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DERIVATIVES OF EISENSTEIN SERIES

AND GENERATING FUNCTIONS FOR ARITHMETIC CYCLES

by Stephen S. KUDLA

The classical formula of Siegel and Weil identifies the values of Siegel–Eisenstein series at

certain critical points as integrals of theta functions. When the critical point is the center

of symmetry for the functional equation, the Fourier coefficients of the values of the ‘even’

Siegel–Eisenstein series thus contain arithmetic information about the representations of

quadratic forms. It is natural to ask for an arithmetic interpretation of the derivative of

the ‘odd’ series at their center of symmetry.

I would like to report on my work on a family of identities relating the Fourier expansions

of the derivatives of certain Siegel–Eisenstein series at their center of symmetry, on one

side, and generating functions for the degrees of 0–cycles on moduli schemes for abelian

varieties, on the other. On the one hand, such identities can be viewed as generalizations

of the Siegel–Weil formula to the case of the derivative. On the other hand, the identities

imply that the generating functions in question, which are given as power series in q with

coefficients arising from arithmetical algebraic geometry, are in fact the q-expansions of

modular forms. This work grows out of results obtained in collaboration with Steve Rallis

[18], [19], [20] and with John Millson [15], [16], [17]. More recent progress has been made

in collaboration with Michael Rapoport [21], [22], [23] and Tonghai Yang [24], [25]. At

present, the identities have been fully established only in certain special cases as explained

below. Nonetheless, these examples, together with partial results in higher dimensions,

suggest the outline of a more extensive theory.

An additional origin of the investigation described here was the study of the triple

product L-function at the center of the critical strip, in collaboration with Michael Harris

[9] and with Benedict Gross [7]. In particular, a Siegel–Eisenstein series is a key ingredient

in the Rankin-Selberg integral representation of this L–function. Thus the occurrence of

arithmetic geometric quantities in the central derivatives of the Eisenstein series should

reflect their appearance in the central derivative of the L–function, and hence should

provide a relation to the Gross–Zagier formula [8].

Support of NSF Grant DMS 9970506 is gratefully acknowledged.
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Section 1 contains two examples, one recalling the work of Hirzebruch and Zagier on the

modular generating functions for curves on a Hilbert–Blumenthal surface and the second

illustrating a generating function in the simplest arithmetic case, involving the derivative

of a classical Eisenstein series of weight 1. In section 2, the incoherent Siegel–Eisenstein

series, which should be related to arithmetic generating series, are defined in general.

Section 3 reviews the results of [15],[16],[17] on generating functions for cycles on locally

symmetric spaces. These results suggest what one should hope for in the arithmetic case.

In section 4, the generating function for 0–cycles on an arithmetic surface attached to

a Shimura curve is defined, and Conjecture 4.7 relates it to the central derivative of an

incoherent Eisenstein series of weight 3
2

and genus 2. The comparison of the nonsingular

Fourier coefficients of the two objects is discussed in sections 5 and 6. Section 7 contains a

brief survey of results in higher dimensional cases as well as a second look at the simplest

example of section 1. Some speculations about further developments are made in section

8.

1. Two examples

2. Central derivatives of Siegel–Eisenstein series

3. Generating functions in the geometric case

4. Generating functions for arithmetic 0–cycles; the case of Shimura curves

5. Non-singular Fourier coefficients

6. Green’s functions and Whittaker functions

7. Further results

8. Final remarks

I would like to warmly thank J.-B. Bost, G. Henniart and M. Rapoport for detailed

comments and advice on the original draft of this report.

0.1. Notation

Q, A, Af , A× denote the rational numbers, the adèles, the finite adèles,

and the idèles of Q respectively.

Ẑ = lim
←−
n

Z/nZ, and, for any Z–module M , M̂ = M ⊗Z Ẑ.

Fq denotes the finite field with q elements, and F̄q denotes an algebraic closure of it.

( , )p (resp. ( , )A) denotes the quadratic Hilbert symbol for Qp (resp. A).

ψ is a fixed nontrivial character of A/Q.

Hg = {τ = u + iv ∈ Symg(C) | v > 0} is the Siegel space of genus g;

H = H1 is the upper half–plane.

e(x) = e2πix

Symn(R) = {x ∈ Mn(R) | tx = x} = the space of n× n symmetrix matrices.
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diag(a1, . . . , an) =

a1

. . .

an

 ∈ Symn(R).

1. TWO EXAMPLES

To fix ideas, it may be useful to consider two examples in classical language. The

first of these illustrates the construction of generating functions for curves on a complex

surface. More precisely, it gives a compact quotient version of the Hirzebruch–Zagier

generating function for curves on a Hilbert–Blumenthal surface and a similar generating

function for 0–cycles on such a surface. The second example illustrates the arithmetic

case where cycles on moduli spaces for abelian varieties are defined by imposing extra

endomorphisms. The example involves CM elliptic curves and the generating function is

identified as the central derivative of an Eisenstein series of weight 1.

1.1. The case of a complex surface.

The results of this section are special cases of joint work with John Millson [15], [16],

[17]. Let V , ( , ) be a 4–dimensional rational vector space with a symmetric bilinear form

of signature (2, 2). Let Q(x) = 1
2
(x, x) be the associated quadratic form. Fix a lattice L

in V on which the form is Z–valued and let

Γ ⊂ {γ ∈ SO(V )(Q)+ | γL = L}

be a subgroup of finite index, where SO(V )(R)+ is the identity component of the Lie

group SO(V )(R) and SO(V )(Q)+ = SO(V )(Q) ∩ SO(V )(R)+. The space D of negative

2–planes in V (R) is isomorphic to the product H×H of two copies of the upper half–plane

H, and the quotient S = Γ\D is (the complex points of) a quasi–projective variety. Now

assume that the space V is anisotropic so that S is projective. This assumption eliminates

complications coming from the compactification of the cusps, which are a significant issue

in the Hilbert–Blumenthal case considered by Hirzebruch and Zagier.

For a vector x ∈ V (Q) with Q(x) > 0, let

Dx = {z ∈ D | z ⊥ x}

be the set of negative 2–planes orthogonal to x, so that Dx ⊂ D is isomorphic to an

embedded upper half–plane H ⊂ H × H. The image Z(x,Γ) of Dx in the quotient S is

a compact curve, the image of the quotient Γx\Dx, where Γx is the stabilizer of x. Note

that the curve Z(x,Γ) depends only on the Γ orbit of x. Associated to a positive integer
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t, there is a finite sum of such curves

Z(t, L) =
∑

x ∈ L, Q(x) = t

mod Γ

Z(x,Γ),(1.1)

parametrized by the Γ–orbits in the set of lattice vectors of length t. This is the ana-

logue of the Hirzebruch–Zagier curve TN on a Hilbert–Blumenthal surface [11]. Let

[Z(t, L)] ∈ H2(S,Q) be the cohomology class of Z(t, L), and let [Z(0, L)] ∈ H2(S,Q)

be the cohomology class of the invariant form∗

ω = − 1

4π

(
Im(z1)

−2 dz1 ∧ dz̄1 + Im(z2)
−2 dz2 ∧ dz̄2

)
(1.2)

on H × H. As in [11], one can form a generating function

φ1(τ, L) = [Z(0, L)] +
∑
t∈Z>0

[Z(t, L)] qt,(1.3)

where q = e(τ), for an auxillary variable τ = u + iv ∈ H. The analogue of the result of

Hirzebruch–Zagier [11] is a special case of [15], [16], [17], see Theorem 3.1 below.

Theorem 1.1. — The generating function φ1(τ, L) is an elliptic modular form of weight

2, valued in H2(S,C).

Taking the intersection product with the cohomology class of a arbitrary curve C on S

one obtains:

Corollary 1.2. — For a curve C on S, the generating function for intersection num-

bers

φ1(τ, L) · [C] = vol(C) +
∑
t>0

[Z(t, L)] · [C] qt

is a modular form of weight 2. Here vol(C) =
∫
C
ω.

One can also define a generating functions for 0–cycles on S as follows. For a pair

of vectors x = [x1, x2] ∈ V (Q)2 with matrix of inner products Q(x) = 1
2
((xi, xj))i,j ∈

Sym2(Q), there is an associated cycle Dx = Dx1 ∩Dx2 ⊂ D. If Q(x) is nonsingular, then

Dx is a point when Q(x) is positive definite and is empty otherwise. If Q(x) has rank 1,

then Dx = Dx1 = Dx2 is a curve when Q(x) ≥ 0 (the components x1 and x2 are colinear

since V is anisotropic) and is empty otherwise. Finally, if Q(x) = 0, then x = 0 and

Dx = D. Let Z(x,Γ) be the image of Dx in the quotient S; again, this depends only on

∗This is twice the form used in [11], p.104, since the Z(t, L)’s of (1.1) are twice the corresponding
cycles in [11].
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the Γ–orbit of x. For T ∈ Sym2(Z), let

Z(T, L) =
∑

x ∈ L2, Q(x) = T

mod Γ

Z(x,Γ).(1.4)

If T > 0 is positive definite, Z(T, L) is either empty or a finite sum of points on S. If

T ≥ 0, has rank 1, then Z(T, L) is either empty or a finite sum of curves on S, and

if T = 0, then Z(0, L) = S. Let [Z(T, L)] ∈ H2r(T )(S,Q) be the cohomology class of

Z(T, L), where r(T ) = rank(T ). The generating function in this case is

φ2(τ, L) =
∑

T∈Sym2(Z)≥0

[Z(T, L)] ∪ [ω]2−r(T ) qT ,(1.5)

where τ ∈ H2, the Siegel space of genus 2, and qT = e(tr(Tτ)). Note that the terms for

singular T ’s are obtained by shifting by suitable powers of [ω]. The coefficients of this

generating function lie in H4(S,C), and [15], [16], [17] yield the following result.

Theorem 1.3. — The generating function φ2(τ, L) is a Siegel modular form of weight 2

and genus 2 valued in H4(S,C).

Applying the degree map H4(S,C) → C, one obtains a scalar valued Siegel modular

form.

Corollary 1.4. — The generating function

deg(φ2(τ, L)) = vol(S) +
∑

T∈Sym2(Z)≥0

r(T )=1

vol(Z(T, L)) qT +
∑

T∈Sym2(Z)>0

deg(Z(T, L)) qT

is a Siegel modular form of weight 2 and genus 2.

In particular, the positive definite Fourier coefficients of deg(φ2(τ, L)) are the degrees

of the 0–cycles Z(T, L) on the surface S. The volumes of curves on S are taken with

respect to the restriction of the invariant (1,1)–form ω of (1.2) and

vol(S) =

∫
S

ω2.

Theorems 1.1 and 1.3 are proved by constructing a theta function θ1(τ, L) for τ ∈ H,

resp. θ2(τ, L) for τ ∈ H2, valued in closed (1, 1)–forms, resp. closed (2, 2)–forms on S. The

generating function is the cohomology class of this theta function, i.e., φi(τ, L) = [θi(τ, L)]

for i = 1, 2, and hence is modular. In addition, the generating function of Corollary 1.2

resp. Corollary 1.4 is obtained as the integral of θ1(τ, L) over the curve C, resp. θ2(τ, L)

over S. For suitable Γ’s, this last integral over S is a constant multiple of the group

theoretic integral of the theta function which occurs in the Siegel–Weil formula, and

hence coincides with a special value of a Siegel–Eisenstein series of genus 2 at the point

s = 1
2
, [13] and Proposition 3.2 below.



876-06

Corollary 1.5. — There is a nonzero constant c such that

deg(φ2(τ, L)) = c · E(τ,
1

2
, L)

for a suitable Siegel–Eisenstein series E(τ, s, L) of genus 2 and weight 2.

In the case in which S is a product of modular curves, such a geometric interpretation

of the Fourier coefficients of a Siegel–Eisenstein series was observed by Gross and Keating

[6].

1.2. Interlude.

More general results of this type, [15], [16], [17], and [13], concerning generating func-

tions for cycles of codimension n on Shimura varieties X defined by rational quadratic

forms of signature (m − 2, 2) are discussed in section 3 below. Note that the complex

dimension of X is m − 2. The main aim of this report is to explain the first steps in

establishing a similar theory in the arithmetic case. Roughly speaking, this means the

following. First, one wants to consider cycles of codimension n on integral models X of

the Shimura varieties X and their classes in the arithmetic Chow groups ĈH
r
(X), [4]. For

2 ≤ m ≤ 4, integral models can be obtained as moduli spaces of suitable abelian varieties,

and cycles can be defined as the loci where the abelian varieties in question are equipped

with additional endomorphisms of a certain type. The theta functions valued in the deR-

ham complex are not available in this context, and so it is not clear at present how to

define generating functions for cycles of arbitrary codimension. If one considers 0–cycles,

however, one may apply the arithmetic degree map d̂eg : ĈH
m−1

(X) → R. One may then

look for an analogue of Corollary 1.5 and Proposition 3.2, where the Siegel–Eisenstein

series will now have genus n = m − 1 and the critical point will be s0 = m
2
− n+1

2
= 0,

i.e., the central point on the real axis for the functional equation of the Eisenstein series.

Moreover, it turns out that the ‘correct’ Eisenstein series of genus n and weight n+1
2

will

have a zero at this point, so that one should look at its first derivative E ′(τ, 0, L). The

case of the arithmetic surfaces attached to Shimura curves is discussed at length below in

sections 4–6, and the analogue of Corollary 1.5 is given in Conjecture 4.7. The simplest

example, however, occurs for m = 2. This case involves only classical objects, e.g., elliptic

curves with complex multiplication and Eisenstein series of weight 1 for SL2.

1.3. Derivatives of Eisenstein series of weight 1.

This section describes the simplest case in which the derivative at s = 0 of an Eisenstein

series can be identified with a generating function for the arithmetic degrees of 0–cycles on

a moduli scheme. These results are joint work with Michael Rapoport and Tonghai Yang

[24]. Fix a prime d ≡ 3 mod 4 with d > 3, and let k = Q(
√
−d) be the corresponding
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imaginary quadratic field with ring of integers Ok and associated Dirichlet character χd.

Let

Λ(s, χd) = π−
s+1
2 Γ

(
s + 1

2

)
L(s, χd)

where L(s, χd) is the Dirichlet L–series of χd. For a nonzero integer n ∈ Z, let ρ(n) be

the number of ideals in Ok of norm n. For example, note that, for a prime p, ρ(p) = 0 if

p is inert in k, ρ(p) = 2 is p is split in k, and ρ(d) = 1.

There are two normalized Eisenstein series of weight 1 for Γ = SL2(Z) attached to k.

For τ = u + iv ∈ H, and s ∈ C with Re(s) > 1, let

E∗±(τ, s) = v
s
2 d

s+1
2 Λ(s + 1, χd)

∑
γ∈Γ∞\Γ

(cτ + d)−1|cτ + d|−sΦ±(γ),

where, for γ =

(
a b

c d

)
∈ Γ,

Φ±(γ) =

χd(a) if c ≡ 0 mod (d)

±i d−
1
2 χd(c) if c is prime to d.

The entire analytic continuation of these series in s satisfy the functional equations

E∗±(τ,−s) = ±E∗±(τ, s).

A general construction of series of this sort is described in section 2 below. A case of the

Siegel–Weil formula due to Hecke describes the value at s = 0 of the even series:

E∗+(τ, 0) = 2hk + 4
∞∑
t=1

ρ(t) qt = 2
∑

a

ϑ(τ, a),

where hk is the class number of k, the ideal a runs over representatives of the ideal classes

of k, and θ(τ, a) is the binary theta series attached to a. For the odd series, E∗−(τ, 0) = 0,

and the function of interest is the (negative of the) leading term

φ(τ, d) = − ∂

∂s

{
E∗−(τ, s)

}∣∣
s=0

.

Theorem 1.6. — The modular form φ(τ, d) of weight 1 has Fourier expansion

φ(τ, d) = a0(v) +
∑
t<0

at(v) q
t +

∞∑
t=1

at q
t,

where, for t > 0,

at = 2 log(d) (ordd(t) + 1) ρ(t) + 2
∑
p
=d

log(p) (ordp(t) + 1) ρ(t/p),

where the sum runs over primes p inert in k,

a0 = −hk
(
log(d) + log(v) + 2

Λ′(1, χd)

Λ(1, χd)

)
,
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and, for t < 0,

at(v) = −2Ei(−4π|t|v) ρ(−t).

Here

−Ei(−x) =

∫ ∞

1

u−1 e−ux du

is the exponential integral.

The idea now is to give an interpretation of these coefficients as the degrees in the sense

of arithmetic geometry of certain 0–cycles on the the coarse moduli scheme M for elliptic

curves (E, ι) with complex multiplication ι : Ok ↪→ End(E) by Ok. This scheme over Ok

can be identified with Spec(OH), where H is the Hilbert class field of k. For such a curve

(E, ι), the space of special endomorphisms is the Z-module

V (E, ι) = {x ∈ End(E) | x ι(a) = ι(ā)x for all a ∈ Ok }.(1.6)

This space has a Z-valued quadratic form Q defined by x2 = −Q(x) · idE. For t ∈ Z,

let Z(t) be the coarse moduli scheme whose points over an algebraically closed field

correspond to triples (E, ι, x) where x ∈ V (E, ι) with Q(x) = t. The scheme Z(t) → M
is the locus of (E, ι)’s with an extra multiplication, anticommuting with the action of Ok.

Such extra endomorphisms can only exist for a supersingular curve E in characteristic p

for a prime p which is not split in k. Then Z(t) = Spec(R(t)) where R(t) is an Artin

algebra in which p is nilpotent. Let

d̂eg(Z(t)) = log |R(t)|.

The second main result of [24] is a calculation of this degree; this calculation depends in

an essential way on the results of Gross [5].

Theorem 1.7. — For t > 0,

d̂eg(Z(t)) = at,

and hence

φ(τ, d) =
∑
t>0

d̂eg(Z(t)) qt + a0(v) +
∑
t<0

at(v) q
t.

A sort of geometric interpretation of the remaining terms will be discussed in section 7

below, cf. also [24].

2. CENTRAL DERIVATIVES OF SIEGEL–EISENSTEIN SERIES

A general construction of ‘even’ and ‘odd’ Siegel–Eisenstein series is best described

in representation theoretic language, and is connected with the Siegel–Weil formula at

the central critical point. These series, which will be called coherent and incoherent

series respectively, for reasons explained below, will have integral or half–integral weight
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depending on the parity of the dimension of the relevant quadratic spaces. Hence it is

necessary to work on the metaplectic group.

Let G = Sp2n be the symplectic group of rank n over Q and let P = MN be the

maximal parabolic with Levi factor M � GLn and unipotent radical N � Symn. Let

GA =

Mp2n(A) if n is even

Sp2n(A) if n is odd,

where Mp2n(A) is the twofold metaplectic cover of Sp2n(A), and let PA and MA be the

subgroups of GA corresponding to P and M . Let GQ be Sp2n(Q) for n odd resp. the

image of this group in Mp2n(A) under the canonical splitting, if n is even. For each place

p ≤ ∞ of Q, there are groups Gp, Pp and Mp, defined analogously.

A quadratic character χ of A×/Q× determines a character χ = χψ of MA, trivial on

MQ = MA ∩GQ, and for s ∈ C, one has the degenerate principal series representation

I(s, χ) = IndGA

PA
(χ| |s)

of GA. (The character χψ depends on the fixed choice of the nontrivial additive character

ψ of A/Q in the metaplectic case.)

For Φ(s) ∈ I(s, χ), the Siegel-Eisenstein series is defined for Re(s) > n+1
2

by

E(g, s,Φ) =
∑

γ∈PQ\GQ

Φ(γg, s).

From the standard theory of Eisenstein series one knows that this function has a mero-

morphic analytic continuation to the whole s–plane and satisfies a functional equation

relating s and −s. In addition, it has no poles on the line Re(s) = 0 (unitary axis). In

particular, there is an intertwining map

E(0) : I(0, χ) −→ A(G), Φ(0) �→ E(0,Φ)(2.1)

from the degenerate principal series at s = 0 to the space A(G) of automorphic forms on

GA.

The image and kernel of this map can be described in terms of representations associated

to quadratic forms as follows.

A rational vector space V of dimension m with a nondegenerate quadratic form Q

determines a quadratic character χV of A×/Q× by

χV (x) = (x, (−1)
m(m−1)

2 det(Q))A,

where ( , )A is the global quadratic Hilbert symbol. For such a space (V,Q), there is a

Weil representation ωV of GA on the Schwartz space S(V (A)n), determined by ψ. This

gives rise to a GA– intertwining map

λV : S(V (A)n) −→ I(s0, χV ), λV (ϕ)(g) =
(
ωV (g)ϕ)(0),
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where s0 = m
2
− n+1

2
. Specializing to the case χV = χ and m = n + 1, one obtains an

irreducible constituent Π(V ) = λV
(
S(V (A)n)

)
of I(0, χ).

Similarly, for each place p ≤ ∞, there is an analogous local construction which yields

an irreducible constituent Πp(Vp) of the local induced representation Ip(0, χVp) of Gp
associated to each quadratic space Vp over Qp of dimension n + 1 and character χVp .

Then, for a global space V , one has

Π(V ) � ⊗′p≤∞Πp(Vp) ⊂ I(0, χ) = ⊗′p≤∞Ip(0, χp)

where Vp = V ⊗Q Qp and the primes indicate the restricted tensor products. For a finite

prime p, there are precisely two possible quadratic spaces V +
p and V −p over Qp, for a fixed

n and character χp. They are distinguished by their Hasse invariants εp(V
±
p ) = ±1, and,

in fact, [19],

Ip(0, χp) = Πp(V
+
p ) ⊕ Πp(V

−
p ).

For p = ∞, the quadratic spaces of dimension n + 1 and character χ∞ are determined

by their signature, and fall into two groups according to their Hasse invariant. The local

induced representation I∞(0, χ∞) is the direct sum of the corresponding Π∞(V∞)’s, [18].

For example, for n = 4 the quadratic spaces over R of signatures (5, 0), and (1, 4) have

Hasse invariant +1, while that of signature (3, 2) has Hasse invariant −1, and

I∞(0, χ∞) = Π(5, 0) ⊕ Π(3, 2) ⊕ Π(1, 4),

in the obvious notation. Here χ∞ = 1.

If a collection of local quadratic spaces C = {Vp} is the set of localizations of a global

space V , then the product formula for the Hasse invariants asserts that

ε(C) :=
∏
p≤∞

εp(Vp) = 1.

Such a collection and the Eisenstein series associated to it will be called coherent. On

the other hand, the collection C of local quadratic spaces obtained by choosing one prime

p0 (e.g., p0 = ∞) and switching the space Vp0 to a space V ′p0 with the opposite Hasse

invariant has

ε(C) := εp0(Vp0)
∏
p≤∞
p �=p0

εp(Vp) = −1,

so that such a collection cannot be the set of localizations of any global quadratic space.

In this case, the collection C and the Eisenstein series associated to it will be called

incoherent. The irreducible admissible representation

Π(C) = Πp0(V
′
p0

) ⊗
(
⊗ p≤∞

p �=p0

Πp(Vp)

)
of GA is also a constituent of I(0, χ). Then there is a direct sum decomposition

I(0, χ) =

( ⊕
V

Π(V )

)
⊕

( ⊕
C

Π(C)

)
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where V runs over all global quadratic spaces of dimension n+ 1 and character χ, and C
runs over all incoherent collections, where ε(C) = −1, as just described. One then obtains

a description of the kernel and image of the map E(0) in terms of the Π(V )’s and Π(C)’s,

[14], [20], [9].

Theorem 2.1. — (i)

ker(E(0)) =
⊕

ε(C)=−1

Π(C).

(ii) Each automorphic representation Π(V ) in the image

Im(E(0)) �
⊕
V

Π(V )

coincides with space of (regularized) theta integrals

I(g, ϕ) =

∫
O(V )(Q)\O(V )(A)

θ(g, h;ϕ) dh,(2.2)

attached to the global quadratic space V . Here, for ϕ ∈ S(V (A)n), g ∈ GA and h ∈
O(V )(A),

θ(g, h;ϕ) =
∑
x∈V (Q)

(ω(g)ϕ)(h−1x).

The integral I(g, ϕ) must be defined by a regularization procedure [20] whenever V is

isotropic.

Part (ii) of Theorem 1.2 is essentially the Siegel–Weil formula in the present context,

[20], [33]. Note that the theta functions involve global arithmetic, e.g., the number of

solutions of diophantine equations of the form Q(x) = T for T ∈ Symn(Z) and x ∈ Ln

for a lattice L ⊂ V (Q), whereas the Eisenstein series is constructed from local data.

Problem. — What is the arithmetic content of the first derivative E ′(g, 0,Φ) when

Φ ∈ Π(C) with ε(C) = −1?

Remark 2.2. — The results to be discussed in the remainder of the talk suggest an

answer to this question, at least for the following particular case:

Let V be a rational quadratic space, as above, with signature (n− 1, 2), and let C be the

collection of local quadratic spaces obtained from {Vp} by replacing V∞ by the space V ′∞
of signature (n+ 1, 0). Let ϕ′∞ ∈ S((V ′∞)n) be the Gaussian ϕ′∞(x) = exp(−πQ′(x)), and

let Φ
(n+1)/2
∞ (s) ∈ I∞(s, χ∞) be the corresponding section; it is the unique eigenvector for

K∞ of weight n+1
2

. For any ϕ ∈ S(V (Af )
n), with corresponding section Φf (s) ∈ If (s, χf ),

Φ(0) = Φ
n+1

2∞ (0) ⊗ Φf (0) ∈ Π(C).

Then the central derivative E ′(g, 0,Φ) should be related to a generating function for the

degrees of 0–cycles on an integral model of the Shimura variety associated to the group

GSpin(V ).
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Remark 2.3. — For comparison with the generating functions considered below, it is

convenient to write the Eisenstein series in more classical language. For τ = u+ iv ∈ Hn,

the Siegel space of genus n, and for ϕ ∈ S(V (Af )
n), let

E(τ, s, ϕ) : = det(v)−
1
2
(s+n+1

2
)E(gτ , s,Φ)(2.3)

=
∑

γ∈Γ∞\Γ
det(cτ + d)−

n+1
2 | det(cτ + d)|−s (ωf (γ)ϕ)(0),

where Γ = Sp2n(Z), Γ∞ = Γ ∩ P (Q), ωf denotes the action of GAf
on S(V (Af )

n) via the

Weil representation, and gτ =

(
v

1
2 uv−

1
2

v−
1
2

)
.

3. GENERATING FUNCTIONS IN THE GEOMETRIC CASE

This section describes the results of [15], [16], [17], and [13] on generating functions for

the cohomology classes of special cycles in the case of O(n− 1, 2), special cases of which

were described in section 1.1. These results suggest what one might hope to prove in the

arithmetic case.

For a rational quadratic space V of signature (n − 1, 2), let H = GSpin(V ) and let D

be the space of oriented negative 2–planes in V (R). The space D is isomorphic to two

copies of a bounded domain of type IV in Cn−1, [10], [28], and the group H(R) acts on

it by holomorphic automorphisms. For a compact open subgroup K ⊂ H(Af ), the orbit

space

XK(C) = H(Q)\D ×H(Af )/K

is the set of complex points of a quasi–projective variety XK defined over Q, the Shimura

variety attached to H, D and K. The variety XK is in fact projective if V is anisotropic

and smooth if K is sufficiently small.

Fix r ∈ Z with 1 ≤ r ≤ n− 1. For x ∈ V (R)r, let

Dx = {z ∈ D | x ⊥ z}

be the set of z’s which are orthogonal to all components of x. If the matrix T = Q(x) =
1
2
((xi, xj)) is positive definite, i.e., if the components of x span a positive r–plane, then

Dx has complex codimension r in D. If, in addition, x ∈ V (Q)r, then x⊥ is a rational

quadratic space of signature (n − r − 1, 2), the stabilizer Hx of x in H is isomorphic to

GSpin(x⊥), and there is a natural map of Shimura varieties

Z(x,K) : Hx(Q)\Dx ×Hx(Af )/Hx(Af ) ∩K −→ XK(C),

giving a cycle of codimension r on XK(C). Given a function ϕ ∈ S(V (Af )
r)K and

T ∈ Symr(Q)>0, there is a weighted linear combination Z(T, ϕ) of such cycles [13], and the

resulting cohomology classes [Z(T, ϕ)] ∈ H2r(XK), where H∗(XK) is the cohomology of

XK(C) with complex coefficients [17]. Examples are given by (1.1) and (1.4) in section 1.1,
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where ϕ is the characteristic function of (L̂)r ⊂ V (Af )
r, for L̂ = L ⊗Z Ẑ. If T is only

positive semi–definite with rank(T ) = r(T ), the associated cycles have codimension r(T )

and their cohomology classes lie in H2r(T )(XK).

To form a generating function, let τ = u+ iv ∈ Hr, the Siegel space of genus r, and let

qT = e(tr(τT )).

Theorem 3.1. — [17]. For ϕ ∈ S(V (Af )
r)K, and for a suitable choice of a Kähler form

ω on XK(C), the generating series

φr(τ, ϕ) =
∑

T∈Symr(Q)≥0

[Z(T, ϕ)] · [ω]r−r(T ) qT

is the q–expansion of a holomorphic Siegel modular form of weight n+1
2

and genus r valued

in H2r(XK).

The proof of this result depends on a construction of a theta function taking values

in the space of closed 2r forms on XK(C). This method is quite general and applies to

the locally symmetric spaces associated to O(p, q), U(p, q) and Sp(p, q), cf. [15], [16], and

[17].

Specializing to the case where V is anisotropic and r = n− 1 and applying

deg : H2(n−1)(XK) → C, one obtains a holomorphic Siegel modular form of genus n − 1

and weight n+1
2

,

φdeg(τ, ϕ) = deg
(
φn−1(τ, ϕ)

)
=

∑
T∈ Symn−1(Q)≥0

deg
(
[Z(T, ϕ)] · [ω]n−1−r(T )

)
qT .(3.1)

By the Siegel–Weil formula [20], this form is, in turn, a value of an Eisenstein series. More

precisely, let

G′A =

Mp2(n−1)(A) if n is even

Sp2(n−1)(A) if n is odd.

The machinery described in section 2 carries over, except that the map λV : S(V (A)) −→
I(s0, χ) now takes values in the induced representation at the point s0 = 1

2
. Let E(g, s,Φ)

be the Siegel–Eisenstein series associated to the section Φ
n+1

2∞ (s) ⊗ Φf (s), where Φf (
1
2
) =

λV (ϕ) for the weight function ϕ ∈ S(V (Af )
n−1)K . The Siegel–Weil formula for the

anisotropic space V then implies the following generalization of Corollary 1.5 above [13]:

Proposition 3.2. — For τ = u+iv ∈ Hn−1, and for a weight function ϕ ∈ S(V (Af )
n−1)K,

φdeg(τ, ϕ) = vol(XK(C)) det(v)−
n+1

4 E(gτ ,
1

2
,Φ).

where

vol(XK(C)) =

∫
XK(C)

ωn−1.

In particular, the positive definite Fourier coefficients of this Eisenstein series are the

degrees of the (weighted) 0–cycles Z(T, ϕ) on XK.
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4. GENERATING FUNCTIONS FOR ARITHMETIC 0–CYCLES: THE

CASE OF SHIMURA CURVES

This section describes the generating function for the arithmetic degrees of 0–cycles on

the arithmetic surface X associated to a Shimura curve X over Q. The series of interest

will be analogous to the series deg(φ2(τ, L)) for a complex surface given in Corollary 1.4

and will have the form

φ̂deg(τ) =
∑

T∈Sym2(Z)

d̂eg(Ẑ(T, v)) qT ,(4.1)

where τ = u+ iv ∈ H2 and the Ẑ(T, v)’s are certain classes in ĈH
2
(X), the top arithmetic

Chow group of the arithmetic surface X, [4]. As in the second example of section 1, the

definition of the relevant cycles will depend on a modular interpretation. To give a more

detailed explanation, it is convenient to begin with the geometric situation of section 3.

Fix an indefinite division quaternion algebra B over Q. The space V = {x ∈ B |
tr(x) = 0}, equipped with the restriction of the reduced norm of B, is a three dimensional

quadratic space over Q of signature (1, 2). The group H = B× � GSpin(V ) acts on V by

conjugation. The Shimura curve XK associated to a compact open subgroup K ⊂ H(Af ),

is a moduli space for abelian surfaces with OB–action and level structure, where OB is a

maximal order in B. For example, suppose that K =
(
OB ⊗Z Ẑ

)×
. Then X = XK is the

(coarse) moduli scheme over Q for pairs (A, ι) consisting of an abelian surface A together

with an action ι : OB ↪→ End(A) of OB, and X(C) � ΓB\H, where ΓB = (OB)×+ is the

group of norm 1 units on OB.

The 0–cycles on X defined in section 3 can also be defined by specifying additional

endomorphisms.

Definition 4.1. — For an abelian surface (A, ι) with OB–action, the space of special

endomorphisms is

V (A, ι) = {x ∈ End(A) | ι(b)x = xι(b) and tr(x) = 0}.

This space is equipped with a Z–valued quadratic form defined, for a special endomorphism

x ∈ V (A, ι), by x2 = −Q(x) · 1A.

Definition 4.2. — For t ∈ Z>0, the special cycle Z(t) is the locus of triples (A, ι, x)

where x ∈ V (A, ι) with Q(x) = t.

In fact, one then has Z(t) = Z(t, ϕ) where Z(t, ϕ) is the 0–cycle on X = XK defined

in section 3 for the weight function ϕ ∈ S(V (Af ))
K , the characteristic function of the set

V (Af ) ∩
(
OB ⊗Z Ẑ

)
.

The 0–cycle Z(t) on X is rational over Q and is analogous to the set of CM points on the

modular curve associated to the imaginary quadratic field Q(
√
−t). For τ = u + iv ∈ H,
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the upper halfplane and q = e(τ), the degree generating function (3.1) in the present case

φdeg(τ) = vol(X) +
∑
t>0

deg(Z(t)) qt(4.2)

is the value at s = 1
2

of an Eisenstein series of weight 3
2

for a congruence subgroup of

SL2(Z), cf. Proposition 3.2. Here vol(X) is the volume of X(C) � ΓB\H with respect to

− 1
2π

y−2 dx ∧ dy.

Now consider the arithmetic case. Let X be the coarse moduli scheme over S = Spec(Z)

for abelian surfaces (A, ι) with OB–action satisfying Drinfeld’s ‘special’ condition [2]. The

arithmetic surface X has generic fiber XQ = X, the canonical model of the Shimura curve;

X has good reduction at all primes p � D(B), where D(B) is the product of the primes

p such that Bp = B ⊗Q Qp is a division algebra. The points of X over an algebraically

closed field k correspond to isomorphism classes of (A, ι)’s over k.

For an abelian scheme (A, ι) over a connected base, the space of special endomorphisms

V (A, ι) with its Z–valued quadratic form Q is defined as before.

Definition 4.3. — For T ∈ Sym2(Z)>0, the arithmetic special cycle Z(T ) is the locus

of triples (A, ι, x), where x = [x1, x2] ∈ V (A, ι)2 is a pair of special endomorphisms

xi ∈ V (A, ι) with Q(x) = 1
2
((xi, xj))i,j = T .

Proposition 4.4. — [23]. The cycle Z(T ) is either empty or is supported in the set

of supersingular points of a single fiber Xp, where p is determined by T , as described in

Lemma 4.5 below. If p � D(B), or if p|D(B) but p � T , then Z(T ) is a 0–cycle on Xp. If

p|D(B) and p|T , then Z(T ) is a union, with multiplicities, of components of the fiber Xp

(and some additional embedded components).

Sketch of proof. — The proof of this result illustrates the way in which the the basic

structure of the cycle Z(T ) is determined by the space V (A, ι). Observe that, for a

geometric point (A, ι) of X and viewing A up to isogeny,

End0(A) = End(A) ⊗Z Q �


B if A is simple,

M2(C) if A � E × E with E ordinary,

M2(B) if A � E × E with E supersingular,

for an elliptic curve E. In the second case, End0(E) � C is an imaginary quadratic

field which splits B, and, in the third case, which occurs only in characteristic p > 0,

End0(E) � B is the quaternion algebra over Q ramified at ∞ and p. In this case,

write M2(B) � B ⊗ B(p) where B(p) is the definite quaternion algebra over Q whose

local invariants differ from those of B precisely at ∞ and p. Then, in the three cases,
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End0(A, ι) � Q, C, and B(p) respectively, and

V 0(A, ι) = V (A, ι) ⊗Z Q �


0

C0 = {x ∈ C | tr(x) = 0},

V (p) = {x ∈ B(p) | tr(x) = 0}.

It follows that Z(T )Q = ∅, i.e., the cycle Z(T ) has no points in characteristic 0. If Z(T )

meets the fiber Xp at p, then Z(T ) ∩ Xp is contained in the supersingular locus of Xp,

and the rational quadratic space V (p) represents T , i.e., there exists a pair of vectors

x = [x1, x2] ∈ V (p)(Q) such that Q(p)(x) = T . This last condition implies that Z(T ) is

supported in a single fiber, due to the following simple observation.

Lemma 4.5. — (i) The quadratic spaces V (p) have the same determinant as V , i.e.,

det(V (p)) = det(V ) ∈ Q×/Q×,2.

(ii) For a given T ∈ Sym2(Q) with det(T ) �= 0, there is a unique three dimensional rational

quadratic space VT with det(VT ) = det(V ) which represents T ; the quadratic form on VT
has matrix (

T

det(V )/ det(T )

)
.(4.3)

Thus, if VT is not isomorphic to any of the V (p)’s then Z(T ) is empty, while if VT � V (p)

for some p, then Z(T ) is supported in the supersingular locus of Xp.

Definition 4.6. — A matrix T ∈ Sym2(Z)>0 will be called irregular if VT � V (p) where

p|D(B) and p|T . Otherwise T will be called regular.

The assertions about the irregular case require a more detailed argument, using the

p-adic uniformization of the formal completion of Xp, [23].

The arithmetic Chow group ĈH
2
(X) is generated by pairs (Z, g) where Z is a 0–cycle

on X and g is a smooth (1, 1)–form on X(C), modulo a suitable equivalence, [4], [32].

There is a degree map d̂eg : ĈH
2
(X) → R.

For T ∈ Sym2(Z)>0 regular, let

Ẑ(T, v) = (Z(T ), 0) ∈ ĈH
2
(X).(4.4)

Then Z(T ) = Spec(R(T )) for an Artin ring R(T ) in which p is nilpotent, and the corre-

sponding positive definite coefficients of the generating function (4.1) are given by

d̂eg(Ẑ(T, v)) = log |R(T )|.(4.5)

For nonsingular T ∈ Sym2(Z) with signature (1, 1) or (0, 2), set

Ẑ(T, v) = (0, g(T, v)) ∈ ĈH
2
(X),(4.6)
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where g(T, v) is a smooth (1, 1)–form, depending on T and v, which is described in (6.3)

of section 6.

Finally, if T ∈ Sym2(Z)≥0 has rank 1, then, in effect, only one special endomorphism

had been imposed, so that there is an associated divisor Z(T ) on X. A Green’s function

Ξ(T, v) for this divisor is constructed in section 6, below. This function continues to make

sense when T ≤ 0. There is a resulting class

Ẑ(T, v) = (Z(T ),Ξ(T, v)) ∈ ĈH
1
(X),(4.7)

where Z(T ) is empty when T ≤ 0. Let ω̂X be the relative dualizing sheaf of X over

Spec(Z), with metric coming from the uniformization of X(C) by D, viewed as an element

of ĈH
1
(X) via the isomorphism P̂ic(X) � ĈH

1
(X), and let

ω̂X(v) = ω̂X + (0, log det(v)) ∈ ĈH
1
(X).(4.8)

This class plays a role analogous to that of [ω], the Kähler class, in section 3 above.

Using the arithmetic intersection pairing ĈH
1
(X)× ĈH

1
(X) → ĈH

2
(X), the full arith-

metic generating function (4.1), analogous to φdeg given in Corollary 1.4 and (3.1) in the

geometric case, is then

(4.9)

φ̂deg(τ) = d̂eg(ω̂X(v)2) +
∑

rank(T )=1

d̂eg
(

Ẑ(T, v) · ω̂X(v) ) qT +
∑
T

det(T ) 
=0

d̂eg( Ẑ(T, v) ) qT .

where suitable terms have been added† for irregular T .

In the present situation, the construction of Remark 2.3 yields an incoherent Eisenstein

series E(τ, s, ϕ) of weight 3
2

associated to ϕ ∈ S(V (Af )
2), the characteristic function of

(ÔB ∩ V (Af ))
2.

Conjecture 4.7. — The generating function φ̂deg(τ) is a Siegel modular form of weight
3
2
, more precisely

φ̂deg(τ) = vol(X(C)) · E ′(τ, 0, ϕ).(4.10)

The main results in this direction assert that many of the Fourier coefficients of the two

series coincide. Recall that D(B) is the product of the primes p at which Bp is division.

Also put V (∞) = V , so that there is a rational quadratic space associated to each place

of Q. By Lemma 4.5, a given nonsingular T ∈ Sym2(Q) is represented by at most one

of these spaces. If T is positive definite, this space, if it exists, must be one of the V (p)’s

for a finite prime p, while if T has signature (1, 1) or (0, 2), then this space can only be

V = V (∞).

†by a still not very satisfactory procedure
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Theorem 4.8. — [14]. Suppose that T ∈ Sym2(Z) is nonsingular.

(i) If T is not represented by any V (p), then the T–th Fourier coefficient of both sides of

(4.10) vanish.

(ii) If T is represented by V (p) with p � 2D(B), including p = ∞, then the T–th Fourier

coefficients of the two sides of (4.10) agree, i.e.,

d̂eg(Ẑ(T, v)) qT = vol(X(C)) · E ′T (τ, 0, ϕ).(4.11)

In fact, work in progress [25] should extend (4.11) to all T of rank 1.

The proof of (ii) is similar to the proof of the main identity at the heart of the Gross–

Zagier formula [8]; it amounts to an explicit computation of the two quantites, one from

arithmetic geometry, the other from automorphic forms. A sketch of the proof is given in

the next two sections.

5. NON–SINGULAR FOURIER COEFFICIENTS

The Fourier coefficients of the central derivative of an incoherent Eisenstein series

E(τ, s, ϕ) associated to a rational quadratic space V of signature (n− 1, 2), as defined as

in Remark 2.3, have an interesting structure.

For each prime p ≤ ∞, define a quadratic space V (p) of dimension n + 1 and the same

determinant as that of V as follows. Let V (∞) = V . For a finite prime p, V (p) has signature

(n + 1, 0) and local Hasse invariants at finite primes @ determined by

ε'(V
(p) ⊗Q Q') =

 ε'(V ) if @ �= p, and

−εp(Vp) if @ = p.
(5.1)

For each nonsingular T ∈ Symn(Q), there is a rational quadratic space VT of dimension

n + 1 and the same determinant as V defined by equation (4.3).

It is well known that if the function ϕ = ⊗p<∞ϕp ∈ S(V (Af )
n) is factorizable and

Re(s) > n+1
2

, then each nonsingular Fourier coefficient of E(τ, s, ϕ) is given by a product

ET (τ, s, ϕ) = W
n+1

2
T,∞ (τ, s) ·

∏
p<∞

WT,p(s, ϕp)

of local (degenerate) Whittaker functions, [20]. In classical language, the archimedean

factor is a confluent hypergeometric function of a matrix argument studied by Shimura

[30], while the product over the finite primes is the Siegel series.

Proposition 5.1. — [14], section 6. (i) If VT is not isomorphic to any V (p), then

E ′T (τ, 0, ϕ) = 0.

(ii) If VT � V (p) for a finite prime, then WT,p(0, ϕp) = 0 and

E ′T (τ, 0, ϕ) = qT ·WT,p(s, ϕp)
′∣∣
s=0

· A(p)
T (ϕ),
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where A
(p)
T (ϕ) is, up to a factor at p, the Fourier coefficient of a theta integral (cf. (2.2))

attached to V (p).

(iii) If VT � V (∞) = V ,

E ′T (τ, 0, ϕ) = W
n+1

2
T,∞ (τ, s)′

∣∣
s=0

· A(∞)
T (ϕ),

where A
(∞)
T (ϕ) is the T–th Fourier coefficient of a theta integral attached to V .

Idea of proof of Theorem 4.8 for p < ∞. Restricting to the case n = 2 as in section 4,

suppose that T ∈ Sym2(Z) is nonsingular with VT � V (p) for a finite prime p � 2D(B). In

this case, using Proposition 5.1, the identity to be proved in (ii) of Theorem 4.8 amounts

to

d̂eg(Ẑ(T, v)) = d̂eg((Z(T ), 0)) = vol(X(C)) ·WT,p(s, ϕp)
′∣∣
s=0

· A(p)
T (ϕ).(5.2)

This identity, which is of the same nature as the identities between heights and Fourier

coefficients involved in the Gross-Zagier formula, is proved by computing the two sides

explicitly.

On the geometric side, since T is regular, Z(T ) is a collection of supersingular points

on Xp, each counted with a certain multiplicity. This multiplicity is the length of the

local Artin ring associated to the deformations of the triple (A, ι, x), where x is a pair of

special endomorphisms. By the Serre–Tate Theorem, one can pass to the deformations

of (A(p), ι, x) where A(p) is corresponding p–divisible group with the action ι of (OB)p =

OB ⊗Z Zp � M2(Zp) and a pair of special endomorphisms x. Since A is isogenous to

E × E for a supersingular elliptic curve E, one reduces, via the idempotents in (OB)p,

to the problem of deforming (E(p), x) for a pair x = [x1, x2] of endomorphisms of the p–

divisible group of such a curve. Note that E(p) is a p–divisible formal group of dimension

1 and height 2. The length of the associated Artin ring is then obtained by specializing

a beautiful result of Gross and Keating [6].

They consider the deformations of a collection (X,X′, y) where X and X′ are formal

groups of dimension 1 and height 2 over F̄p and y = [y1, y2, y3] is a triple of nonzero

isogenies yi : X → X′. Note that the universal deformation ring of the pair (X,X′) is

W [[t, t′]], where W = W (F̄p) is the ring of Witt vectors of F̄p.

Proposition 5.2. — (Gross-Keating, [6], Proposition 5.4) Suppose that the matrix Q

of inner products of the triple y = [y1, y2, y3] with respect to the degree quadratic form on

Hom(X,X′) has invariants a1 ≤ a2 ≤ a3. For p odd, this means that Q ∈ Sym3(Zp) is

GL3(Zp) equivalent to diag(ε1p
a1 , ε2p

a2 , ε3p
a3) for units εi ∈ Z×p . Then the length of the
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deformation ring of (X,X′, y) is given by:

a1−1∑
i=0

(i + 1)(a1 + a2 + a3 − 3i) pi +

(a1+a2−2)/2∑
i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i) pi(5.3)

+
1

2
(a1 + 1)(a3 − a2 + 1) p(a1+a2)/2.

if a1 + a2 is even, and

a1−1∑
i=0

(i + 1)(a1 + a2 + a3 − 3i) pi +

(a1+a2−1)/2∑
i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i) pi

if a1 + a2 is odd.

Specialized to the case where y1 is an isomorphism, so that a1 = 0, one obtains an ex-

plicit formula for the multiplicity δp(T ) of a point in Z(T ), and, in particular, observes that

this multiplicity depends only on the GL2(Zp)–equivalence class of T , and not on the par-

ticular point. Thus, the left hand side of (5.2) has the form (δp(T ) · ( # points in Z(T ))).

On the other hand, for p �= 2, the quantity WT,p(s, ϕp)
′∣∣
s=0

on the analytic side of (5.2)

can be computed from the result of Kitaoka [12]. More precisely, the quadratic form on

the lattice Lp = (OB ⊗ Zp) ∩ Vp has matrix S0 = diag(1, 1,−1) for a suitable basis. Let

Sr = diag(1, 1,−1, 1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
r

)

be the quadratic form obtained from S0 by adding r hyperboic planes. Then

WT,p(r, ϕp) = γp · αp(Sr, T ),

for a root of unity γp, where

αp(Sr, T ) = lim
t→∞

p−t(3+4r) |{x ∈ M3+2r,2(Zp/p
tZp) | txSrx ≡ T mod (pt)}|

is the classical representation density of T by Sr as defined by Siegel, [12]. This quantity

has the form αp(Sr, T ) = Ap(q
−r, T ) for a polynomial Ap(X,T ), which was first calculated

in this case by Kitaoka [12]‡. When T is such that WT,p(0, ϕp) = 0, and T ∈ Sym2(Zp) is

GL2(Zp)–equivalent to diag(ε1p
a, ε2p

b), then Kitaoka’s formula yields

WT,p(s, ϕp)
′∣∣
s=0

= − log(p) γp
∂

∂X

{
Ap(X,T )

}∣∣
X=1

= log(p) γp (1 − p−2)(5.4)

×


∑(a−1)/2
j=0 (a + b− 4j) pj if a is odd∑(a−2)/2
j=0 (a + b− 4j) pj + 1

2
(b− a + 1) pa/2 if a is even

and b is odd

‡Recently, it has been calculated in general, for p �= 2, by F. Sato and Y. Hironaka, [29]
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Remarkably,

WT,p(s, ϕp)
′∣∣
s=0

= log(p) γp (1 − p−2) δp(T ),(5.5)

where δp(T ) is the multiplicity computed via the Gross–Keating formula! Finally, by a

straightforward counting argument, the number of points in Z(T ) is given by A
(p)
T (ϕ), up

to simple factors, independent of T , which compensate for the extra p2 − 1 and the factor

vol(X(C)).

6. GREEN’S FUNCTIONS AND WHITTAKER FUNCTIONS

The classes Ẑ(T, v) in the arithmetic Chow groups of integral models of Shimura curves

involve the Green’s functions defined in [14], section 11. This section describes the con-

struction of such functions. First, suppose that V is a rational quadratic space of signature

(n− 1, 2), as in section 3, and recall that for t ∈ Q>0 and for ϕ ∈ S(V (Af ))
K , there is a

divisor Z(t, ϕ) on XK , given as a weighted sum of the images in XK of the divisors Dx in

D. A Green’s function of logarithmic type for Z(t, ϕ) in the sense of Gillet–Soulé [4] can

be constructed by averaging rapidly decreasing Green’s functions for Dx’s. Next, in the

case of a Shimura curve (n = 2), the smooth (1, 1)–form g(T, v) used in the construction

of the terms for indefinite T ’s in the generating function of arithmetic degrees is defined

via the star product. The notation is that of section 3.

For an oriented negative 2–plane z ∈ D, let prz be the projection to z with respect to

the orthogonal decomposition V (R) = z + z⊥. For x ∈ V (R), x �= 0, the quantity

R(x, z) = −(prz(x), prz(x))

is nonnegative and vanishes if and only if z ∈ Dx. Let

ξ(x, z) = −Ei(−2πR(x, z)),

where, for r > 0,

−Ei(−r) =

∫ ∞

1

e−rt

t
dt

is the exponential integral. Since −Ei(−r) decays exponentially as r goes to infinity and

behaves like − log(r)+O(1) as r goes to 0, the function ξ(x) has a logarithmic singularity

along the (possibly empty) divisor Dx and decays very rapidly away from Dx. In addition,

it satisfies the Green’s equation:

ddcξ(x) + δDx = µ(x)

for a smooth (1, 1)–form µ(x) on D, and hence defines a Green’s form of log type for Dx,

in the sense of Gillet-Soulé.



876-22

Note that R(hx, hz) = R(x, z) for h ∈ GSpin(V )(R), so that ξ(hx, hz) = ξ(x, z) as

well. For v > 0 and t ∈ Q>0, and a weight function ϕ ∈ S(V (Af ))
K , the sum

g(t, v, ϕ)(z, h) =
∑
x∈V (Q)
Q(x)=t

ϕ(h−1x) ξ(x, z)(6.1)

depends only on the orbit H(Q)(z, h)K of the point (z, h) ∈ D×H(Af ). Thus, g(t, v, ϕ)

defines a Green’s function of logarithmic type for the divisor Z(t, ϕ), defined in section 3

(for r = 1), on XK .

In the case n = 2, for the space V considered in section 4, and a pair of vectors

x = [x1, x2] ∈ V (R)2 such that det(Q(x)) �= 0, the integral

Λ(x) =

∫
D

ξ(x1) ∗ ξ(x2)

of the ∗–product of the associated Green’s functions [4] is well defined and satisfies

Λ(hx) = Λ(x) for all h ∈ GSpin(V )(R). This implies that Λ(x) actually only depends on

the matrix of inner products Q(x), i.e.,

Λ(x) =: Λ0(Q(x)).(6.2)

One can view Λ(x) as the ‘archimedean height pairing’ of the 0–cycles Dx1 and Dx2 in D.

In fact this quantity has the following rather surprising additional invariance:

Theorem 6.1. — [14], section 13. For any k ∈ SO(2), and any x,

Λ(xk) = Λ(x).

Note that, even when Q(x1) > 0 and Q(x2) > 0, so that one initially has a pair of

0–cycles Dx1 and Dx2 in D, eventually, after rotation, one encounters a pair of vectors

x′1 and x′2 with Q(x′2) < 0, so that the cycle Dx′2 has vanished (!) and is replaced, in

some sense, by the geodesic arc {z ∈ D | x′2 ∈ z}. Nonetheless, the ‘archimedean height

pairing’ Λ(x) is invariant under such a deformation.

It follows that, writing v ∈ Sym2(R)>0 as v = ata for a ∈ GL2(R)+, the quantity Λ(xa)

depends only on v and not on the choice of a. Then, for a nonsingular T ∈ Sym2(Z), one

has a smooth (1, 1)–form

g(T, v) =

( ∑
x ∈ V (Q)2

Q(x) = T

mod ΓB

ϕ(x) Λ(xa)

)
µ(6.3)

on X, where µ = y−2 dx ∧ dy, ϕ is the characteristic function of the set
(
ÔB

2 ∩ V (Af )
2
)
,

and ΓB = O×B . This is the form used in the definition (4.6) of Ẑ(T, v) when T has signature

(1, 1) or (0, 2). Note that the sum is nonempty precisely when V represents T .
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Idea of proof of Theorem 4.8 for p = ∞. Again using Proposition 5.1, the identity

to be proved in this case is

d̂eg(Ẑ(T, v)) qT = vol(X(C)) ·W
n+1

2
T,∞ (τ, s)′

∣∣
s=0

· A(∞)
T (ϕ).

The left hand side is simply

qT · Λ0(
taTa) ·

∑
x ∈ V (Q)2

Q(x) = T

mod ΓB

ϕ(x),(6.4)

where v = ata, as before and Λ0 is given by (6.2). Then some transformations of the

integral representations of the matrix argument confluent hypergeometric function of

Shimura’s paper [30] together with a manipulation of the integral defining Λ shows that

W
n+1

2
T,∞ (τ, s)′

∣∣
s=0

= c∞ · Λ0(
taTa) · qT ,

where c∞ is an innocuous constant. Again, the sum in (6.4) counts pairs of lattice vectors

modulo ΓB and coincides with A
(∞)
T , the Fourier coefficient of the theta integral, up to a

constant which absorbs c∞ and provides the required vol(X(C)) factor.

7. FURTHER RESULTS

One would like to identify the central derivative E ′(τ, 0, ϕ) of the incoherent Eisenstein

series (2.3) as a generating function for arithmetic degrees in the general case. In the

series of papers [24], [22], [21] the cases n = 1, 3 and 4 are considered. In each of these

cases (and also for n = 5), the Shimura variety X associated to H = GSpin(V ) is of

PEL type, i.e., can be interpreted as a moduli space for abelian varieties (A, ι) with a

specified endomorphism ring, due to the existence of an accidental isomorphism. This

allows one to give a modular definition of an integral model XK of XK , at least over

Spec(Z[N−1]) for a suitable N depending on the compact open subgroup K. For each

abelian scheme (A, ι), there is a space of special endomorphisms V (A, ι), equipped with

a Z–valued quadratic form. Special cycles on X are then defined by imposing collections

of such endomorphisms, as in section 4 and the example of section 1.3 above.

The case n = 1. This case is considered in [24] and is described in classical language

in section 1.3 above. From the point of view now developed it amounts to the following.

An imaginary quadratic field k = Q(
√
−d) with quadratic form Q(x) = −Nk/Q(x) gives a

rational quadratic space (V,Q) of signature (0, 2). The group GSpin(V ) is then the torus

over Q with GSpin(V )(Q) � k×, and X � Spec(OH) is the restriction of scalars to Spec(Z)

of the coarse moduli space over Ok of elliptic curves (A, ι) with complex multiplication
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by Ok. In this case the space of special endomorphisms (1.6) is

V (A, ι) = {x ∈ End(A) | xι(b) = ι(b̄)x}.

This space is zero unless A is a supersingular elliptic curve in characteristic p, where p is

not split in k, in which case, V (A, ι) ⊗Z Q � V (p), the rational quadratic space given by

V (p) = k with quadratic form Q(p)(x) = pNk/Q(x). For τ = u + iv ∈ H, the generating

function is then given by

φ̂deg(τ) =
∑
t∈Z

d̂eg(Ẑ(t, v)) qt.(7.1)

Here, for t > 0, Ẑ(t, v) = (Z(t), 0) ∈ ĈH
1
(X) where Z(t) is the locus of (A, ι, x)’s where

x ∈ V (A, ι) with Q(x) = −x2 = t. For t < 0, Ẑ(t, v) = (0, g(t, v)) ∈ ĈH
1
(X), where

g(t, v) is the function on X(C) � H(Q)\D × H(Af )/K given by (6.1). Here K � Ô×k .

Note that in this case, D consists of two points (via the two possible orientations of V (R)),

and R(x, z) = 2Nk/Q(x), so that ξ(xa, z) = −Ei(−4πvNk/Q(x)), precisely as in [24]. This

gives an improved version of Theorem 1.7:

Theorem 7.1. — [24]. When d ≡ 3 mod (4) is a prime and for a suitable definition of

the constant term d̂eg(Ẑ(0, v)),

φ̂deg(τ) = vol(X(C)) · E ′(τ, 0, ϕ),

where ϕ is the characteristic function of Ôk ⊂ V (Af ) and vol(X(C)) = hk is the class

number of k.

The result is proved by a direct calculation of both sides, using the results of Gross [5]

to compute multiplicities on the moduli space. The restriction to prime discriminant is

only made to streamline the calculations.

The higher dimensional cases treated so far exhibit some new phenomena.

The case n = 3. This case is considered in [22]. The incoherent Eisenstein series (2.2)

associated to a rational quadratic space of signature (2, 2) will have weight 2 and genus

3. To define the relevant moduli problem and generating function for arithmetic degrees,

let C(V ) = C+(V ) ⊕ C−(V ) be the Clifford algebra of V with its Z2–grading. Then the

center of C+(V ) is a real quadratic field k (possibly k = Q ⊕ Q), and C+(V ) has the

form B0 ⊗Q k for an indefinite quaternion algebra B0 over Q. The associated Shimura

variety X is a surface whose complex points parametrize polarized abelian varieties (A, ι)

of dimension 8 with an action of a maximal order in C(V ) ⊗ k. Included among the X’s

are products of modular curves (k = Q ⊕ Q, B0 = M2(Q)), products of Shimura curves

(k = Q⊕Q, B0 division), Hilbert-Blumenthal surfaces (k a field, B0 = M2(Q)) and their

twisted (quaternionic) analogues (k a field, B0 division). An integral model X of X over

Spec(Z[N−1]), is defined as the moduli space of polarized abelian schemes with such an
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action, level structure, etc. The space of special endomorphisms of a given (A, ι) is then

V (A, ι) = {x ∈ End(A) | x ι(c⊗ a) = ι(c⊗ ā)x, and x∗ = x}

where ∗ denotes the Rosati involution of A. As before, this space has a Z–valued quadratic

form define by x2 = Q(x)·1A. Again, a key point is that, for (A, ι) supersingular, the space

V (A, ι) ⊗ Q � V (p) is the 4 dimensional rational quadratic space defined by (5.1) above.

For T ∈ Sym3(Z)>0, the special cycle Z(T ) is the locus of (A, ι, x)’s where x ∈ V (A, ι)3

with Q(x) = T . This cycle is either empty or is supported in the supersingular locus Xs.s.
p

of the fiber at p for the unique prime p for which VT � V (p). Here one assumes that p � N ,

so that p is a prime of good reduction; in particular, p is not ramified in k.

If a prime p � N splits in k, then the supersingular locus Xs.s.
p consists of a finite set of

points. If p is inert in k, then Xs.s.
p has dimension 1 and is, in fact, is a union of P1’s [31],

[22], section 4, crossing at Fp2 rational points.

Let ϕ ∈ S(V (Af )
3) be the characteristic function of L⊗ Ẑ for a lattice L ⊂ V (Q) such

that Lp is self dual for all p � N , and let E(τ, s, ϕ) be the associated incoherent Eisenstein

series (2.3) of weight 2.

Theorem 7.2. — [22]. Suppose that T ∈ Sym3(Z)>0.

(i) If VT is not isomorphic to any V (p), then Z(T ) is empty and E ′T (τ, 0, ϕ) = 0.

(ii) If VT � V (p) for a prime p � N which splits in k, then there is a class Ẑ(T ) =

(Z(T ), 0) ∈ ĈH
3
(X) and

d̂eg(Ẑ(T )) · qT = C · E ′T (τ, 0, ϕ),(7.2)

for a constant C independent of T .

(iii) Suppose that VT � V (p) for a prime p � N which is inert in k. If p � T , then Z(T )

consists of a finite number of points, there is a class Ẑ(T ) = (Z(T ), 0) ∈ ĈH
3
(X) and,

again,

d̂eg(Ẑ(T )) · qT = C · E ′T (τ, 0, ϕ).(7.3)

If p | T , then Z(T ) is a union of components of the supersingular locus Xs.s.
p .

Here, T ∈ Sym3(Z)>0 will be called irregular if VT � V (p) with p � N inert in k and

p | T . The situation for p | N , e.g., p ramified in k, has not yet been studied.

Here, as in (4.5), d̂eg(Ẑ(T )) = log |R(T )| for the Artin ring R(T ) defining Z(T ), so

that the fact that X is only defined over Spec(Z[N−1]) and need not be proper will not be

important. These issues will be essential, however, if one wants to define the full generating

function φ̂deg(τ) and compare it to E ′(τ, 0, ϕ). The proof of (7.2) and (7.3), where Z(T ) is

a 0–cycle, again comes down to a relation between derivatives of representation densities

for quadratic forms and the result of Gross and Keating described in Proposition 5.2

above, now in its full generality. Indeed, that result was obtained in connection with the
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study of the derivative of a Siegel–Eisenstein series of weight 2, due to the connection of

such a series with the triple product L–function [3], [27], [9], [7].

The case n = 4. This case is considered in [21]. Here the Shimura varieties are (twisted)

Siegel 3–folds, and the pattern is similar to that for n = 3. The one new point is that the

‘regularity’ condition on T ∈ Sym4(Z) required to obtain a 0–cycle in the supersingular

locus (which is again a curve with P1 components) becomes: VT � V (p) and T represents

1 over Zp. One then obtains an analogue of Theorem 6.2, with the comparison again

based on [6].

8. FINAL REMARKS

Beyond the range of the accidental isomorphisms, i.e., for n ≥ 6, the Shimura varieties

associated to GSpin(V ) for rational quadratic spaces V of signature (n − 1, 2) are no

longer of PEL type, so that the modular interpretation of points, special endomorphisms,

and other tools used before are no longer available. Instead, it will be necessary to work

with integral models defined by suitable types of Hodge classes, etc., [26]. Presumably

there is a good notion of special endomorphisms or special Hodge classes in this situation

which cut out the required cycles. This theory remains to be established.

Even in the range 2 ≤ n ≤ 5, many difficulties lie in the way of a full treatment of the

generating function for φ̂deg(τ). For example, there is the problem of the contribution of

irregular T ’s, which occur even in the case of good reduction. The contribution of the

singular T ’s is ‘global’ and will presumably involve models over Z, detailed information

about the fibers of bad reduction, etc. Much work remains to be done.

In addition, there is the question of defining modular arithmetic generating functions

φ̂r(τ), analogous to the series φr(τ) of Theorem 3.1 above, valued in arithmetic Chow

groups ĈH
r
(X) for arbitrary codimension. Of course the image of such series under the

cycle class map should be the generating series discussed in section 3. Recent work of

Borcherds [1], which gives a generating function involving the classes of the divisors Z(t, ϕ)

on XK(C) in the Chow group CH1(XK(C)), rather than in cohomology, will be relevant

here.

In all cases, it remains to work out the modifications required in the case of non-compact

quotient.
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