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We give a full and self contained account of the basic results in N-body scattering theory

which emerged over the last ten years: The existence and completeness of scattering states
for potentials decreasing like r−µ, µ >

√
3 − 1. Our approach is a synthesis of earlier

work and of new ideas. Global conditions on the potentials are imposed only to define the
dynamics. Asymptotic completeness is derived from the fact that the mean square diameter
of the system diverges like t2 as t→ ±∞ for any orbit ψt which is separated in energy from
thresholds and eigenvalues (a generalized version of Mourre’s theorem involving only the
tails of the potentials at large distances). We introduce new propagation observables which
considerably simplify the phase–space analysis. As a topic of general interest we describe a
method of commutator expansions.

0. Introduction

N -body quantum systems are described by the Schrödinger equation i∂tψt = Hψt,

with a Hamiltonian like

H =
N∑
k=1

p2
k

2mk
+

1···N∑
i<k

Vik(xi − xk) . (0.1)

After fixing the center of mass H acts on the Hilbert space H = L2(X), where

X =
{
x = (x1, . . . , xN )|x ∈ R3;

∑
mkxk = 0

}
. (0.2)

In general H possesses eigenvectors (stationary states), which span the subspace

HB of bound states where the orbits ψt are recurrent. In the continuous spectral

subspace HC = H⊥B the long-time behaviour of ψt depends critically on the decay

rate of the potentials, expressed by

Vik(xi − xk) = O(|xi − xk|−µ) as |xi − xk| → ∞ .

If µ is not too small it is expected that along any orbit ψt in HC the system

eventually breaks up into a collection of almost freely moving, bound subsystems

(fragments) as t→ ±∞. This is the conjecture of asymptotic completeness, which

was stated precisely in the early days of scattering theory [29, 22]. The challenge to
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prove this conjecture then became a driving force in the mathematical theory of

N -body systems. New methods of spectral analysis and new tools to control the

space-time propagation of quantum states gradually emerged over the last 30 years,

often with results not directly related to scattering theory but important in their

own right. As a culmination of these efforts Sigal and Soffer [44] in 1987 gave the

first general proof of asymptotic completeness for short-range potentials (µ > 1).

Further insight and important simplifications came from the subsequent work of

Graf [17] and Yafaev [53]. An approach to the qualitatively different long-range

problem (µ ≤ 1) was initiated by Sigal and Soffer in their study of the Coulomb case

[46, 47]. With this starting point the long-range problem was solved by Dereziński

[9] for µ >
√

3− 1 and by Sigal and Soffer [48] for the Coulomb case (µ = 1).

We briefly summarize the long history of the subject. A first milestone was Fad-

deev’s solution of the 3-body problem using stationary methods (Faddeev equations

[16]), later extended to allN [24, 42]. This approach is used today for computational

work on small systems, but its scope, especially for N > 3, is still limited by spec-

tral assumptions on the subsystems (no eigenvalues embedded in the continuum,

no resonances at thresholds). The Faddeev equations and their generalizations

are designed to obtain the scattering amplitudes (S-matrix elements in p-space).

Asymptotic completeness (unitarity of the S-matrix) emerges as a by-product at

the end, thus offering little intuitive insight into the basic reasons for its validity.

The space-time point of view was primarily developed in quantum field

theory under the influence of Haag [20, 21] and Ruelle [40]. It regained atten-

tion in non-relativistic quantum mechanics after Ruelle’s ergodic characterization

of bound states vs. continuum states [41] (RAGE Theorem, see e.g. [5] or [26]).

Asymptotic completeness for N -body systems in the limit of weak forces was ob-

tained by time-dependent perturbation methods ([25, 30]). Positive commutators

([38, 32]) and related (global) propagation estimates first entered in Lavine’s proof

of asymptotic completeness forN -body systems with purely repulsive forces [33, 34].

The commutator in question is familiar from the virial theorem:

i[H,A] =
∑
k

p2
k

mk
−
∑
i<k

(xi − xk) · ∇Vik(xi − xk) , (0.3)

where

A =
∑
k

1

2
(xk · pk + pk · xk) . (0.4)

For repulsive forces the expression (0.3) is termwise positive. We also note that A

is the generator of the unitary group of dilations

e−iAλ : ψ(x)→ e−λ/2 dim(X)ψ(e−λx)

acting on L2(X), and that (0.3) is the infinitesimal form of the transformation law

eiAλHe−iAλ = H(λ) := e−2λ
∑
k

p2
k

2mk
+
∑
i<k

Vik(e
λ(xi − xk)) . (0.5)
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Moreover, A itself is a commutator, i.e.

A = i

[
H,

1

2
x2

]
, where x2 =

∑
k

mkx
2
k ,

so that

∂2
t

〈
1

2
x2

〉
t

= ∂t〈i[H,A]〉t > 0 . (0.6)

Here 〈Φ〉t = (ψt,Φψt) denotes the expectation value of an observable Φ in the state

ψt. (0.6) indicates that 〈x2〉t diverges like t2 as t→ ±∞, which holds in fact for a

dense set of initial states ψ. A classical example is the case of Coulomb forces: then

i[H,A] = 2H−V ≥ H, where V is the total potential. Therefore, if 〈H〉0 > 0, then

〈x2〉t ≥ 〈H〉0 · t2 +O(t)→∞ (t→ ±∞) .

At the same time and seemingly unrelated to the work of Lavine, Balslev and

Combes [3] determined the spectral properties of the operator family H(λ) given by

(0.5) for complex λ in the case of dilation-analytic potentials, thereby revealing the

general nature of the essential spectrum of H (thresholds, embedded eigenvalues,

absence of singular continuous spectrum) and laying the foundation of a theory

of resonances [49]. Further insight came from the geometric (configuration space)

methods of spectral analysis and scattering theory developed in the later 1970’s,

e.g. in [12, 50, 7, 43]). The most striking event of that time was Enss’ proof that

asymptotic completeness for N = 2 follows directly from Ruelle’s Theorem com-

bined with the propagation properties of free wave packets [13]. Although the hope

for a quick solution of the general case was premature, Enss’ proof (and its later

extensions to N = 3 in [14, 15]) marks the turning point to phase space analysis in

N -body scattering theory.

Less noticed at first, and influenced by the work of Lavine and Balslev–Combes,

Mourre [35] introduced another key idea: For N = 3 he proved the conditional

positivity of the commutator (0.3) for forces of arbitrary sign, in the sense that

E∆(H)i[H,A]E∆(H) ≥ θE∆(H) (0.7)

(Mourre’s inequality). Here E∆(H) is the spectral projection of H for an energy

shell ∆ = (E − ε, E + ε). If E is in the continuous spectrum of H, but not an

eigenvalue nor a threshold, then (0.7) holds for sufficiently small ε > 0 with a

strictly positive θ. Mourre’s inequality again leads to

〈x2〉t ≥ θt2 +O(t)→∞ (t→ ±∞) (0.8)

for a dense set of initial states in H∆ = Ran(E∆(H)). In fact (0.7) is a special

case of a more general inequality given by Mourre, which holds for any E ∈ R, and

which exhibits the structure of the essential spectrum of H in much the same way

as dilation analyticity (of which it is an infinitesimal version). Mourre’s inequality

was soon extended to general N by Perry, Sigal and Simon [37], who used it to
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derive the local decay estimate∫ +∞

−∞
〈(1 + x2)−α〉t ≤ C(∆, α)‖ψ‖2 (0.9)

for α > 1/2 and all ψ in H∆. For an exposition of these results we refer to [5]

and [26].

Propagation estimates like (0.8) and (0.9) only say that the mean square diam-

eter 〈x2〉t of the system diverges like t2 as t→ ±∞. To demonstrate the break-up

of the system into fragments (various scenarios of such break-ups are called the

scattering channels), it is necessary to show that the probability for it to cross

the phase-space boundaries of the channels is relatively small. More precisely, one

proves estimates of the form∫ +∞

−∞
‖f(x, p)ψt‖2dt ≤ C(∆, f)‖ψ‖2

for all ψ inH∆, where f is C∞0 in p = (p1, . . . , pN), smooth and homogeneous degree

− 1
2 for |x| ≥ 1 in x and is supported outside the classical (phase-space) trajectories

of quantum freely moving fragments for all possible break-ups. The latter is done

by constructing observables which, unlike A, are H-bounded and have commutators

with H positive in parts of the phase-space region one wants to control, but — and

this is the price one has to pay — in general, negative elsewhere. The positive

contributions lead to the desired propagation estimates, once the negative ones are

controlled. A bootstrap type procedure allows to close the argument. This approach

leaves room for different constructions, which are in fact the essence of every general

proof of asymptotic completeness since the first proof by Sigal and Soffer, and this

is where we claim to make a significant contribution.

Our paper is organized as follows. After the preliminaries on N -body systems

and scattering theory (Secs. 1 and 2) we essentially follow Yafaev [53] in constructing

a function g(x) on X which grows like |x|, but which incorporates the full channel

structure of the system (given by the asymptotics of the total potential V (x) as

x→∞). Our propagation observables are derived from a modified and time-scaled

Yafaev function

gt(x) = tδg(t−δx) ; 0 < δ < 1 , (0.10)

or, in the Heisenberg picture, from the operator g(t) = eiHtgte
−iHt. Its first deriva-

tive γ(t) = ∂tg(t) is bounded relative to H and essentially increasing: ∂tγ(t) ≥ 0

up to terms with an integrable time decay (Sec. 3). This establishes the asymptotic

observable

γ+ = s-lim
t→∞

γ(t) = s-lim
t→∞

g(t)

t
≥ 0 , (0.11)

which commutes with H (Sec. 4). Due to the special geometry of g(x), it follows

that any orbit ψt in the range of γ+ is an outgoing scattering state:

ψt →
∑
a

e−iHatφa (t→ +∞) , (0.12)
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where a labels the channels and where Ha is the channel Hamiltonian describing

independent fragments (Sec. 5). To prove asymptotic completeness it then remains

to show that the range of γ+ is dense in the continuous spectral subspace HC of H.

This is where the Mourre inequality comes in. Since g(x) grows like |x|, (0.8) and

(0.11) lead to

θE∆(H) ≤ lim inf
t→∞

E∆(H)
g2(t)

t2
E∆(H) = E∆(H)(γ+)2E∆(H) .

This shows that γ+ reduces to a strictly positive operator H∆ 7→ H∆. By Mourre’s

Theorem the subspaces of H∆ span HC , so that Ran(γ+) is indeed dense in HC .

This thumbnail sketch covers the short range case. The long range problem is

qualitatively different. For reasons explained at the end of Sec. 2, we want to deal

from the outset with weakly time-dependent Hamiltonians of the form Ht = H +

Wt(x), where Wt(x) decays like (t+|x|)−µ. The relation (0.11) extends easily to this

more general setting, and (0.12) has a natural analogue on the range of γ+ (Secs. 6

and 7). However, γ+ no longer commutes with H, and there is no Mourre estimate

for the dynamics generated by Ht since strict energy conservation is lost. The core

of the long range problem is to link the states ψ with γ+ψ = 0 to the bound states of

H (Sec. 8). The difficulty here is that the spectral support of ψt with respect to H

cannot be separated from thresholds (outside of which the Mourre inequality holds)

by initial conditions. This means that the minimal distance between the fragments

cannot grow proportional to t. An inductive procedure reduces the problem of

controlling such orbits to showing that if the diameter of the system grows as tδ

with δ < 1 then the system is in a bound state. This was first done in [47] for N ≤ 4

and in [9] for general N (see also [48]). The solution of this problem also allows an

effortless proof of the existence of the long range wave operators (Sec. 9). Finally,

the extra propagation estimates needed in Secs. 8 and 9 are derived in Appendix C

by a general method of commutator expansions, which is of independent interest

(Appendix B). These estimates replace the Mourre inequality, or more precisely its

consequence (0.8), in the case of time-dependent Hamiltonians.

1. N-Body Systems

From the standard example (0.1) we extract the three basic constituents which in

this paper characterize a N -body system: The configuration space X, the lattice

L of channels and the intercluster potentials Ia. The resulting more general class

of systems is the same as the one introduced by Agmon [1], but described from a

somewhat different point of view.

Configuration Space. X is an Euclidean space with a scalar product denoted by

x · y. In the example (0.2):

x · y =
∑
k

mk(xk · yk)R3 . (1.1)

We note that 1
2 (ẋ · ẋ) = 1

2 ẋ
2 is the classical kinetic energy and p = ẋ the momentum

conjugate to x. The Hamiltonian is of the form
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H =
1

2
p2 + V (x) . (1.2)

In quantum mechanics this is an operator on L2(X), where p = −i∇ and p2 = −∆

have their usual form in cartesian coordinates (not the particle coordinates) of X.

Channels. In X there is a distinguished finite lattice L of subspaces a, b, . . . (chan-

nels), which is closed under intersections and which contains {0} and X. In the

example (0.1) the channels correspond to all partitions of (1 . . . N) into subsets

(clusters), e.g. if N = 4:

partition : (12)(34)↔ channel : a = {x ∈ X|x1 = x2;x3 = x4} . (1.3)

In general we define the partial ordering of L by

a < b↔ a ⊂ b , a 6= b . (1.4)

For each a ∈ L there is an orthogonal splitting

X = a⊕ a⊥ , (1.5)

and we write the corresponding decomposition of a vector x ∈ X as

x = xa + xa ; xa ∈ a , xa ∈ a⊥ . (1.6)

The example (1.3) shows that xa describes the CM– (center of mass) positions of

the clusters and xa the internal configuration of each cluster in its own CM-frame

(Fig. 1).

1

1

CM(1234)

CM(34)CM(12)

4

(x   )

a 21a(x   )  = (x   )

a

2

3

Fig. 1.

Viewed as a map of configurations in R3, the projection x → xa sends each

particle into the CM of its cluster, while x→ xa translates each cluster as a whole

so that its CM is relocated at the origin. We note that

1

2
p2 =

1

2
(pa)

2 +
1

2
(pa)2 (1.7)

expresses the familiar decomposition of the kinetic energy into CM-parts and inter-

nal parts with respect to the clusters in the channel a.
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c

a

d   (x) = |   |   = 0a ax

b

a

b

Fig. 2.

Intercluster Distance. In the example (1.3) the spatial separation of the clusters

in a given configuration x can be described by their distance as subsets of R3, i.e. by

da(x) = min
i∈(12); k∈(34)

|xi − xk| . (1.8)

However, it is more convenient to express the separation in terms of the geometry

of X. Some reflection shows that

da(x) = 0⇔ x ∈ b , b ∩ a < a . (1.9)

Figure 2 shows the unit sphere in X, intersected by two channels a, b with a ∩ b =

c < a. This motivates our general definition of the intercluster distance:

|x|a := min
b∩a<a

|xb| ; a > {0} . (1.10)

In the case (1.3) one finds

|x|a = min
i∈(12); k∈(34)

(
mimk

mi +mk

)1/2

|xi − xk| ,

which serves as well as (1.8). We note that in general, for a > {0},

a∗ := a

∖⋃
c<a

c = { x ∈ a | |x|a > 0 } . (1.11)

Intercluster Potentials. The basic fact about N -body systems is that for far

separated clusters the potential depends only on the internal configuration of the

clusters. To formulate this, let a > {0} and y ∈ a∗. Then the translations

x→ x+ sy (s ∈ R)

do not affect xa, while |x + sy|a → ∞ as s → ∞. We therefore require that the

limits

V a(xa) := lim
s→∞

V (x+ sy) (1.12)
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exist and depend only on xa. More precisely,

V (x) = V a(xa) + Ia(x) ; |Ia(x)| ≤ f(|x|a)→ 0 as |x|a →∞ . (1.13)

Our understanding is that the function Ia(x) — called the intercluster potential —

is only defined for |x|a > R, where R is some arbitrary large constant. (For config-

urations where clusters are not separated the splitting of the potential into V a+ Ia

is artificial and should play no role in the analysis). So, if we later impose similar

conditions on certain derivatives of Ia(x), this implies only that these derivatives

exist for |x|a > R. Also, if Ia(x) (or a derivative of Ia(x)) appears as an operator

acting on some state ψ ∈ L2(X), this state must be supported in |x|a > R else the

expression is not defined. On the other hand the potentials V a(xa) are defined by

(1.12) for all xa ∈ a⊥. To complete the definition of V a and Ia we set

I{0}(x) = 0 ; V {0}(x) = V (x) ∀x ,

and since V X is just a constant we normalize V (x) by setting

V X = 0 : IX(x) = V (x) for |x|X > R .

In the example (1.3) we have

V a = V12 + V34 (∀xa) ;

Ia = V13 + V14 + V23 + V24 (|x|a > R) ;

and in general, corresponding to L2(X) = L2(a)⊗ L2(a⊥):

H = Ha + Ia (|x|a > R) ;

Ha =
1

2
(pa)

2 ⊗ 1 + 1⊗Ha on L2(X) ;

Ha =
1

2
(pa)2 + V a on L2(a⊥) .

(1.14)

Ha describes the dynamics of a system of non-interacting clusters and conserves pa,

Ha describes the internal dynamics of these clusters.

Conditions on the potential. First we need some global properties of V to make

H (and in fact all the Hamiltonians (1.14)) self-adjoint and bounded from below.

Further, it is essential that the kinetic energy is bounded by the total energy in

form sense:

〈p2〉ψ ≤ const.〈H + c〉ψ , (1.15)

where c is some constant to make H + c ≥ 1. To minimize domain considerations

we make the working assumption that V is a Kato-potential: For any α > 0 there

exists β <∞ such that

‖V ψ‖ ≤ α‖p2ψ‖+ β‖ψ‖ ∀ψ ∈ C∞0 (X) . (1.16)

Then H is self-adjoint on D(p2) and satisfies (1.15) [31, 39, Vol. II]. We will not

reiterate this assumption in the following. The reader who is interested in N -body
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systems with more general (even strongly singular) potentials should consult [19].

Since our topic is scattering theory, we concentrate on the fall-off conditions for the

intercluster potentials. These conditions are of the form

∂kxIa(x) = O(|x|−µ−|k|a ) (|x|a →∞) , (1.17)

in the sense of (1.13), where k a multi-index. We will state the relevant values of µ

and |k| for each step.

Induction Principle. To summarize, we have characterized N -body systems by

three constituents:

− a configuration space X

− a lattice L of channels (1.18)

− a potential V (x) satisfying (1.16), (1.13), (1.17) .

In this sense each Hamiltonian Ha in (1.14) also describes a N -body system: its

configuration space is a⊥, its channels are the subspaces b ∩ a⊥, b ≥ a, and its

potential V a(xa) is an offspring of V (x) given by (1.12). It is an exercise to check

that V a inherits all the properties we have imposed on V [26]. To derive some

proposition P from (1.18) we can therefore use induction on the lattice L as follows.

First, P is verified in the trivial case a = X: HX = 0 on L2({0}) = C. Then P is

proved for a = {0}: H{0} = H, under the hypothesis that P holds for any Ha with

a > {0}. An example will be our proof of asymptotic completeness.

2. Scattering States and Asymptotic Completeness

Short range systems. (µ > 1) Outgoing scattering states ψ are characterized by

the asymptotic condition

ψt = e−iHtψ −→
‖ ‖

∑
a∈L

e−iHatϕa (t→ +∞) ; (2.1)

ϕa ∈ Ha := L2(a)⊗HB(Ha) , (2.2)

where HB(Ha) is the subspace of L2(a⊥) spanned by the eigenvectors of Ha. Each

term in the sum (2.1) represents a free motion of bound clusters in the channel a.

For convenience we have included the bound state channel a = {0}: if ψ ∈ HB(H)

then (2.1) holds trivially with ϕ{0} = ψ, ϕa = 0 for a > {0}. The existence of a

unique scattering state ψ for any given {ϕa} is one of the earliest results in N -body

scattering theory [22]: if Ia(x) = O(|x|−µa ), µ > 1, then the wave operators

Ω+
a = s− lim

t→+∞
eiHte−iHat (2.3)

exist on Ha, so that (2.1) holds for

ψ =
∑
a

Ω+
a ϕa . (2.4)
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The wave operators are isometric from Ha to H. Moreover, their ranges H+
a =

Ran(Ω+
a ) satisfy

H+
a ⊥ H+

b (a 6= b) , (2.5)

expressing the fact that

lim
t→+∞

(e−iHatϕa, e
−iHbtϕb) = 0 (a 6= b) . (2.6)

Therefore (2.4) is an orthogonal sum:

‖ψ‖2 =
∑
a

‖Ω+
a ϕa‖2 =

∑
a

‖ϕa‖2 , (2.7)

and the outgoing scattering states form a closed subspace

H+ =
⊕
a

H+
a ⊂ H . (2.8)

The proofs of (2.3) and (2.6) involve only the propagation properties of free wave

packets describing the center of mass motion (see e.g. [39, Vol. III]). Asymptotic

completeness is the statement that

H+ = H , (2.9)

which says that any orbit ψt of the system has the asymptotic form (2.1) as t→ +∞,

and therefore (by time reversal) also for t→ −∞. The first main result we want to

prove is

Theorem 2.1. (Asymptotic completeness of short range systems) (2.9) holds if

for some µ > 1

Ia(x) = O(|x|−µa ) as |x|a →∞ . (2.10)

Remarks. This is the result first obtained by Sigal and Soffer [44] for a somewhat

smaller class of potentials, and then successively by Graf [17], Tamura [52] and

Yafaev [53]. Proofs under the sole condition (2.10) and allowing singular potentials

were given by Iftimovici [27], Boutet de Monvel, Georgescu and Soffer [4], and

Griesemer [19]. See also [11].

Outline of the proof. An orbit ψt is called asymptotically clustering if

ψt −→
‖ ‖

∑
a

e−iHatϕa (t→ +∞) (2.11)

for some ϕa ∈ H, i.e. without the condition (2.2). Again this is trivially true for

ψ ∈ HB(H). In Sec. 5 we will prove asymptotic clustering for a dense set of orbits

ψt. Then we invoke the induction hypothesis that asymptotic completeness holds

for the systems described by Ha for all a > {0}, which is true for a = X. This is

equivalent to saying that, for any ϕa ∈ H,

e−iHatϕa −→
‖ ‖

∑
b≥a

e−iHbtϕab (t→∞) ; ϕab ∈ L2(b)⊗HB(Hb) . (2.12)

Inserting (2.12) into (2.11) gives
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ψt −→
‖ ‖

∑
b

e−iHbt
∑
a≤b

ϕab (t→∞) , (2.13)

i.e. ψ ∈ H+. Since this holds for a dense set of ψ’s and since H+ is closed it follows

that H+ = H.

Long-range systems. (µ ≤ 1) For µ not too small the appropriate asymptotic

condition generalizing (2.1) is of the form

e−iHtψ −→
‖ ‖

∑
a∈L

e−iHat−iαa,t(pa)ϕa (t→∞) , (2.14)

with ϕa ∈ L2(a)⊗HB(Ha) as before. In other words: only the free center-of-mass

propagator of the fragments in channel a is modified from

e−
i
2p

2
at to e−

i
2p

2
at−iαa,t(pa) , (2.15)

which still conserves the momentum pa. Here αa,t(pa) is an adiabatic phase arising

from the fact that (in a classical picture) the fragments are located at

xa = pat(1 +O(t−µ)) (t→∞)

so that

Ia(x) = Ia(pat) +O(t−2µ) (2.16)

provided that ∇Ia(x) = O(|x|−µ−1
a ) as |x|a → ∞. For 2µ > 1 the error term in

(2.16) decays integrably in time, while the leading term is of order t−µ and therefore

not integrable if µ ≤ 1. According to this classical picture the Ansatz

αa,t(pa) =

∫ t

ds Ia(pas) (2.17)

should work for µ > 1
2 . The reason why we have not fully defined αa,t(pa) is

twofold. First, it is clear that the modified propagator (2.15) is insensitive to a

change of αa,t(·) on a null set of a. This allows us to restrict pa to the set a∗ (1.11),

where Ia(pas) indeed decays like s−µ. Secondly, αa,t(pa) is arbitrary within gauge

transformations of the kind

αa,t(pa)→ αa,t(pa) + ft(pa) (2.18)

if limt→∞ ft(pa) = f∞(pa) exists, since in (2.14) the phase f∞(pa) can be absorbed

in ϕa. This is why the integrable error in (2.16) has no effect and why (2.14)

is equivalent to (2.1) if µ > 1. A complete definition of αa,t(pa) modulo gauge

transformations is therefore

αa,t(pa) =

∫ t

R|pa|−1
a

ds Ia(pas) (pa ∈ a∗) , (2.19)

if for |x|a > R

|Ia(x)| ≤ const.|x|−µa ; |∇Ia(x)| ≤ const.|x|−µ−1
a . (2.20)
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For a = {0} we have pa = 0 and we set α{0},t = 0. An important example is a

system of charged particles (the Coulomb case). Then for pa ∈ a∗

Ia(pat) = t−1
∑
α<β

eαeβ

∣∣∣∣ pαmα
− pβ

mβ

∣∣∣∣−1

, (2.21)

where the sum runs over all pairs of clusters in the channel a with (total) charges

eα, masses mα and momenta pα ∈ R3. A corresponding phase αa,t(pa) is simply

obtained by changing the factor t−1 to log(t). (This phase differs from (2.19) by

a gauge transformation). The formulas (2.1)–(2.9) can now be transcribed to the

long-range case simply by replacing

Ha → Ha + αa,t(pa) . (2.22)

The proof of the existence of Ω+
a is considerably more difficult. In fact the first proofs

for general N without ad hoc assumptions on the decrease of bound state wave

functions at infinity appeared as by-products of proofs of asymptotic completeness

([9, 54]). For the same reason we defer the proof to Sec. 9. The second main result

we prove is

Theorem 2.2. (Asymptotic completeness of long range systems) (2.9) holds if for

some µ >
√

3− 1 and 0 ≤ |k| ≤ 2

∂kxIa(x) = O(|x|−µ−|k|a ) as |x|a →∞ . (2.23)

Remark. This is the result first obtained by Dereziński [9] under somewhat

stronger conditions on the potentials. The borderline µ =
√

3− 1 was identified by

Enss for N = 3 [15] and is further discussed in [8]. Another proof is due to Zielinski

[54]. See also [11].

The proof of Theorem 2.2 will be given in Secs. 6–8. At this point we only

remark that the simple induction scheme given above in the short-range case does

not work in the long-range case. Proceeding inductively, we will encounter time-

dependent Hamiltonians similar to (2.22), acting on fibers of constant pa ∈ a∗.

This suggests an inductive proof for more general Hamiltonians of the form Ht =

H + Wt(x) (Theorem 6.2). The special case of Theorem 2.2 is then obtained by

setting Wt(x) ≡ 0 after performing the induction.

3. Yafaev Functions and the Basic Propagation Estimate

All our propagation observables are descendants of a time-scaled multiplication

operator

gt(x) = tδg(t−δx) ; 0 < δ < 1 , (3.1)

defined for t > 0, where g(x) is a positive smooth function on X with the same

growth as |x|:
0 < c1|x| ≤ g(x) ≤ c2|x| (|x| ≥ 1) . (3.2)
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Therefore the Mourre estimate (0.8) is equivalent to

lim inf
t→∞

〈
g2
t

t2

〉
t

≥ θ , (3.3)

for some θ > 0 and for the same orbits ψt. Unlike |x|, however, g(x) will be carefully

adapted to the lattice of channels. In this construction we essentially follow Yafaev

[53], who was motivated by a similar construction of Graf [17]. To explain the

requirements we formally compute the Heisenberg derivatives

γt : = Dtgt := i[H, gt] + ∂tgt

=
1

2
(∇gt · p+ p · ∇gt) + ∂tgt ; (3.4)

Dt(γt − 2∂tgt) = pg′′t p− i[γt, V ]− 1

4
∆2gt − ∂2

t gt . (3.5)

Here g′′t (x) is the Hessian of gt(x) and (in cartesian coordinates)

pg′′t p =
∑
ik

pi
∂2gt

∂xi∂xk
pk . (3.6)

We will call g a Yafaev function if it satisfies the conditions (Y.1) and (Y.2) given

below.

Condition (Y.1). g is a smooth, strictly positive convex function on X, constant

for |x| < R−, and homogeneous of degree 1 for |x| > R+ (0 < R− < R+ arbitrary).

x

g  (x) = g  (0)
gt

g  (x) = g(x)

t~

tt

t
δ

~ δt

Fig. 3.

A radial section of the scaled function gt is shown in Fig. 3. We note that for

t→∞
∂kxgt(x) = O(tδ(1−|k|)) ; ∂kt gt(x) = O(tδ−k) (3.7)

uniformly in x. In particular, ∇gt is bounded uniformly in (x, t) and supported in

|x| > tδR−, while ∂tgt is supported in |x| < tδR+ and bounded by const. tδ−1. By

(1.15) γt is defined on D(|p|) and satisfies a uniform estimate

‖γtψ‖ ≤ const.〈H + c〉1/2ψ ∀ψ ∈ D(|p|) . (3.8)
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(3.5) is understood in form sense on D(|p|). The last two terms are bounded and

of order
1

2
∆2gt = O(t−3δ) ; ∂2

t gt = O(tδ−2) (3.9)

uniformly in x as t→∞. The term pg′′t p is non-negative due to the convexity of g

and decays only like t−δ:

0 ≤ pg′′t p ≤ const. t−δ(H + c) . (3.10)

To treat the commutator i[γt, V ] we impose the further condition.

Condition (Y.2). For any a > {0}, g(x) = g(xa) on some cone Ca (invariant

under x→ λx) containing some set {x| |xa| ≤ εa|x|, εa > 0}. Moreover, the cones

Ca satisfy

Ca ∩ Cb ⊂ Ca∩b for a ∩ b < a, b . (3.11)

Figure 4 shows a cone Ca, intersected with the compact set where g(x) = g(0).

C

g(x) = g(0)

a
0

a

a

ag(x) = g(x   )

Fig. 4.

Lemma 3.1. The sets

C∗a := Ca

∖⋃
b<a

Cb

form a disjoint covering of X. Also

Cb ∩C∗a = φ if b ∩ a < a , (3.12)

and |x|a ≥ |x| · min
b>{0},b∩a<a

(εb) for x ∈ C∗a . (3.13)

Proof. The first statement follows from CX = X and (3.11). Let b > {0}, b∩a < a

and x ∈ Cb∩C∗a . This excludes b ≥ a and b < a. But b∩a < a, b is equally excluded

since then x ∈ Ca∩b. Therefore if x ∈ C∗a then |xb| ≥ εb|x| for b ∩ a < a. �

On C∗a ∩ supp(∇gt) we thus have

∇gt(x) ∈ a ; and |x|a ≥ λ|x| ≥ tδλR− (3.14)
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for some λ > 0. If t is sufficiently large we can therefore decompose V (x) =

V a(xa) + Ia(x) in this region, which formally gives

i[γt, V ] = ∇gt · ∇Ia(x)

since ∇gt · ∇V a = 0. In the long-range case (Theorem 2.2) we have assumed that

∇Ia(x) = O(|x|−µ−1
a ), so that by (3.14)

|∇gt · ∇Ia| ≤ const. t−δ(µ+1)

on each C∗a . Since these sets cover X this estimate holds globally on X: for t

sufficiently large

|(ψ, [γt, V ]ψ)| ≤ const. t−δ(µ+1)‖ψ‖2 ∀ψ . (3.15)

In the short range case we use |Ia(x)| ≤ const.|x|−µa , which gives |Ia(x)| ≤ const. t−δµ

on supp(∇gt) ∩ C∗a for t sufficiently large. Therefore

|(ψ, [γt, V ]ψ)| = 2|Im(γtψ, Iaψ)| ≤ const. t−δµ〈H + c〉ψ (3.16)

for ψ ∈ D(|p|) with support in C∗a . This local estimate is independent of a and can

be extended to all ψ ∈ D(|p|) by using a suitable partition of unity (the sets C∗a
do not form an open covering of X, but they can be marginally enlarged to open

sets for which (3.16) prevails). Collecting these results we have in form sense for

sufficiently large t:

pg′′t p = Dt(γt − 2∂tgt) +Rt ;

|〈Rt〉ψ| ≤ const. t−ρ〈H + c〉ψ ∀ψ ∈ D(|p|) ;
(3.17)

provided that

either : Ia = O(|x|−µa ) and ρ = min(δµ, 3δ, 2− δ) (3.18)

or : ∇Ia = O(|x|−µ−1
a ) and ρ = min(δ(µ+ 1), 3δ, 2− δ) . (3.19)

Theorem 3.1. Suppose that (3.17) holds for some ρ > 1. Then∫ ∞
1

dt〈pg′′t p〉t ≤ const.〈H + c〉ψ ∀ψ ∈ D(|p|) . (3.20)

Proof. By (3.10) it suffices to consider the integral over an interval t0 < t < ∞
where (3.17) holds. Integrating (3.17), and using the fact that γt−2∂tgt is bounded

relative to |p| uniformly in t, we obtain∫ T

t0

dt〈pg′′t p〉t ≤ const.〈H + c〉ψ

uniformly in T . Since the integrand is positive, the limit T →∞ exists. �
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Construction of g(x). The prototype of g(x) is

ĝ(x, σ) = max
a∈L

fa(x, σ) , (3.21)

where f{0}(x, σ) = σ{0} and fa(x, σ) = σa|xa| for a > {0}. Here σ = {σa} is a

positive, decreasing function on the lattice L, to be adjusted in the course of the

construction:

σ{0} > σa > σb > σX > 0 for {0} < a < b < X . (3.22)

ĝ(x, σ) is convex, constant on a compact set K containing some ball |x| < R−,

and homogeneous of degree 1 in the complement of K. ĝ has a decomposition into

maximal pieces:

ĝ(x, σ) =
∑
a

ĝa(x, σ) (a.e.) ;

ĝa(x, σ) = fa(x, σ)θ[fa(x, σ) − ĝ(x, σ)] ,

(3.23)

where θ is the characteristic function of (0,∞). The piece ĝ{0} has support K where

ĝ(x, σ) = σ{0}. The pieces ĝa for a > {0} have conical supports where ĝ(x, σ) =

σa|xa|. The intersection of these cones with a sphere of radius R+ containing K is

shown in Fig. 5:

supp

supp

(g  )

a

b

c
a

(g   )

b

(g  )

b

a

supp

X

supp (g  )
c

Fig. 5.

This picture corresponds to Fig. 2 and serves to explain the choice of σ. To

begin with, suppose that σa = σb = σc = 1. Then Fig. 4 reduces to Fig. 2 since

|xa| = |x| exactly if x ∈ a, etc. The situation of Fig. 5 is obtained by first increasing

σa, σb (so that the supports of ĝa, ĝb expand into strips), and then σc sufficiently

far beyond σa, σb (such that supp ĝc covers the intersection of the two strips). This

corresponds to (3.11) and (3.12): in Fig. 5 the set C∗a is just the support of ĝa where

evidently

|x|a ≥ λR(λ > 0) and ∇g ∈ a ,
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except at boundary points where∇g is discontinuous. This discontinuity is removed

by a regularisation ĝ(x, σ)→ g(x) which preserves convexity:

g(x) =

∫
ĝ(x, µ)

∏
a

δ̃(µa − σa)dµa , (3.24)

where 0 ≤ δ̃ ∈ C∞0 (R) is a regularized Dirac distribution with arbitrary narrow

support. The same regularisation is applied to ĝa(x, σ) so that

g(x) =
∑
a∈L

ga(x) . (3.25)

The analytic construction of g is given in Appendix A. Here we summarize the

relevant results:

Lemma 3.2. g satisfies the conditions (Y.1) and (Y.2). Moreover g has a decom-

position (3.25) into smooth functions ga which have the following properties: There

exists λ > 0 such that

supp(g{0}) ⊂ {x| |x| < R+} ; (3.26)

supp(ga) ⊂ {x| |x|a ≥ λ|x| ≥ λR−} ∀ a > {0} ; (3.27)

∇g{0}(x) = 0 for |x| < R− ; (3.28)

∇ga(x) ∈ b for x ∈ Cb , ∀ b > {0} . (3.29)

The functions ga are not convex. However, for any a ∈ L there exists a Yafaev

function g̃ such that the Hessians of ga and g̃ satisfy

±g′′a(x) ≤ g̃′′(x) ∀x . (3.30)

4. The Asymptotic Observable γ+

Corresponding to (3.25) we set

gt =
∑
a

ga,t : ga,t(x) = tδga(t
−δx) ; (4.1)

γt =
∑
a

γa,t : γa,t = Dtga,t . (4.2)

We also introduce the Heisenberg observables

g(t) = eiHtgte
−iHt ; γ(t) = eiHtγte

−iHt = ∂tg(t) , (4.3)

and similarly for ga(t), γa(t). The operator γ(t) is defined on D(|p|), both the

operators γ(t) and g(t) on the domain D(|x|) ∩ D(|p|), which is invariant under

exp(−iHt).
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Theorem 4.1. Under the hypothesis of Theorem 3.2 the strong limits

γ+ = s-lim
t→∞

γ(t) ; γ+
a = s-lim

t→∞
γa(t) (4.4)

exist on D(|p|) and have the following properties :

[γ+,H] = 0 ; (4.5)

γ+ = s-lim
t→∞

1

t
g(t) ≥ 0 (4.6)

on D(|x|) ∩D(|p|), and similarly for γ+
a . In particular

γ+
{0} = 0 ; i.e. γ+ =

∑
a>{0}

γ+
a . (4.7)

Moreover, γ+ and γ+
a are independent of δ within the ranges allowed by the hypoth-

esis of Theorem 3.1, since

γ+ = s-lim
t→∞

eiHt
g

t
e−iHt on D(|x|) ∩D(|p|) , (4.8)

where g is the unscaled Yafaev function g(x) (and similarly for γ+
a ).

Proof. Step (1): Existence of γ+. By (3.8) it suffices to prove strong convergence

of γt on the range of (H + c)−2. First we show that

s-lim
t→∞

eiHtγte
−iHt(H + c)−2 = s-lim

t→∞
(H + c)−1eiHtγte

−iHt(H + c)−1 (4.9)

if one of these limits exists. Since ‖∂tgt‖ = O(tδ−1) we can replace γt by γt − ∂tgt.
Then (4.9) follows since

i[H, γt − ∂tgt] = pg′′t p−
1

4
∆2gt − i[γt, V ] , (4.10)

so that by our previous estimates

‖[γt − ∂tgt, (H + c)−1]‖ → 0 .

To establish the second limit in (4.9) it suffices to prove convergence of

ϕt = (c+H)−1eiHtγ̃te
−iHt(c+H)−1ψ

for all ψ ∈ H, where we have chosen γ̃t := γt − 2∂tgt. Then

∂tϕt = (H + c)−1eiHt(Dtγ̃t)e
−iHt(H + c)−1ψ , (4.11)

and we show that this is strongly integrable. By (3.5) and by our previous estimates

Dtγ̃t = pg′′t p

modulo terms which give integrable contributions. So it remains to prove that

ut := (H + c)−1eiHtpg′′t pe
−iHt(H + c)−1ψ
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is strongly integrable over some interval t0 < t < ∞. Factorizing the positive

operator pg′′t p into pg′′t p = B2
t ;Bt = B∗t , we use the Schwarz inequality twice to

estimate∥∥∥∥∫ t2

t1

dtut

∥∥∥∥2

= sup
‖v‖=1

∣∣∣∣∫ t2

t1

dt(v, ut)

∣∣∣∣2

≤ sup
‖v‖=1

(∫ t2

t1

dt‖Bte−iHt(H + c)−1v‖ ‖Bte−iHt(H + c)−1ψ‖
)2

≤ sup
‖v‖=1

∫ t2

t1

dt‖Bte−iHt(H + c)−1v‖2

×
∫ t2

t1

dt‖Bte−iHt(H + c)−1ψ‖2 . (4.12)

By Theorem 3.1 the first factor is bounded uniformly in t1, t2, and the second factor

vanishes as t1,2 →∞.

Step (2): Existence of γ+
a . This is proved in the same way with two notable

differences. Instead of i[γt, V ] we encounter the commutator i[γa,t, V ], formally

given by

i[γa,t, V ] = ∇ga,t · ∇V .
This commutator is estimated like i[γt, V ] using (3.29). Secondly, since ga is not

convex pg′′a,tp is not positive. Therefore we use the estimate (3.30) to split pg′′a,tp

into positive and negative parts:

pg′′a,tp = A+
t −A−t ; with 0 ≤ A±t ≤ pg̃′′t p .

Treating the contributions from A±t separately, we then factorize A±t = (B±t )2 and

use the propagation estimate (3.20) for g̃t.

Step (3): Properties of γ+,γ+
a . Since γ+ exists it follows from (4.9) that

γ+(H + c)−2 = (H + c)−1γ+(H + c)−1 ,

i.e. [γ+,H] = 0 (and similarly for γ+
a ). Using that γ(t) = ∂tg(t) we have on

D(|x|) ∩D(|p|):

γ+ = s-lim
t→∞

1

t

∫ t

1

ds∂sg(s) = s-lim
t→∞

1

t
g(t) ≥ 0

and similarly for γ+
a . In particular

γ+
{0} = s-lim

t→∞

1

t
g{0}(t) = 0

since ‖g{0}(t)‖ ≤ const. tδ. (4.8) follow from (4.6) and from the fact that

1

t
‖gt − g‖ ≤ const. tδ−1 ,

since gt(x)− g(x) = 0 for |x| ≥ const. tδ. �
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Next we discuss the connection between γ+ and Mourre’s inequality. In addition

to (4.2) we introduce the Heisenberg observable

x2(t) = eiHtx2e−iHt (4.13)

as a form on D(|x|) ∩D(|p|). This domain is not only invariant under exp(−iHt),
but also (via Fourier transform) under f(H) for all f ∈ C∞0 (R). Let ∆ ⊂ R be a

finite interval and let H∆ be the corresponding spectral subspace of H. Since γ+

commutes with H and is bounded relative to H it reduces to a bounded symmetric

operator H∆ → H∆. For the following Lemma we normalize g(x) such that

|x| ≤ g(x) . (4.14)

Lemma 4.1. Let ∆ ⊂ R be an open finite interval in which H satisfies a Mourre

estimate in form sense on D(|x|) ∩D(|p|) :

lim inf
t→∞

f(H)
x2(t)

t2
f(H) ≥ θf2(H) (θ > 0) (4.15)

for all f ∈ C∞0 (∆). Then

γ+ ≥
√
θ on H∆ , (4.16)

in particular

H∆ ⊂ Ran(γ+) . (4.17)

On the other hand, if ψ is an eigenvector of H, then

γ+ψ = 0 . (4.18)

Proof. Since x2(t) ≤ g2(t) we obtain from (4.15) and (4.6)

θf2(H) ≤ lim inf
t→∞

f(H)
g2(t)

t2
f(H) = (γ+)2f2(H)

for all f ∈ C∞0 (∆), which is equivalent to (4.16). If ψ is an eigenvector of H then

‖γ(t)ψ‖ = ‖γtψ‖ ,

and we observe that γtψ → 0 since ‖∂tgt‖ → 0 and ∇gt(x) = 0 for 0 ≤ |x| ≤
R−tδ. �

We now quote the relevant parts of Mourre’s Theorem in a generalized version

due to Skibsted [51]. A simple proof inspired by Graf [18] is given in [19]. See

also [2].

Theorem 4.2. Suppose that

either : lim
|x|a→∞

|x|aIa(x) = 0 ; (4.19)

or : lim
|x|a→∞

|x|a∇Ia(x) = 0 . (4.20)
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Then the set S ⊂ R given by

S =
⋃
a∈L
{eigenvalues of Ha} (4.21)

is closed and countable. For any E ∈ R\S there exists an open interval ∆ ⊂ R\S,
∆ 3 E, and a constant θ > 0 such that the Mourre inequality (4.15) holds.

Corollary 4.1.

HC(H) = Ran(γ+) ; HB(H) = Ker(γ+) . (4.22)

Proof. Since S is countable and contains the eigenvalues of H = H{0}, the spectral

subspace of H corresponding to S is HB(H). By Mourre’s Theorem and (4.17), any

state ψ with compact spectral support ⊂ R\S is in Ran(γ+). This impliesHC(H) ⊂
Ran(γ+). On the other hand it follows from (4.18) that HB(H) ⊂ Ker(γ+). Since

γ+ is selfadjoint (4.22) follows. �

5. The Short Range Case

Theorem 5.1. If Ia(x) = O(|x|−µa ), µ > 1, then the Deift–Simon wave operators

ω+
a = s-lim

t→∞
eiHatγa,te

−iHt (5.1)

exist on D(|p|) for δ in the range min(δµ, 3δ, 2− δ) > 1.

Proof. The proof is almost the same as the proof of the existence of γ+
a . The

modifications are as follows. Instead of (4.9) we first show that

s-lim
t→∞

eiHatγa,te
−iHt(H + c)−2 = s-lim

t→∞
(Ha + c)−1eiHatγa,te

−iHt(H + c)−1 .

This follows from

(γa,t − ∂tga,t)(H + c)−1 − (Ha + c)−1(γa,t − ∂tga,t)

= (Ha + c)−1([H, γa,t − ∂tga,t]− Ia(γa,t − ∂tga,t))(H + c)−1 . (5.2)

The extra term involving Ia gives no contribution in the limit t→∞ since by (3.27)

|Ia(x)| ≤ const. t−δµ on supp(ga,t). Therefore it suffices to prove convergence of

ϕt = (Ha + c)−1eiHatγ̃a,te
−iHt(H + c)−1ψ ,

where γ̃a,t = γa,t − 2∂tga,t. Instead of (4.11) we then obtain

∂tϕt = (Ha + c)−1eiHat(Dtγ̃a,t − iIaγ̃a,t)e−iHt(H + c)−1ψ . (5.3)

Here the term involving Ia gives an integrable contribution of order t−δµ by (3.27).

The rest of the proof goes through because the propagation estimate (3.20) also

holds for the dynamics generated by Ha. �
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Remark. Since the roles of H and Ha in the proof of Theorem 5.1 are interchange-

able, we also have

(ω+
a )∗ = s-lim

t→∞
eiHtγa,te

−iHat on D(|p|) . (5.4)

Lemma 5.1. If Ia = O(|x|−µa ), µ > 1, then any orbit ψt in the range of γ+ is

asymptotically clustering :

ψt −→
‖ ‖

∑
a>{0}

e−iHatϕa (t→∞) . (5.5)

Proof. Let ψ = γ+ϕ (ϕ ∈ D(|p|)). By Theorem 4.1

ψ =
∑
a>{0}

γ+
a ϕ −→‖ ‖

∑
a>{0}

eiHtγa,te
−iHtϕ ,

and by Theorem 5.1

e−iHtψ −→
‖ ‖

∑
a>{0}

e−iHat eiHatγa,t e
−iHtϕ −→

‖ ‖

∑
a>{0}

e−iHatω+
a ϕ . (5.6)

�
Lemma 5.1 together with (4.22) completes the proof of Theorem 2.1.

6. Approach to the Long-Range Case

We want to set up an inductive proof of asymptotic completeness for the dynamics

Ut : ψ → ψt generated by

Ht = H +Wt(x)

for 0 ≤ t <∞ with the initial condition U0 = 1. We assume that

∂kxIa(x) = O(|x|−µ−|k|a ) ;

|∂kx,tWt(x)| ≤ const.(1 + |x|+ t)−µ−|k| ,
(0 ≤ |k| ≤ n) (6.1)

where k is a multiindex and ∂x,t any derivative with respect to x or t. The conditions

for µ and n will be given for each step. To begin with we only demand that µ > 0

and n = 1. Since Wt is bounded it is elementary to construct Ut. D(H) = D(Ht)

is invariant under Ut, and since

∂t(U
−1
t HtUt) = U−1

t (∂tWt)Ut

is norm-integrable, the limits

H+ := lim
t→∞

U−1
t HtUt = lim

t→+∞
U−1
t HUt

exist in norm sense on D(H) and H+ = H +B, B bounded. It follows that

(z −H+)−1 = lim
t→∞

U−1
t (z −H)−1Ut

(z −H)−1 = lim
t→∞

Ut(z −H+)−1U−1
t

(6.2)
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for z 6∈ σ(H) = σ(H+). Also D(|p|) (the form domain of H) is invariant under Ut
and

〈p2〉t ≤ const.〈H + c〉ψ . (6.3)

Since Dtx = p it still follows that D(|x|) ∩ D(|p|) is Ut-invariant. These are the

general properties of the dynamics which we have used in the short-range case. It

is now straightforward to generalize the results of Secs. 3 and 4. The Heisenberg

derivative Dt refers to the evolution Ut. The expression (3.4) for γt = Dtgt remains

unchanged, while the r.h.s. of (3.5) receives the additional term −∇gt · ∇Wt which

is bounded in norm by const. t−δ(µ+1). As a result the basic propagation estimate

(3.21) remains valid if δ is in the range

1

3
< δ < 1 ; δ(µ+ 1) > 1 . (6.4)

Under this condition the existence of

γ+ = s-lim
t→∞

γ(t) = s-lim
t→∞

U−1
t γtUt on D(|p|)

(and similarly for γ+
a ) follows as before. We remark that in the first step of the

proof (4.9) is replaced by

s-lim
t→∞

U−1
t γtUt(H

+ + c)−2 = s-lim
t→∞

(H+ + c)−1U−1
t γtUt(H

+ + c)−1

using (6.2), which leads to

[γ+,H+] = 0 (6.5)

instead of [γ+,H] = 0 (and similarly for γ+
a ). All the other properties of γ+ and

γ+
a listed in Theorem 4.1 remain the same. In particular γ+ is independent of the

choice of δ in the range (6.4). We now describe the induction proof. For each

channel a > {0} we introduce a hierarchy of time evolutions which interpolate

between Ut and the quasi-free evolution U∞a,t of the fragments. These evolutions

have the following names and generators:

Ut : Ht = H +Wt(x) ;

Ũa,t : H̃a,t = Ha +Wa,t(x) ;

Ua,t : Ha,t = Ha +Wa,t(pat+ xa) ;

U∞a,t : H∞a,t = Ha +Wa,t(pat) .

(6.6)

Here

Wa,t(x) = (Ia(x) +Wt(x))χa,t(x) , (6.7)

where χa,t is a smoothed characteristic function of the set

{x | |x| ≥ (1 + t)δR− ; |x|a ≥ |x|1−ε} , (6.8)

with ε > 0 arbitrary small. In particular

χa,t(ξt) = 1 if ξ ∈ a∗ (6.9)
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and t sufficiently large. It also follows from (3.27) that

χa,t = 1 on supp(ga,t) (6.10)

if t is large. To compute derivatives of χa,t with respect to t and x one can use an

explicit form of χa,t like

χa,t(x) = θ((1 + t)−δ|x| −R−)
∏

b∩a<a
θ(|xb| |x|ε−1 − 1) (6.11)

where θ is a regularized step function. We note that

U∞a,t = e−iHat−iαa,t(pa) ; αa,t(pa) =

∫ t

0

dsWa,s(pas) .

It follows from (6.9) that on each fibre pa = ξ ∈ a∗ this phase is equivalent to

αa,t(pa) =

∫ t

t0(pa)

ds
(
Ia(pas) +Ws(pas)

)
, (6.12)

by a gauge transformation (2.18). Our goal is to prove the following generalization

of Theorem 2.2.

Theorem 6.1. Suppose that (6.1) holds for some µ >
√

3 − 1 and n = 2. Then

any ψ ∈ H is an outgoing scattering state for the dynamics Ut generated by Ht:

Utψ −→
‖ ‖

∑
a

e−iHat−iαa,t(pa)ϕa (t→∞) (6.13)

for some ϕa ∈ Ha. Here αa,t(pa) is given by (6.12) for a > {0} and

α{0},t =

∫ t

0

dsWs(0) . (6.14)

Outline of the Proof. The proof is given in three steps:

Step 1: Existence of the Deift–Simon wave operators

ω+
a = s-lim

t→∞
U−1
a,t γa,tUt on D(|p|) . (6.15)

This is proved in Sec. 7. It follows as in Lemma 5.1 that any ψ ∈ Ran(γ+) is

asymptotically clustering: if ψ = γ+ϕ then

Utψ −→
‖ ‖

∑
a>{0}

Ua,tϕa ; ϕa = ω+
a ϕ . (6.16)

Step 2: Induction step. We note that Ha,t and H∞a,t commute with pa. For each

fiber pa = ξ ∈ a they reduce to operators acting on L2(a⊥) given by

Ha,t(ξ) = Ha + 1
2ξ

2 +Wa,t(ξt+ xa) ;

H∞a,t(ξ) = Ha + 1
2ξ

2 +Wa,t(ξt) .
(6.17)
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The Hamiltonian Ha,t(ξ) has the same general form as Ht. Moreover it is not

difficult to check that for any ξ ∈ a∗ the properties (6.1) are essentially inherited by

the corresponding potential Wa,t(ξ t+x
a). The only difference is that the exponents

(µ + |k|) in (6.1) change into (µ + |k|)(1 − ε), where ε is the parameter occurring

in (6.8). Since ε is arbitrary small this difference is irrelevant and we ignore it.

Now we invoke the induction hypothesis that asymptotic completeness in the form

(6.13) holds for the dynamics Ua,t(ξ) generated by Ha,t(ξ) for each fiber ξ ∈ a∗.

Integrating over the fibers gives for any ϕa ∈ H:

Ua,tϕa −→
‖ ‖

∑
b≥a

e−iHbt−iαb,t(pb)ϕab ; (t→∞) ; ϕab ∈ L2(b)⊗HB(Hb) . (6.18)

Inserting this into (6.16) we see that any ψ ∈ Ran(γ+) is an outgoing scattering

state.

Step 3: The core of the proof is to show that (6.13) also holds for ψ in the kernel of

γ+. In Sec. 8 we prove that γ+ψ = 0 implies

Utψ −→
‖ ‖

e−iHt−iα{0},tϕ ; ϕ ∈ HB(H) . (6.19)

These three steps complete the proof of Theorem 6.1.

7. Deift Simon Wave Operators

Here we use the intermediate evolution Ũa,t of (6.6) to factorize

ω+
a = w+

a · ω̃+
a ;

w+
a = s-lim

t→∞
U−1
a,t Ũa,t ; ω̃+

a = s-lim
t→∞

Ũ−1
a,t γa,tUt . (7.1)

Lemma 7.1. If (6.1) holds for µ > 0 and n = 1 then ω̃+
a exists on D(|p|), provided

that δ is taken in the range (6.4).

Proof. The proof is analogous to the proof of Theorem 5.1. We start from the

equivalence

s-lim
t→∞

Ũ−1
a,t γa,tUt(H

+ + c)−2 = s-lim
t→∞

(H̃+
a + c)−1Ũ−1

a,t γa,tUt(H
+ + c)−1 ,

where H̃+
a := limt→∞ Ũ

−1
a,t H̃a,tŨa,t. This follows from (6.2) and from an identity

similar to (5.2), where the term Ia(γa,t − ∂tgat) is now replaced by

(Ht − H̃a,t)(γa,t − ∂tga,t) = (Ia +Wt)(1− χa,t)(γa,t − ∂tga,t) . (7.2)

This term vanishes exactly for t sufficiently large by (6.10). Then we have to prove

convergence of

ϕt = (H̃+
a + c)Ũ−1

a,t γ̃a,tUt(H
+ + c)−1ψ ,

where γ̃a,t = γa,t − 2∂tga,t. Instead of (5.3) we obtain

∂tϕt = (H̃+
a + c)−1Ũ−1

a,t (Dtγ̃a,t)Ut(H
+ + c)−1ψ
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since the term (Ht− H̃a,t)γ̃a,t vanishes again by (6.10). Strong integrability of ∂tϕt
follows as before from the propagation estimate (3.20), which also holds for the

evolution Ũa,t. �

Lemma 7.2. If (6.1) holds for µ > 1/2 and n = 2 then w+
a exists on H provided

that δ is taken in the range

1

3
< δ < 1 ; δ(µ+ 1) >

3

2
; δ(µ+ 2) > 2 . (7.3)

Proof. Using Cook’s argument we want to show that

∂tU
−1
a,t Ũa,tψ = −iU−1

a,t [Wa,t(x)−Wa,t(pat+ xa)]Ũa,tψ

is integrable for a dense set of ψ’s. The middle factor can be expressed as

[· · · ] =

∫ 1

0

ds∇aWa,t(sxa + (1− s)pat+ xa) · (xa − pat)

+
it

2

∫ 1

0

ds∆aWa,t(sxa + (1− s)pat+ xa) . (7.4)

This identity comes from evaluating

f(x)− f(pt) =

∫ 1

0

ds
d

ds
f(pt+ s(x− pt)) .

Representing f(x) by a Fourier integral, say for f ∈ S(Rn), it suffices to consider

the case f(x) = exp(ik · x). Then

eik·(pt+s(x−pt)) = eitk·peisk·(x−pt)e−
i
2 stk

2

by the Campbell–Hausdorff formula. Now the s-derivative is computed and inserted

into the Fourier integral. This proves (7.4) for Wt(·) ∈ S(Rn), and our bounds for

∇Wt and ∆Wt allow it to extend the result by a limiting argument. From (6.7)

and (6.11) it follows that

‖∆aWa,t‖ = sup
x
|∆aWa,t(x)| ≤ const.(1 + t)−δ(µ+2)(1−ε) .

Since ε is arbitrary small we drop the factor (1 − ε). The second term in (7.4) is

therefore norm-bounded by const. t1−δ(µ+2), which is integrable since δ(µ+ 2) > 2.

Similarly, the contribution of the first term is bounded by

const. t−δ(µ+1)〈(xa − pat)2〉1/2t (7.5)

where 〈· · · 〉t is taken for the evolution ψt = Ũa,tψ. Let D̃t be the corresponding

Heisenberg derivative. Then

D̃t(xa − pat) = i[H̃a,t, xa − pat]− pa = i[Wa,t(x), xa − pat]

= t∇aWa,t(x) = O(t1−δ(µ+1))
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uniformly in x. Therefore

|∂t〈(xa − pat)2〉t| ≤ const. t1−δ(µ+1)〈(xa − pat)2〉1/2t , or

|∂t〈(xa − pat)2〉1/2| ≤ const. t1−δ(µ+1) .

Taking ψ ∈ D(|x|) ∩D(|p|) this gives

〈(xa − pat)2〉1/2t ≤ const. t2−δ(µ+1) .

Together with (7.5) we see that the contribution of the first term in (7.4) is integrable

if 2δ(µ+ 1) > 3. �

We remark that this proof is the only instance where we use the second deriva-

tives of Ia(x) and Wt(x) with respect to x. As a result we have:

Theorem 7.1. If (6.1) holds for µ > 1/2 and n = 2 then the Deift–Simon wave

operators

ω+
a = s-lim

t→∞
U−1
a,t γa,tUt

exist on D(|p|) provided that δ is taken in the range

1

3
< δ < 1 ; δ(µ+ 1) > 32 ; δ(µ+ 2) > 2 . (7.6)

Remark. This Theorem and its proof using the factorization (7.1) are due to

Dereziński and Gérard [10].

Corollary 7.1. The adjoints of ω+
a exist as strong limits

(ω+
a )∗ = s-lim

t→∞
U−1
t γa,tUa,t on D(|p|) . (7.7)

Proof. The roles of Ut, Ũa,t in the proof of Lemma 7.1 and of Ua,t, Ũa,t in the

proof of Lemma 7.2 are interchangeable. �

8. Propagation on Ker(γ+)

Theorem 8.1. Let γ+ψ = 0 and suppose that (6.1) holds for µ >
√

3 − 1 and

n = 1. Then

Utψ −→
‖ ‖

e
−iHt−i

∫
t

0
dsWs(0)

ϕ (t→∞) ; ϕ ∈ HB(H) . (8.1)

Remarks. The scaling parameter δ does not appear in this theorem. However,

we will need the propagation estimate (3.20) and the representation of γ+ as the

strong limit (4.4), i.e. some choice of δ in the range

1

3
< δ < 1 ; δ(µ+ 1) > 1 , (8.2)
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in which γ+ is independent of δ (Theorem 4.1). For the proof we also need the

additional conditions

δ < µ ; δ(µ+ 2) > 2 . (8.3)

(8.2) and (8.3) can both be satisfied if µ(µ+2) > 2, i.e. if µ >
√

3−1. The proof of

Theorem 8.1 is given in 3 steps (Lemmas 8.1–8.3 below), where we use the notation

and the results of Appendix C. We also recall

U∞{0},t := e
−iHt−i

∫
t

0
dsWs(0)

. (8.4)

Lemma 8.1. Let δ < δ′ < µ and θ > 0. Then

ω+
{0} = s-lim

t→∞
(U∞{0},t)

−1χ(t−δ
′
gt ≤ θ)Ut (8.5)

exists on H.

Lemma 8.2. If γ+ψ = 0 and δ > 2
3 then

ω+
{0}ψ = lim

t→∞
(U∞{0},t)

−1Utψ . (8.6)

Lemma 8.3. If γ+ψ = 0 and

Utψ −→
‖ ‖

e−iHt−iα(t)ϕ (t→∞) (8.7)

for some real phase α(t), then ϕ ∈ HB(H).

Proof of Lemma 8.1. Since

‖[(H + c)−1 , χ(t−δ
′
gt ≤ θ)]‖ = O(t−δ

′
)

it suffices to prove strong convergence of

φt = (U∞{0},t)
−1(H + c)−1χ(t−δ

′
gt ≤ θ)(H + c)−1Utψ .

Proceeding as in the proof of Theorem 4.1 we estimate

∂tφt = (U∞{0},t)
−1(H + c)−1(Dtχ)(H + c)−1Ut

+ (U∞{0},t)
−1(H + c)−1[Wt(0)−Wt(x)]χ(H + c)−1Ut ,

whereDt is the Heisenberg derivative for Ut. The first term is strongly integrable by

Theorem C.2 and by the argument given in (4.12). The same is true for the second

term since |x| ≤ const. tδ
′
on supp(χ(t−δ

′
gt ≤ θ). Using (6.1) we thus obtain

‖(Wt(0)−Wt(x))χ(t−δ
′
gt ≤ θ)‖ = O(tδ

′−µ−1) ,

which is integrable since δ′ < µ. �
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Proof of Lemma 8.2. Since [γ+,H+] = 0 it suffices to prove (8.6) for ψ ∈ D(H).

By Lemma 8.1 we need only show that for ψt = Utψ

lim
t→∞

χ(t−δ
′
gt ≥ θ)ψt = 0

for θ > 0 or, by (C.5), that

lim
t→∞

χ(t1−δ
′
Γt ≥ θ1)ψt = 0 (8.8)

for θ1 > 0. Since ‖∂tgt‖ → 0, γ+ψ = 0 implies that Γtψt → 0 for t → ∞, and

therefore

lim
s→∞

χ(bΓs ≥ θ1)ψs = 0

for any b > 0. Using this and Lemma C.1 we can estimate

〈χ(bΓs ≥ θ1)〉s = −
∫ ∞
s

dt〈Dtχ(bΓs ≥ θ1)〉t

≤ const.(b3s1−3δ + bs1−δ(µ+1))‖ψ‖2H .

Setting now s = t, b = t1−δ
′
we obtain

〈χ(t1−δ
′
Γt ≥ θ1)〉t = O(t4−6δ) +O(t2−δ(µ+2))

which vanishes as t→∞. Replacing χ by χ2 we arrive at (8.8). �

Proof of Lemma 8.3. Again we can assume that ψ ∈ D(H+). Then (8.6) and

(6.2) imply ϕ ∈ D(H) and

0 = lim
t→∞

(ψ,U−1
t γtUtψ) = lim

t→∞
(ϕ, eiHtγte

−iHtϕ) = (ϕ, γ+
Hϕ) ,

where γ+
H is the asymptotic observable γ+ for the time evolution generated by H.

Since γ+
H ≥ 0 this implies γ+

Hϕ = 0 and therefore ϕ ∈ HB(H) by (4.22). �

9. Long-Range Wave Operators

In this section, we prove the existence of the wave operators in the long-range case

for the dynamics Ut generated by Ht.

Theorem 9.1. Suppose that (6.1) holds for some µ >
√

3 − 1 and n = 2. Then

the wave operators

Ω+
a = s-lim

t→∞
U−1
t U∞a,t (9.1)

exist on Ha for all a ∈ L and have mutually orthogonal ranges

H+
a ⊥ H+

b (a 6= b) . (9.2)

The proof of this theorem uses the results of Secs. 7 and 8. The first step is to

prove the special case a = {0}:
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Lemma 9.1. Under the hypothesis of Theorem 9.1 the wave operator

Ω+
{0} = s-lim

t→∞
U−1
t U∞{0},t (9.3)

exists on HB(H).

Proof. Let ψ be an eigenvector of H. Since the time evolution ψt = U∞{0},tψ affects

only the phase of ψ it follows directly that

lim
t→∞

‖χ(t−δ
′
gt ≥ θ)ψt‖ = 0

for δ′ > δ. Therefore it suffices to establish strong convergence of

U−1
t χ(t−δ

′
gt ≤ θ)U∞{0},t .

This is proven like Lemma 8.1, with the roles of the two propagators inter-

changed. �

Our goal is to prove convergence of (9.1) for a > {0} on the states of the form

ψ(x) = ϕ(xa)u(x
a) ; ϕ̂ ∈ C∞0 (a∗) ; Hau = λu , (9.4)

where ϕ̂ is the Fourier transform of ϕ. These states span a dense set in Ha.

Lemma 9.2. Under the hypothesis of Theorem 9.1 the limits

lim
t→∞

U−1
t γa,tU

∞
a,tψ (9.5)

exist for a > {0} and any ψ of the form (9.4).

Proof. Evidently we can write ψ = (Ha + i)−1ψ̃ with ψ̃ of the form (9.4). Since

Ha commutes with U∞a,t we can factorize

U−1
t γa,tU

∞
a,tψ = (U−1

t γa,tUa,t(H
+
a + i)−1)((H+

a + i)U−1
a,t (Ha+ i)−1Ua,t)(U

−1
a,t U

∞
a,tψ̃) .

All three factors are bounded uniformly in t. The first factor converges strongly by

Corollary 7.1. The second factor converges to 1 in norm by (6.2), applied to Ha in

place of H. Since pa commutes with U−1
a,tU

∞
a,t it suffices to prove convergence of the

last factor in Ha for each fiber pa = ξ ∈ a∗. Recalling the generators (6.17) this

follows from Lemma 9.1, applied to Ha +Wa,t(ξt+ xa) in place of Ht. �

Lemma 9.3. Suppose that (6.1) holds for some µ > 0 and n = 2. Then, for

a > {0} and any fixed ψ of the form (9.4), we can choose the Yafaev function g

such that

lim
t→∞

(U∞a,t)
−1γa,tU

∞
a,tψ = σa |pa|ψ , (σa > 0) . (9.6)
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As a preparation for the proof we discuss the asymptotic form of the quasi-free

evolution in L2(Rn):

ϕt = e−
i
2 tp

2

ϕ0
t ; ϕ0

t = e−iαt(p)ϕ

for ϕ̂ ∈ C∞0 (Rn \ {0}). Here

αt(p) =

∫ t

0

dsWs(ps) ,

and Wt(x) is assumed to satisfy (6.1) with µ > 0 and n = 2. Then

ϕt(x) = (2πit)−n/2 exp

(
ix2

2t

)∫
dy exp

(
− ix · y

t

)
exp

(
iy2

2t

)
ϕ0
t (y) .

The lowest order Taylor expansion of the last exponential leads to

ϕt(x) = ϕ̃t(x) +Rt(x) ; ϕ̃t(x) = (it)−n/2 exp

(
ix2

2t

)
ϕ̂0
t

(x
t

)
;

‖Rt(·)‖2 ≤
1

t
‖∆(exp(−iαt(·))ϕ̂0(·))‖2 = O(t−µ) .

(9.7)

ϕ̃t is the leading term for t → ∞. The bound for Rt is obtained by estimating

∇αt(·) and ∆αt(·) using (6.1). As a result we have

lim
t→∞

‖ϕt − ϕ̃t‖ = 0 and lim
t→∞

∥∥∥pkϕt − (xk
t

)
ϕ̃t

∥∥∥ = 0 . (9.8)

The second limit follows from the first if ϕ is replaced by pkϕ.

Proof of Lemma 9.3. Given ψ of the form (9.4) we can choose the Yafaev function

g such that for some ε > 0

ga(x) = σa|xa| if x ∈ supp(ϕ̂) and |xa| ≤ ε

(cf. Lemma A.3). Then

ga,t(x) = σa|xa| if
x

t
∈ supp(ϕ̂) and |xa| ≤ εt

for t > 1. Since

γa,t = ∇ga,t · p+O(t−δ)

we have

γa,tU
∞
a,tψ −→‖ ‖ ∇ga,t · (paϕt ⊗ e

−iλtu) +∇ga,t · (ϕt ⊗ e−iλtpau) ,

where ϕt is the quasi–free evolution of ϕ in L2(a). Using (9.8) we obtain

γa,tU
∞
a,tψ −→‖ ‖ ∇ga,t ·

(xa
t
ϕ̃t ⊗ e−iλtu

)
+∇ga,t · (ϕ̃t ⊗ e−iλtpau) . (9.9)
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The part of this wave function in the region |xa| > εt vanishes in norm as t → ∞
since u and pau are in L2(a⊥). In the complementary region we have ∇ga,t =

σaxa|xa|−1 ∈ a, so that the last term of (9.9) gives no contribution. Therefore

γa,tU
∞
a,tψ −→‖ ‖ σa

|xa|
t

(ϕ̃t ⊗ e−iλtu) −→
‖ ‖

σa|pa|U∞a,tψ . �

Proof of Theorem 9.1. By (9.5) and (9.6)

lim
t→∞

U−1
t γa,tU

∞
a,tψ = lim

t→∞
U−1
t U∞a,tσa|pa|ψ = Ω+

a σa|pa|ψ

exists. Since σa|pa| maps the class (9.4) onto itself, Ω+
a ψ exists for all ψ in this

class. (9.2) follows from

lim
t→∞

(U∞a,tψa , U
∞
b,tψb) = 0

for a 6= b and ψa , ψb of the form (9.4). This is readily obtained by using the

asymptotic form (9.7). �
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Appendix A. The Yafaev Construction

In this appendix we describe the analytic construction of g(x) as outlined in Sec. 3.

For a > {0} and σ given in accordance with (3.22) we define the cones

Ca(σ) = {x | σa|xa| > σb|xb| ∀ b > a} ;

Ua(σ) = {x | σa|xa| > σX |x|} ;

Va(σ) = {x | σa|xa| > σb|x| ∀ b > a} .

Evidently Va(σ) ⊂ Ca(σ) ⊂ Ua(σ) and

x ∈ Ua ⇔ (xa)2 <

(
1− σ2

X

σ2
a

)
x2 ; x ∈ Va ⇔ (xa)2 <

(
1− σ2

b

σ2
a

)
x2 ∀ b > a .

We note that Va(σ) and hence Ca(σ) contains the cone

(xa)2 < x2 ·min
b>a

(
1− σ2

b

σ2
a

)
. (A.1)

Lemma A.1. There exists a choice of σa, a > {0} such that for a ∩ b < a, b

Ua(σ) ∩ Ub(σ) ⊂ Va∩b(σ) .
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Proof. Let 0 < ε < 1 and |a| = dim(a). We define σa by

1− 1

σ2
a

= ε2|a| . (A.2)

Then, for b > a,

ε2|a| >

(
1− σ2

b

σ2
a

)
=
ε2|a| − ε2|b|

1− ε2|b| > ε2|a|(1− ε2)

since |b| ≥ |a|+ 1. Now we use that

|xa∩b| ≤M ·max(|xa|, |xb|)

for all x, a, b, where M is a constant depending only on the lattice L (Both sides

are seminorms on X, and |xa| = |xb| = 0 implies x ∈ a ∩ b, i.e. |xa∩b| = 0). Let

a ∩ b = c < a, b and x ∈ Ua ∩ Ub. Then

|xc|2 ≤M2 ·max(ε2|a|, ε2|b|)x2 ≤M2ε2(|c|+1)x2 .

It follows that x ∈ Vc(σ) if M2ε2(|c|+1) ≤ ε2|c|(1− ε2), i.e. if ε2 ≤ (1 +M2)−1. �

Lemma A.1 and (A.1) show that the family of cones Ca(σ) has all the properties

required by the condition (Y.2) of Sec. 3. Now we fix σ as follows. For a > {0} we

set σ2
a = (1− ε2|a|)−1 in accordance with (A.2), with ε in the range

0 < ε2 ≤ (2 +M2)−1 . (A.3)

Then we fix σ{0} (arbitrary large) in accordance with (3.23).

Lemma A.2. Let a > {0} and ma(x) := max(σ{0}, σa|xa|) = ma(xa). Then

(i) If x ∈ C∗a(σ) then ĝ(x, σ) = ma(xa).

(ii) ĝa(x, σ) has support in C∗a(σ), where ĝa(x, σ) = σa|xa|θ(σa|xa| − σ{0}).
(iii) If x ∈ Ca(σ) then ĝ(x, σ) = maxb≤a(mb(xb)) = ĝ(xa, σ) and

ĝ{0}(x, σ) = σ{0}θ(σ{0} − ĝ(xa, σ)) = ĝ{0}(xa, σ).

(iv) If x ∈ Ca(σ) and b > {0} then ĝb(x, σ) = 0 unless b ≤ a. In that case

ĝb(x, σ) = mb(xb)θ[mb(xb)− ĝ(xa, σ)], in particular ĝb(x, σ) = ĝb(xa, σ).

Proof. (i) Let x ∈ C∗a(σ) and ĝ(x, σ) > σ{0} (else the statement is trivial). It

suffices to restrict x to the set where the maximal piece of ĝ is unique, i.e.

ĝ(x, σ) = σb|xb| > σc|xc| (A.4)

for some b > 0 and all c 6= b, which implies x ∈ Cb(σ). We have to show that

b = a. b < a is excluded since x ∈ C∗a(σ). b ∩ a < a, b is equally excluded since

then x ∈ Ca∩b(σ). Finally b > a is excluded since (A.4) states that σb|xb| > σa|xa|
which contradicts x ∈ Ca(σ).

(ii) follows from (i) since the sets C∗a(σ) form a disjoint covering of X, and since

the decomposition of ĝ into maximal pieces is unique. (iii) follows from (i) since

Ca(σ) =
⋃
b≤a

C∗b (σ)
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and since xb = (xa)b for b ≤ a. (iv) follows from (iii) by reading off the maximal

pieces of ĝ on Ca(σ). �

To perform the regularisation (3.24) explicitly we treat the parameters σa as

variables, restricted to disjoint intervals

σ−a < σa < σ+
a , (A.5)

which requires σ+
a < σ−b for b < a. A possible choice is

(σ−a )2 = (1− ε2|a|)−1 ; (σ+
a )2 = (1− 2ε2|a|)−1

for a > {0}, with ε in the range (A.3). σ±{0} is fixed with σ+
{0} > σ−{0} > σ+

a ∀ a > {0}.
For a > {0} we define

C±a = {x | σ±a |xa| > σ∓b |xb| ∀ b > a} (A.6)

so that

C−a ⊂ Ca(σ) ⊂ C+
a (A.7)

for all σ allowed by (A.5). As in the proof of Lemma A.1 it follows from (A.3) that

C+
a ∩ C+

b ⊂ C
−
a∩b if a ∩ b < a, b , (A.8)

so that the functions ĝ(x, σ) have the properties listed in Lemma A.2 for all

allowed σ.

Now we pick arbitrary weight functions 0 ≤ δa ∈ C∞0 (σ−a , σ
+
a ), normalized to∫

dsδa(s) = 1, and we set ja(s) =
∫ s
−∞ dtδa(t). The regularisation of ĝ(x, σ) is then

defined by

g(x) =

∫
ĝ(x, σ)

∏
c∈L

(δc(σc)dσc) , (A.9)

and similarly for ga(x). For a > {0} we insert the explicit form

ĝa(x, σ) = σa|xa|θ(σa|xa| − σ{0})
∏

{0}>b6=a
θ(σa|xa| − σb|xb|) ,

which gives

ga(x) = |xa|
∫
ds sδa(s)j0(s|xa|)

∏
{0}<b6=a

jb

(
s|xa|
|xb|

)

and similarly for g{0}(x). These formulas only serve to exhibit the smoothness of

the functions g and ga. All the other relevant properties of g and ga follow directly

from Lemma A.2 via (A.14) and (A.16). The result is:

Lemma A.3. The function g constructed above is a Yafaev function with respect

to the cones C−a (A.6). Moreover, g has a decomposition (3.25) into smooth functions

ga with the following properties. There exist constants 0 < σ̄a and 0 < R− < R+

such that
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(i) For a = {0}:

supp(g{0}) ⊂ {|x| < R+} ;

g{0}(x) = g(0) = σ̄{0} if |x| < R− ;

g{0}(x) = g{0}(xb) on C
−
b ∀ b > {0} .

(ii) For a > {0}:

supp(ga) ⊂ {|x| > R−} ∩
(
C+
a

∖⋃
b<a

C−b

)
;

ga(x) = g(x) = σ̄a|xa| on C−a
∖⋃

b<a

C+
b ;

ga(x) is homogeneous of degree 1 for |x| > R+ ;

ga(x) = ga(xb) on C
−
b ∀ b > {0} .

Corollary A.1. There exists λ > 0 such that :

(i) If a > {0} and x ∈ supp(ga), then |x|a ≥ λ|x| ≥ λR−.
(ii) If a ≥ {0}, b > {0} and x ∈ supp(∇ga) ∩ (C−b )∗, then

∇ga(x) ∈ b and|x|b ≥ λ|x| ≥ λR−.

Proof. (i) follows from

C−b ∩
(
C+
a

∖⋃
c<a

C−c

)
= φ if b ∩ a < a ,

which is proved like (3.13) using (A.8). (ii) follows directly from the fact that

ga(x) = ga(xb) on C−b . �

Lemma A.4. Suppose that f is a function on X which has all the properties of a

Yafaev function except convexity: f is smooth; f(x) = f(xa) near a (in particular

f(x) = 0 for |x| < R1); and f(λx) = λf(x) for |x| > R2 (λ > 1). Then there exists

a Yafaev function g̃ such that the Hessians of f and g̃ satisfy

±f ′′(x) ≤ g̃′′(x) ∀x . (A.10)

Proof. For any fixed y ∈ X, y 6= 0 we first construct a local bound, i.e. a Yafaev

function g̃ such that (A.10) holds for x near y. Since y ∈ a∗ for some a > {0} there

exists a Yafaev function g with g(x) = σ|xa| near y so that

g′′(x) =
σ

|xa|
πa(x) ,

where πa(x) is the projection of X into a given by

ξ → ξa −
1

|xa|2
(xa · ξ)xa ,
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which has rank dim(a)− 1. Since f(x) = f(xa) near y ∈ a, f ′′(x) also maps X into

a. However, f ′′(x) may have full rank = dim(a) in the shell R1 < |x| < R2 where

f is not homogeneous. For this reason we first replace g(x) by max(g(y), g(x)) and

regularize this to

g̃(x) =

∫
dsδ(s)[sθ(s − g(x)) + g(x)θ(g(x) − s)] ,

where 0 ≤ δ ∈ C∞0 (R) is a regularized δ-distribution supported near g(y). By

construction g̃ is a Yafaev function with Hessian

g̃′′(x) = σ2(1a − πa(x))δ(g(x)) +
σ

|xa|
πa

∫ g(x)

−∞
dsδ(s) , (A.11)

which is strictly positive near y. Multiplying g̃ with a suitable constant we thus

have ±f ′′(x) ≤ g̃′′(x) in some neighbourhood of y. Since the Yafaev functions form

a positive cone this estimate extends to all x in the compact shell R1 ≤ |x| ≤ R2

by summing over finitely many local bounds. The resulting estimate then extends

to |x| > R2 by scaling x→ λx(λ > 0). In fact (A.11) implies

g′′(λx) ≥ const.
πa(x)

λ|xa|
, while ± f ′′(λx) ≤ const.

πa(x)

λ|xa|

by homogeneity. For |x| < R1 f
′′(x) = 0 so that (A.10) is trivial. �

Appendix B. Commutator Expansions

Functions of self-adjoint operators. A convenient operator calculus for

functions f(A) of self-adjoint operators A can be based on a formula given by

Helffer and Sjöstrand [23]:

f(A) = − 1

2π

∫
R2

(z −A)−1∂z̄ f̃(z) dxdy , (B.1)

where z = x + iy; ∂z̄ = ∂x + i∂y. Here f is some given complex function on R,

and f̃ a largely arbitrary extension of f to the complex plane, which must be

almost analytic in the sense that it satisfies the Cauchy–Riemann equations on the

real axis:

∂z̄ f̃(z) = 0 for z ∈ R . (B.2)

We abbreviate (B.1) by writing:

f(A) =

∫
df̃(z)(z −A)−1 ; df̃(z) ≡ − 1

2π
∂z̄ f̃(z) dxdy . (B.3)

For example, if f ∈ C2
0 (R), we can construct the almost analytic extension

f̃(z) = (f(x) + iyf ′(x))χ(z) (B.4)

in C1
0 (C) by taking χ ∈ C∞0 (C) with χ = 1 on some complex neighbourhood of

supp(f).
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Lemma B.1. (B.3) holds for f ∈ C2
0 (R) if f̃ ∈ C1

0 (C) is an almost analytic

extension of f, the integral being absolutely convergent in norm sense.

Proof. ∂z̄ f̃ has compact support and vanishes on the real axis, so that |∂z̄ f̃(z)| ≤
const.|y|. On the other hand, ‖(z − A)−1‖ ≤ |y|−1. Therefore the integral (B.3)

converges absolutely in norm sense, and it suffices to prove that

fε(t) ≡
∫
|y|>ε

df̃(z)(z − t)−1

converges pointwise to f(t) for t ∈ R as ε↘ 0. Since (z− t)−1 is analytic for z /∈ R
we have ∂z̄(z − t)−1 = 0. Therefore we obtain after partial integrations in x and y:

fε(t) =

∫
dx gε(t, x) ; gε(t, x) =

1

2πi
f̃(x+ iy)(x+ iy − t)−1|y=−ε

y=ε .

Expanding f̃(x± iε) = f(x)± iεf ′(x) +O(ε2) we find:

gε(t, x) =
1

π
f(x)

ε

(x− t)2 + ε2
− 1

2π
f ′(x)

2ε(x− t)
(x− t)2 + ε2

+O(ε) .

The second term is bounded by (1/2π)|f ′(x)| and vanishes pointwise for x 6= t as

ε→ 0. Therefore

lim
ε↘0

fε(t) = lim
ε↘0

1

π

∫
dx f(x)

ε

(x − t)2 + ε2
= f(t) . �

Now let f ∈ Cn+2(R) for some n ≥ 0. Following [28] (see also [6]) we generalize

(B.4) by constructing the almost analytic extension

f̃(z) = χ

(
y

〈x〉

) n+1∑
k=0

f (k)(x)
(iy)k

k!
, (B.5)

where 〈x〉 = (1 + x2)1/2;χ ∈ C∞0 (R) and χ = 1 on some open interval 3 0. From

∂z̄

n+1∑
k=0

f (k)(x)
(iy)k

k!
= f (n+2)(x)

(iy)n+1

(n+ 1)!
;

∂z̄χ

(
y

〈x〉

)
=

1

〈x〉χ
′
(
y

〈x〉

)(
i− xy

〈x〉2
)

we obtain the estimate:

|∂z̄ f̃(z)| ≤
∣∣∣∣χ( y

〈x〉

)
(iy)n+1

(n+ 1)!

∣∣∣∣ |f (n+2)(x)| +
n+1∑
k=0

∣∣∣∣ρ( y

〈x〉

)
yk

k!

∣∣∣∣ ∣∣∣∣ 1

〈x〉f
(k)(x)

∣∣∣∣ ,
(B.6)

where ρ(t) = |χ′(t)|〈t〉 has compact support 63 0. Therefore:∫
dy |∂z̄ f̃(z)| |y|−p−1 ≤ const.

n+2∑
k=0

〈x〉k−p−1|f (k)(x)| ,



1070 W. HUNZIKER and I. M. SIGAL

since the integrability of the first term in (B.6) against |y|−p−1 requires p ≤ n.

Defining the norms

‖f‖m =

∫
dx 〈x〉m|f(x)| (B.7)

we obtain ∫
|df̃(z)| |Im(z)|−p−1 ≤ const.

n+2∑
k=0

‖f (k)‖k−p−1 (B.8)

for p = 0 · · ·n, provided that

‖f (k)‖k−p−1 <∞ for k = 0 · · ·n+ 2 . (B.9)

Lemma B.2. Let f ∈ Cn+2(R), n ≥ 0, and suppose that (B.9) holds for p =

0 · · ·n. Let f̃(z) be given by (B.5). Then

1

p!
f (p)(A) =

∫
df̃(z)(z −A)−p−1 (B.10)

for p = 0 · · ·n and for all selfadjoint operators A, where by (B.8) the integral con-

verges absolutely in norm sense and is bounded uniformly in A.

Proof. To prove (B.10) we first assume f ∈ Cn+2
0 (R). Then ∂pxf̃(z) is an almost

analytic extension of f (p)(x) in the sense of Lemma B.1, so that

f (p)(A) =

∫
d(∂pxf̃(z))(z −A)−1 = p!

∫
df̃(z)(z −A)−p−1

by partial integration in x. Now let f ∈ Cn+2(R) obey (B.9). Then (B.10) holds

for f replaced by fm(x) = f(x)χ(x/m), χ ∈ C∞0 (R) with χ(x) = 1 near x = 0. It

is easy to see that

lim
m→∞

‖f (k) − f (k)
m ‖k−p−1 = 0 ; k = 0 · · ·n+ 2 .

Moreover, f
(p)
m (x) is uniformly bounded in terms of ‖f (p+1)

m ‖0 and converges point-

wise to f (p)(x) as m→∞. Therefore (B.10) is preserved in this limit. �

Commutator Expansions. Now we derive expansion formulae for commutators

with remainder whose prototype was introduced in [45] (see also [2] for a different

version). We consider two bounded operators H and A = A∗. Multiple commuta-

tors are defined recursively by

ad
(k)
A (H) = [ad

(k−1)
A (H), A] ; ad

(0)
A (H) = H .

Then

[H, (z −A)−1] = (z −A)−1[H,A](z −A)−1 , (B.11)

and more generally:

[ad
(k−1)
A (H), (z −A)−1] = (z −A)−1ad

(k)
A (H)(z −A)−1 . (B.12)
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Starting from (B.11) we use (B.12) to commute the rightmost resolvent (z − A)−1

systematically to the left, obtaining:

[H, (z −A)−1] =
n−1∑
k=1

(z −A)−k−1ad
(k)
A + (z −A)−nad

(n)
A (H)(z −A)−1 . (B.13)

Let f ∈ C∞0 (R), and let f̃ be the almost analytic extension (B.5). From (B.13) and

Lemma B.2 we find the commutator expansion:

[H, f(A)] =
n−1∑
k=1

1

k!
f (k)(A)ad

(k)
A (H) + Rn ;

Rn =

∫
df̃(z)(z −A)−nad

(n)
A (H)(z −A)−1 (B.14)

with the estimate

‖Rn‖ ≤ const.‖ad(n)
A (H)‖

n+2∑
k=0

‖f (k)‖k−n . (B.15)

Similarly, we could have commuted the resolvents (z − A)−1 systematically to the

right, arriving at

[H, f(A)] =
n−1∑
k=1

1

k!
(−1)k−1ad

(k)
A (H)f (k)(A) +Rn ;

Rn = (−1)n−1

∫
df̃(z)(z −A)−1ad

(n)
A (H)(z −A)−n (B.16)

and with the same estimate (B.15). Combining the two expansions we also find a

useful symmetric form for n = 2:

[H, f(A)] =
1

2
[f ′(A)ad

(1)
A (H) + ad

(1)
A f ′(A)] +R2 ; (B.17)

R2 =
1

2

∫
df̃(z)(z −A)−1[(z − A)−1, ad

(2)
A (H)](z −A)−1

= −1

2

∫
df̃(z)(z −A)−2ad

(3)
A (H)(z −A)−2 . (B.18)

As in the proof of Lemma B.2, these expansions extend to all bounded C∞–functions

f with bounded derivatives, as long as the norms arising in (B.15) remain finite.

Commutator Estimates. We will often deal with commutators of the form

[g(H), f(A)] for unbounded selfadjoint operatorsH,A. We assume that g ∈ C∞0 (R).

Then the representation

[g(H), A] =

∫
dg̃(z)(z −H)−1[H,A](z −H)−1 (B.19)
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requires an almost analytic extension g̃(z) of the form (B.5) with n ≥ 1. The

integral is well defined if [H,A] is H–bounded, since then

‖[H,A](z −H)−1‖ ≤ const.(1 + |z|)|Im(z)|−1 ,

where the factor |z| is harmless since g̃ has compact support. Similarly, we can deal

with

ad
(k)
A (g(H)) =

∫
dg̃(z)ad

(k)
A ((z −H)−1) , (B.20)

writing out

ad
(1)
A ((z −H)−1) = (z −H)−1ad

(1)
A (H)(z −H)−1 ;

ad
(2)
A ((z −H)−1) = 2(z −H)−1ad

(1)
A (H)(z −H)−1ad

(1)
A (H)(z −H)−1

+ (z −H)−1ad
(2)
A (H)(z −H)−1 ;

and so forth. Therefore, if ad
(k)
A (H) is H–bounded for 1 ≤ k ≤ n, we have

‖ad(n)
A ((z −H)−1)‖ ≤ const.

n∑
p=1

|Im(z)|−p−1

on supp(g̃). To use (B.20) we take an almost analytic extension g̃(z) of the form

(B.5) for the given n, which leads to a bound:

‖ad(n)
A (g(H))‖ ≤ const.

n∑
p=1

n+2∑
k=0

‖g(k)‖k−p−1 . (B.21)

Now we can discuss

[g(H), f(A)] =

∫
df̃(z)(z −A)−1[g(H), A](z −A)−1 . (B.22)

If [H,A] is H–bounded, then [g(H), A] is bounded. f̃(z) can be taken of the form

(B.5) with n = 1, and the convergence of the integral (B.22) requires that

‖f (k)‖k−2 <∞ for k = 0 · · · 3 . (B.23)

This already allows f(x) to grow like |x|p with p < 1, if also f (k)(x) = O(|x|p−k)
for k ≤ 3. Suppose now that ad

(k)
A (H) is H-bounded for k ≤ n. Then ad

(k)
A (g(H))

is bounded for k ≤ n and we can represent the commutator [g(H), f(A)] by an

expansion, like

[g(H), f(A)] =
n−1∑
k=1

1

k!
f (k)(A)ad

(k)
A (g(H)) + Rn ;

Rn =

∫
df̃(z)(z −A)−nad

(n)
A (g(H))(z −A)−1 . (B.24)
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Here f̃(z) must be of the form (B.5) for the given n, but the convergence of the

integral only requires that

‖f (k)‖k−n−1 <∞ for k = 0 · · ·n+ 1 . (B.25)

This allows f(x) to grow like |x|p, p < n, with corresponding slower growth of the

derivatives.

Appendix C. Estimates for the Long-Range Case

Here we derive additional propagation estimates for the dynamics Ut : ψ → ψt
generated by Ht = H +Wt(x). These estimates are used in Sec. 8 and (indirectly)

in Sec. 9. They are based on the hypothesis

∇Ia(x) = O(|x|−µ−1
a ) ;

(µ > 0)
∇Wt(x) ≤ const.(1 + |x|)−µ−1 ∀ t

. (C.1)

Roughly speaking we show that the region of ballistic motion can be decoupled from

that of a subballistic one (Theorem C.2 and its consequence). This is used in Sec. 8

in order to conclude that the subballistic part of any orbit is a bound state of H.

We pick the scaling parameters δ and δ′ in the ranges

2

3
< δ < 1 ; δ(µ+ 2) > 2 , δ < δ′ < 1 . (C.2)

We also define

Γt := γt − ∂tgt =
1

2
(∇gt · p+ p · ∇gt) ;

K :=
1

2
p2 + 1 ; ‖ψ‖H := ‖ψ‖+ ‖Hψ‖ ,

(C.3)

and we will use (1.16) to estimate ‖Kψt‖ ≤ const.‖ψ‖H . With χ(x ≤ θ) we denote

any smoothed characteristic function of the type shown in Fig. 6; in particular

supp(χ) ⊂ (−∞, θ] and 0 ≥ χ′ ∈ C∞0 (R).

 x )(χ 

x

θ
1

θ

<

Fig. 6.

If A is a selfadjoint operator then χ(A ≤ θ) is the corresponding “function” of

A, and χ(A ≥ θ) is defined analogously. To estimate commutators involving such

operators we will use the methods of Appendix B. The results of Appendix C are:

Theorem C.1. Let 0 < θ1 ≤ θ. Then, for large t and all ψ ∈ D(H)

‖χ(t1−δ
′
Γt ≤ θ1)χ(t−δ

′
gt ≥ θ)ψt‖2

≤ ‖χ(t−δ
′
gt ≥ θ)ψ‖2 + const. t−ρ‖ψ‖2H (ρ > 0) . (C.4)
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Remark. δ′ > δ implies that χ(t−δ
′
gt ≥ θ) → 0 strongly as t → ∞. Therefore it

follows from (C.4) that

lim
t→∞

χ(t1−δ
′
Γt ≤ θ1)χ(t−δ

′
gt ≥ θ)ψt = 0 .

This is equivalent to

lim
t→∞

χ(t−δ
′
gt ≥ θ)χ(t1−δ

′
Γt ≤ θ1)ψt = 0 (C.5)

since ‖[t1−δ′Γt, t−δ
′
gt]‖ ≤ const. t1−2δ′ → 0 . (C.6)

Theorem C.2. Let θ > 0. Then for large t and with ρ > 1

Dtχ(t−δ
′
gt ≥ θ) =

6∑
k=1

±Bk(t) +O(t−ρ) (C.7)

in form sense on D(H), with an appropriate sign ± for each k. The quadratic forms

Bk(t) are positive and satisfy∫ ∞
1

dt〈Bk(t)〉t ≤ const.‖ψ‖2H ∀ψ ∈ D(H) . (C.8)

The symbol O(t−ρ) denotes a form on D(H) with

|〈O(t−ρ)〉ψ| ≤ const. t−ρ‖ψ‖2H (ρ > 1) (C.9)

for large t and all ψ ∈ D(H).

Proofs. To prepare the proof of Theorem C.1 we introduce a variable s ∈ R+ and

we consider the form

Φt(s) = fχf ; f = f(s−δ
′
(gs − ct)) ; χ = χ(bΓs) , (C.10)

on D(H), with real parameters b > 0 and c to be adjusted later as functions of s.

f and χ are smooth characteristic functions depicted in Fig. 7:

χ

θ

f

0 1θ

Fig. 7.

Our strategy is to estimate the form

DtΦt(s) = f(Dtχ)f + ((Dtf)χf + adjoint) , (C.11)
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for 0 ≤ t ≤ s (s large), and then to use this estimate to derive the desired

bound for

〈Φs(s)〉s = 〈Φ0(s)〉0 +

∫ s

0

dt〈DtΦt(s)〉t . (C.12)

Lemma C.1. For s sufficiently large and for all ψ ∈ D(H)

〈Dtχ〉ψ ≤ const.(b3s−3δ + bs−δ(µ+1))‖ψ‖2H (C.13)

with the constant independent of t, c, b and s.

Proof. Let χ be such that |χ′|1/2 ∈ C∞0 . We write

Dtχ = i[Ht, χ] = A+B ; A = i[K,χ] ; B = i[V +Wt, χ] . (C.14)

Estimate of A: the symmetric expansion (B.18) for K−1AK−1 = −i[K−1, χ] reads

K−1AK−1 = − b
2
(χ′i[K−1,Γs] + adjoint)

+
ib3

2

∫
dχ̃(z)(z − bΓs)−2ad

(3)
Γs

(K−1)(z − bΓs)−2 . (C.15)

To estimate these terms we note that

ad
(k)
Γs

(K) = pmG
(k)
mn(x)pn +G(k)(x) ,

where G
(k)
mn(x) and G(k)(x) are polynomials of derivatives of gs(x), supported in

{|x| ≥ sδ} and homogeneous in x of degree −k and −(k+ 2), respectively, for large

|x|. This leads to

‖K−1ad
(k)
Γs

(K)K−1‖ ≤ const. s−kδ and

‖ad(k)
Γs

(K−1)‖ ≤ const. s−kδ .
(C.16)

Therefore the second term in (C.15) is of order b3s−3δ in norm as s→∞. The first

term is symmetrized using χ′ ≤ 0 and

−1

2
χ′i[K−1, bΓs] + adjoint = |χ′|1/2i[K−1, bΓs]|χ′|1/2

+
1

2
[|χ′|1/2, [|χ′|1/2, i[K−1, bΓs]]] .

By (C.16) the multiple commutator is of order b3s−3δ in norm. Finally, using

i[K−1,Γs] = −K−1i[K,Γs]K
−1 = −K−1(pg′′s p−

1

4
∆2gs)K

−1

and ∆2gs = O(s−3δ) we arrive at

K−1AK−1 = −Q+O(bs−3δ + b3s−3δ)
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in norm as s→∞, where

Q = b|χ′|1/2K−1(pg′′p)K−1|χ′|1/2 ≥ 0 .

Therefore

〈A〉ψ = −〈P 〉ψ +O(bs−3δ + b3s−3δ)‖ψ‖2H (C.17)

on D(H), where P = KQK is a positive quadratic form.

Estimate of B: By (C.1) the commutator in the representation

B = ib

∫
dχ̃(z)(z − bΓs)−1[V +Wt,Γs](z − bΓs)−1

is of order s−δ(µ+1) in norm. Therefore

‖B‖ ≤ const. bs−δ(µ+1) (C.18)

uniformly in t if s is sufficiently large. (C.13) now follows from (C.17) and

(C.18). �

Lemma C.2. If bc ≥ θ1 then

〈(Dtf)χf + adjoint〉ψ ≤ const. bs−2δ′‖ψ‖2 (C.19)

for all ψ ∈ D(H), uniformly in t.

Proof. Since f = f(s−δ
′
(gs − ct)) is a function of x we can easily compute Dt(f)

with the result

Dtf = s−δ
′
(f ′)1/2 · (Γs − c) · (f ′)1/2 , (C.20)

where we have used that f ′ ≥ 0 and that the commutator of Γs with a function of

x is again a function of x. In particular, i[Γs, gs] = (∇gs)2 is bounded uniformly in

s so that

‖[(f ′)1/2, χ(bΓs)]‖ ≤ const. bs−δ
′
.

Using this we arrive at

(Dtf)χ = s−δ
′
(f ′)1/2χ(bΓs) · (Γs − c) · (f ′)1/2 +O(bs−2δ′) ;

(Dtf)χf + adjoint = s−δ
′
f1χ(bΓs) · (Γs − c) · f1 +O(bs−2δ′) , (C.21)

where f2
1 := (f2)′. (C.19) now follows by observing that χ(bΓs) · (Γs − c) ≤ 0 if

bc ≥ θ1. �

Proof of Theorem C.1. By (C.13) and (C.19)

〈DtΦt(s)〉t ≤ const.(b3s−3δ + bs−δ(µ+1))‖ψ‖2H

uniformly in t. From (C.12) we thus obtain

〈Φs(s)〉s ≤ 〈Φ0(s)〉0 + const.(b3s1−3δ + bs1−δ(µ+1))‖ψ‖2H . (C.22)
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Now we fix b = s1−δ′ ; c = θ1s
δ′−1. Then (C.22) reads

〈Φs(s)〉s ≤ 〈Φ0(s)〉0 + const. s−ρ‖ψ‖2H ,

where ρ = min(6δ− 4, δ(µ+ 2)− 2) > 0. Replacing s by t and χ by χ2 we arrive at

(C.4). �

For the proof of Theorem C.2 we consider f = f(t−δ
′
gt) with the function f

shown in Fig. 8 (we identify f2 with the function χ(t−δ
′
gt ≥ θ) of (C.7)).

f

θ+ε

θ
~
θ+ε

~
θ

f
~

Fig. 8.

Our task is to decompose Dt(f
2) into a sum of positive and negative quadratic

forms in the sense of (C.8). Like (C.20) we find

Dt(f
2) = t−1f1 · (t1−δ

′
Γt − δ′t−δ

′
gt + t1−δ

′
∂tgt) · f1 , (C.23)

with f2
1 = (f2)′. The first step of the decomposition is achieved by inserting a

partition of unity

1 =
3∑
k=1

χk(t
1−δ′Γt) ,

with functions χk as shown in Fig. 9.

Fig. 9.

The parameters θ1 · · · θ3 will be selected in the course of the proof. (C.6) allows

us to write

Dt(f
2) =

3∑
k=1

t−1f1χ
1/2
k · (t1−δ′Γt − δ′t−δ

′
gt) · χ1/2

k f1 +O(t−ρ) , (C.24)
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with O(t−ρ) defined in (C.9). For the same reason the factors χ
1/2
k and f1 can

be freely commuted modulo contributions to O(t−ρ), a fact we shall use without

comment in the analysis below. The task of proving Theorem C.2 is now reduced

to prove (C.7) separately for each term in the sum (C.24).

Let χ be one of the functions χ1, χ2 appearing in (C.24) and let At = t1−δ
′
Γt.

In what follows we have to compute ∂tχ(At). We would like to do that using the

functional calculus of Appendix B via

∂t(z −At)−1 = −(z −At)−1(∂tAt)(z −At)−1 .

In general this expression is ill-defined as an operator (or form) on D(|p|) since

we cannot expect that (z − At)−1 maps D(|p|) into itself. To clarify this point we

observe that the commutators

[pk, At] = t1−δ−δ
′
(Ck`p` + Ck)

are first-order differential operators with bounded coefficients Ck`(x, t), Ck(x, t).

Therefore the operators Bk(z) = pk(z−At)−1(1+ |p|)−1 obey the coupled equations

Bk(z) = (z −At)−1pk(1 + |p|)−1

+ (z −At)−1t1−δ−δ
′
Ck(z −At)−1(1 + |p|)−1

+ (z −At)−1t1−δ−δ
′
Ck`B`(z) .

This system can be solved by iteration for large t in the region

|Im z| ≥ t−ε; ε < δ + δ′ − 1 , (C.25)

with a resulting estimate

‖pk(z −At)−1(1 + |p|)−1‖ ≤ const.|Im z|−1 . (C.26)

Guided by this result we approximate the function χ(s) by

χt(s) = χ(s)− χ̄t(s) ;

χ̄t(s) =

∫
|Imz|≤t−ε

dχ̃(z)(z − s)−1 , (C.27)

where χ̃(z) is the almost analytic extension of χ(x) defined by (B.5) with n arbitrary

large. Since χ′(s) has compact support it follows from (B.5) and (B.6) that

χ̄t(s) = const.

∫
|y|≤t−ε

dxdyχ(n+2)(x)yn+1(x+ iy − s)−1 (C.28)

for t sufficiently large. In particular, χ̄t(s) (which depends on n) has arbitrary fast

time-decay

sup
s
|χ̄t(s)| ≤ const. t−nε (C.29)

for large t.
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The benefit of the approximation (C.27) is that — in contrast to χ(At) — the

operator χt(At) has a time derivative for large t given by

∂tχt(At) = −
∫

|Imz|≥t−ε

dχ̃(z)(z −At)−1(∂tAt)(z −At)−1 +O(t−nε) (C.30)

on D(|p|), where

∂tAt = (1− δ′)t−1At + t1−δ
′
∂tΓt .

To prove this we first remark that the integral in (C.30) is convergent due to (B.6)

and the estimate (C.26). Next we note that the formula

1

h
[χt(At+h)− χt(At)] = −

∫
|Imz|≥t−ε

dχ̃(z)(z −At+h)−1 1

h
(At+h −At)(z − At)−1

holds onD(|p|) if χ ∈ C∞0 (R) and extends (as a strong limit onD(|p|)) by continuity

in χ to our case where only χ′ ∈ C∞0 (R). For h→ 0 this shows the existence of the

first term in

∂t(χt(At)) = ∂s(χt(As))s=t − (∂tχ̄t)(At) ,

while the second term is of order t−nε−ε−1 by (C.28). This proves (C.30). As our

principal tool we first estimate the form

Dt(fχtf) = f(Dtχt)f + ((Dtf)χtf + adjoint) ,

where χ is one of the functions χ1, χ2 in (C.24), χt = χt(At) and f = f(t−δ
′
gt) as

before. Since χ′1 and χ′2 have opposite signs we distinguish two cases:

Lemma C.3. Let ±χ′ ≥ 0. Then, correspondingly,

f(Dtχt)f = ±P ± (1− δ′)t−1f |χ′t|t1−δ
′
Γtf +O(t−ρ) , ρ > 1 , (C.31)

on D(H), where P is a positive quadratic form on D(H), and where O(t−ρ) is

defined by (C.9).

Proof. The first part of the proof is almost the same as the proof of Lemma C.1.

Compared with (C.14) we now have

Dtχt = A+B + C

with

A = i[K,χt] ; B = i[V +Wt, χt]

and with the additional term C = ∂tχt. Due to (C.29) the contributions of A and

B can be estimated as before with χt in place of χ, replacing s by t, b by t1−δ
′
and

taking the sign of χ′ into account. Corresponding to (C.13) the resulting error is
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of order t−ρ with ρ = min(6δ − 3, δ(µ+ 2)− 1) > 1. For the extra contribution of

C = ∂tχt we obtain from (C.30):

f(∂tχt)f = D +E , where (C.32)

D = −(1− δ′)t−1fAt

∫
|Imz|≥t−ε

dχ̃(z)(z −At)−2f +O(t−nε)

= (1− δ′)t−1fAtχ
′(At)f +O(t−nε) ; (C.33)

E = t1−δ
′

∫
|Imz|≥t−ε

dχ̃(z)(z −At)−1[At, f ](z −At)−1(∂tΓt)

· (z −At)−1[f,At](z −At)−1 . (C.34)

In the last expression we used that f · (∂tΓt) = 0 (i.e. ∂tgt = 0 on supp f) for

large t. As a quadratic form on D(H), E is of order t−ρ in the sense of (C.7) with

ρ = 5δ′ − 2 > 1. This follows from the estimate (C.26) since ∂tΓt is of order t−1

relative to |p| and since ‖[At, f ]‖ is of order t1−2δ′ . Consequently we have

f(∂tχt)f = (1− δ′)t−1fAtχ
′(At)f +O(t−ρ) (C.35)

with ρ > 1, which together with the remark above concerning the terms A and B

implies (C.31). �

Lemma C.4. Let f2
1 = (f2)′. Then

(Dtf)χtf + adjoint = t−1f1χ
1/2 · (t1−δ′Γt − δ′t−δ

′
gt) · χ1/2f1 +O(t−ρ) . (C.36)

Proof. Here χt can be replaced by χ within the error O(t−ρ), ρ > 1. Then the

estimate (C.36) corresponds to (C.21). The only difference in the proof is that now

∂tf = −δ′t−1−δ′f ′gt + t−δ
′
f ′∂tgt ,

where the last term vanishes exactly for sufficiently large t. �

Proof of Theorem C.2. By the results so far we have for ±χ′ ≥ 0:

Dt(fχtf) = ±P (P ≥ 0)

± (1− δ′)t−1f |χ′| · (t1−δ′Γt) · f
+ t−1f1χ

1/2 · (t1−δ′Γt − δ′t−δ
′
gt) · χ1/2f1

+O(t−ρ) (ρ > 1) .

(C.37)

Now we can decompose each term of the sum (C.24) in the sense of (C.7):

Term (k = 1): We introduce two quadratic forms

B1 := t−1f1χ1 · (θ1 − t1−δ
′
Γt) · f1 ;

B2 := t−1χ
1/2
1 f1 · (δ′t−δ

′
gt − θ1) · f1χ

1/2
1 .

(C.38)
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Clearly

Term (k = 1) = −B1 −B2 .

We observe that χ1 · (θ1 − t1−δ
′
Γt) ≥ 0 due to the support of χ1. Since according

to Fig. 8

θ ≤ t−δ′gt ≤ θ + ε

on supp(f1), we also have f1 · (δ′t−δ
′
gt − θ1) · f1 ≥ 0 by choosing 0 < θ1 < δ′θ.

Hence B1 and B2 are positive.

Next, since χ′1 ≤ 0 and |χ′1|t1−δ
′
Γt ≥ 0 we obtain from (C.37)

Dt(f(χ1)tf) ≤ t−1f1χ
1/2
1 · (t1−δ′Γt − δ′t−δ

′
gt) · χ1/2

1 f1 +O(t−ρ)

= −t−1f1χ1 · (θ1 − t1−δ
′
Γt) · f1

− t−1χ
1/2
1 f1 · (δ′t−δ

′
gt − θ1) · f1χ

1/2
1 +O(t−ρ) . (C.39)

Now (C.39) shows that the two positive quadratic formsB1 andB2 are integrable

in the sense of (C.8).

Term (k = 2): Choosing θ2 > δ′(θ + ε) we find in the same way

Term (k = 2) = B3 +B4 +O(t−ρ) ,

B3 := t−1f1χ
1/2
2 · (t1−δ′Γt − θ2) · χ1/2

2 f1 ;

B4 := t−1χ
1/2
2 f1 · (θ2 − δ′t−δ

′
gt) · f1χ

1/2
2 . (C.40)

In addition we also conclude from (C.37) that

Dt(f(χ2)tf) ≥ (1− δ′)t−1fχ′2 · (t1−δ
′
Γt) · f +O(t−ρ) ,

which gives ∫ ∞
1

dt t−1〈fχ′2t1−δ
′
Γtf〉t ≤ const.‖ψ‖2H . (C.41)

Term (k = 3): Here we exploit (C.41) and the fact that

χ̃2(x) :=

∫ x

−∞
dsχ3(s)

has the same general form as χ2, but with support [θ3,+∞). Hence, replacing f by

a function f̃ shown in Fig. 8 such that θ3 > δ′(θ̃ + ε), (C.41) takes the form∫ ∞
1

dt t−1〈f̃χ3t
1−δ′Γtf̃〉t ≤ const.‖ψ‖2H . (C.42)

Since θ̃ < θ we also have f1 ≤ const. f̃ , so that

f1χ3 · (t1−δ
′
Γt) · f1 ≤ const. f̃χ3 · (t1−δ

′
Γt) · f̃ +O(t−ρ) .
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Therefore (C.42) implies∫ ∞
1

dt t−1〈f1χ3 · (t1−δ
′
Γt) · f1〉t ≤ const.‖ψ‖2H ,

and since χ3 · (t1−δ
′
Γt) ≥ θ3χ3 ∫ ∞

1

dt t−1〈f1χ3f1〉t ≤ const.‖ψ‖2H ;∫ ∞
1

dt t−1〈χ1/2
3 f1 · (t−δ

′
gt) · f1χ

1/2
3 〉t ≤ const.‖ψ‖2H .

From this we obtain directly

Term (k = 3) = B5 −B6 +O(t−ρ) ;

B5 := t−1f1χ3 · (t1−δ
′
Γt) · f1 ;

B6 := t−1χ
1/2
3 f1 · (δ′t−δ

′
gt) · f1χ

1/2
3 (C.43)

with the forms B5 and B6 positive and integrable in the sense of (C.8). This

concludes the proof of Theorem C.2. �
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