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Introduction.

Let k be a number field and let πi, i = 1, 2, 3 be cuspidal automorphic representa-
tions of GL2(A) such that the product of their central characters is trivial. Jacquet
then conjectured that the central value L( 1

2 , π1 ⊗ π2 ⊗ π3) of the triple product
L–function is nonzero if and only if there exists a quaternion algebra B over k and
automorphic forms fBi ∈ πBi such that the integral

(0.1) I(fB1 , fB2 , fB3 ) =
∫
Z(A)B×(k)\B×(A)

fB1 (b)fB2 (b)fB3 (b) d×b �= 0,

where πBi is the representation of B×(A) corresponding to πi via the Jacquet-
Langlands correspondence.

In a previous paper [4], we proved this conjecture in the special case where k = Q

and the πi’s correspond to a triple of holomorphic newforms. Our method was based
on a combination of the Garrett, Piatetski-Shapiro, Rallis integral representation of
the triple product L-function with the extended Siegel–Weil formula and the seesaw
identity. The restriction to holomorphic newforms over Q arose from (i) the need
to invoke the Ramanujan Conjecture to control the poles of some bad local factors
and (ii) the use of a version of the Siegel–Weil formula for similitudes. In this note,
we show that, thanks to the recent improvement on the Ramanujan bound due to
Kim–Shahidi [11], together with a slight variation in the setup of (ii), our method
yields Jacquet’s conjecture in general.

Since the exposition in [4] was specialized from the start to the case of interest for
certain arithmetic applications, we will briefly sketch the method in general in the
first few sections. We then prove the facts required about the extended Siegel–Weil
formula.

Several authors have considered interpretations of the vanishing of the central value
L( 1

2 , π1 ⊗ π2 ⊗ π3). Here we mention only the work of Dihua Jiang, [9], who
gave an intriguing relation with a period of an Eisenstein series on G2 and the
recent Princeton thesis of Thomas Watson, [26], who applies these central values
to problems in ‘quantum chaos’.

The authors would like to thank the IHP in Paris where this project was realized
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during the special program on ‘geometric aspects of automorphic forms’ in June
of 2000. We also thank the referee for helpful comments, and in particular for
reminding us that the completion of the proof of Proposition 5.2 made implicit use
of recent results of Loke [16].

§1. The integral representation of the triple product L–function.

Let G = GSp6 be the group of similitudes of the standard 6 dimensional symplectic
vector space over k, and let P = MN be the Siegel parabolic subgroup of G. For
a ∈ GL3, b ∈ Sym3 and ν a scalar, let

(1.1) m(a) =
(
a

ta−1

)
, n(b) =

(
1 b

1

)
, and d(ν) =

(
1

ν

)
∈ G.

Let KG = KG,∞ ·KG,f be the standard maximal compact subgroup of G(A). For
s ∈ C, let λs be the character of P (A) defined by

(1.2) λs(d(ν)n(b)m(a)) = |ν|−3s |det(a)|2s.

Let I(s) = IGP (λs) be the normalized induced representation of G(A), consisting of
all smooth KG–finite functions Φs on G(A) such that

(1.3) Φs(d(ν)n(b)m(a)g, s) = |ν|−3s−3 |det(a)|2s+2 Φs(g).

The Eisenstein series associated to a section Φs ∈ I(s) is defined for Re(s)2 by

(1.4) E(g, s,Φs) =
∑

γ∈P (k)\G(k)

Φs(γg),

and the normalized Eisenstein series is

(1.5) E∗(g, s,Φs) = bG(s) · E(g, s,Φs),

where bG(s) = ζk(2s + 2) ζk(4s + 2), as in [17]. Note that the central character of
E(g, s,Φs) is trivial. These functions have meromorphic analytic continuations to
the whole s–plane and have no poles on the unitary axis Re(s) = 0. In particular,
the map

(1.6) E∗(0) : I(0) −→ A(G), Φ0 
→ (g 
→ E∗(g, 0,Φs))

gives a (g∞,KG,∞)×G(Af )–intertwining map from the induced representation I(0)
at s = 0 to the space of automorphic forms on G with trivial central character.

Let

G = (GL2 ×GL2 ×GL2)0(1.7)

=
{
(g1, g2, g3) ∈ (GL2)3 | det(g1) = det(g2) = det(g3)

}
.
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This group embeds diagonally in G = GSp6. For automorphic forms fi ∈ πi, i = 1,
2, 3, let F = f1 ⊗ f2 ⊗ f3 be the corresponding function on G(A). The global zeta
integral [17] is given by

(1.8) Z(s, F,Φs) =
∫
ZG(A)G(k)\G(A)

E∗(g, s,Φs)F (g) dg.

Suppose that the automorphic forms fi ∈ πi have factorizable Whittaker functions
Wψ
i = ⊗vWψ

i,v and that the section Φs is factorizable. Let S be a finite set of places
of k, including all archimedean places, such that, for v /∈ S,

(i) the fixed additive character ψ of A/k has conductor Ok,v at v.
(ii) πi,v is unramified, fi is fixed under Kv = GL2(Ok,v), and Wψ

i,v(e) = 1.
(iii) Φs,v is right invariant under G(Ok,v) = KG,v and Φs,v(e) = 1,

Then

(1.9) Z(s, F,Φs) = LS(s +
1
2
, π1 ⊗ π2 ⊗ π3) ·

∏
v∈S

Zv(s,Wψ
v ,Φs,v),

for local zeta integrals Zv(s,Wψ
v ,Φs,v), where Wψ

v = Wψ
1,v ⊗Wψ

2,v ⊗Wψ
3,v. Here

(1.10) Z(s,Wψ
v ,Φs,v) =

∫
ZG(kv)M(kv)\G(kv)

Φs,v(δ g)Wψ
v (g) dg,

where δ ∈ G(k) is a representative for the open orbit of G in P\G, cf. for example
[2], and

(1.11) M = {(
(

1 x1

1

)
,

(
1 x2

1

)
,

(
1 x3

1

)
) ∈ G | x1 + x2 + x3 = 0}.

Here LS(s, π1⊗π2⊗π3) is the triple product L-functions with the factors for v ∈ S

omitted.

§2. Local zeta integrals.

In this section, we record some consequences of recent results of Kim and Shahidi
[11] on the Ramanujan estimate for the πi’s. We begin by recalling relevant aspects
of the local theory of the triple product, as recently completed by Ikeda and Ra-
makrishnan. In the following proposition by “local Euler factor” at a finite place v

of k we mean a function of the form P (q−sv )−1, where P is a polynomial, P (0) = 1,
and qv is the order of the residue field; at an archimedean field we mean a finite
product of Tate’s local Euler factors for GL(1).

Proposition 2.1. Let v be a place of k and let πi,v, i = 1, 2, 3, be a triple of
admissible irreducible representations of GL(2,kv) that arise as local components
at v of cuspidal automorphic representations πi.
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(i) There exists a local Euler factor L(s, π1,v ⊗ π2,v ⊗ π3,v) such that, for any local
data (Wψ

v ,Φs,v), the quotient

Z̃v(s,Wψ
v ,Φs,v) = Zv(s,Wψ

v ,Φs,v) · L(s +
1
2
, π1,v ⊗ π2,v ⊗ π3,v)−1

is entire as a function of s.

(ii) Let σi,v, i = 1, 2, 3, be the representations of the Weil-Deligne group of kv
associated to πi,v by the local Langlands correspondence. Then

L(s, π1,v ⊗ π2,v ⊗ π3,v) = L(s, σ1,v ⊗ σ2,v ⊗ σ3,v).

(iii) For any finite place v, there is a local section Φs,v and a Whittaker function
Wψ
v = Wψ

1,v ⊗Wψ
2,v ⊗Wψ

3,v, such that

Z(s,Φs,v,Wψ
v ) ≡ 1.

(iv) For any archimedean place v, there exists a finite collection of Whittaker func-
tions Wψ,j

v and of sections Φjs,v, holomorphic in a neighborhood of s = 0 such
that ∑

j

Z(0,Φjs,v,W
ψ,j
v ) = 1.

Proof. For v non-archimedean, assertion (i) is proved in §3, Appendix 3, of [17]; see
[7], p. 227 for a concise statement. For v real or complex, (i) and (ii) were proved
in several steps by Ikeda, of which the crucial one is [8], Theorem 1.10. Assertion
(ii) in general is due to Ramakrishnan, [21], Theorem 4.4.1. For the moment,
the hypothesis that the πi,v embed in global cuspidal representations seems to be
necessary.

Assertions (iii) and (iv) are contained in Proposition 3.3 of [17]. �

Proposition 2.2. (i) For any triple πi of cusp forms for GL2 over k, and for
any place v, the local Langlands L–factor L(s, π1,v ⊗ π2,v ⊗ π3,v) is holomorphic at
s = 1

2 .
(ii) For any place v, for any triple of Whittaker functions Wψ

i,v in the Whittaker
spaces of πi,v, and for any section Φs,v ∈ Iv(s), holomorphic in a neighborhood of
s = 0, the local zeta integral Z(s,Wψ

v , Ps,v) is holomorphic in a neighborhood of
s = 0.

Proof. This follows from the results of Kim and Shahidi. We sketch the simple
argument, quoting the proof of Proposition 3.3.2 of [21]. Let σi,v correspond to
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πi,v as in the previous proposition. For the present purposes we can assume each πi
to be unitary. Indeed, this can be arranged by twisting πi by a (unique) character
of the form | · |ai , where | · | is the idèle norm and ai ∈ C. Since the product of the
central characters of πi is trivial, we have a1 + a2 + a3 = 0, so the triple product
L-factor is left unaffected.

To each πi,v, necessarily generic and now assumed unitary, we can assign an index
λi,v which measures the failure of πi,v to be tempered; we have λi,v = t if πi,v is a
complementary series attached to (µ| · |t, µ| · |−t) with t0 and µ unitary, λi,v = 0
otherwise. Then, according to [21], (3.3.10),

(2.1) L(s, π1,v ⊗ π2,v ⊗ π3,v) is holomophic for Re(s)λ(π1,v) + λ(π2,v) + λ(π3,v).

Now (i) follows from (2.1) and the Kim-Shahidi estimate λ(πi,v) < 5
34 for all i and

all v [11], whereas (ii) follows from (i), and Proposition 2.1 (i) and (ii). �

By (1.8), (1.9), and the holomorphy of E∗(g, s,Φ) on the unitary axis, the expression

LS(s +
1
2
,π1 ⊗ π2 ⊗ π3) ·

∏
v∈S

Zv(s, F,Φs,v)(2.2)

=
∫
ZG(A)G(k)\G(A)

E∗(g, s,Φs)F (g) dg.

is holomorphic at s = 0 for all choices of data F and Φs. By varying the data
for places in S and applying (iii) and (iv) of Proposition 2.1, it follows that the
partial Euler product LS(s + 1

2 , π1 ⊗ π2 ⊗ π3) is holomorphic at s = 0. By (i) of
Proposition 2.2, the Euler product L(s + 1

2 , π1 ⊗ π2 ⊗ π3) over all finite places is
holomorphic at s = 0, and we obtain the identity

L(
1
2
,π1 ⊗ π2 ⊗ π3) ·

∏
v∈S

Z∗
v (0,W

ψ
v ,Φs,v)(2.3)

=
∫
ZG(A)G(k)\G(A)

E∗(g, 0,Φs)F (g) dg.

where

(2.4) Z∗
v (s,W

ψ
v ,Φs,v) =

{
Z̃v(s,Wψ

v ,Φs,v) if v ∈ Sf ,

Zv(s,Wψ
v ,Φs,v) if v ∈ S∞.

Corollary 2.3. L( 1
2 , π1 ⊗ π2 ⊗ π3) = 0 if and only if∫
ZG(A)G(k)\G(A)

E∗(g, 0,Φs)F (g) dg = 0,

for all choices of F ∈ Π = π1 ⊗ π2 ⊗ π3 and Φs ∈ I(s).

Of course, relation (2.3) gives a formula for L( 1
2 , π1 ⊗ π2 ⊗ π3) for a suitable choice

of F and Φs.
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§3. The Weil representation for similitudes.

The material of this section is a slight variation on that of section 5 of [3]. We
consider only the case of the dual pair (GO(V ), GSp6) where the space V has
square discriminant.

Let B be a quaternion algebra over k (including the possibility B = M2(k)), and
let V = B be a 4 dimensional quadratic space over k where the quadratic form is
given by Q(x) = α νB(x), where νB is the reduced norm on B and α ∈ k×. Note
that the isomorphism class of V is determined by B and the sign of α at the set
Σ∞(B) of real archimedean places of k at which B is division. Let H = GO(V )
and let H1 = O(V ) be the kernel of the scale map ν : H → Gm. Let G = GSp6,
and let G1 = Sp6 be the kernel of the scale map ν : G → Gm. We want to extend
the standard Weil representation ω = ωψ of H1(A)×G1(A) on the Schwartz space
S(V (A)3). First, there is a natural action of H(A) on S(V (A)3) given by

(3.1) L(h)ϕ(x) = |ν(h)|−3 ϕ(h−1x).

For g1 ∈ G1(A) one has

(3.2) L(h)ω(g1)L(h)−1 = ω(d(ν)g1d(ν)−1),

where ν = ν(h), and d(ν) is as in section 1. Therefore, one obtains a representation
of the semidirect product H(A) � G1(A) on S(V (A)3). Let

(3.3) R = {(h, g) ∈ H ×G | ν(h) = ν(g)}.

Then there is an isomorphism

(3.4) R −→ H � G1, (h, g) 
→ (h, d(ν(g))−1g) = (h, g1),

(this defines a map g 
→ g1) and a representation of R(A) on S(V (A)3) given by

(3.5) ω(h, g)ϕ(x) = (L(h)ω(g1)ϕ)(x) = |ν(h)|−3(ω(g1)ϕ)(h−1x).

The theta distribution Θ on S(V (A)3) is invariant under R(k), since, for (h, g) ∈
R(k),

Θ(ω(h, g)ϕ) =
∑

x∈V (k)3

|ν(h)|−3(ω(g1)ϕ)(h−1x)

=
∑

x∈V (k)3

(ω(g1)ϕ)(x)(3.6)

= Θ(ω(g1)ϕ) = Θ(ϕ),
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since g1 ∈ G1(k). The theta kernel, defined for (h, g) ∈ R(A) by

(3.7) θ(h, g;ϕ) =
∑

x∈V (k)3

ω(h, g)ϕ(x),

is thus left R(k) invariant.

Remark 3.1. Asside from a shift in notation, the convention here is essentially
the same as in section 5 of [3] and section 3 of [4], except that we take pairs (h, g)
here versus (g, h) there. Compare (3.5) above with (5.1.5) of [3]. It turns out
that this seemingly slight shift in convention will be crucial for the extension of the
Siegel–Weil formula to similitudes, as we will see below.

Note that the set of archimedean places Σ∞(B) introduced above is the set of all
real archimedean places of k at which V is definite (positive or negative). Then,

G(A)+ := {g ∈ G(A) | ν(g) ∈ ν(H(A))}(3.8)

= {g ∈ G(A) | ν(g)v0, ∀v ∈ Σ∞(V )}.
For g ∈ G(A)+, and ϕ ∈ S(V (A)3), and for V anisotropic over k, i.e., for B �=
M2(k), the theta integral is defined by

(3.9) I(g, ϕ) =
∫
H1(k)\H1(A)

θ(h1h, g;ϕ) dh1,

where h ∈ H(A) with ν(h) = ν(g). It does not depend on the choice of h.

In the case B = M2(k), the theta integral must be defined by regularization. If
k has a real place, the procedure outlined on p.621 of [4], [15], using a certain
differential operator to kill support, can be applied. An analogous procedure using
an element of the Bernstein center can be applied at a nonarchimedean place, [25].
We omit the details.

Lemma 3.2. (i) (Eichler’s norm Theorem) If α ∈ ν(H(A))∩k×, then there exists
an element h ∈ H(k) with ν(h) = α.
(ii) The theta integral is left invariant under G(A)+ ∩G(k).
(iii) The theta integral has trivial central character, i.e., for z ∈ ZG(A) ⊂ G(A)+,
I(zg, ϕ) = I(g, ϕ).

Proof. (i) is a standard characterization of ν(H(k)) in the present case. To check
(ii), given γ ∈ G(A)+ ∩G(k), choose γ′ ∈ H(k) with ν(γ′) = ν(γ). Then

I(γg, ϕ) =
∫
H1(k)\H1(A)

θ(h1γ
′h, γg;ϕ) dh1

=
∫
H1(k)\H1(A)

θ(γ′h1h, γg;ϕ) dh1(3.10)

= I(g, ϕ),
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via the left invariance of the theta kernel under (γ′, γ) ∈ R(k). Here, in the next
to last step, we have conjugated the domain of integration H1(k)\H1(A) by the
element γ′ ∈ H(k).

Finally, the proof of (iii) is just like that of Lemma 5.1.9 (ii) in [3]. �

Since G(A) = G(k)G(A)+, it follows that I(g, ϕ) has a unique extension to a left
G(k)–invariant function on G(A). Moreover, for any g0 ∈ G(A)+, we have

(3.11) I(gg0, ϕ) = I(g, ω(h0, g0)ϕ),

where h0 ∈ H(A) with ν(h0) = ν(g0). In particular, if h1 ∈ H1(A), then

(3.12) I(g, ω(h1)ϕ) = I(g, ϕ).

§4. The Siegel–Weil formula for (GO(V ), GSp6).

First we recall the Siegel–Weil formula for (O(V ), Sp6). The results of [15] on the
regularized Siegel–Weil formula were formulated over a totally real number field,
since, at a number of points, we needed facts about degenerate principal series,
intertwining operators, etc. which had not been checked for complex places. The
proof in the case of the central value of the Siegel–Eisenstein series is simpler than
the general case, and the additional facts needed at complex places are easy to
check. In the rest of this section, we will state the results for an arbitrary number
field k. A sketch of the proof of Theorem 4.1 below for such a field k will be given
in the Appendix below.

Let I1(s) = IG1
P1

(λs) be the global induced representation of G1(A) = Sp6(A)
induced from the restriction of the character λs of P (A) to P1(A) = P (A)∩G1(A).

For a global quadratic space V of dimension 4 over k associated to a quaternion
algebra B, as in the previous section, there is a (g1,∞,KG1,∞)×G1(Af )–equivariant
map

(4.1) S(V (A)3) −→ I1(0), ϕ 
→ [ϕ],

where

(4.2) [ϕ](g1) = (ω(g1)ϕ)(0).

The image, Π1(V ), is an irreducible summand of the unitarizable induced repre-
sentation I1(0). By the results of Rallis [19], Kudla–Rallis [14], [13], and the
appendix,

(4.3) Π1(V ) � S(V (A)3)O(V )(A),
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the space of H1(A) = O(V )(A)–coinvariants. One then has a decomposition

(4.4) I1(0) =
(
⊕V Π1(V )

)
⊕

(
⊕V Π1(V)

)
,

into irreducible representations of G1(A), as V runs over the isomorphism classes
of such spaces and as V runs over the incoherent collections, obtained by switching
one local component of a Π1(V ), cf. [12].

The Siegel–Weil formula of [4], asserts the following in the present case.

Theorem 4.1. (i) The (g1,∞,KG1,∞) ×G1(Af )–intertwining map

E1(0) : I1(0) −→ A(G1), Φ0 
→ (g1 
→ E(g1, 0,Φs))

has kernel ⊕VΠ1(V).
(ii) For a section Φs ∈ I1(s) with Φ0 = [ϕ] for some ϕ ∈ S(V (A)3),

(SW) E(g1, 0,Φs) = 2 I(g1, ϕ),

for the theta integral as defined in §3.

As explained in the previous section, the theta integral can be extended to an au-
tomorphic form on G(A). We will see presently that it coincides with an Eisenstein
series on G(A).

Restriction of functions from G(A) to G1(A) yields an isomorphism I(s) ∼−→ I1(s),
which is intertwining for the right action of G1(A). Here I(s) is the induced rep-
resentation of G(A) defined in section 1. The inverse map is given by Φs 
→ Φ∼

s

where

(4.5) Φ∼
s (g) = |ν(g)|−3s−3Φs(g1),

for g1 = d(ν(g))−1g, as above. The decomposition (4.4) into G1(A)–irreducibles
yields a decomposition

(4.6) I(0) =
(
⊕B Π(B)

)
⊕

(
⊕B Π(B)

)
,

into irreducible representations of G(A), where, for a global quaternion algebra B

over k,

(4.7) Π(B) = ⊕V Π(V )

where V runs over the non-isomorphic spaces associated to B (i.e., different multi-
ples of the norm form) and Π(V ) denotes the image of Π1(V ) under the inverse of
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the restriction isomorphism. Note that there are 2|Σ∞(B)| such V ’s. In effect, at a
real archimedean place v, the local induced representation I1(0)v has a decomposi-
tion into irreducible (g1,v,KG1,v)–modules

(4.8) I(0)v = Π(4, 0)v ⊕ Π(2, 2)v ⊕ Π(0, 4)v

according to signatures. The space Π(2, 2)v is actually stable under (gv,KG,v), as
is the sum Π(4, 0)v ⊕ Π(0, 4)v, and

(4.9) Π(B)v =

{
Π(2, 2)v if Bv � M2(R).

Π(4, 0)v ⊕ Π(0, 4)v if Bv is division.

The sumands Π(B) are defined similarly.

Theorem 4.2. (i) The (g∞,KG,∞) ×G(Af )–intertwining map

E(0) : I(0) −→ A(G), Φs 
→ (g 
→ E(g, 0,Φs))

has kernel ⊕BΠ(B).
(ii) For a section Φs ∈ I(s) with Φ0 ∈ Π(V ) so that Φ0 = [ϕ]∼ for some ϕ ∈
S(V (A)3),

(GSW) E(g, 0,Φs) = 2 I(g, ϕ),

for the theta integral as defined in §3.

Proof. For g0 ∈ G(Af ), we have

(4.10) E(gg0, s,Φs) = E(g, s, rs(g0)Φs),

where rs denotes the action in the induced representation I(s) by right translation.
Taking the value at s = 0, we obtain

(4.11) E(gg0, 0,Φs) = E(g, 0, rs(g0)Φs).

Note that this value depends only on Φ0 and r0(g0)Φ0.

Lemma 4.3. For ϕ ∈ S(V (A)3), let [ϕ] ∈ I1(0) be defined by (4.2) and let [ϕ]∼

be the corresponding function in I(0) under the inverse of the restriction isomor-
phism.
(i) For g ∈ G(A)+,

[ϕ]∼(g) = (ω(h, g)ϕ)(0),

where h ∈ GO(V )(A) with ν(h) = ν(g).
(ii) For g0 ∈ G(Af ),

r0(g0)[ϕ]∼ = [ω(h0, g0)ϕ]∼,
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where h0 ∈ GO(V )(Af ) with ν(h0) = ν(g0).

Proof. For (i), we have

[ϕ]∼(g) = [ϕ]∼(d(ν)g1)

= |ν|−3[ϕ](g1)

= |ν|−3(ω(g1)ϕ)(0)(4.12)

= (L(h)ω(g1)ϕ)(0)

= (ω(h, g)ϕ)(0).

For (ii),

(r0(g0)[ϕ]∼)(g) = |ν|−3[ϕ]∼(g1g0)

= |ν|−3(ω(h0, g1g0)ϕ)(0)

= |ν|−3(ω(g1)ω(h0, g0)ϕ)(0)(4.13)

= |ν|−3[ω(h0, g0)ϕ](g1)

= [ω(h0, g0)ϕ]∼(g).

�

Thus, if Φ0 = [ϕ]∼, then r0(g0)Φ0 = [ω(h0, g0)ϕ]∼. Since G(A) = G(k)ZG(A)G1(A)G(Af ),
we have, by (4.11),

E(g, 0,Φs) = E(γzg1g0, 0,Φs)(4.14)

= E(g1, 0, rs(g0)Φs),

the value at g1 of the Siegel–Eisenstein series attached to ω(h0, g0)ϕ ∈ S(V (A)3).
On the other hand, by (3.11),

I(g, ϕ) = I(γzg1g0, ϕ)(4.15)

= I(g1, ω(h0, g0)ϕ).

Thus (GSW) follows from (SW). �
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§5. Proof of Jacquet’s conjecture.

Applying the Siegel–Weil formula for similitudes to the basic identity (2.3), we
obtain

L(
1
2
, π1 ⊗ π2 ⊗ π3) · Z∗(F,Φ)

=
∫
ZG(A)G(k)\G(A)

E∗(g, 0,Φs)F (g) dg(5.1)

= 2ζk(2)2
∑
V

∫
ZG(A)G(k)\G(A)

I(g, ϕV )F (g) dg.

where

(5.2) Z∗(F,Φ) =
∏
v∈S

Z∗
v (0,W

ψ
v ,Φs,v),

and where ϕV ∈ S(V (A)3), and, in fact, only a finite set of V ’s occurs in the sum.
More precisely, in the decomposition (4.6),

(5.3) Φ0 =
∑
V

[ϕV ]∼ + terms in the Π(B)’s ∈ I(0),

where the quaternion algebras B associated to V ’s are split outside the set S, due
to condition (iii) in the definition of S in section 1. We thus have the following
reformulation of Corollary 2.3, generalizing Proposition 5.6 of [4]:

Corollary 5.1. L( 1
2 , π1 ⊗ π2 ⊗ π3) = 0 if and only if

∫
ZG(A)G(k)\G(A)

I(g, ϕV )F (g) dg

vanishes for all choices of F ∈ Π = π1 ⊗ π2 ⊗ π3, all choices of quadratic spaces V

attached to quaternion algebras B over k, and all choices of ϕV ∈ S(V (A)3).

Now consider the integral in the last line of (5.1) for a fixed ϕ = ϕV . To apply the
seesaw identity, we set

H = GO(V )

H = {(h1, h2, h3) ∈ H3 | ν(h1) = ν(h2) = ν(h3)},(5.4)

R = {(h,g) ∈ H × G | ν(h) = ν(g)}

R0 = {(h,g) ∈ H × G | ν(h) = ν(g)},
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and hence have the seesaw pair:

(5.5)

I(·, ϕ;F ) (GO(V )3)0 = H G = GSp6 I(·, ϕ)
↑ ↖ ↗ ↑
| ↙ ↘ |

11 GO(V ) = H G = (GL3
2)0 F

There are representations of both R(A) and R(A) on S(V (A)3), and the restriction
of these representations to the common subgroup R0(A) coincide.

For F a cuspidal automorphic form on G(A) and for h ∈ H(A), let

(5.6) I(h, ϕ;F ) =
∫
G1(k)\G1(A)

θ(h,g1g;ϕ)F (g1g) dg1,

where g ∈ G(A) with ν(g) = ν(h).

Lemma 5.2. (Seesaw identity)

∫
ZG(A)G(k)\G(A)

I(g, ϕ)F (g) dg =
∫
ZH(A)H(k)\H(A)

I(h, ϕ;F ) dh.

Proof. Note that ZG(A)G(k)\G(A) � ZG(A)G(k)+\G(A)+, and that

(5.7) ZG(A)G(k)+G1(A)\G(A)+ � ZH(A)H(k)\H(A) � A×,2k×,+\A×,+ =: C,

is compact, where A×,+ = ν(H(A)) and k×,+ = ν(H(k)). Fixing a Haar measure
dc giving C volume 1, we have

∫
ZG(A)G(k)\G(A)

I(g, ϕ)F (g) dg

=
∫
C

∫
G1(k)\G1(A)

∫
H1(k)\H1(A)

θ(h1h(c),g1g(c);ϕ)F (g1g(c)) dh1 dg1 dc

(5.8)

=
∫
ZH(A)H(k)\H(A)

I(h, ϕ;F ) dh,

generalizing the proof of Proposition 7.1.4 of [3]. �

To apply the seesaw identity to the restriction to G(A) of a function F ∈ Π = π1 ⊗
π2⊗π3, we recall the description, from sections 7 and 8 of [4], of the corresponding
space of functions Θ(Π) on H(A) spanned by the I(h, ϕ;F )’s for F ∈ Π and ϕ ∈
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S(V (A)3). Note that one obtains the same space by fixing a nonzero F and only
varying ϕ [5].

The action of B× ×B× on V = B, ρ(b1, b2)x = b1xb
−1
2 determines an extension

(5.9) 1 −→ Gm −→
(
B× ×B× )

� 〈t〉 −→ H = GO(V ) −→ 1

where the involution t acts on V by ρ(t)(x) = xι and on B× × B× by (b1, b2) 
→
(bι2, b

ι
1)

−1. Write

(5.10) H̃ =
(
B× ×B× )

� 〈t〉 and H̃0 = B× ×B×,

and let H̃ and H̃0 be the analogous groups for H = (GO(V )3)0. Thus, we have the
diagram

(5.11)

Θ̃(Π) Θ(Π)

H̃0 ↪→ H̃ −→ H

↑ ↑ ↑
H̃0 ↪→ H̃ −→ H

For an irreducible cuspidal automorphic representation π of GL2(A), let πB be
the associated automorphic representation of B×(A) under the Jacquet-Langlands
correspondence. We take πB to be zero if π does not correspond to a representation
of B×(A). Similarly, let ΠB = πB1 ⊗ πB2 ⊗ πB3 be the corresponding representation
of B×(A)3, or zero if some factor does not exist. Note that the central character of
ΠB is trivial, and so, (ΠB)∨ � ΠB , where (ΠB)∨ is the contragradient of ΠB . Thus
we can view the space of of functions ΠB on B×(A)3 as the automorphic realization
of both ΠB and its contragredient.

The following result is proved in [4], sections 7 and 8, based on the work of Shimizu
and Prasad.

Proposition 5.3. (i) Θ(Π) is either zero or a cuspidal automorphic representation
of H(A) and is nonzero if and only if ΠB is nonzero.
(ii) As spaces of functions on H̃0(A),

Θ̃(Π)
∣∣
H̃0(A)

=
(

ΠB ⊗ (ΠB)∨
)∣∣∣∣

H̃0(A)

.

For fixed F ∈ Π and ϕ ∈ S(V (A)3), we let Ĩ(·, ϕ;F ) denote the pullback of I(·, ϕ;F )
to H̃(A), and, via (ii) of Proposition 5.3, we write the restriction of this function
to H̃0(A) as

(5.12) Ĩ((b1,b2), ϕ;F ) =
∑
r

I1,r(b1, ϕ;F ) I2,r(b2, ϕ;F )
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for functions Ii,r(·, ϕ;F ) ∈ ΠB and bi ∈ B×(A)3. The seesaw then gives∫
ZG(A)G(k)\G(A)

I(g, ϕ)F (g) dg

=
∫
ZH(A)H(k)\H(A)

I(h, ϕ;F ) dh

=
∫
ZH̃0 (A)H̃(k)\H̃(A)

Ĩ(h, ϕ;F ) dh

(5.13)

=
∫
ZH̃0 (A)H̃0(k)\H̃0(A)

Ĩ(h, ϕ;F ) dh

=
∑
r

∫
A×B×(k)\B×(A)

I1,r(b1, ϕ;F ) db1 ·
∫

A×B×(k)\B×(A)

I2,r(b2, ϕ;F ) db2

The fact that the integral over ZH̃0(A)H̃(k)\H̃(A) in the third line can be replaced
by the integral over ZH̃0(A)H̃0(k)\H̃0(A) is (7.3.2), p.632 of [4]. Its proof in section
8.6, p.636 of [4] depends on Prasad’s uniqueness theorem [18] for invariant trilinear
forms. This theorem was recently completed by H. Y. Loke [16], who treated general
triples of admissible irreducible representations of GL(2,R) and GL(2,C).1 Thus
the calculation in (5.13) is valid for all number fields and for all triples of cuspidal
automorphic representations.

Finally, we observe that the integrals in the last line of (5.13) are finite linear
combinations of the quantities I(fB1 , fB2 , fB3 ) of (0.1). By (ii) of Proposition 5.3 ,
every such quantity can be obtained as an integral

∫
A×B×(k)\B×(A)

I1,r(b1, ϕ;F ) db1
for some ϕ, F and r.

Jacquet’s conjecture now follows upon combining this observation with Corollary
5.1 (compare the proof of Theorem 7.4 in [4]).

Remark 5.4. In fact, by Prasad’s uniqueness theorem, if the root number

(5.14) ε(
1
2
, π1 ⊗ π2 ⊗ π3) = 1,

then there is a unique B for which ΠB �= 0 and for which the space of global invariant
trilinear forms on ΠB has dimension 1. The automorphic trilinear form is given by
integration over A×B×(k)\B×(A) is then non-zero if and only if L( 1

2 , π1⊗π2⊗π3) �=
0. Choose fBi ∈ πBi , i = 1, 2, 3, such that

(5.15) I(fB1 , fB2 , fB3 ) �= 0.

1This is the only place in [4] where Prasad’s uniqueness theorem is used, although it was an

important motivation for the article as well as for Jacquet’s conjecture.
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For any nonzero F ∈ Π, we can choose ϕ ∈ S(V (A))3 such that

(5.16) Ĩ((b,b′), ϕ;F ) = fB1 (b1)fB2 (b2)fB3 (b3) fB1 (b′1)f
B
2 (b′2)f

B
3 (b′3),

where b = (b1, b2, b3) and b′ = (b′1, b
′
2, b

′
3). We then obtain

(5.17) L(
1
2
, π1 ⊗ π2 ⊗ π3) · Z∗(F,Φ) = 2ζk(2)2 I(fB1 , fB2 , fB3 )2.

where, Φ is determined by ϕ, and Z∗(F,Φ) �= 0. Of course, this identity is only
useful when one has sufficient information about the function ϕ and the product of
local zeta integrals Z∗(F,Φ). This was a main concern in [4].

On the other hand, when the root number ε( 1
2 , π1 ⊗π2 ⊗π3) = −1, then there is no

ΠB which supports an invariant trilinear form, and the central value of the triple
product L-function vanishes due to the sign in the functional equation.

Appendix: The Siegel–Weil formula for general k.

In this appendix, we will sketch the proof of Theorem 4.1 for an arbitrary number
field k, indicating the additional facts which are needed when k has complex places.

First, suppose that v is a complex place of k and consider the local degenerate
principal series representation I1,v(0) of G1,v = Sp3(C) and the Weil representation
of G1,v on S(V 3

v ), where Vv � M2(C) with Q(x) = det(x).

Lemma A.1. (i) I1,v(0) is an irreducible unitarizable representation of G1,v.
(ii) (Coinvariants) The map S(V 3

v ) → I1,v(0), ϕ 
→ [ϕ], analogous to (4.1) induces
an isomorphism

S(V 3
v )H1,v

∼−→ I1,v(0).

Here H1 = O(V ).

Remark: Statement (i) is in Sahi’s paper, [23], Theorem 3A. The proof of (ii) was
explained to us by Chen-bo Zhu2 [28], and is based on the method of [27].

In the case B = M2(k), the theta integral must be defined by regularization, – cf.
the remarks before Lemma 3.2 above. be applied. Alternatively, formula for certain
We write

(A.1) Ireg(g1, ϕ) =

{
I(g1, ϕ) if V is anisotropic,

B−1(g1, ϕ) if V is isotropic,

where B−1 is as in (5.5.24) of [15], except that we normalize the auxillary Eisenstein
series E(h, s) to have residue 1 at s′0. The key facts which we need are the following.

2He also directed us to [23]. We wish to thank him for his help on these points.
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Lemma A.2. (i) The map Ireg : S(V (A)3) → A(G1) factors through the space of
coinvariants S(V (A)3)H1(A) = Π(V ).
(ii) For all β ∈ Sym3(k),

Ireg,β(g1, ϕ) =
1
2
·
∫
H1(A)

ω(g1)ϕ(h−1x) dh,

where x ∈ V (k)3 with Q(x) = β.

The second statement here is Corollary 6.11 of [15]; it asserts that the nonsingular
Fourier coefficients behave as though no regularization were involved.

Next we have the analogue of Lemma 4.2, p.111 of [20]; the main point of the proof
is the local uniqueness, and the ‘submersive set’ argument for the archimedean
places carries over for a complex place.

Lemma A.3. For β ∈ Sym3(k) with det(β) �= 0, let Tβ be the space of distributions
T ∈ S(V (A)3)′ such that
(i) T is H(A)–invariant.
(ii) For all b ∈ Sym3(Af ),

T (ω(n(b)ϕ) = ψβ(b)T (ϕ),

where ψβ(b) = ψ(tr(βb)).
(iii) For an archimedean place v of k and for all X ∈ n = Lie(N),

T (ω(X)ϕ) = dψβ(X) · T (ϕ).

Then Tβ has dimension at most 1 and is spanned by the orbital integral

T (ϕ) =
∫
H1(A)

ϕ(h−1x) dh,

where x ∈ V (k)3 with Q(x) = β. In particular, Tβ = 0 if an only if there is no
such x.

sketch of the Proof of Theorem 4.1. First consider a global space V associated to
a quaternion algebra B. We have two intertwining maps

(A.2) E1(0) : Π(V ) −→ A(G1) and Ireg : Π(V ) −→ A(G1)

from the irreducible representation Π(V ) � S(V (A)3)H(A) of G1(A) to the space of
automorphic forms. For a nonsingular β ∈ Sym3(k), the distributions obtained by
taking the βth Fourier coefficient of the composition of the projection S(V (A)3) →
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Π(V ) with each of the embeddings in (A.2) satisfy the conditions of Lemma A.3
and hence are proportional. In particular, the β-th Fourier of the Eisenstein series
vanishes unless β is represented by V . By the argument of pp. 111–115 of [20],
the constant of proportionality is independent of β and so there is a constant c

such that E1(g, 0, [ϕ])− c · Ireg(g, ϕ) has vanishing nonsingular Fourier coefficients.
But then the argument at the top of p.28 of [15], cf. also, [20], implies that this
difference is identically zero.

In the case of a component Π(V) ⊂ I1(0), the nonsingular Fourier coefficients of
E(g, 0,Φ) vanish by the argument on p. 28 of [15], so, again by ‘nonsingularity’
the map E1(0) must vanish on Π(V). �
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