrite the operator in (A.53)
as

:

pj

uj=0
j=l, ..., L

:

qj

vj=0
j=l, ..., L

| `
L

j=l {dy (uj)
j dy~ (vj)

j \p j

u j+\
q j

v j += `
L

j=l

a-( y (uj)
j )

_DL&l+1[r+|�l&1(k� (n)); [W mj+uj , nj+vj
pj , qj

; k (mj)
j , y (uj)

j ; k� (nj)
j , y~ (vj)

j ]L
j=l ; [ f l]L

l=1]

_`
L

j=l

a( y~ (vj)
j ). (A.55)

When applying this operator on the right of (A.55) to the Fock vacuum 0,
only the terms with v1= } } } =vL=0 are nonvanishing and we obtain

9l= :
pj

uj=0
j=l, ..., L

`
L

j=l \
pj

uj+ | dy(U) a-( y(U)) 0

_DL&l+1[r+|�l&1(k� (n)); [W mj+uj , nj
pj&uj , qj

; k (mj)
j , y(mj)

j ; k� (nj)
j ]L

j=l ; [ f l]L
l=1].

(A.56)
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A similar representation holds for 8l . Inserting this into (A.50), we arrive
at (A.46) and (A.47). K

APPENDIX B. BOUNDS ON THE INTERACTION

We recall from Equation (III.64) that the original Hamiltonian
Hg&z, defined on Hel �F and shifted by z # U (in)

(0) , is isospectral to
H(0)[Z(0)(z)]&Z(0)(z), defined on Hred=Ran /[Hf<1]=/[Hf<1] F.
Here, Z(0)(z)=ei�\&1

0 z is a bijection from U (in)
(0) � D1�2=[z: |z|�1�2]. In

fact, we claimed that z0 [ H(0)[z0] is an analytic family of bounded
operators on Hred . In the present appendix, we justify this claim. More
precisely, we demonstrate how the bounds of the form (III.7) on the inter-
action coefficients w (0)

M, N turn into bounds for W (0)
M, N , for M+N�1.

Being slightly more general, we fix M+N�1 and consider a measurable
function

wM, N : [0, 1)_RMd_RNd � C. (B.1)

Under suitable assumptions on wM, N we show below that

WM, N :=| dk(M) dk� (N) a-(k(M)) wM, N[Hf ; k (M); k� (N)] a(k� (N)) (B.2)

defines a bounded operator on Hred , and we give the following bound,
denoting /1 #/1[Hf] :=/[Hf<1].

Theorem B.1. Let M+N�1, and assume that

|wM, N[Hf ; k(M); k� (N)]|�= `
M

j=1

|(k j)
: `

N

j=1

|(k� j)
:, (B.3)

where := 1
2 (1++)& 1

2 (d�#&1) and +>0. Then, for any 0<\, \~ �1,

&(Hf+\)&1�2 /1[Hf] WM, N/1[Hf](Hf+\~ )&1�2&

�
=\&$M, 0 �2\~ &$N, 0 �2(Cd 1[1++])(M+N)�2

1[(1++) M+1]1�2 1[(1++) M+1]1�2 , (B.4)

where 1[x] is the Gamma function (see (C.1)) for all x>0.

Before proceeding to the proof of Theorem B.1, we remark that
1[(1++) M+1]�1[M+1]=M! and the denominator in (B.4) can weigh
out factorials that are generated from Wick contractions as in (III.92).
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Proof. We pick ,=/1[Hf] ,, �=/1[Hf] � # Hred and consider

A2(,, �) :=|(, | /1[Hf] WM, N/1[Hf] �) |2

= } | dk(M) dk� (N) (a(k(M)) , | wM, N[Hf ; k(M); k� (N)] a(k� (N)) �) } .
(B.5)

Remembering a(k(M))#>M
j=1 a(kj) and |(k(M))#�M

j=1 |(k j), the pull-
through formula (A.3) implies that

a(k(M)) /1[Hf]=/[Hf+|(k(M))<1] a(k(M)) /1[Hf]

=/[|(k(M))<1] a(k(M)) /1[Hf], (B.6)

which, together with Schwarz' inequality, yields

A2(,, �)�B(M)(,) } B(N)(�) | /1[|(k(M))]

_/1[|(k� (N))] [ sup
0<r<1

|wM, N[r; k(M); k� (N)]|] `
M

j=1

dkj

|(kj)
`
N

j=1

dk� j

|~ (kj)
,

(B.7)

where B(0)(,) :=&,&2 and

B(M)(,) :=| &a(k(M)) /1,&2 `
M

j=1

|(kj) dk j . (B.8)

Another application of the pull-through formula then gives

B(M)(,)=| � `
M&1

j=1

a(k j) /1 , } Hf `
M&1

j=1

a(kj) /1,� `
M

j=1

|(kj) dkj

�| � `
M&1

j=1

a(k j) /1 , } [Hf+|(k(M&1))] `
M&1

j=1

a(kj) /1,�
_ `

M

j=1

|(k j) dkj

=| &a(k(M&1)) /1H 1�2
f ,&2 `

M&1

j=1

|(kj) dkj

=B(M&1)(H 1�2
f /1,)

�B(M&2)(Hf/1,)� } } } �B(0)(H M�2
f /[Hf] ,)

=&H M�2
f /1[Hf] ,&2. (B.9)
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Additionally note that

&/1[Hf] H M�2
f ,&�&/1[Hf] H 1�2

f ,&�&/1[Hf](Hf+\)1�2 ,&, (B.10)

for M�1 and hence

B(M)(,)�&/1[Hf](Hf+\)min[M, 1]�2 ,&2. (B.11)

Inserting the assumption on wM, N , we estimate the integral on the right
side of (B.7) by =2 } IM } In , where

IM :=| /1[|(k(M))] `
M

j=1

[|(kj)
1:&1 dkj]

=C M
d \| /[|1+ } } } +|M] `

M

j=1

|+
j d|j+

=
C M

d 1[1++]M

1[(1++) M+1]
. (B.12)

Here, 1[x] denotes the Gamma function for x>0 and the last equality is
derived in Lemma C.2. Putting together (B.7), (B.11), and (B.12), we obtain

&(Hf+\)&min[M, 1]�2 /1[Hf] WM, N/1[Hf](Hf+\~ )&min[N, 1]�2&

�
=(Cd1[1++]) (M+N)�2

1[(1++) M+1]1�2 1[(1++) M+1]1�2 . (B.13)

Now, the claim follows from

" (Hf+\)min[M, 1]�2

(Hf+\)1�2 /1[Hf]"=\&$M, 0 �2. K (B.14)

Next, we introduce

W := :
M+N�1

WM, N , (B.15)

and assert

Theorem B.2. Assume that

|wM, N[Hf ; k(M); k� (0)]|�=!M+N `
M

j=1

|(kj)
: `

N

j=1

|(k� j)
:, (B.16)
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where := 1
2 (1++)= 1

2 (d�#&1) and +�0. Then, for any 0<\�1,

&(Hf+\)&1�2 /1W/1(Hf+\)&1�2&

�
2= } min[1, Cd!]

\1�2 } exp[2max[1, Cd!]2]. (B.17)

Proof. We use +�0 and Lemma C.2 backwards to estimate

1[1++]M

1[(1++) M+1]
�

1[1]M

1[M+1]
=(M !)&1 (B.18)

Thus, Theorem B.1 yields

&(Hf+\)&1�2 /1[Hf] W/1[Hf](Hf+\)&1�2&

�
=

\1�2 } :
M+N�1

(M ! N !)&1�2 (C 1�2
d !)M+N

�
= min[1, C 1�2

d !]
\1�2 } :

M+N�1

(M ! N !)&1�2 (max[1, C 1�2
d !])M+N.

(B.19)

By Schwarz' inequality, we have

:
�

M=0

xM

(M !)1�2�- 2 \ :
�

M=0

(2x2)M

M! +
1�2

=- 2 } exp[x2], (B.20)

and, substituting for x :=max[1, Cd!], we arrive at the assertion. K

APPENDIX C. INTEGRALS OVER SIMPLICES OF
LARGE DIMENSION

In the preceding paragraph we expressed integrals over M-dimensional
simplices in terms of the Gamma function, given by

1[x] :=|
�

0
e&ttx&1 dt, (C.1)

for x>0. The purpose of this paragraph is to state a few elementary or
well-known facts about the Gamma function. For example, it is well-
known that

x } 1[x] :=1[x+1] and 1[1]=1, (C.2)
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which implies 1[n+1]=n! for n # N0 , in particular. The following estimate
is, perhaps, less well-known but quite useful for us.

Lemma C.1. For any x, y�0,

1[x+1] } 1[ y+1]�1[x+ y+1]. (C.3)

Proof. First, we introduce the Beta function (see 8.384 in [4]), given by

B[x, y] :=|
1

0
tx&1(1&t) y&1 dt=

1[x] 1[ y]
1[x+ y]

, (C.4)

for x, y>0. Thus,

1[x+1] 1[ y+1]
1[x+ y+1]

=(x+ y+1) B[x+1, y+1]

=(x+ y+1) |
1

0
tx(1&t) y dt. (C.5)

Now, we define fr(s) :=�1
0 tr&s(1&t)s dt, noticing that �1

0 tx(1&t) y dt=
fx+ y( y). One easily checks that f "r(s)>0 on (0, r) and hence fr(s)�max[ fr(0),
fr(r)]=(r+1)&1. In particular, (x+ y+1) } fx+ y( y)�1. K

The importance of the Gamma function in our context comes from the
inverse factorials it yields for integrals over simplices of large dimension.

Lemma C.2. For any M # N0 , '>0 and \�0,

| /[|1+ } } } +|M<\] `
M

j=1

d|j

|1&'
j

=
\'M1[']M

1['M+1]
(C.6)

Proof. By scaling, the left side of (C.6) equals XM } \'M where X0 :=1
and

XM :=| /[|1+ } } } +|M<1] `
M

j=1

d|j

|1&'
j

, (C.7)

for M�1. Also for M�1, we observe the following recursion relation

XM =|
1

0 {| /[|1+ } } } +|M&1<1&|M] `
M&1

j=1

d|j

|1&'
j = d|M

|1&'
M

=XM&1 } |
1

0
(1&|)'(M&1) |'&1 d|

=XM&1 } B['(M&1)+1, ']. (C.8)
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Using (C.4), we thus obtain

XM = `
M

j=1

B['( j&1)+1, ']

= `
M

j=1

1['( j&1)+1] 1[']
1['j+1]

=
1[']M

1['M+1]
. K (C.9)

The following lemma shows that even in the case of a general integral,
the restriction to [|(k1)+ } } } +|(kM)<\] can be turned into a bound
with inverse factorials.

Lemma C.3. Let '>0 and assume F: RdM � R+ to be such that

A :=| F(k1 , ..., kM) `
M

j=1

dkj

|(kj)
'<�. (C.10)

Then, with |(k(M))=|(k1)+ } } } +|(kM),

| /[|(k (M))<\] F(k1 , ..., kM) `
M

j=1

dkj�
\'MA
M'M . (C.11)

Proof. We use an induction in M�1. For M=1, (C.11) is trivial. Assume
that (C.11) holds for M&1�1 and define f: Rd � R+ by

f (k) :=| F(k1 , ..., kM&1 , k) `
M&1

j=1

dkj

|(kj)
' . (C.12)

Observe that � f (k) |(k)&' dk=A. By induction and by the fundamental
theorem of calculus, we have

| /[|(k (M))<\] F(k1 , ..., kM) `
M

j=1

dkj

=| /[|(k1)+ } } } +|(kM&1)<\&|(kM)] F(k1 , ..., kM) `
M

j=1

dkj

�(M&1)'(M&1) | (\&|(k))'(M&1) f (k) dk

=(M&1)'(M&1) |
\

0
(\&|)'(M&1) |' \ d

d| {||(k)<|

f (k) dk
|(k)' =+ d|.

(C.13)
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Now, we integrate by parts. We set g(|) :=(\&|)'(M&1) |; such that
g(\)= g(0)=0 and

&
dg
d|

=;(\&|)'(M&1)&1 |'&1(M|&\)�0 (C.14)

if and only if M&1\�|�\. Thus, the right side of (C.13) equals

(M&1)'(M&1) |
\

0 \&
dg
d|+\||(k)<|

f (k) dk
|(k)' + d|

�(M&1)'(M&1) A } |
\

\�M \&
dg
d|+ d|

=(M&1)'(M&1) A } g(\�M)=
\'MA
M'M . K (C.15)
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