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Abstract. This paper discusses a conservation conjecture for the first oc-
currence indices. Such indices record the first occurrence of an irreducible
admissible representation π of a fixed group G in the local theta correspon-
dence as the second member of a dual pair (G, G′) runs over the isometry
groups in a Witt tower. For example, for a fixed nonarchimedean local field
F and for a fixed quadratic character χ of F×, there are two Witt towers
{V +

m } and {V −
m }, where the quadratic space V ±

m has dimension m, character
χ and Hasse invariant ±1. If m±

χ (π) is the dimension of the space V ±
m for

which the irreducible admissible representation π of Spn(F ) first occurs in the
theta correspondence for the dual pair (Spn(F ), O(V ±

m )), then we conjecture
that

m+
χ (π) + m−

χ (π) = 4n + 4.

We prove this conjecture in many cases, in particular, when π is a supercus-
pidal representation.

2000 Mathematics Subject Classification: primary 11F27; secondary 22E50.

0. Introduction

A basic step in understanding the local theta correspondence is the descrip-
tion of the behavior of the correspondence as one group in the reductive dual
pair varies in a Witt tower, [18]. The combination of this Witt tower tech-
nique, with the method of ‘doubling’, [4], [18], and the local ‘doubling’ zeta
integrals, [16], [17], lies behind much of our qualitative understanding of the
correspondence. In this paper1, in the case of a nonarchimedean local field,
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from the Max-Planck Society and Alexander von Humboldt Stiftung.
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1which has languished in a drawer for nearly 10 years, due to the idolence of the first

author
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we conjecture a ‘conservation relation’ between the first occurrence indices in
a pair of related Witt towers and prove it in many cases.

Suppose that F is a nonarchimedean local field of characteristic zero. Two
quadratic spaces V and V ′ over F are said to lie in the same Witt tower if they
are isomorphic after the addition of a suitable number of hyperbolic planes.
The Witt tower of V is then determined by the discriminant character χ = χV

and the Hasse invariant ε = ε(V ) = ±1, and, of course, the parity of the
dimension of V . If χ, a quadratic character of F×, and a parity have been
fixed, there are two associated Witt towers {V +

m } and {V −
m }, where χV ±

m
= χ,

ε(V ±
m ) = ±1, and dimF (V ±

m ) = m. Let G′
n = Sp(Wn) be the symplectic

group of rank n over F , in the case of even parity, or Mp(Wn), its metaplectic
extension, in the case of odd parity. Let Irr(G′

n) be the set of isomorphism
classes of irreducible admissible (genuine) representations of G′

n. For π ∈
Irr(G′

n), the first occurrence index m±
χ (π) is the smallest dimension m for which

π occurs in the local theta correspondence for the dual pair (G′
n, O(V ±

m )). It is
known that π then occurs in the correspondence for any pair (G′

n, O(V ±
m )) with

m ≥ m±
χ (π), and that, by Howe’s stable range condition, m±

χ (π) ≤ m0 + 2n,
where m0 = m0(±, χ) is the dimension of the smallest quadratic space in the
tower {V ±

m }. The conservation relation can be stated as follows.

Conjecture A. For any π ∈ Irr(G′
n),

m+
χ (π) + m−

χ (π) = 4n + 4.

In the case of odd parity, Conjecture A implies the following theta dichotomy
phenomenon:

Conjecture B. Fix a quadratic character χ. Any π ∈ Irr(G′
n) occurs in the

theta correspondence with precisely one of the spaces V +
2n+1 and V −

2n+1.

In fact, this dichotomy is controlled by a local root number, cf. [3] in the
unitary group case, and this phenomenon leads to interesting global arithmetic
related to central values and derivatives of L-functions, [8]. We will not discuss
these aspects further in the present paper, see, however, [11].

Conjecture A asserts that if a representation π occurs ‘early’ in one tower,
it must occur late in the other. The most extreme example of this is the case
of the trivial representation 11 of Sp(Wn), which we view (formally) as the
Weil representation of the zero dimensional space at the bottom of Witt tower
of split quadratic space {V +

m } for the trivial character χ = χ0 = 1. Thus,
m+

χ0
(11) = 0. On the other hand, we show:

Theorem 1. The conservation relation holds for π = 11 and for any quadratic
character χ. In fact, m−

χ0
(11) = 4n + 4, and m±

χ (11) = 2n + 2, for χ �= χ0.
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This result is actually an essential intermediate step in obtaining the following
criterion in the general case. Let

ι : G′
n × G′

n → G′
2n(0.1)

be the doubling embedding, and let I ′2n(s, χ) be the degenerate principal series
representation of G′

2n defined by the character χ and s ∈ C.

Theorem 2. Fix a quadratic character χ and a parity. Suppose that π is an
irreducible admissible representation of G′

n such that

dim HomG′
n×G′

n
(I2n(s0, χ), π ⊗ π∨) = 1,

for all s0 in the set:

Crit =






{ −n − 1
2 ,−n + 1

2 , . . . , n − 1
2 , n + 1

2 } for even parity and χ = 1,
{ −n + 1

2 , . . . , n − 1
2 } for even parity and χ �= 1,

{ −n,−n + 1, . . . , n − 1, n } for odd parity.

Then

m+
χ (π) + m−

χ (π) = 4n + 4.

Of course, many representations π ∈ Irr(G′
n) satisfy the condition of this

Theorem. For example:

Corollary 3. The conservation relation of Conjecture A holds for any super-
cuspidal representation π ∈ Irr(G′

n). In particular, in the metaplectic case,
such representations satisfy theta dichotomy.

Analogous conservations relations should hold for other dual pairs.
For example, for an irreducible admissible representation τ ∈ Irr(O(V ))

of the orthogonal group of some quadratic space V over F , let n(τ) be the
smallest n for which τ occurs in the theta correspondence for the dual pair
(O(V ), G′

n). Again, we know that τ then occurs in the correspondence for
the pair (O(V ), G′

n) for any n ≥ n(τ), and that n(τ) ≤ m = dimF (V ). Let
ν : O(V ) → F×/F×,2 be an extension to O(V ) of the spinor norm on SO(V ).
For any quadratic character χ of F×, let χ̃ = χ ◦ ν be the corresponding
character of O(V ) and let sgn · χ̃ be its twist by the sgn character. The
analogue of the conservation relation in this case is the following.

Conjecture C. For a fixed quadratic character χ and for any π ∈ Irr(O(V )),

n(χ̃ · τ) + n(sgn · χ̃ · τ) = dimF (V ).

The analogous conjectures in the case of unitary groups are made in [3].
The methods of the present paper can be applied in the orthogonal and unitary
cases as well. We hope to discuss the results elsewhere.
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Since this paper was first written, a number of people have established
conservation relations and dichotomy in various cases. For example, for uni-
tary groups over R, quite precise information about the correspondence was
obtained by A. Paul, [15] and the conservation relations were verified2. In the
nonarchimedean case, there is work of Muiç, [14], who proves the conservation
relation for discrete series representations π ∈ Irrds(G′

n) in the case of even
parity, using the work of Moeglin and Tadic [12].

The authors were aware of elementary cases of dichotomy, a number of
which are contained in [18]. This lead to some of the problems studied below.
In particular, the conservation conjecture stated above and its analogue for
unitary groups were found by the first author while visiting the Tata Institute
in Bombay in January 1994. A serious effort to try to prove these conjectures
was undertaken jointly soon thereafter, and the present paper, which utilizes
in large part the methods of [18], was essentially written by May of 1995.
The results were summarized in the lecture notes [7] in 1996. The present
volume seemed like a good occasion to finally finish the task of polishing it for
publication. The first author would like to express his heartfelt appreciation
to the second for all of the mathematics and encouragment he has shared so
generously over the years.

1. Quotients of degenerate principal series

In this section we recall some of the basic facts about certain degenerate prin-
cipal series representations and their restrictions via doubling.

Let F be a non-archimedean local field of characteristic 0, and let W , < , >
be a non-degenerate symplectic vector space of dimension 2n over F . We fix
an identification W = F 2n (row vectors) such that

< w1, w2 > = w1J
tw2, J =

(
1n

−1n

)

,

and we view the symplectic group G = Gn = Sp(W ) as acting on W on the
right. We let e1, . . . , en, e′1, . . . , e

′
n be the fixed basis of W . Let Pn be the

stabilizer of the maximal isotropic subspace of W spanned by the rows of the
matrix (0, 1n) ∈ Mn,2n(F ), i.e., by the vectors e′1, . . . , e

′
n, and let

M = { m(a) =
(

a
ta−1

)

| a ∈ GLn(F ) },

and

N = { n(b) =
(

1 b
1

)

| b = tb ∈ Mn(F ) },

2Here there are many Witt towers and one must group them suitably.
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so that Pn = MN is a Levi decomposition of the Siegel parbolic Pn. Let
K = Spn(O) be the maximal compact subgroup stabilizing the lattice O2n in
W . In the Iwasawa decomposition G = PK = NMK, write g = nm(a)k, and
note that the quantity

|a(g)| = |det a |

is well defined, independent of the choice of a ∈ GLn(F ). Similarly, for any
r, 1 ≤ r ≤ n, let Pr be the maximal parabolic of Gn which stabilizes the
isotropic r-plane spanned by the first r rows of the matrix (0, 1n), i.e., by
the vectors e′1, . . . , e

′
r. Then there is a Levi decomposition Pr = MrNr where

Mr � GLr × Gn−r is the subgroup of Pr which stabilizes the span of the first
r rows of the matrix (1n, 0) and where

Nr = {







1r x z y
1n−r

ty 0
1r

−tx 1n−r





 }.

Now let

W = W + W−,

where W− = W with symplectic form − < , >. Let H = Sp(W), and note
that, for a suitable choice of basis, we have H � G2n, the natural map

ι : Gn × Gn −→ H = G2n

is given by

ι(g1, g2) = ι0(g1, g
∨
2 ),

with

ι0

((
a1 b1

c1 d1

)

,

(
a2 b2

c2 d2

))

=







a1 b1

a2 b2

c1 d1

c2 d2





 ,

and

g∨ =
(

1
−1

)

g

(
1

−1

)−1

.

Let P = P2n ⊂ H be the Siegel parabolic in H. For s ∈ C and for a
(unitary) character χ of F×, let

I2n(s, χ) = IH
P (χ| |s)
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be the degenerate principal series representation of H consisting of smooth
complex valued functions Φ(s) on H (sections) satisfying

Φ(nm(a)h, s) = χ(a)|a|s+ρ2n Φ(h, s),

where we write χ(a) for χ(det(a)) and where ρ2n = n + 1
2 . Such a section is

called standard for its restriction to K is independent of s. Information about
the points of reducibility of these representations and their composition series
can be found in [2], [9], [20].

The proof of the following uniqueness result plays a fundamental role. Its
proof will be give in the next section.

Theorem 1.1. Let 11 be the trivial representation of G × G. For all s ∈ C

and for all characters χ,

dim HomG×G(I2n(s, χ), 11) = 1.

Here I2n(s, χ) is viewed as a representation of G × G via ι.

In fact, we believe the following:

Conjecture 1.2. For all irreducible admissible representations π of G, and
for all s and χ,

dim HomG×G(I2n(s, χ), π ⊗ π∨) = 1.

In the remainder of this section, we review some of the facts which are involved
in the proofs.

The geometry of the double cosets for P and G×G in H, or, equivalently, of
the G×G orbits in the symplectic Grassmannian P\H of isotropic 2n-planes
in W is well known [17], [7]. Recall that there is a double coset decomposition

H =
n∐

r=0

Pδrι(G × G),

where the image of

Ωr := Pδrι(G × G)

in P\H consists of those isotropic 2n-planes U in W whose intersections U∩W
and U ∩ W− have dimension r. Moreover, the closure of an orbit is given by

Ωr =
∐

j≥r

Ωj .

We write

Str := ι−1

(
(
δ−1
r Pδr

)
∩ ι(G × G)

)

,



On First Occurrence in the Local Theta Correspondence 7

for the stabilizer of the point P · δr in P\H, and we choose the orbit represen-
tatives δr as follows. First, for the open orbit Ω0, let

δ0 = δ
(n)
0 =







0 1
1 0

−1 1 0
0 1 1





 ,

where the blocks have size n × n. For this choice of orbit representative,

St0 = ∆(G),

the diagonal in G×G. For the closed orbit Ωn = Pδnι(G×G), we take δn = 1,
so that

Stn = Pn × Pn ⊂ G × G,

where Pn ⊂ Gn = G is the Siegel parabolic of G. Finally, for any r, let
W = W ′ + W ′′ where W ′ is the span of the vectors e1, . . . , er, e

′
1, . . . , e

′
r and

W ′′ is the span of the vectors er+1, . . . , en, e′r+1, . . . , e
′
n. Then consider the

decomposition

W = W
′ + W

′′,

with W
′ = W ′+W ′

− and W
′′ = W ′′+W ′′

−. There is a corresponding imbedding

Sp(W′) × Sp(W′′) −→ H,

and we let δr be the image 1W′ × δ0,W′′ . Explicitly, this is

δr =















1 0
0 1

1 0
1 0

0 1
−1 1 0

0 1
0 1 1















.

Note that this choice corresponds to an isotropic 2n-plane in W which inter-
sects W ′ and W ′

− in isotropic r-planes and which is transverse to W ′′ and W ′′
−.

It is then not difficult to check that

Str = (GLr × GLr × ∆(Gn−r)) � (Nr × Nr) ⊂ Pr × Pr.
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Later it will be useful to know that, if γ = (a1, a2,

(
a b
c d

)

) ∈ Str, with a1

and a2 ∈ GLr and
(

a b
c d

)

∈ Gn−r, then

δrι(γ)δ−1
r =















a1

d c −c
a2

b a −b
ta−1

1

a −b
ta−1

2

−c d















.(1.1)

The stratification of H by the orbits Ωr gives rise to a filtration

I2n(s, χ) = I2n(s, χ)(n) ⊃ · · · ⊃ I2n(s, χ)(r) ⊃ · · · ⊃ I2n(s, χ)(0),

where I2n(s, χ)(r) is the set of functions in I2n(s, χ) whose restriction to the
closure of Ωr+1 vanishes. The successive quotients are then induced represen-
tations of G × G given by

Qr(s, χ) := I2n(s, χ)(r)/I2n(s, χ)(r+1)

� IG×G
Pr×Pr

(

χ| |s+ r
2 ⊗ χ| |s+ r

2 ⊗ S(Gn−r)
)

,

where the induction is normalized. Here we are inducing from the representa-
tion of Pr × Pr in which Nr × Nr acts trivially, the factor GLr × GLr acts by
the character χ| |s+ r

2 ⊗χ| |s+ r
2 , and the factor Gn−r ×Gn−r acts by left-right

multiplication on the Schwartz space S(Gn−r). In particular,

Q0(s, χ) � S(G),

is a subrepresentation of I2n(s, χ), and

Qn(s, χ) � In(s +
n

2
, χ) ⊗ In(s +

n

2
, χ)

is a quotient of I2n(s, χ).

Definition 1.3. For χ fixed, an irreducible admissible representation π of G
is said to occur on the boundary at the point s if

HomG×G(Qr(s, χ), π ⊗ π∨) �= 0,

for some r > 0.

Since the matrix coefficients of any irreducible admissible representation
π of G lie in C∞(G) = IndG

1 (11), the contragradient of S(G) = indG
1 (11), it
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follows that every representation occurs with multiplicity one on the open cell,
i.e.,

Lemma 1.4. For any fixed χ and s, and for any irreducible admissible repre-
sentation π of G,

dim HomG×G(Q0(s, χ), π ⊗ π∨) = dim HomG×G(S(G), π ⊗ π∨) = 1.

When r > 0, we apply Frobenius reciprocity to obtain:

HomG×G(Qr(s, χ), π ⊗ π∨)

� HomG×G

(

π∨ ⊗ π, IG×G
Pr×Pr

(
χ−1| |−s− r

2 ⊗ χ−1| |−s− r
2 ⊗ C∞(Gn−r)

)
)

� HomMr×Mr
((π∨)Nr

⊗ πNr
, χ−1| |−s− r

2 ⊗ χ−1| |−s− r
2 ⊗ C∞(Gn−r)

)
.

Here Mr � GLr × GLr × Gn−r × Gn−r. Just as in the case of the open
orbit, if πNr

is non-zero, the restriction of (π∨)Nr
⊗ πNr

to Gn−r × Gn−r

always has a non-zero intertwining map to C∞(Gn−r). Thus, occurrence on
the boundary is controlled by the spaces HomGLr ((π

∨)Nr , χ
−1| |−s− r

2 ) and
HomGLr

(πNr
, χ−1| |−s− r

2 ).

Lemma 1.5. An irreducible admissible representation π of G occurs on the
boundary at the point s if and only if, for some r, with 1 ≤ r ≤ n,

HomGLr
((π∨)Nr

, χ−1| |−s− r
2 ) �= 0

and

HomGLr
(πNr

, χ−1| |−s− r
2 ) �= 0.

Next, we recall the basic doubling integral [16] associated to an irreducible
admissible representation π of G. Let φ(g) =< π∨(g)ξ∨, ξ >, for ξ ∈ π and
ξ∨ ∈ π∨, be a matrix coefficient of π∨. Then, for any section Φ(s) ∈ I2n(s, χ),
let

Z(s, χ, φ,Φ) :=
∫

G

φ(g) Φ(δ0 ι(g, 1), s) dg.

In [16] it is proved that this integral converges for Re(s) sufficiently large,
and that, for fixed data φ and Φ(s), with Φ(s) standard, Z(s, χ, φ,Φ) has
a meromorphic continuation to the whole s plane and is given by a rational
function of q−s. Moreover, the family of such functions obtained by varying φ
and Φ(s) has a gcd of the form f(q−s)−1 for some polynomial f(x). Since the
representation of G×G on I2n(s, χ) is smooth, Z(s0, χ, ·, ·) defines an element
of

Z(s0, χ) ∈ HomG×G(I2n(s0, χ), π ⊗ π∨)
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at any value s0 for which f(q−s0) �= 0. In general, the leading term of the
Laurent expansion of Z(s, χ, ·, ·) at s = s0 defines an element

Z∗(s0, χ) ∈ HomG×G(I2n(s0, χ), π ⊗ π∨).

Next suppose that χ is unramified and note that there is, then, a unique
standard section Φ0(s) determined by the condition Φ(k, s) = 1 for all k ∈ KH .
Suppose that π = π(λ) is the unramified representation of G with Satake
parameter

diag(qλ1 , qλ2 , . . . , qλn , 1, q−λ1 , q−λ2 , . . . , q−λn)×Fr ∈ SO(2n+1, C)×WF = LG.

Let

φ0(g) = < π∨(g)ξ∨0 , ξ0 >,

be the unramified matrix coefficient of π∨, with φ0(e) = 1. Here ξ0 (resp. ξ∨0 )
is a K–fixed vector in π (resp. π∨).

Proposition 1.6. (i) ([16], [17]) For χ unramified,

Z(s, χ, φ0, Φ0) =
1

b2n(s, χ)
·(1−χq−s− 1

2 )−1
n∏

j=1

(1−χqλj−s− 1
2 )−1(1−χq−λj−s− 1

2 )−1,

where χ = χ(
) and

b2n(s, χ) = L(s + n +
1
2
, χ) ·

n∏

j=1

L(2s − 2j + 2n + 1, χ2),

for L(s, χ) = (1 − χ · q−s)−1.
(ii) For any matrix coefficient φ of π∨ and any standard section Φ(s), the
product

n∏

j=1

(1 − χqλj−s− 1
2 ) (1 − χq−λj−s− 1

2 ) · Z(s, χ, φ,Φ)

is an entire function of s.

The proof of part (ii) of this result, which is rather long, will be given in
section 5.

2. Proof of Theorem 1.1

We now turn to the particular case π = 11. Throughout our discussion, we
may assume that either χ = 1 or χ is ramified, since any unramified χ could be
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absorbed into s via a shift. To avoid confusion, we frequently write χ0 rather
than 1 for the trivial character.

The ramified case, in which χ �= 1, is easy to handle.

Proposition 2.1. If χ is ramified, then 11 does not occur on the boundary
for any value of s. Moreover, for any standard section Φ(s), the zeta integral
Z(s, χ, 1,Φ) is entire and

HomG×G(I2n(s, χ), 11) = C · Z(s, χ, 1, ·)

for all s.

Proof. Applying the criterion of Lemma 1.5 for π = 11, we find

dim HomG×G(Qr(s, χ), 11)

= dim HomMr×Mr

(

11, χ−1| |−s+n−r+ 1
2 ⊗ χ−1| |−s+n−r+ 1

2 ⊗ C∞(Gn−r)
)

= dim HomGLr×GLr (11, χ−1| |−s+n−r+ 1
2 ⊗ χ−1| |−s+n−r+ 1

2 ).

This is zero for all s if χ is ramified. Note that, if χ = χ0, then this dimension
is 1 if and only if s = n − r + 1

2 (modulo 2πi
log q Z, of course). This fact will be

used below.
Now consider the Laurent expansion of the zeta integral at a point s = s0,

on the space of standard sections:

Z(s, χ, 1,Φ) =
τ−k(χ,Φ)
(s − s0)k

+ · · · + τ0(χ,Φ) + . . . .

Note that, as mentioned above, the leading term defines a G × G-invariant
linear functional

τ−k : I2n(s0, χ) −→ C.

If k > 0, so that the doubling zeta integral actually has a pole at s0, then
this functional restricts to zero on the subspace I2n(s0, χ)(0), since the zeta
integral is entire for sections in this subspace. It must then give rise to a
non-zero element of HomG×G(Qr(s0, χ), 11), for some r > 0. This contradicts
the vanishing of these spaces, so that no pole can occur. The same argument
shows that any non-zero element of HomG×G(I2n(s0, χ), 11) must have non-zero
restriction to I2n(s0, χ)(0). Since the restriction of Z(s0, χ, 1) to I2n(s0, χ)(0)

is non-zero, and is hence a basis for HomG×G(I2n(s0, χ)(0), 11), we obtain the
claimed result.

For the rest of this section, we consider the more difficult case χ = χ0 = 1.
We first record some useful facts about the zeta integral in this situation.
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Proposition 2.2. Suppose that χ = χ0 is trivial.
(i)

Z(s, χ0, 1,Φ0) =
1

b2n(s, χ0)
· (1−q−s− 1

2 )−1
n∏

j=1

(1−qj−s− 1
2 )−1(1−q−j−s− 1

2 )−1.

In particular, this function has only simple poles, and these occur at the points

s0 ∈ X(11) := { 1
2
,
3
2
, . . . , n − 1

2
}.

(ii) If s /∈ X(11), then 11 does not occur on the boundary at s, i.e.,

HomG×G(Qr(s, χ0), 11) = 0

for 1 ≤ r ≤ n.
(iii) Suppose that s0 = n − r0 + 1

2 ∈ X(11). Then

dim HomG×G(Qr(s0, χ0), 11) =

{
1 if r = r0

0 otherwise.

In particular, 11 occurs on a unique boundary component when s0 ∈ X(11).
(iv) For any standard section Φ(s) ∈ I2n(s, χ), the function Z(s, χ0, 1,Φ) has
at most simple poles, and these can only occur at the points s0 ∈ X(11).
(v) Finally, if s /∈ X(11), then

HomG×G(I2n(s, χ), 11) = C · Z(s, χ0, 1, ·) �= 0.

Proof. Part (i) is just a specialization of Proposition 1.6 (i), while parts (ii) and
(iii) were proved in the course of the proof of Proposition 2.1. The argument
about leading terms in that proof also implies that Z(s, χ0, 1, ·) cannot have a
pole at any point s /∈ X(11). This together with (ii) of Proposition 1.6 proves
(iv). Finally, the leading term arguments from the proof of Proposition 2.1
imply that (v) holds for s /∈ X(11).

To complete the proof of Theorem 1.1, we must consider the case χ = χ0

and s0 = n − r0 + 1
2 ∈ X(11), so that 11 occurs on a unique boundary compo-

nent. The basic idea is to show that the G × G–invariant functional on this
boundary component extends to a functional on all of I2n(s0), while the invari-
ant functional defined on the space of functions S(G) on the open cell does not
extend. The first step is to compose invariant functionals with the projection
from S(H) to I2n(s, χ). This allows us to view linear functionals on I2n(s, χ)
as distributions on S(H) with certain invariance properties under P ×G×G.
Note that H can be stratified by P × G × G orbits. The second step is to
consider certain vector valued distributions whose (unipotent) transformation
law under P arises from the Laurent expansion of the induced representation
transformation law at s0. The standard analysis of Jacquet functors allows
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us to show that, at a given critical point s0, the space of such distributions
is nonzero for a unique boundary component. The vector valued distributions
constructed from the Laurent expansion of the pullback of the zeta integral give
an explicit basis element for this space. Finally, by expressing the distribution
associated to an arbitrary G × G–invariant functional on a boundary compo-
nent or on the open cell in terms of these explicitly constructed distributions,
we obtain the claimed extension/non-extension properties.

We begin by setting up a little more machinery.
For any s, there is a surjective map

pr(s, χ) : S(H) −→ I2n(s, χ),

given by

pr(s, χ)(ϕ)(h) :=
∫

P

χ(p)−1|p|−s+ρ2n ϕ(ph) dlp,

where dlp is a left Haar measure on P , [1]. The kernel of this map is

ker(pr(s, χ)) =
〈

�(p)ϕ − χ(p)−1|p|−s+ρ2n · ϕ | for p ∈ P and ϕ ∈ S(H)
〉
.

Here the right hand side denotes the subspace of S(H) spanned by these
functions; note that it depends on s. Also, we have

pr(s, χ)(�(p)ϕ) = χ(p)−1|p|−s+ρ2n · pr(s, χ)(ϕ),

where �(p)ϕ(h) = ϕ(p−1h). Composing this map with the zeta integral asso-
ciated to the trivial representation, we define, for Re(s) sufficiently large,

z(s, χ, ϕ) :=
∫

G

∫

P

χ(p)−1|p|−s+ρ2n ϕ(pδ0i(g, 1)) dlp dg.(2.1)

This integral defines a distribution on S(H) such that, for p ∈ P

z(s, χ)(�(p)ϕ) = χ(p)−1|p|−s+ρ2n · z(s, χ)(ϕ),

and, for g1 and g2 ∈ G,

z(s, χ)(r(g1, g2)ϕ) = z(s, χ)(ϕ),

where r(g1, g2)ϕ(h) = ϕ(h · i(g1, g2)).
The results about the doubling integral reviewed above imply that z(s, χ)

has a meromorphic analytic continuation with at most simple poles at the
points s0 ∈ X(11), in the case χ = χ0.

Suppose that χ = χ0 and write

z(s, χ0)(ϕ) =
µ−1(ϕ)
(s − s0)

+ µ0(ϕ) + . . . ,
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for the Laurent expansion at s0. For any m ≥ 1, let

µ̃(m)(ϕ) =










µm−2(ϕ)
µm−3(ϕ)

...
µ0(ϕ)
µ−1(ϕ)










,(2.2)

so that µ̃(m) is a distribution on H valued in C
m.

For x ∈ F×, let

γr(x) =
(log |x|)r

r!
.

By writing out the Laurent expansion, at s0, of both sides of the identity

z(s, χ)(�(p)ϕ) = χ(p)−1|p|−s0+ρ2n
(
|p|−(s−s0) · z(s, χ)(ϕ)

)
,

we obtain the following transformation law for µ̃(m).

Lemma 2.3. For p ∈ P ,

µ̃(m)(�(p)ϕ) = χ(p)−1|p|−s0+ρ2n ·










1 γ1(p) γ2(p) . . . γm−1(p)
0 1 γ1(p) . . . γm−2(p)
0 0 1 . . . γm−3(p)
...

...
. . .

...
0 0 0 . . . 1










·µ̃(m)(ϕ),

and

µ̃(m)(r(g1, g2)ϕ) = µ̃(m)(ϕ).

For convenience, we write σm(p) for the matrix on the right hand side of
the first identity of Lemma 2.3. For any s0 ∈ C and χ, let

D(m)(s0, χ) = HomP×G×G(S(H), χ−1| |−s0+ρ2nσm ⊗ 11 ⊗ 11),

be the space of C
m–valued distributions on H which satisfy:

η(�(p)ϕ) = χ(p)−1|p|−s0+ρ2n σm(p) · η(ϕ),

and

η(r(g1, g2)ϕ) = η(ϕ),

for all p ∈ P and g1, g2 ∈ G.
We will only need to consider the case m = 2 when s0 ∈ X(11) and χ = χ0.

We write

ζ1 =
(

µ−1

0

)

and ζ2 =
(

µ0

µ−1

)

∈ D(2)(s0, χ0),
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for the two vector valued distributions which arise from the Laurent expansion
of the zeta integral.

Again considering the stratification of H, we obtain a filtration

S(H) = S(H)(n) ⊃ . . . S(H)(r) ⊃ S(H)(0) = S(Ω0),

with successive quotients

S(H)(r)/S(H)(r−1) � S(Ωr).

Proposition 2.4. (i) The restriction of µ0 to S(Ω0) � S(P ) ⊗ S(G) gives a
basis for the space

HomP×G×G(S(Ω0), χ−1| |−s0+ρ2n ⊗ 11 ⊗ 11) = C · µ0.

(ii) For 1 ≤ r ≤ n, and for s0 = n − r0 + 1
2 ,

dim HomP×G×G(S(Ωr), χ−1| |−s0+ρ2n σ2 ⊗ 11 ⊗ 11) =

{
1 if r = r0,
0 otherwise.

Proof. By (2.1) and (2.2), part (i) just amounts to the uniqueness of the Haar
measures.

Next we prove (ii). If 1 ≤ r ≤ n, and using unnormalized induction, we
have

HomP×G×G

(
S(Ωr) , χ−1| |−s0+ρ2n σ2 ⊗ 11 ⊗ 11

)

� HomP×G×G

(

indP×G×G
Str

(11) , χ−1| |−s0+ρ2n σ2 ⊗ 11 ⊗ 11
)

� HomP×G×G

(

χ| |s0−ρ2n σ∨
2 ⊗ 11 ⊗ 11 , IndP×G×G

Str

(
| |−r ⊗ | |−r ⊗ 11

)
)

� HomStr

(

χ| |s0−ρ2n σ∨
2 ⊗ 11 ⊗ 11 , | |−r ⊗ | |−r ⊗ 11

)

� HomGLr×GLr

(
| |s0−ρ2n+r ⊗ | |s0−ρ2n+r , σ2

)
.

Here, in the last line, σ2 denotes the pullback of the two dimensional repre-
sentation of P via the imbedding of GLr ×GLr into that group given in (1.1)
above. In particular, for this embedding, the quantity |p| pulls back to |a1||a2|.
Also note that, in taking a contragradient, we have used the fact that

∆Str

∆P×G×G
= | |−r ⊗ | |−r ⊗ 11

on Str. The last space is zero unless s0 = n − r + 1
2 , and in that case has

dimension 1, as claimed.
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In general, if η ∈ D(2)(s0, χ0) restricts to zero on S(H)(r−1), then it induces
a homomorphism

η̄ ∈ HomP×G×G(S(Ωr), χ−1| |−s0+ρ2n σ2 ⊗ 11 ⊗ 11)

on the quotient of the next step of the filtration. Part (ii) of Proposition 2.4
forces the η̄’s to vanish when r �= r0. Note that µ−1 and hence ζ1 vanish on
S(Ω0), since the zeta integral has no poles for ϕ in this space. On the other
hand, ζ1 is not identically zero, since a pole occurs. Thus, its restriction to
S(H)(r0) is non-zero, and the resulting ζ̄1 gives a basis for the space in (ii) of
Proposition 2.4. These considerations yield the following result.

Corollary 2.5. Suppose that s0 = n − r0 + 1
2 ∈ X(11).

(i) If η ∈ D(2)(s0, χ0) restricts to zero on S(Ω0), then η is zero on S(H)(r0−1).
(ii) If η ∈ D(2)(s0, χ0) restricts to zero on S(H)(r0), then η = 0.
(iii) The distribution ζ1 restricts to zero on S(H)(r0−1), and its restriction to
S(H)(r0) gives a basis for the space

HomP×G×G(S(Ωr0), χ
−1| |−s0+ρ2n σ2 ⊗ 11 ⊗ 11) = C · ζ̄1.

We now return to the proof of Theorem 1.1.
Now suppose that s0 ∈ X(11) and that λ ∈ HomG×G(I2n(s0, χ0), 11). Let

λ′ = λ ◦ pr(s0, χ0) ∈ HomP×G×G(S(H), | |−s0+ρ2n ⊗ 11 ⊗ 11)

be the pullback of λ via the projection map, and let

λ′′ =
(

λ′

0

)

∈ D(2)(s0, χ0).

By (i) of Proposition 2.4, there is a constant c such that

λ′|S(Ω0) = c · µ0|S(Ω0).

Since the zeta integral has no pole for ϕ ∈ S(Ω0), µ−1 restricts to zero on this
space. Thus, passing to elements of D(2)(s0, χ0), we have

(λ′′ − c · ζ2)|S(Ω0) = 0.

Set η = λ′′−c·ζ2. By (i) and (iii) of Corollary 2.5, there is a constant c′ such
that η− c′ · ζ1 restricts to zero on S(H)(r0), and hence, by (i) of Corollary 2.5,
η = c′ · ζ1. But then, the second component, −c ·µ−1, of η, must be identically
zero. This implies that c = 0, and that, in fact,

λ = c′ · µ−1.

This completes the proof of Theorem 1.1 and yields some extra information.

Corollary 2.6. (i) For all values of s0 and χ, the one dimensional space

HomG×G(I2n(s0, χ), 11)
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is spanned by the leading term of the Laurent expansion at s0 of the zeta integral
Z(s, χ, 1).
(ii) If χ = χ0 and s0 ∈ X(11), then the space

HomP×G×G(S(H), χ−1| |−s0+ρ2nσ2 ⊗ 11 ⊗ 11)

has dimension 2 and is spanned by the Laurent vectors ζ1 and ζ2 defined using
the first two terms of the Laurent expansion of the zeta integral z(s, χ0) at s0.

3. The local theta correspondence

In this section, we prove some basic results about ‘early’ and ‘late’ occurrence
in the theta correspondence, for dual pairs of type (Sp, O). We consider both
the symplectic and metaplectic case. We fix, once and for all, a nontrivial
additive character ψ of F which we assume to be trivial on OF and non-trivial
on P−1

F , where PF = 
OF is the maximal ideal of OF .
Let V , ( , ) be a vector space of dimension m over F with a non-degenerate

symmetric bilinear form. Let

G′ = G′
n =

{
Mp(W ) if m is odd
Sp(W ) if m is even,

where W = Wn is a symplectic vector space of dimension 2n, as in section 1.
Here Mp(W ) denotes the metaplectic extension of Sp(W ), which we take to
be the extension

1 −→ C
1 −→ Mp(W ) −→ Sp(W ) −→ 1,

obtained from the usual 2-fold covering via the inclusion of {±1} into C
1.

In the symplectic group Sp(V ⊗F W ) of the vector space V ⊗F W , of
dimension 2mn over F with symplectic form ( , )⊗ < , >, we then have the
usual reductive dual pair (O(V ), Sp(W )). The homomorphism

i : O(V ) × Sp(W ) −→ Sp(V ⊗F W )

has a lifting to a homomorphism

ĩ : O(V ) × G′ −→ G
′,

where

G
′ =

{
Mp(V ⊗F W ) if m is odd
Sp(V ⊗F W ) if m is even.

The pullback to G′ × O(V ) of the Weil representation ωψ of G
′, yields a

representation of this product group on the space S(V n), in the standard
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Schrödinger model. The lifting ĩ is unique provided we require that h ∈ O(V )
acts by ω(h)ϕ(x) = ϕ(h−1x), and that, when m is odd, the central C

1 in G′

acts in S(V n) by ω(z)ϕ = z · ϕ.
If π is an irreducible admissible representation of G′, we let S(π) be the

maximal quotient of S = S(V n) on which G′ acts by a multiple of π, and we
write

S(π) � π ⊗ Θ(π, V ).

The Howe duality principle is the following.

Theorem 3.1. (Howe, [4], Waldspurger, [22]) Assume that the residue char-
acteristic of F is odd.
(i) Θ(π, V ) is a finitely generated representation of O(V ).
(ii) If S(π) �= 0, then Θ(π, V ) has a unique irreducible quotient θ(π, V ).
(iii) The correspondence π �→ θ(π, V ) defines a bijection between the subsets
of Irr(G′) and Irr(O(V )) which occur in the correspondence.

This duality principle is also expected to hold when the residue character-
istic of F is even. Note that the space Θ(π, V ) is defined, in any case. As in
[3], we will make use of only the following weak version of (i):

Proposition 3.2. For any irreducible admissible representation π of G′ the
space Θ(π, V ) is either 0, or, as a representation of O(V ), it has finite length
and hence has an irreducible admissible quotient.

Note that there is no restriction on the residue characteristic here. This result
is proved in Chapitre 3, Theorem 4, 2) a), p. 69 of [13], via the methods in
[18] and [5].

We now consider the behavior of the correspondence with respect to Witt
towers. For any integer r ≥ 1, let Vr,r = F 2r with inner product given by the

matrix
(

1r

1r

)

. Two quadratic spaces V and V ′ are said to lie in the same

Witt tower if, up to isomorphism, they differ by a Vr,r, e.g., if V ′ � V + Vr,r.
The following facts are well known.

Lemma 3.3. (i) (persistence) For any irreducible admissible representation π
of G′, and for any r ≥ 1,

Θ(π, V ) �= 0 =⇒ Θ(π, V + Vr,r) �= 0.

(ii) (stable range (Howe)) If V = V0+Vr,r with r ≥ 2n, then, for all irreducible
admissible representations π of G′

Θ(π, V ) �= 0,
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provided, in the case m = dimV is odd, π is assumed to be genuine.

The isomorphism class of V is determined by the invariants m = dimF V ,
the quadratic character χV of F× defined by

χV (x) = (x, (−1)
m(m−1)

2 detV ),

and the Hasse invariant ε(V ) = ±1. We normalize our Hasse invariant so
that it is constant on Witt towers. Note that the character χV also has this
property, so that a Witt tower is determined by a choice of χ = χV and
ε = ε(V ). More precisely, the Witt towers can then be described as follows,
[18].

For m even and χ = 1, we have the split tower, {V +
m = Vr,r}, with m =

2r. Here we view the first element of the tower to be the 0 dimensional space
V0,0 (!). Let B be the division quaternion algebra over F , and let V −

4 = B, with
(x, y) = tr(xyι), where ι is the main involution of B. Then the quaternionic
tower is {V −

m }, m = 2r ≥ 4, where V −
m = V −

4 + Vr−2,r−2.
For m even and χ �= 1, we let k be the quadratic extension of F cor-

responding to the character χ, and let V +
2 = k with (x, y) = tr(xyι), where

ι is the non-trivial Galois automorphism of k over F . Let V −
2 = k with

(x, y) = κ · tr(xyι), where χ(κ) = −1. Then let V ±
2r = V ±

2 + Vr−1,r−1, so that
{V +

m } and {V −
m }, m ≥ 2 are the two tower associated to χ.

For m = 2r + 1 odd, and for a fixed quadratic character χ(x) = (x, α)F ,
where ( , )F is the quadratic Hilbert symbol for F , let V +

1 = F with (x, y) =
α · xy. Let B be as before, and let V −

3 = {x ∈ B | tr(x) = 0}. Here we set
(x, y) = α′ · tr(xy), where the scalar α′ ∈ F× is chosen so that χV −

3
= χ. Then

our Witt towers associated to χ are {V +
m }, m = 2r+1 ≥ 1, with V +

m = V +
1 +Vr,r

and {V −
m }, m = 2r + 1 ≥ 3, with V −

m = V −
3 + Vr−1,r−1.

Note that, in all cases, the Hasse invariant is given by ε(V ±
m ) = ±1.

Definition 3.4. Fix a quadratic character χ and a parity3. Then, for any
irreducible admissible representation π of G′, let m±

χ (π) be the smallest integer
m, of the fixed parity, such that Θχ(π, V ±

m ) �= 0. In the case of odd parity, π
is assumed to be genuine.

Part (iii) of Lemma 3.1, i.e., the stable range condition, immediately yields
the following.

Lemma 3.5. (i) For χ = χ0 = 1 and even parity,

0 ≤ m+
χ0

(π) ≤ 4n, and 4 ≤ m−
χ0

(π) ≤ 4n + 4.

3By this we mean that we consider quadratic spaces of dimension m where the parity of
m is fixed.
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(ii) For χ �= 1 and even parity, 2 ≤ m±
χ (π) ≤ 4n + 2.

(iii) For odd parity,

1 ≤ m+
χ (π) ≤ 4n + 1, and 3 ≤ m−

χ (π) ≤ 4n + 3.

In fact, these first occurrence indices should be linked by the following
conservation relation (Conjecture A, of the introduction):

Conjecture 3.6. Fix a parity and a quadratic character χ. Then, for all
irreducible admissible representations π of G′,

m+
χ (π) + m−

χ (π) = 4n + 4.

Here, in the case of odd parity, π is assumed to be genuine.

In effect, if a representation π occurs ‘early’ in one tower, it must occur
‘late’ in the other! For example, in the case of even parity, π occurs ‘early’
if Θ(π, V ) �= 0 for dimV = 2n + 2 − 2r ≤ 2n. For V ′ in the other tower,
the conjectured relation then requires that Θ(π, V ′) = 0 if dimV ′ ≤ 2n + 2r.
In the case of odd parity, the conjectured relation implies theta dichotomy
(Conjecture B of the introduction).

Conjecture 3.7. Fix a quadratic character χ. For any irreducible admissible
genuine representation π of G′, precisely one of the spaces Θχ(π, V +

2n+1) and
Θχ(π, V −

2n+1) is non-zero.

Here the subscript χ serves as a reminder that we are considering the pair of
Witt towers associated to χ.

The analogous conjectures for orthogonal groups are mentioned in the in-
troduction. In the case of unitary groups, the conjectures appear in section 7
of [3].

Let H = Sp(W) be as in section 1, where W = W + W−, and let

H ′ =

{
Sp(W) in the even parity case
Mp(W) in the odd parity case.

The map ι : G × G −→ H of section 1 yields a map

ι′ : G′ × G′ −→ H ′,

which is unique if we require that, in the case of odd parity,

ι′ : C
1 × C

1 −→ C
1, ι′(z1, z2) = z1z

−1
2 .

In the case of even parity, we let I ′2n(s, χ) be the degenerate principal series
representation I2n(s, χ) of H ′ = H, as in section 1. In the case of odd parity,
we note that the restriction of the extension H ′ to the Levi factor of the Siegel
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parabolic P is given by

M ′ � M × C
1,

with multiplication

(m(a1), z1) · (m(a2), z2) =
(
m(a1a2), z1z2(det a1,det a2)F

)
.

Here we use the conventions of [6]. For a character χ of F×, we set

χψ(x) = χ(x) γF (x,
1
2
ψ)−1,

where γF (x, 1
2ψ) is in [19],[6]. We then define a (genuine) character χψ of M ′

by

χψ
(
(m(a), z)

)
= z · χψ(det a).

We extend this to P ′ = M ′N , trivially on N , and let

I ′2n(s, χ) = IH′

P ′ (χψ| |s),
be the (genuine) degenerate principal series of H ′. In both cases, we restrict
the representation I ′2n(s, χ) to G′ × G′ via ι′.

First, we extend Conjecture 1.2 to the metaplectic case:
Conjecture 1.2 ′ For all irreducible admissible (genuine) representations π of
G′, and for all s and χ,

dim HomG′×G′(I ′2n(s, χ), π ⊗ π∨) = 1.

Our main results are the following:

Theorem 3.8. Fix a quadratic character χ and a parity. Then for any irre-
ducible admissible (genuine) representation π of G′,

m+
χ (π) + m−

χ (π) ≥ 4n + 4.

Theorem 3.9. Fix a quadratic character χ and a parity. Suppose that π is
an irreducible admissible representation of G′ such that

dim HomGn×Gn(I2n(s0, χ), π ⊗ π∨) = 1,

for all s0 in the set:

Crit =






{−n − 1
2 ,−n + 1

2 , . . . , n − 1
2 , n + 1

2} for even parity and χ = 1,
{−n + 1

2 , . . . , n − 1
2} for even parity and χ �= 1,

{−n,−n + 1, . . . , n − 1, n} for odd parity.

Then

m+
χ (π) + m−

χ (π) = 4n + 4.
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In particular, Conjectures 3.6 and 3.7 hold for any supercuspidal representation
π.

Of course, Theorem 3.9 together with Conjectures 1.2 and 1.2 ′ imply Con-
jecture 3.6 and 3.7 for all π.

Corollary 3.10. For the trivial representation 11 of G′, and for even parity,
if χ = χ0 = 1,

m+
χ0

(11) = 0 and m−
χ0

(11) = 4n + 4,

while, if χ �= 1,

m+
χ (11) = m−

χ (11) = 2n + 2.

In particular, Θχ0(11, V −
4n+2) = 0.

Note that Conjecture 3.6 implies that 11 is the only irreducible admissible
representation of G′ for which Θχ0(π, V −

4n+2) = 0, and that any representation
π �= 11 for which the conservation principle holds must have Θχ0(π, V −

4n+2) �= 0.
More precise information about first occurrence can be given in certain

cases. In the case of even parity with χ �= 1, choose α ∈ F× such that
χ(α) = −1. For a representation σ of G′ = G = Sp(W ), let δα(σ)(g) = σ(gα),
where

gα =
(

1
α

)

g

(
1

α

)−1

.(3.1)

Note that, if σ = ωV ε
m

is the Weil representation of G determined by the space
V ε

m of character χ, then δα(σ) � ωV −ε
m

is the Weil representation defined by
V −ε

m . Thus, for any irreducible admissible representation π, we have

mε
χ(π) = m−ε

χ (δα(π)).

Corollary 3.11. In the case of even parity with χ �= 1, suppose that δα(π) �
π. Then m+

χ (π) = m−
χ (π) ≥ 2n + 2. Moreover, if π satisfies the hypothesis of

Theorem 3.9, then

m+
χ (π) = m−

χ (π) = 2n + 2.

For example, m±
χ (11) = 2n + 2.

4. Proofs of Theorems 3.8 and 3.9

Before proving these results, we need a few more preliminaries.
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For any quadratic space V , let

R2n(V ) = S(V 2n)O(V )

be the maximal quotient of S(V 2n) on which O(V ) acts trivially, and note that
this is a representation of H ′. Recall that there is a natural H ′ equivariant
map

λ : S(V 2n) −→ I ′2n(s0, χ), ϕ �→ (h �→ (ω(h)ϕ)(0)),

where s0 = m
2 − ρ2n and χ = χV . Moreover, this map induces an inclusion,

[18],

R2n(V ) ↪→ I ′2n(s0, χ).

A complete account of the reducibility of the degenerate principal series I ′2n(s, χ)
in terms of these submodules can be found in [2], [9], [8], when m = dimV is
even, and in [20] when m is odd. These results will be briefly reviewed below.

The following result is, by now, quite standard [4], [18], [3], and its proof
is just like that of Proposition 3.1 of [3].

Proposition 4.1. Let π be an irreducible admissible representation of G′.
Then

Θ(π, V ) �= 0 ⇐⇒ HomG′×G′(R2n(V ), π ⊗ π∨) �= 0.

We now begin the proof of Theorems 3.8 and 3.9 by proving the first part
of Corollary 3.10:

Lemma 4.2. For even parity and for χ = χ0 = 1,

HomG′×G′(R2n(V −
m ), 11 ⊗ 11) = 0,

for m ≤ 4n + 2, and

dim HomG′×G′(R2n(V −
4n+4), 11 ⊗ 11) = 1.

Thus, the trivial representation does not occur in the quaternionic tower until
the stable range, and

m+
χ0

(11) + m−
χ0

(11) = 4n + 4.

Proof. First observe that we view the trivial representation as the Weil rep-
resentation associated to the space V0,0 at the base of the split tower. Thus,
Θ(11, V0,0) �= 0 (formally), and so, by (i) of Lemma 3.3 together with Lemma 4.1,
we have

HomG′×G′(R2n(V +
m ), 11 ⊗ 11) �= 0,
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for m = 0, 2, . . . in the split tower. Moreover, for m ≥ 4n + 4 even, we have,
[9]

R2n(V +
m ) = R2n(V −

m ) = I2n(s0, χ0),

so that the combination of Theorem 1.1 and Proposition 4.1 yield the non-
vanishing assertion. One could also invoke (ii) of Lemma 3.3. Also, by (i) of
Lemma 3.3, to prove that m−

χ0
(11) = 4n + 4, it suffices to show that the space

HomG′×G′(R2n(V −
4n+2), 11 ⊗ 11)(4.1)

is zero. But, as shown in [2] and [9], R2n(V −
4n+2) is the unique irreducible

submodule of I ′2n(ρ2n, χ0) and is precisely the image of the normalized inter-
twining operator

M∗
2n(−ρ2n, χ0) : I2n(−ρ2n, χ0) −→ I2n(ρ2n, χ0).(4.2)

If the space (4.1) were non-zero, we would obtain a non-zero element of the
space

HomG′×G′(I2n(−ρ2n, χ0), 11 ⊗ 11)(4.3)

by composing with the intertwining operator (4.2). This element would be
trivial on the vector Φ0(−ρ2n), which is, in fact, the constant function 1 and
spans the kernel of M∗

2n(−ρ2n, χ0). But since −ρ2n /∈ X(11), (v) and (i) of
Proposition 2.2 imply that the zeta integral Z(−ρ2n, χ0, 1) spans the space
(4.3) and does not vanish on Φ0(−ρ2n). This proves that (4.1) must be zero,
as required.

Proof of Theorem 3.8. Fix χ and a parity, and suppose that π is an irreducible
admissible representation of G′, which is genuine in the case of odd parity.
Suppose that Θ(π, V +

a ) �= 0 and Θ(π, V −
b ) �= 0, where V +

a and V −
b are spaces

of character χ, dimensions a and b, respectively, and Hasse invariants +1 and
−1. There are then non-zero G′–intertwining maps

λ : S((V +
a )n) −→ π and µ : S((V −

b )n) −→ π.

Recall that the MVW involution [13],[3] on the set of smooth representations
of G′ is defined by set τ c(g) = τ(gc), where, in the case of even parity, gc =

cgc−1, for c =
(

1n 0
0 −1n

)

. In the case of odd parity, we use the same notation

to denote the unique lift of this automorphism to G′ whose restriction to the
central C

1 is given by z �→ z−1, [3]. Also recall that, if τ is irreducible,
then τ c � τ∨, the contragredient of τ . We apply this involution to obtain an
intertwining map

µc : S((V −
b )n)c −→ π∨.



On First Occurrence in the Local Theta Correspondence 25

On the other hand, the representation of G′ on S((V −
b )n)c is isomorphic to

the complex conjugate of its representation on S((V −
b )n). Note that these

representations are preunitary. We thus obtain a nonzero intertwining map

λ ⊗ µc ∈ HomG′×G′(S((V +
a )n) ⊗ S((V −

b )n)c, π ⊗ π∨).

We next restrict these representations to the diagonal G′ in G′ × G′. Since
the central C

1 now acts trivially, we obtain representations of G = Sp(W ).
Moreover, the representation of G on S((V +

a )n)⊗ S((V −
b )n)c is isomorphic to

the Weil representation of this group on S((V +
a +(−V −

b ))n), where −V −
b is the

space V −
b with the negative of its quadratic form. Thus, we obtain a nonzero

intertwining map in

HomG(S((V +
a + (−V −

b ))n), 11),

by composing with the invariant pairing π ⊗ π∨ −→ 11. The following fact is
easily checked:

Lemma 4.3. The space V +
a + (−V −

b ) has trivial character, i.e., square dis-
criminant, and Hasse invariant −1. Specifically, it is the quaternionic space
of dimension a + b.

But now, we have Θ(11, V +
a + (−V −

b )) �= 0, so that, by Lemma 4.2, a + b ≥
4n + 4, as claimed.

Proof of Theorem 3.9. We now must make use of the way in which the repre-
sentations R2n(V ) sit inside of I ′2n(s0, χ), where χ = χV and s0 = m

2 − n+1
2 .

Here χ will be fixed throughout our argument. This structure can be sum-
marized as follows, [2], [9], [20], [21]. First of all, we recall that I ′2n(s, χ) is
irreducible unless

s = s0 ∈






{−n − 1
2 ,−n + 1

2 , . . . , n − 1
2 , n + 1

2} for even parity and χ = χ0 = 1,
{−n + 1

2 , . . . , n − 1
2} for even parity and χ �= 1,

{−n,−n + 1, . . . , n − 1, n} for odd parity.

(4.4)

Moreover, there are 3 constituents, except in the cases

s = s0 =

{
{−n − 1

2 ,−n + 1
2 , n − 1

2 , n + 1
2} for even parity and χ = χ0 = 1,

{−n, n} for odd parity,

when the composition series has length 2. The constituents can be described
in terms of the R2n(V )’s. We say that the spaces V +

m0
and V +

m (resp.V −
m0

and
V −

m ), with 0 ≤ m0 ≤ m, are complementary if m + m0 = 4n + 2. In this case,
note that

s0 =
m

2
− 2n + 1

2
and − s0 =

m0

2
− 2n + 1

2
.
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Note that certain values of the parameters χ and m0 are excluded. Specifically,
the spaces V −

0 and V −
1 for any χ, V −

2 for χ = χ0, and V +
0 for χ �= 1 do not

exist. In these cases, we formally take R2n(V ±
m0

) = 0. Similarly, if m0 = 0, we
take R2n(V +

0 ) to be the trivial representation, which is the unique irreducible
submodule of I2n(−n − 1

2 , χ0) in the case of even parity. If 0 ≤ m0 ≤ 2n + 1,
then R2n(V ±

m0
) is irreducible, provided the space V ±

m0
exists. As submodules

of I ′2n(−s0, χ),

R2n(V +
m0

) ∩ R2n(V −
m0

) = 0.(4.5)

When m0 = m = 2n + 1, we have [21]

R2n(V +
m0

) ⊕ R2n(V −
m0

) = I ′2n(0, χ).(4.6)

If 0 ≤ m0 < 2n + 1,

R2n(V +
m0

) ⊕ R2n(V −
m0

) = Im(M∗
2n(s0, χ)) = Ker(M∗

2n(−s0, χ)),(4.7)

is the maximal proper submodule of I ′2n(−s0, χ). Here M∗
2n(s, χ) is the nor-

malized intertwining operator [9], [21]:

M∗
2n(s, χ) : I ′2n(s, χ) −→ I ′2n(−s, χ).

Moreover, the irreducible module

X(s0) = Im(M∗
2n(−s0, χ)) � I ′2n(−s0, χ)/

(
R2n(V +

m0
) ⊕ R2n(V −

m0
)
)
,(4.8)

is the maximal proper submodule of I ′2n(s0, χ), and

X(s0) = Ker(M∗
2n(s0, χ)).(4.9)

Also, in the range 2n + 1 < m ≤ 4n + 2, where s0 = m
2 − ρ2n,

I ′2n(s0, χ) = R2n(V +
m ) + R2n(V −

m ),(4.10)

X(s0) = R2n(V +
m ) ∩ R2n(V −

m ),(4.11)

and

R2n(V ±
m )/X(s0) � R2n(V ±

m0
).(4.12)

In the cases in which V −
m0

does not exist, this last relation means that X(s0) =
R2n(V −

m ).
Now, turning to the proof of Theorem 3.9, we note that m+

χ (π) = 0 implies
that π = 11, so this case is covered by Lemma 4.2. Also note that, (4.10),
together with Proposition 4.1 and our hypothesis on π, imply that

min{m+
χ (π), m−

χ (π)} ≤
{

2n + 1 for odd parity
2n + 2 for even parity.
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Similarly, the fact that I ′2n(s0, χ) is irreducible in the cases (i) s0 = n + 1 and
arbitrary χ for odd parity, (ii) s0 = n + 1

2 and χ �= 1 and (iii) s0 = n + 3
2 and

χ = 1, for even parity, implies that

max{m+
χ (π), m−

χ (π)} ≤






4n + 3 for odd parity,
4n + 2 for even parity with χ �= 1, and,
4n + 4 for even parity with χ = 1.

These bounds are a little weaker than the stable range condition of Lemma 3.3
(ii).

We suppose that ε = ±1 is taken so that mε
χ(π) = min{m+

χ (π), m−
χ (π)}.

In the cases mε
χ(π) = m0 with m0 = 1 and χ arbitrary, (resp. m0 = 2

with χ �= 1), we must have m−ε
χ (π) ≥ 4n + 3 (resp. m−ε

χ (π) ≥ 4n + 2) by
Theorem 3.8. The upper bounds just described then force m−ε

χ (π) = 4n + 3
(resp. m−ε

χ (π) = 4n + 2), as claimed.
Next, suppose that 2 ≤ mε

χ(π) = m0 ≤ 2n+1. By Theorem 3.8, this forces
m−ε

χ (π) ≥ 4n + 4−m0 ≥ 2n + 3. With the conventions about complementary
spaces just introduced, the minimality of mε

χ(π) implies that

dim HomG′×G′
(
R2n(V +

m0−2) ⊕ R2n(V −
m0−2), π ⊗ π∨)

= 0.(4.13)

Thus, every element of HomG′×G′
(
I ′2n(−s0−1, χ), π⊗π∨)

must factor through
X(s0 + 1), and

dim HomG′×G′
(
X(s0 + 1), π ⊗ π∨)

= 1.

On the other hand, let

µ ∈ HomG′×G′
(
I ′2n(s0 + 1, χ), π ⊗ π∨)

be a nonzero element. The restriction of µ to X(s0+1) must be nonzero, since,
otherwise, it would factor through the quotient R2n(V +

m0−2) ⊕ R2n(V −
m0−2),

contradicting (4.13). But, in the range in question, X(s0 + 1) ⊂ R2n(V −ε
m+2) is

a nonzero submodule, and hence

µ
∣
∣
R2n(V −ε

m+2)
�= 0.

Thus

m−ε
χ (π) ≤ m + 2 = 4n + 4 − m0.

This yields the equality m+
χ (π) + m−

χ (π) = 4n + 4 in this case.
Only the case mε

χ(π) = 2n + 2 remains. Let

µ ∈ HomG′×G′(I ′2n(
1
2
, χ), π ⊗ π∨)
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be a nonzero element, and note that the restriction of µ to the submodule
X( 1

2 ) cannot be zero, since µ does not factor through the quotient

I2n(
1
2
, χ)/X(

1
2
) � R2n(V +

2n) ⊕ R2n(V −
2n).

But then, the restriction of µ to R2n(V −ε
2n+2) ⊃ X( 1

2 ) is nonzero, as required.

Remark 4.4. An examination of our proof confirms that we have not made
use of the stable range result Lemma 3.3 (ii), and that we have in fact reproved
this fact.

5. Proof of (ii) of Proposition 1.6: simplicity of poles

In this section, we give the proof of the following result, which is just a restate-
ment of part (ii) of Proposition 1.6. Note that we may absorb the unramified
character χ into s by a suitable shift, so that it can be omitted in what follows.
Also, for convenience, we will write Φs rather than Φ(s) for a given standard
section.

Proposition 5.1. Let zs ∈ H(G//K) ⊗ C[qs, q−s] be the element defined by

zs =
n∏

i=1

(1 − q−s− 1
2 ti) (1 − q−s− 1

2 t−1
i ).

For an unramified representation π of G, let π(zs) be the scalar by which zs

acts on the unramified vector in π. Then for all matrix coefficients φ of π∨

and all standard sections Φ(s) ∈ I2n(s), the function

π(zs) · Z(s, χ0, φ,Φ)

is an entire function of s.

Proof. The proof will be broken into several steps.
Step 1. By linearity, it is sufficient to consider matrix coefficients of the

form

φ(g) = < π∨(g)π∨(g0)ξ∨0 , π(g1)ξ0 >,(5.1)
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where ξ∨0 and ξ0 are spherical vectors in π∨ and π, as above and g0 and g1 ∈ G.
Then

Z(s, φ,Φ) =
∫

G

Φs(δ0 ι(g, 1)) · < π∨(g)π∨(g0)ξ∨0 , π(g1)ξ0 > dg

=
∫

G

Φs(δ0 ι(g1gg−1
0 , 1)) · < π∨(g)ξ∨0 , ξ0 > dg(5.2)

=
∫

G

Φs(δ0 ι(g, 1)ι(g−1
0 , g−1

1 )) · φ0(g) dg.

Since φ0 is bi-K-invariant, the last integral here is equal to
∫

G

Φs(δ0 ι(k−1
1 gk2, 1)ι(g−1

0 , g−1
1 )) · φ0(g) dg(5.3)

=
∫

G

Φs(δ0 ι(g, 1)ι(k1, k2)ι(g−1
0 , g−1

1 )) · φ0(g) dg.

Thus we have

Z(s, φ,Φ) =
∫

G

Ψs(δ0 ι(g, 1)) · φ0(g) dg,(5.4)

where, for any h ∈ H = G2n,

Ψs(h) :=
∫

K×K

Φs(hι(k1, k2)ι(g−1
0 , g−1

1 )) dk1 dk2.(5.5)

Note that Ψs is again a section of I2n(s) which is right K × K-invariant. It
may not be standard, however!

Step 2. We next define an element z of the algebra

A = C[X, X−1] ⊗H(G//K) � C[X, X−1] ⊗ C[t1, t−1
1 , . . . , tn, t−1

n ]WG ,(5.6)

where H(G//K) is the K–spherical Hecke algebra of G, by

z =
n∏

i=1

(1 − q−
1
2 X ti) (1 − q−

1
2 X t−1

i ).(5.7)

The algebra A acts on the space I2n(s)K×1 of K×1-invariant vectors in I2n(s)
where the action of H(G//K) comes from the action of G×1, via ι, and where
X acts by scalar multiplication by q−s. Note that this action commutes with
the action of 1 × G. The operator z is defined to kill support of sections.

Proposition 5.2. For any standard section Φs with associated section Ψs de-
fined by (5.5)

Ψs ∗ z ∈ I
(0)
2n (s)K×K .
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Proof. To illustrate the argument, we first consider the restriction to the closed
orbit,

prn : I2n(s) = I
(n)
2n (s) −→ Qn(s) � In(s +

n

2
) ⊗ In(s +

n

2
),(5.8)

given by Φs �→
(

(g1, g2) �→ Φs(ι(g1, g2))
)
, the map obtained by restriction of

sections to Ωn. Then we have

prn(Ψs ∗ z) = prn(Ψs) ∗ z,(5.9)

where z is acting on the K–invariant vectors in the first factor of the tensor
product on the right side of (5.8). Thus, it suffices to prove that z acts by zero
on the space In(s + n

2 )K . But

In(s +
n

2
) ⊂ IG

B (λ)(5.10)

where B is the standard Borel subgroup of G and IG
B (λ) is the unramified

principal series representation of G with Satake parameter

λ = (q−s− 1
2 , q−s− 3

2 , . . . , q−s−n+ 1
2 ).(5.11)

The operator z then acts on the (common) K-fixed vector in these represen-
tations by the scalar

n∏

i=1

(1 − q−s− 1
2 q−s−i+ 1

2 )(1 − q−s− 1
2 qs+i− 1

2 ) = 0.(5.12)

Thus prn(Ψs ∗ z) = 0 so that Ψs ∗ z ∈ I
(n−1)
2n (s).

In general, restriction of sections to the orbit Ωr yields a map

prr : I2n(s) −→ IG×G
Pr×Pr

(

| |s+ r
2 ⊗ | |s+ r

2 ⊗ C(Gn−r)
)

=: Br(s),(5.13)

where C(Gn−r) is the space of all smooth functions on Gn−r. There is a
nondegenerate pairing

Qr(s) ⊗ Br(−s − r) −→ C(5.14)

given by

〈 f1, f2 〉 =
∫

Pr×Pr\G×G

〈 f1(g1, g2), f2(g1, g2) 〉Gn−r dµ(g1) dµ(g2)(5.15)

where the integrand is the pairing on the values of function f1 ∈ Br(−s − r)
and f2 ∈ Qr(s) given by integration over Gn−r and the outer ‘integral’ is the
G × G invariant functional on the spaces of functions on G × G transforming
on the left under Pr × Pr according to the square of the modulus character.
A straightforward density argument shows that an element φ ∈ Qr(s) is zero
if and only if it pairs to zero against all elements of the subspace Qr(−s − r)
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of Br(−s − r). If φ ∈ Qr(s)K×K , then it suffices to pair with elements f ∈
Qr(−s − r)K×K .

We consider the pairing

〈pr(Ψs ∗ z), fs 〉 = 〈pr(Ψs), fs ∗ z
∨
s 〉(5.16)

for any function fs ∈ Qr(−s− r)K×K , where z∨s is the adjoint of zs = z|X=q−s .

Lemma 5.3. For any function fs ∈ Qr(−s − r)K×K ,

fs ∗ z
∨
s = 0.

Proof. Since a function in fs ∈ Qr(−s − r)K×K is determined by its value
at the identity element, we can consider fs(e) ∈ S(Gn−r). Note that, for
x ∈ Gn−r and k1, k2 ∈ Kn−r = K ∩ Gn−r, we have

fs(e)(k−1
1 xk2) = fs(k1, k2)(x) = fs(e)(x),(5.17)

so that, in fact,

fs(e) ∈ S(Gn−r)Kn−r×Kn−r .(5.18)

If τ is any irreducible admissible representation of Gn−r, the action of the
space of functions S(Gn−r) on τ determines a Gn−r × Gn−r–equivariant map

µτ : S(Gn−r) −→ Homsmooth(τ, τ) � τ∨ ⊗ τ.(5.19)

Here, note that G × G acts on Hom(τ, τ) by pre and pos-multiplication,
so that elements of Homsmooth(τ, τ), which by definition are fixed by some
compact open subgroup K × K, have finite dimensional image. A function
φ ∈ S(Gn−r)Kn−r×Kn−r is nonzero if and only if there is an unramified repre-
sentation τ of Gn−r such that τ(φ) �= 0, i.e., µτ (φ) �= 0.

Applying this to fs ∗ z∨s , we suppose that there is an irreducible unramified
representation τ of Gn−r such that

µτ (fs ∗ z
∨
s (e)) �= 0.(5.20)

There is a map of induced representations

I(µτ ) : IG×G
Pr×Pr

(

| |−s− r
2⊗| |−s− r

2 ⊗ S(Gn−r)
)

(5.21)

−→ IG×G
Pr×Pr

(

| |−s− r
2 ⊗ | |−s− r

2 ⊗ τ∨ ⊗ τ

)

,

and

I(µτ )(f)(e) = µτ (f(e)).(5.22)



32 Stephen Kudla and Stephen Rallis

We can embed the latter of these representations into a full induced represen-
tation

IG
Pr

(| |−s− r
2 ⊗ τ∨) ⊗ IG

Pr
(| |−s− r

2 ⊗ τ) ↪→ IG
B (λ1) ⊗ IG

B (λ2),(5.23)

where the Satake parameter λ1 is given by

λ1 = (qs+r− 1
2 , qs+r− 3

2 , . . . , qs+ 1
2 , qν1 , . . . , qνn−r ).(5.24)

Note that z∨s = zs acts on the unique K-invariant vector in this representation
by the scalar

r∏

i=1

(1 − q−s− 1
2 qs+r+ 1

2−i)(1 − q−s− 1
2 q−s−r− 1

2+i) · (�) = 0.(5.25)

But then, we have

µτ (fs ∗ z
∨
s (e)) = I(µτ )(fs ∗ z

∨
s )(e)

= (I(µτ )(fs) ∗ z
∨
s )(e)(5.26)

= 0,

since I(µτ )(fs) is a multiple of the K×K-invariant vector in IG
B (λ1)⊗IG

B (λ2).
This finishes the proof of Lemma 5.3 and hence of Proposition 5.2.

Step 3. Consider the isomorphism

pr0 : I
(0)
2n (s) −→ Q0(s) � S(G),(5.27)

given by Φs �→
(

(g, 1) �→ Φs(δ0ι(g, 1))
)
. Proposition 1.7 shows that, for a

fixed s, the image of Ψs ∗ z under pr0 lies in S(G)K×K . But the support could,
a priori, vary with s. The following result shows that the support is, in fact,
bounded uniformly in s.

Lemma 5.4.

pr0(Ψs ∗ z) ∈ C[qs, q−s] ⊗ S(G)K×K = C[qs, q−s] ⊗H(G//K).

Proof. Using the Cartan decomposition, write

pr0(Ψs ∗ z) =
∑

λ∈Λ

cλ(s) Lλ,(5.28)

where Lλ is the characteristic function of the double coset KgλK and Λ is the
usual semigroup.

Lemma 5.5. For each λ ∈ Λ, the function cλ(s) is an entire analytic function
of s. In fact, cλ(s) ∈ C[qs, q−s].
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Assuming this result for the moment, let Λ1 be the set of λ’s for which the
function cλ �= 0, and let

Dλ = {s ∈ C | cλ(s) �= 0}.(5.29)

For λ ∈ Λ1, Dλ is an open dense subset of C. Thus, by the Baire category
theorem, the set

⋂

λ∈Λ1

Dλ(5.30)

is non-empty, and so, there is an s0 ∈ C such that cλ(s0) �= 0 for all λ ∈ Λ1.
Since

pr0(Ψs0 ∗ z) =
∑

λ∈Λ1

cλ(s0) Lλ,(5.31)

has compact support, it follows that the set Λ1 is finite, as claimed!

Proof of Lemma 5.5. We have the formula

cλ(s) · ||Lλ||2 =
∫

G

(Ψs ∗ z)(δ0ι(g, 1)) · Lλ(g) dg.(5.32)

The right side of (5.32) is a finite linear combination, with coefficients in
C[qs, q−s], of integrals of the form

∫

G

∫

G

Ψs(δ0ι(g, 1) ι(g0, 1)) · Lµ(g0) dg0 · Lλ(g) dg

=
∫

G

∫

G

Ψs(δ0 ι(g0, 1)) · Lµ(g−1g0) · Lλ(g) dg0 dg(5.33)

=
∫

G

Ψs(δ0 ι(g0, 1)) · ϕ(g0) dg0

where ϕ ∈ H(G//K) is an element depending on λ and µ. Since ϕ is a finite
linear combination of characteristic functions of cosets gK, the integral in the
last line of (5.33) is a finite linear combination of terms of the form

∫

K

∫

K×K

Φs

(
δ0 ι(gk, 1)ι(k1, k2)ι(g1, g2)

)
dk1 dk2 dk.(5.34)

But, noting that (g1, g2) is fixed and recalling that Φs is standard and hence is
right invariant under some compact open subgroup of H, uniformly in s, this
expression is just a finite linear combination of values of Φs at a set of points
not depending on s. Such values have the form c qrs for r ∈ Z. This finishes
the proof of Lemma 5.5.
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Step 4. Now returning to the zeta integral (5.4) and inserting the operator
z, we find that

Z∗(s, φ0,Ψ) :=
∫

G

(Ψs ∗ z)(δ0 ι(g, 1))φ0(g) dg(5.35)

is equal to the scalar by which the element pr0(Ψs∗z) of A acts on the spherical
vector ξ∨0 in π∨. This scalar lies in C[qs, q−s], and, in particular, is an entire
function of s. On the other hand, for Re(s) large,

Z∗(s, φ0,Ψ) = π∨(zs) ·
∫

G

Ψs(δ0 ι(g, 1))φ0(g) dg(5.36)

= π∨(zs) · Z(s, φ,Φ)

where π∨(zs) is the scalar by which zs := z|X=q−s acts on the spherical vector
in π∨. Since Z∗(s, φ0,Ψ) is an entire function of s, this completes the proof of
the proposition.

Note that

π∨(zs) =
n∏

i=0

(1 − q−s− 1
2 π∨(ti)) (1 − q−s− 1

2 π∨(t−1
i ))(5.37)

= b2n(s)−1 (1 − q−s− 1
2 )−1 · Z(s, φ0,Φ0)−1.

Thus

Z(s, φ0,Φ0)−1 · Z(s, φ,Φ) = b2n(s) (1 − q−s− 1
2 )Z∗(s, φ0,Ψs).(5.38)

This shows that the unramified zeta integral Z(s, φ0,Φ0) can have some extra
zeros, compared to the whole family of zeta integrals.
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