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Introduction

In a recent paper [16] of one of us it was shown that there is a close
connection between the value of the height pairing of certain arithmetic
0-cycles on Shimuracurves and the values at the center of their symmetry of
thederivatives of certain metaplectic Eisenstein seriesof genus2. Ontheone
hand, the height pairing can be written asasum of local height pairings. For
example, if the 0-cycles have digoint support on the generic fiber, then their
height pairing is a sum of an archimedean contribution and a contribution
from each of the (finitely many) finite primes p for which the cycles meet
inthefiber at p. On the other hand, it turns out that the non-singular part of
the Fourier expansion of the central derivative of the metaplectic Eisenstein
series aso has a decomposition into a sum of contributions indexed by the
places of Q. Then, one would like to compare the height pairing and the
Fourier coefficients by proving an identity of local contributions place by
place. In loc. cit. the identity for the archimedean place was proved, and it
was shown that the identity at a non-archimedean place of good reduction
is a consequence of results of Gross and Keating, [10], (for the algebraic-
geometric side) and of Kitaoka, [12], (for the analytic side). It then remains
to consider the finite primes p where the Shimura curve has bad reduction.
These are of three sorts: (i) the primes p at which the quaternion agebra
defining the Shimuracurveis split, but which divide thelevel, (ii) the primes
p a which the quaternion algebra remains division, but no level structure
isimposed, and (iii) the primes p at which the quaternion algebra remains
division and where a higher level structure isimposed at p. So far, little is
known concerning cases (i) and (iii).

* Partialy supported by NSF Grant DM S-9622987
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In the present paper we consider the case of anon-archimedean place p
of bad reduction of the second type, and hence where p-adic uniformization
in the sense of Cherednik-Drinfeld holds. It turns out that the identity to be
proved in this case can be reduced to apurely local statement concerning the
Drinfeld p-adic upper half plane €2 (the formal scheme version). Therefore
the bulk of this paper (Sects. 1-7) is concerned with the local situation, and
in thisintroduction we will concentrate on the local aspects of the problem.

Let W = W(Fp,) be the ring of Witt vectors of F,. Also let B be the
division quaternion algebra over Q, and let Og be its maximal order.

Recall that Q xspz, SPfW parametrizes pairs (X, 0), where X is
aspecia formal (s.f.) Oz-module (i.e., aformal p-divisible group of dimen-
sion 2 and height 4 with an action of O3 satisfying the “ special” condition,
comp. Sect. 1 below) over a W-scheme S on which p is localy nilpotent
and where

(0.1 Q5XXSpech§—> X xsS

isan Og-linear quasi-isogeny of height 0. Here X is afixed s.f. Gg-module
over SpeclF,, and S= S xspecw SpecF, is the specia fibre of S, We note
that End,_ (X) := Endo, (X) ®z, Qp = M2(Qp).

We define cyclesin X spfz, SPf W by imposing additional endomor-
phisms as follows. Let

(0.2) V = {j € End} (X); tr’(j) = 0},

equipped with the quadratic form q = —det, also given by j? = q(j) - id.
We call the elements of V special endomorphisms. For any j € V with
q(j) € Zp \ {0} we define a special cycle Z(j) which is a closed formal
subscheme of Xspiz, SPfW. It is the locus of pairs (X, o) such that
00 j oo extendsto anisogeny of X.

We assume, from now on, that p # 2. (We expect analogous results
to hold for p = 2. In fact, many of our techniques carry over to this
case, provided the more delicate theory of integral quadratic forms over the
2-adics is taken into account.)

Our first task isto investigate the structure of a single specia cycle. For
this we use two methods. The first is completely elementary and uses the
Bruhat-Tits building of PGL2(Qp), cf. [21]. This method is sufficient to
give a fairly accurate picture of the point set of the specia fibre of Z(j).
More precisely, let B be the Bruhat-Tits building of PGL»(Qp), and recall
that the irreducible components of the specia fiber of Q X spfz, Spf W are
projective linesindexed by the vertices of 8, i.e., by homothety classes[A]
of Zp-lattices A in Q%. If P, is the component corresponding to [A], then
Z(j) NPy # 9 if and only if j(A) C A. It follows that the support of
Z(j) iscontained in the union of the P;5;’sfor [A]'slying in the tube 7 ()
of radius %ord g(j) around the fixed point set 8’ of j in 8. The second
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method is due to Genestier, [8]. Hiscrucial observation isthat Z(j) may be

identified with the fixed point locus on 2 X spfz, SPf W of the action of | if
ordp(q(j)) = O (resp. of id + j if ordp(q(j)) > O) This observation allows
onetowriteexplicit local equationsfor thecycle Z( j) and thusyieldsagood
understanding of its local structure. The combination of the two methods
determines Z(j) completely and shows that, apart from degenerate cases,
Z(j) ispurely one-dimensional. Moreover, Z(j) can contain (multiples of)
irreducible components of the special fibre and can even have embedded
components! These latter phenomena are in contrast to the case of good
reduction. At the end of the introduction there is a schematic picture of the
various possibilities of Z(j).

We next turn to the calculation of the intersection product (Z(j), Z(j’))
of two specia cycles, assuming that j and j’ span a 2-dimensional non-
degenerate quadratic Z,-submodule j of V. In contrast with the case of
good reduction, we have to deal here with cases of excess intersection. We
proceed in two steps. We first prove that (Z(j), Z(j")) only depends on the
Zp-span j of j and j’. This part of our paper isin the spirit of the venerable
theory of M dbiustransformations. Inthe case of good reduction theanal ogue
of this independence statement is trivial, whereas at an archimedean place
it was one of the main and most difficult steps in the proof of the local
identity, [16]. Since p # 2, we may then assume that |, j’ diagonalize the
quadratic formonj, i.e. that jj’ = —j’]j. Inthis case, the calculation of the
intersection number becomes a piece of recreational mathematics, involving
the various facts about the structure of special cycles mentioned above and
combinatorial arguments involving the tubes 77 ) in the building 8. In the
following result and throughout the paper we write (j, j') = q(j + j') —
q(j) —q(j") for the bilinear form associated to the quadratic form g.

Theorem A. Let | and j’ be special endomorphisms with q(j), q(j") €
Zp \ {0} such that their Zp-span j = Zpj + Z,j’ is of rank 2 and is
nondegenerate for the quadratic form. Let

_ o ah 33G.0)
2G4 agn )’

and suppose that T is GL2(Zp)-equivalent to diag(e1p®, e2p°), where
€1, &2 € Zj, anda and g areintegerswith0 < o < B. Then (Z(j), Z(j")) =
& (T) depends only on the GL,(Zp)-equivalence class of T, and is given
explicitly by:

p*/2 42 pa/z‘l if o iseven and x(s1) = —1,
/2 p2-1
&M =atpri| P~ o D2 =
if o iseven and x(&1) = 1,
o P if o is odd.

p—1
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Here x : Z5 — {1} isgiven by x(e) = (e, p)p, Where (a, b), isthe
quadratic Hilbért symbol for Qp.

Theentity &,(T) appearing in this theorem may be related to local repre-
sentation densities of quadratic forms and their derivatives. For simplicity,
we continue to assume that p # 2. Recall that for nonsingular symmetric
matrices S € Symy(Zp) and T € Symn(Zp), the classical representation
density is defined by

(03)  op(ST) = lim p nEm=D/2 1y € Mmn(Z/P'Z);
SIX]1 - T € p'Syma(Zp) }|.

Here §[x] = 'xSXx
Let

(0.4) s=—| 1
-1

be the matrix for the determinant quadratic form on the space V(Z,) of
special endomorphisms, i.e. on thelattice {x € Ma(Zp); tr(x) = 0}, and let

n
(0.5) S=- p

—np
be the matrix for the reduced norm quadratic form on the space
(0.6) V'(Zp) = {x € Og; tr(x) = 0}.
Heren € Zj with x(n) = —1. Also let

1
(0.7) S =— p
—p

Then for apair of special endomorphisms j and |’ with associated ma-
trix T, asin Theorem A above, we have o, (S, —T) = 0. In this situation,
it is possible, as in [16], to define the derivative ap(S, —T) of the repre-
sentation density (see (7.4)). For the unimodular quadratic form Sand for
any binary form T, the representation densities and their derivatives can
be calculated using the results of Kitaoka, [12], [16], and Proposition 7.1
below. For S and S, the analogous information is provided by the work of
B. Myers, [19], and T. Yang, [22].

Theserepresentation densities are then related to the intersection number
&(T) asfollows:
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Theorem B. For a pair of special endomorphisms j and j’ with associated
matrix T, asin Theorem A,

) L oS, -T) 2 (S-T)
® p+ 1™ T T 21
L (s, T
HECES TR

This result illustrates again the rather remarkable connection between
arithmetic intersection numbers on certain moduli spaces on the one hand,
and the arithmetic theory of quadratic forms on the other. For additional
examples, see (at least) [10], [16], [17], and [18].

It isinstructive to compare the statements of Theorems A and B with the
following reformulation of the result of Gross and Keating, [10]. Changing
notation dlightly, we fix aformal p-divisible group X of dimension 1 and
height 2 over SpecF,,, and let M be the moduli scheme over Spf W where
M(S) isthe set of pairs (X, p), where X isaforma p-divisible group of
dimension 1 over Sand p is a quasi-isogeny of height 0 asin (0.1). Then,
there is a (non-canonical) analogue of the Drinfeld isomorphism:

M =~ Spf W[t]].

Fix an isomorphism End®(X) = B, and let
V' ={j e B;tr°(j) =0},

with (anisotropic) quadratic form defined by j2 = q(j)id. To a specia
endomorphism j € V' with q(j) # O, defineacycle Z(j) C M, asbefore.
Theorem (Gross-Keating). (i) If q(j) ¢ Zp, then Z(j) = . Otherwise,
Z(j)isadivisor on M, and isflat over Spf W.
(i) Let j and j* € V' be special endomorphisms such that j and j’ span
a 2-dimensional non-degenerate subspace of V'. Let T = q(j, j’) be the
matrix of the quadratic formwith respect tothe basis |, j’, asin TheoremA.

Then Z(j) N Z(j") has support at the origin in M and the intersection
multiplicity is

432+ B —A)p + (B —a+ Dp/?
(Z(), Z(j")) = if o is even,
@ V2 4 B — 4i)p if o is odd.
In particular, this multiplicity depends only on the GL,(Z)-equivalence
classof T.

By Kitaoka's formula, Corollary 8.5 of [16], we then have the (smpler)
analogue of Theorem B in this case:

H 4 p2 /
(Z(), Z())) = —ﬁap(s -T).
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One remarkable difference between the situation considered by Gross
and Kesting and that of the present paper concerns the flatness of the cycles
Z(j). Intheir casethe cycle Z(j) attached to a single endomorphism isflat
over Spf W and its degree increases with ord,(q(j)). In our situation Z(j)
is amost never flat. Instead, as ord,(q(j)) increases, Z(j) contains more
and more vertical components with growing multiplicities; meanwhile, the
horizontal part remains constant. This peculiar phenomenon is a conse-
guence of our modular definition of special cycles. Inthe classical situation,
CM-points on modular and Shimura curves arise both as the fixed points
of dliptic tori and as the loci where the corresponding abelian varieties
have extra endomorphisms of a given type. In the p-adic case, the defin-
ition via eliptic fixed points on arigid-analytic space Q"9 appearsin [2].
Our cycles arise as loci in the formal scheme €2, where the corresponding
p-divisible group is equipped with extra endomorphisms. The Genestier
equations again describe them as fixed point sets of certain automorphisms
of Q.

Two features of the theory developed here are worth pointing out. Re-
cal that the proofs of Gross and Keating in the case of good reduction
make heavy use of the theory of (formal) complex multiplication which
connects this case, via Gross's theory of quasi-canonical liftings, [9], with
Kronecker’s Jugendtraum. The first remark is that in our present case this
connection does not appear (explicitly! — it is of course hidden to some
degree in Drinfeld’s representability theorem). The second remark is that
it is the global nature of the Cherednik-Drinfeld uniformization which al-
lowed us here to prove the independence statement on the intersection
numbers. In other, higher-dimensiona cases [17], [18] when the analo-
gous independence property is problematical, global uniformization of the
special fiber is not available. In these cases these problems remain a chal-
lenge.

In the last two sections, we draw the global consequences of the local
results of Sects. 1-7 just described and obtain an extension of the results
of [16].

For an indefinite quaternion algebra B over Q, let H = B*, and let
V = {x € B; tr%(x) = 0}. Fixaprime p (p # 2) which ramifiesin B and let
K be a compact open subgroup of H(A ) with afactorization K = K KP
suchthat K, = Og_, where Og,, denotes the maximal order in B, and where
KP c H(AY) is an arbitrary (sufficiently small) open compact subgroup.
Associated to this data is amodel Ak over Zp, of the Shimura curve Ag
over Q attached to B and K ([3]). It is the moduli space of certain abelian
surfaces with Og-action and KP-level structure. For each pair (i, w) with
teZp,t<0andw C V(A’f’) a KP-invariant compact open subset, there
isaspecia cycle

(0.8) C(t, w) —> Ak
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defined, asin [16], by imposing an additional special endomorphism. The
generic fiber of C(t, w) is a Q-rationa 0-cycle on the Shimura curve Ak .
Given apair of special cyclesC1 = C(t1, w;) and C1 = C(ty, wy), weform
their intersection

(0.9) C = C1 x4, Ca.

This scheme has a decomposition

(0.10) e=]]er.
T

where each Gt isaunion of connected components of ¢, and where T <
Syma(Zp)) runs over negative semi-definite matrices with diagonal entries
t; and tp. For det(T) # 0, the image of C liesin the specia fiber of A.
Utilizing the p-adic uniformization of A, and the results on intersections
of specia cyclesin Drinfeld space, we obtain the following statement, see
Sect. 9.

Theorem C. Assume that tit, is not a square in Q*. Then the special
cycles C(t1, w1) and C(ty, wy) do not meet in the generic fiber and their
intersection number is given by

(C(tr, 1), Cltz, 2) = 2) e (T) Vol (KP) ™ I (pf @ ¢b),
T

whereg,(T) isasin TheoremAand |1 (¢} ® ¢}) isacertain orbital integral
associated to the data w1, w,, and T. The summation runs over the same
range asin (0.10).

Finally, this result, combined with Theorem B above yields the con-
nection between the p-part of the height pairing of the cycles ¢, and C,
and certain Fourier coefficients of the derivative of a metaplectic Eisen-
stein series (Theorem 9.1). This is analogous to Theorem 14.11 of [16]
and Theorem 9.2 of [17]. We content ourselves here with pointing out one
essential difference with the case of good reduction treated in [16]. In that
case, the choice of the local component @, of the function occurring in the
Eisenstein series is canonical and it isin fact standard in the sense that
its restriction to the maximal compact subgroup of Mp; g, isindependent
of the complex parameter s. In our case, the choice of @, given in Corol-
lary 7.4, is no longer canonical; rather, we are able to single out a whole
class of functions for which the main identity holds, and these functions
are definitely not standard. It seems quite likely that among those functions
there are preferred choices, namely those that match up the Eisenstein se-
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rieswith L-functions via the doubling method, but this will not concern us
here.

Let us give a brief description of the contents of the various sections.
Section 1 contains recollections about the Drinfeld moduli space and intro-
duces our terminology (esp. ordinary special and superspecial points). In
Sect. 2 we use the building to determine the point set of the specia fibre of
aspecial cycle (resp. the intersection of two of them). In Sect. 3 we use the
Genestier equations to determine the local structure of aspecial cycle (mul-
tiplicities of vertical components, occurrence of embedded components,
etc.). In Sect. 4 we explain the kind of intersection theory we are using.
In particular we show that, for the calculation of intersection numbers, we
may replace the special cycles Z(j) by their associated divisors Z(j)P®. In
Sect. 5 we construct a global resolution of the structure sheaves of Z(j)Pu'e
and prove the above-mentioned invariance property of the intersection num-
bers. Section 6 contains the calculation of the intersection number in the
diagonalized case. In Sect. 7 we review the results of Myers, [19], and
Yang, [22], and establish the connection with representation densities. In
Sect. 8 we pose the global intersection problem for cycles on models of
Shimura curves over Z, and relate it to the local theory. The final Sect. 9
gives the relation, extending that of [16], between the intersection numbers
and special values of the derivatives of Fourier coefficients of Eisenstein
series.

In conclusion wewish to point out again that one of the main ingredients
of this paper isdueto Genestier [8]; regrettably, he did not pursue the further
implications of hisidea. We also thank T. Yang for communicating to us
his results on representation densities at an early stage of this project. We
thank both referees for many helpful comments, some of which helped
us to greatly simplify the arguments of Sect. 5, cf. the remarks before
Example 5.5. Thiswork was begun at the University of Cologne in August
1997 and continued at the University of Maryland in March 1998. We thank
both institutions for their hospitality and the NSF and the DFG for their
support.
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Pictures when dim Z(j)=1, for q(j)=¢ p"

a>0 even, x(e)=-1

a>2 even, () =1

a/2-1
al2

o>0 odd

a-1
2
1
\|
1
a-3
2
a-1
2

Fig. 1 Ontheleft theirreducible components of the special cycles are depicted; on the right
the dual graph is given. The “central” vertica irreducible components (1 in the first case,
oo inthe second case, 2 in the third case) are in bold face. They occur with multiplicity [%]
in Z(j). The other vertical components have muitiplicity %] — i, wherei isthe “distance”
from a central component. Also the horizontal components are given; they are indicated by
abox on theright (2 in thefirst case, none in the second case, 1 in thethird case). The little
barbs indicate embedded components.
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Notation
Thefollowing notationwill beusedinthelocal part of thispaper (Sects. 1-7):

k agebraicaly closed field of characteristic p > 2.
W = W(k) thering of Witt vectors of k with its Frobenius
automorphism o,
Wy thefraction field of W.
Zg =W(Fr) whereFp = {xek; XV = X} .
B aquaternion division algebra over Q.
Os thering of integers which we identify with
Os = Zp[M]/(TI1* — p), Ma=a’TI(@ € Zp).
B the Bruhat-Tits building of PGL(Qp).
x thequadratic residue character on Z resp. I .

In the global part of the paper the symbols A, A, A? stand for the ring
of adéles, finite adeles, and finite adeles prime to p of Q respectively.

1. The Drinfeld moduli space and the p-adic upper half plane

In this section we recall some facts from Drinfeld's paper [6], cf. aso [3],
[7], [20]. A special formal (s.f.) Os-module over a W-scheme S is a
p-divisibleformal group X of dimension 2 and of height 4, with an Oz -action
¢ : Gg — Ends(X) suchthat theinduced Z . ® O s-module Lie X is, locally
on S, freeof rank 1. Let usfix onceandfor all as.f. Os-module X over Speck.
It is unique up to Og-linear isogeny, and EndQ,_(X) ~ M,(Qp), comp. [3].
L et usconsider thefollowing functor .M on the category Nilp of W-schemes
Ssuch that pislocally nilpotent in ©s. The S-valued points of M are the
isomorphism classes of pairs (X, o) consisting of as.f. Oz-module X over
Sand a quasi-isogeny of height zero,

0:X xspecké—> X x5S
Here S= S x specw Speck. We consider
(1.1) G(Qp)° = {g € GL(Qp); orddetg = 0}.

Then, after choosing an identification End%B (X) = M2(Qp), the group
G(Qp)° actsto theleft on M, via

g:(X,0 — (X,0097.

According to Drinfeld, this functor .M is representable by 2 X sptz, SpfW.
HereQ = %p isthe formal model of the p-adic upper half plane associated
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to the local field Q, that was introduced by Deligne (comp. [3], Chap. 1).
The isomorphism

(1.2) M — Q xgprz, SPFW

isequivariant for theaction of G(Q))?, for asuitableidentification Endd_(X)
= M2(Qp). The group G(Qp)O acts on the RHS via the natura action of
PGL2(Qp) on .

We need to describe some features of 2, comp. [3], Chap. 1. We denote
by 8 = B(PGL2(Qp)) the Bruhat-Tits building of PGL,(Qp). The formal

scheme 2 is obtained by glueing open forma subschemes 2, where A
runs over the simplices of 8, and

Qana I AN A isasimplex

(1.3) QaNQa =1, ifANA =0,

For the action of PGL2(Qp) on 2 we have
(14) ggAZA = QgA-

We now describe the open chartsin detail. Because of (1.4) it will suffice
todo thisfor A = the standard vertex and for A = the standard edge.
Let A = [Ag] be the homothety class of the standard lattice

(1.5) Ao = [e1, &].
Here [ey, ;] denotes the Z,-span of the standard basis of Q%. Then

(16) Qiaol = (P(Ag) — P(Ag)(Fp)".

HereP(Ag) >~ P%p denotes the rel ative projective line over Z, associated to

Ao and the “hat” indicates the completion along the specia fibre. If we use
€1, & to identify P(Ag) with Plp, we have

(1.7) Qag) = SPFZp[T, (TP — )77,

where T = Xo/ X1 in terms of the canonical coordinates on IP’%D. The sub-

group GL2(Z,) preserves Ao and hence acts on fz[ Aol- The action of g on
P(Ap) isinduced by the automorphism g : Ag — Ag. For the left action

f > g;%(f) of GLa(Zp) on the ring of holomorphic functions on 4,
we therefore have

9. 1 (Xo, X1) > (det(g)(dXo — cXy), det(g)~H(—bXo + aXy)),

o-(25)
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In terms of the coordinate T the action g is therefore given by

dT —c ab
_1 . T
(18) 9. —bT +a’ g (c d)

(homography associated to tg™1).
Next, let Ag = ([Ao], [A1]) be the edge corresponding to

(1.9) Ao=[e1, &l, Ai=I[pe, el
In this case we have an identification
(1.10)
Qro =S Zp[To. To, =TS ) L =T ) ] /(ToTu— p) -

The action of the Iwahori subgroup

(111) Zp Pl
Zp Zj
isgiven by
_ dTo — pc aT; — pby
112 LT —, T _—
for

(113) g= (‘2 Z) - (‘2 p;"’) .

The open immersion Q(,,; — 24, isinduced by the open immersion

(1.14) Spf Zp[T, TH" — Spf(Zp[To, Tul/(ToT1 — P))”
induced by
(1.15) Ti—T1Y To—»p-T

It iseasy to check that this morphism isindeed equivariant for the action of
the lwahori subgroup (1.11).

The special fibre of €2 isaunion of projective lines parametrized by the
verticesin B. More precisely, 8 can beidentified with the dual graph of the
special fibre, compatibly with the action of PGL2(Qy). Let [A] be avertex
with corresponding projective line P[,;. Then P[4, may be identified with

(1.16) Fia) = P(A/pA),
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where A isany lattice in the homothety class [A], and

(1.17) Qa) Xspfz, SPECKFp = Pra) — Praj(Fp).

If A = ([A],[A']) is an edge, we denote the corresponding point in the
special fibre by pta,

(118) Ptaaria = Pral N Py = Qa(Fp) -

We shall also need to know how the Drinfeld isomorphism (1.2) looks
on the set of closed points. Let (X, o) € M(k) and let (M, F, V) be the
covariant Dieudonné module of X. It isafree W-module of rank 4 withao-
linear resp. o~ *-linear endomorphism F resp. V satisfying VF = FV = p
and commuting with the action of Og. From the action of Z . on X we
obtain aZ/2-grading,

(119) M = Mg & My,

and F, V and ((IT) are all homogeneous of degree 1. SinceLie X = M/VM
and by the condition on X to be special, we haveinclusionsof k-codimension
1 of free W-modules of rank 2,

(1.20) pMgC VM; C Mg, pM;C VMg C My.
# # # #

Anindexi € Z/2iscdled critical, if
(1.22) VM; = ITM;.

Since Lie(t(IT))? = 0 and dimg Mo/VM; = dim¢ M1/VMy = 1, there
aways existsi with ITTM; c VM,;. Since both modules have k-codimension
1lin M4, it follows that i is critical. Hence there always exists a critical
index.

If i isacritical index, V~IT isac-linear automorphism of M;. If we set

ni = MY then n; isaZ,-module with
M; = n ®zp W.

Recall our fixed s.f. Oz-module X. We may choose X in itsisogeny class so
that O and 1 are critical. Let

-1
MO = M@ MY, 10 = M7
be the Dieudonné module of X and let us fix an isomorphism
(1.22) U =10 ®z, Qp ~ Q3.

We can now describe the Drinfeld isomorphism on M (K). Let (X, o) €
M(K) and let M be the Dieudonné module of X. If O iscritical we have the
Zp-module no and o defines an isomorphism

(1.23) no® Qp — U = Q5.
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Let Ag be the image of no under (1.23). Then Ag isalattice in Q% which
(sincethe height of ¢ is zero) is of the samevol umeasZ%. Thepoint (X, o)
is then mapped to the point of P, (k) corresponding to the line

(1.24) € =VM;/pMp C Mo/pMp = Ag ®z, k.
If Liscritical, ¢ defines an isomorphism
(1-25) N Qp - 77(1) ® Qp-

The action of IT identifies n({ ® Qp with U. Hence we obtain a lattice A4
in Q%, of the same volume as pZ, @ Zp. The point (X, o) is mapped to the
point of P(,;(k) corresponding to the line

(1.26) € =VMo/pM1 C M1/pM1 = A1 ®z, k.

If both 0 and 1 are critical, both procedures above are applicable and the
lattices A1 C Ag define an edge A = ([Aol, [A1]) in B. In this case the
line VM1/pMo in P, and VMg/ pMy in P, define the same point of
€(k), namely pt. We thus see that the set of irreducible components of
€2 ® k can be partitioned into two subsets: on the irreducible components
corresponding to even lattice classes the index O is critical and on the
irreducible components corresponding to odd lattice classes the index 1is
critical.

We shall use the following terminology.
Definition 1.1. A paint (X, o) € M(K) iscalled
superspecial if both indices 0,1 are critical

ordinary if only one index iscritical
special if V2M = pM.

Obvioudly, asuperspecia point is specia since in thiscase VM = TTM.
Assumethat (X, o) isordinary and let e.g. O be the unique critical index,

(1.27) VMo = ITM.
Since V2Mg = pM,, we see that (X, o) is special if and only if
(1.28) VZM; = pMy,i.e.(VHI)?VM; = VM;.

Recalling that VM1/pMg C Mo/ pMo isthe line in P, associated to M,
we obtain the following characterization.

Proposition 1.2. Let P; C ®z, k be the irreducible component corres-
ponding to the vertex [A] in B. Then a point X € Pa;(K) is

superspecial iff x € Pia;(Fp)

SpeCIaI iff X € P[A](sz).
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Remark 1.3. Let (X, 0) € M(K) be special. Then we may find a W-basis
of its Dieudonné module with
(1.29) e = Ve, e, = Ve, pep = Ve, pe; = Vey.

Hence X isisomorphic to the product of the p-divisible group of a super-
singular elliptic curve with itself. The converse also holds.

2. Special cycles and their support in the special fibre

Recall our fixed s.f. Os-module X over k. We introduce

(2.1) V = {j e End}, (X); tr’(j) = 0}.

We will alwaysidentify j € End%B(X) with its image under the identifica-
tions (cf. (1.22)),

(2.2) Endg, (X) = End(U) = Ma(Qp).

Then V is equipped with a quadratic form given by squaring,
(2.3) i?=q(j) -id, q(j) € Qp.

We note that

(24) q(j) = —det(j).

The elements of V will be called special endomor phisms.

Definition 2.1. Let j € V be a special endomorphism with q(j) # 0. The
special cycle Z(j) associated to | is the closed forma subscheme of M
consisting of al points (X, o) suchthat g o j o o~ liftsto an endomorphism
of X.

Let (X, 0) € M(S.Theni = 0o j oo lisaquasi-isogeny of X x5S
By the rigidity property of quasi-isogenies ([6]) we may also consider A
as a quasi-isogeny of X. Thelocusin Swhere A is an isogeny is a closed
subscheme S of S([20], Prop. 2.9). The closed forma subscheme Z(j) of
M is characterized by

(2.5) S=27(j)xxS

In this section we will study the point set Z(j)(k) of special cycles and
their intersection properties.

Proposition 2.2. Let[A]beavertexin 8 andlet A C U = Q3 bealattice
in its homothety class. Then

PN Z() £ 9 iff j(A) C A
In particular, if Z(j) # ¢ then q(j) € Zy.
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We will seein Corollary 2.6 that conversely, if q(j) € Z,, then Z(j) # 0.

Proof. Supposee.g.that [A]isevenandletx € [P, ;(k). Thenx corresponds
under the Drinfeld isomorphism to (X, o) where 0 is a critical index and
with Dieudonné module M = Mg & My, where

(2.6) Mo = A ®z, W, VM1/pMo = £ C A @ k.

Thenx liesin Z(j) iff ] ®q, idw, preserves the W-lattices Mg and VM in
U ®q, Wy. This proves one implication. Assume now that j(A) C A, i.e.
j(Mg) C M. Sincekisagebraicaly closed there existsaline ¢ C A ®z, k
stable under the endomorphism induced by j. The corresponding pomt
X € Pi5;(K) isassociated to (X, o) with M = Mg & M; where

(2.7) J(VM1/pMo) C VM1/pMo, i.e,,j(VMy) C VM.

Hence x € Z(j).
The last assertion follows by taking a Zp-basis of a lattice A with
Pia; N Z(J) # ¥ and using it to calculate det(j) = —q(}). O

From now on we will always assume that q(j) € Zp \ {0}. We next do
aloca analysis of Z(j) aong aline P,; which intersects Z(j). Let us fix
alattice A c U with j(A) C A. We use the notation

(2.8) red,(j) € End(A/pA)
for the induced endomorphism.

Proposition 2.3. With the notation introduced above, there are the follow-

ing possibilities.

(i) rk(reda(]))) = 2. Thenq(j) = ¢ € Z; and red(]) preserves precisely
two lines in P, (k). The corresponding points are both superspecial,
if x(¢) = 1 and both ordinary special, if x(¢) = —1.

(i) rk(reda(j)) = 1. Thenordq(j) > 1 and red, () is a nilpotent endo-
morphism. The line

¢ = Kerred, (j) = Imred, ()

isthe unique line stable under red, (). The corresponding point of P
is superspecial.

(iii) reds(j) = 0. Thenordq(j) > 2 and all lines £ € P5(K) are stable
under red (), i.e. Pia) C Z()).

Proof. Let us prove (i). Since red, (j) is a traceless automorphism it has
two distinct eigenlines. The characteristic polynomia of red, (j) has the
form

X% —q(j) mod p,
since q(j) = —det(j), and the determinant may be calculated using abasis
of A. Theassertion follows now from Proposition 1.2. The other assertions
are proved in asimilar way. O
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Corollary 2.4. Z(j)(k) consists only of isolated points if and only if
ordq(j) = 1.

Proof. If Pia; € Z(j) then red,(j) = 0 and ordq(j) > 2. Conversely,
let ordq(j) > 2. By Corollary 2.6 below there exists A with Pja; N Z(j)
# (. Then red, (j) cannot have full rank because otherwise ordq(j) = O.
Therefore, if Px; ¢ Z(j) we arein case (ii) of the previous proposition.
Let A’ bethelattice neighbour of A corresponding to the intersection point
of Pa; with Z(j), i.e. tothelinelmred, (j) in A/pA. Then

(2.9) A = j(A) + pA.
But then
J(A)) = J2(A) + pi(A)
= P'A+pj(A),a=2
= p(j(A) + pP“'A)
C pA'.
Hencered, (j) = 0and Pp; C Z(j). O

We next will get a globa overview of the lattices A which satisfy the
criterion of Proposition 2.2, i.e., of the set

(2.10) T()) ={[A] € B; Pay N Z()) # 0}
Lemma25. Let j € GLy(Qp). Let A C Qj be a lattice. The following
conditions are equivalent:
(i) jca
(i) Let[A] € 8B bethe vertex corresponding to A. Then
d([A], [j(A)]) < orddet j.

Here d denotes the distance in the building.
Iftr(j) = 0, these conditions are also equivalent to
(iii) d([A], B)) < - orddet j.

Here 8! denotes the fixed point set of j in B.

Proof. Putor = orddet j.Let (e, f) € Z% e> f,betheelementary divisors
for the lattice pair A, j(A). Thene+ f = o and d([A], [j(A)]) = e— f.
On the other hand

(2.11) JAMCA<— >0 e-f<a

This shows the equivalence of (i) and (ii). For (iii) we note that if tr(j) = 0,
then j induces an involution of $B. The unique geodesic from [A]to[j(A)]
consists of the geodesic from [A] to B! and itsimage under j which isthe
geodesic from [j(A)] to B. O
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Remark: This observation appears already in [15] where it is attributed to
Tate.

Corollary 2.6. Let j € Vwithq(j) =¢- p*, wheree € Z%, a > 0. The set
T()) (cf. (2.10)) isasfollows:

() Haisevenand x(s) = —1, then 7(j) isa ball of radius «/2 around
the unique vertex [Ao] fixed by j.

(i) Ifaisevenand x(e) = 1, then 7(j) is a tube of width «/2 around the
apartment fixed by j.

(iii) If wisodd and x(e) arbitrary, then 7(j) isaball of radius «/2 around
the unique fixed point of j, which isthe midpoint of an edge.

In particular, in all cases 7(j) # 0.
Proof. By the preceding lemma we only have to determine B’. In cases

(i) and (ii) and after replacing j by a scalar multiple we may assume that
j2 =¢e-id. In case (i) we may find abasis e, & of Q2 such that j has the

matrix
(O
~\10/°
Inthis case [A] with A = [ey, ] is the unique vertex fixed by j (red, (j)

fixesno Fy-rational linein A/pA). In case (i) we may assumethat j? = id
and can find abasis e, e, of Q% such that j has the matrix

21 -(52)

In this case the fixed point set is given by the apartment with vertices [A;],
(2.13) Ai=[pe.eliecZ
The case (iii) is also easy and is |eft to the reader. O

Corollary 2.7. In the cases when Z(j)(k) is a set of isolated points (cf.
Corallary 2.4), this point set is of the following form.

) q()) =¢e € Z%, x(e) = —1. Inthis case let [Ag] be the unique fixed
vertex of j. Then Z(j)(k) consists of two ordinary special points on
Pag) (Namely the two eigen lines of red;x, ().

(i) q(j) =e€Zy, x(e) = 1. Inthiscase let (2.13) be the apartment fixed
by j. Then

Z()DK) = {ptaa, a1 i € Z}.

(@iii) q(j) = &- p, x(e) arbitrary. Let A be the edge containing the unique
midpoint fixed by j. Then

Z()(K) = {pta}.
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Proof. Thisissimply acombination of the previous corollary with the local
analysis of Proposition 2.3. O

For the next corollary we need the following slight strengthening of
Lemma2.5. The proof isidentical.

LemmaZ28. Let j € GL2(Qp) with tr(j) = O, and let q(j) = ¢ - p~,
g€y LetAC Q% be alattice. Let

(2.14) mia)(J) == max{r; j(A) C p'A}.
Then
(2.15) mia(j) = @/2 - d([A], B)).

Corollary 29. Let j € V with q(j) = ¢- p*, « > 1. For al [A] €
7(j) not on the boundary of 7(j) we have P,; C Z(j). If [A] ison the
boundary of 7(j), i.e. d([A], B!) = «/2, then P4 N Z(j) consists of
a single superspecial point, namely the one corresponding to the unique
neighbouring vertex of [A]in 7(j).

We next turn to the intersection of two special cycles. By the definition
of Z(j), theintersection Z(j, j) = Z(j) N Z(j") will only depend on the
Zp-span j of j and j’, which we will assume to be of rank 2. Let

(2.16) (,):VxV—=>Qp
be the bilinear form corresponding to the quadratic form g,
(2.17) (X, y) =q(x+y) —ax) —ay).

Since p # 2, therestriction of (, ) toj may be diagonalized. We will always
assume that j is non-degenerate. Then we may choose aZp-basis j, j’ of |
such that the restriction of (', ) toj has matrix

(2.18) T .= (;j{’;/) %;i’j /’)/)> — diag(e1p*, £2p”)
with ey, &2 € Z55,anda > 0, B > 0. In particular j and j’ anticommuite,
(219) ii'= 1.

We wish to determine the k-rational points of

(2.20) Z(j) = zZ(h N Z{j".

We introduce

(2.22) T() = ([A] € B; Pia) N Z()) # 9).
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As in the case of a single special endomorphism, we start with a local
analysis. Let A be alattice such that the corresponding vertex [A] liesin
7). Let

(2.22) m =red,(j) C End(A/pA).

Thenm liesin the subspace of traceless matricesin End(A/ pA) =~ Ma(Fyp).
Let

(,):mxm— Fp

be the bilinear form associated to the quadratic form j — —det(j). Note
that the matrix of this form with respect to the basis red, (), red, (j') is
just the reduction modulo p of the matrix T with respect to j, j’. Let rk m
be the rank of this reduction.

Proposition 2.10. With the previous notation, we have rk m < 1. Further-
more,

() Ifrkm = 1and m represents 1, there are two possibilities
a) dimm = 2. InthiscaseP|,;N Z(j) consists of a single superspecial
point, which is an isolated point of Z(j) x sprw Speck.
b) dimm = 1. In this case P4 N Z(j) consists of two superspecial
points, which are isolated points of Z(j) xsyrw Speck.
(i) Ifrkm = 1andmdoesnotrepresent 1, thendimm = landPj,;NZ(j)
consists of two ordinary special points, which are isolated points of
Z(j) xspfw Speck.
(iii) Ifrkm = 0, then dimm < 1 and there are two possibilities.
a) dimm = 1. ThenP,;N Z(j) consists of a single superspecial point.
Thisisan isolated point of Z(j) xsprw Speckiiff p? JT.
b) m = 0. Then Pra) C Z(j).

In particular, Z(j) consists only of isolated pointsiff p* yT.

Proof. Suppose by contradiction that rk m = 2. Thenred, (j) and red, (")
would be traceless invertible linear transformations which anticommute.
But then each has to interchange the two eigenspaces of the other. But these
eigen lines correspond precisely to

Piap N Z(j) resp. PiapNZ(j0.

It would follow that Pja; N Z(j) = @, contrary to our assumption.
Let us prove (i). If m represents 1, we may choose the basis |, |’ of |
such that

(2.23) red,(j)? =id, red,(j)? =0.
If dmm = 2, then
Imred, (j) = Kerred, (j")
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isaone-dimensional subspace of A/pA preserved by red, (j) since jj’ =
—J’]. Thesuperspecial point corresponding to thisF,-rational point of P4,
is the unique point of P,y N Z(j). If dimm = 1, then red,(j’) = 0 and
Pia; N Z(j) consists of the two superspecial points given by the two F-
rational eigenlinesof red, (j). By Coroallary 2.4 in both caseswe are dealing
with isolated points of Z(j) xsorw Speck.

Let us now prove (ii). If rkm = 1 and m does not represent 1 we may
assume that

reds (j)> € Fiy \Fj2.

Thenred, (j) hastwonon-rational eigenlines. Sincered, (j") anticommutes
with red, (j) it has to take any one of these lines into the other one. Since
red, (j) isnot invertible, itsrestriction to at least one of the eigen lines has
to be zero. But then red, (j’) has to kill both eigenlines since they are not
Fp-rational. Hence dimm = 1 and Pjo; N Z(j) = Py N Z(j) consists of
the two ordinary special points corresponding to the two eigen lines. These
again are isolated points of Z(j) xsorw Speck.

Finally, let usprove (iii). If rkm = O, thendimm < 1. If dimm = 1 we
may assume that

reda(j) #0, reda(j)?=0, reds(j’) =0.

InthiscaseP o) N Z(j) = Pia;N Z(j) consists of asingle superspecia point
corresponding to the F,-rationd line

Imred, (j) = Kerred, (j) € A/pA.

If p?2 T thenordq(j) < 1 and Z(j) xsprw Speck consists of isolated
points only. If p? | T, thenordq(j) > 2 and weput A’ = j(A) + pA, cf.
(2.9). Then our superspecia point lies on P4 N Pan. But

(2.24) j'(A) c pA and  j(A") C pA/,
cf. (2.9). Hence
J'(A) = J'(J(A) + pA) C p(j(A) + pA) = pA”.

It follows that P4} C Z(j) and hence our intersection point is not isolated
in Z(]) X spf W Sp€Ck

Finaly, if m = (0), then obvioudly all lines in P[5, are preserved by
redA(j),Vj Ej,i.e.P[A] C Z(J) O

Wenext turntoaglobal analysisof 77(j). We obviously haveaninclusion
(2.25) TG CTHNTGH,

for any set j, j’ of generators of the Zy-module j. We therefore start by
determining 7(j) N 7(j") in the case when |, |’ diagonaize the bilinear
formonj, cf. (2.18). We shall do this according to the following table.
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K B even Beven | Bodd
x(2) =1 x(e2) =1
o even
x(e1) = -1 0
(2.26) —aen
x(e1) =1
o« odd ?

Remark 2.11. We note that the existence of abasis j, j’ of the type (2.18)
imposes restrictions on the matrix T. Indeed, j and j’ generate a non-
commutative Qp-subalgebra of M»(Qp) which therefore has to be all of
M2 (Qp). On the other hand, the subalgebra generated by j and j’ isjust the
quaternion algebra over Q, with invariant

(81p"‘, 82pﬁ)p eZ/2.
We conclude that
220 (epe2p’) = x(-D7 - x(e0)” - x(e2)* = L.
This excludes the following cases.

(2.28) o odd and B even and x(s2) = —1, resp.
B odd and @ even and x(s1) = —1.

(2.29) o and B odd and x(—sg180) = —1.

Before stating the result, we point out that, since j and j’ anticommute, each
one of the induced automorphisms of 8 will preserve the fixed point set
of the other. (This remark incidentally gives another reason why the cases
(2.28) are excluded: in these cases one fixed point set is a vertex and the
other a midpoint.)

Proposition 2.12. Let j, |’ beabasisofj suchthat the matrix of the bilinear
formisgiven by (2.18). The set 7(j) N 7(j’) is of the following form.

() aandpeven, x(e1) = x(e2) = —1. Inthiscase 7(j)NT(j") istheball
with radius min(«/2, 8/2) around the unique common fixed vertex of
jandj’.

(i) «and B even, x(s1) # x(e2). uppose e.g. that x(e1) = —1. Then the
unique vertex [Ao] fixed by j lies on the apartment fixed by j’. In this
case 7(j) NT(j") istheintersection of the ball with radius «/2 around
[Ao] with the tube of width 8/2 around the fixed apartment. The case
when x(e2) = —1isanalogouswiththerolesof j and j’ interchanged.



Height pairings on Shimura curves and p-adic uniformization 175

(i) « and B even, x(g1) = x(e2) = 1. In this case the fixed apartment of
j and the fixed apartment of j’ have a unique vertex in common. The
set 7(j) N T(j’) is the intersection of the tube of width «/2 around
the fixed apartment of j and the tube of width B/2 around the fixed
apartment of j’.

(iv) «odd, g evenand x(e2) = 1 (resp. 8 odd, @ even and x(e1) = 1). In
this case the midpoaint fixed by j lies on the fixed apartment of j’. The
set 7(j) N 7(j’) isthe intersection of the ball of radius «/2 around the
midpoint fixed by j with the tube of width 8/2 around the apartment
fixed by j'.

(V) aandpodd. Inthiscase j and j’ fix the samemidpoint and 7(j)) NT(j")
isthe ball with radius min(e«e/2, /2) around it.

Proof. Let us prove the first statement in (iii). After correcting j and j’
by scalars we may assume that j2 = j? = id. We may choose a ba-
sis e, & of QF such that j(&) = ey, j(&) = —e, cf. (212). Since |
and |’ anticommute, j° has to permute the two eigenlines of j, hence
j'(e1) = &, j(&) = te1. If A = [er, &] we seethat j’ interchanges the
two neighbouring vertices [ p*ey, e] of [A] in the fixed apartment of j, cf.
(2.13). Since the common fixed point set of j and ' is convex, it consists
of [A] only.

The other assertions are equally easy. O

Combining this now with our analysis of the special fibres of Z(j) and
Z(j") we obtain the following corallary.

Corollary 2.13. Let j, j’ beabasis of j such that the matrix of the bilinear
form s given by (2.18). We have an equality 7(j) = 7(j) N 7(j’) except
when o = g = 0. Thelatter condition is equivalent to Z(j) = ¢.

Proof. If [A] does not lie on the boundary of 77(j) resp. 7(j’) we have by
Corollary 2.9 that Pia; C Z(])) resp. Pja; € Z(j’) and hence [A] € T(j)
iff [A] € 7(j) N T(}"). Therefore the only problematical vertices are those
which lie on the boundary of both 77(j) and 7(j’). First one remarks the
fact (comp. [18], Lemma 6.8) that if

d([Al, 8) < d([A], 8)),

then the unique geodesic from [A] to B I" first runs along the geodesic from
[A] to 8! and then stays inside B!. Now consider the first vertex [A’]
encountered along this geodesic. Then, since [A’] isin 7(j) but not on
its boundary, by the previous argument we have Py, € Z(j) N Z(j’). The
initial edge of the geodesic corresponds by Corollary 2.9 to a superspecial
point which liesin Z(j). The analysis of the extreme cases in which both
Z(]) xsprw Speck and Z(j") x sprw Speck are sets of isolated points is left
to the reader (use Proposition 2.10). O
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Corollary 2.14. Assumethat j isnon-degenerateof rank 2. Thenthereduced
scheme (Z(j) x sprw Speck)req is a projective scheme over Speck. Further-
more, it is either empty, or a finite set of points, or a connected finite union
of projective lines.

Proof. The first statement is equivalent to the assertion that Z(j) xsprw
Spec k isquasi-compact, i.e. to the assertion that 77(j ) isfinite. Thefiniteness
of 7(j) follows from Proposition 2.12.

The proposition also implies that, except in extreme cases, Z(j) xspfw
Speck is a connected union of projective lines. The extreme cases are, case
by case:

(i) a=p=0.Then Z(j) = @, cf. Corollary 2.13.

(i) «a=0,>0(r B =0,a > 0).Inthiscase Z(j) xsrw Speck
consists of two ordinary specia pointsif x(e1) = —1, or of afinite set
of superspecia pointsif x(s1) = 1. Thecasewhere B =0anda > 0
is symmetric.

(i) a =1,p>0(r B =1a > 0).Inthiscase Z(j) xsrw Speck
consists of asingle superspecia point.

3. Local equationsfor the special cycles

In this section we will write down equations which describe a special cycle
Z(j) in aneighbourhood of a point x in the specia fibre. As mentioned in
the introduction, the basic idea of how to do this is due to Genestier [8].
In the beginning of this section we fix a special endomorphism j with
a(p) =e-q* € Zp\ {0}

Theorem 3.1 (Genestier). The Drinfeld isomorphism (1.2) induces iso-
mor phisms

(3.1) Z(j) ~ Q) xgrz, SPFW if @ =0
(3.2) Z(j) = Q' xgsz, SPFW if a>0
(fixed point formal schemes for the action of elements of GL,(Qp) on ).

Proof. Supposefirst that j isan arbitrary element of G(Q,)° (cf. (1.1)) and
define a closed formal subscheme Z(j) in the same way as for a specia
endomorphism, cf. Definition 2.1. If (X, 0) € Z(j)(S), then the unique
isogeny jx lifting o o j o o7t is of height 0, and hence an automorphism
of X. It follows that (X, o) is a fixed point for the action of j=* on M.
Conversely, afixed point defines an element of Z(j)(S). Therefore Z(j) =
QJ X spiz, SPf W, since the Drinfeld isomorphism is equivariant for the
action of G(Qp)°, cf. (1.2).

Suppose now that j is aspecial endomorphism with orddet j > 0. But
then det(id + j) = 1+ det(j), henceid + j € G(Qp)°. Theresult therefore
follows from the previous case since Z(id + j) = Z(j). O
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Our next task will be to write down equations describing the fixed point
schemes. Put | = jifa =0and | =id+ jifa > 0. Let x € QI (k). We
distinguish two cases.

Case x ordinary: After replacing x by gx and j by gjg—* we may assume
that x liesin (,,), where Ao = [e1, €] denotes the standard lattice. Fur-

thermore, orddet | = 0. But then, since j fixes x and hence [Ao], it follows
that | € Ma(Zp) and | € GLo(Zp). Wewrite

(33) j = (2 3).

Then, using the description (1.8) of the action of GL,(Zp) on Q[AO] we
obtain the following equation for fzf Aol

(3.4) —bT?2+@E—-d) - T+e=0,

where & b = b, & = c, d are the coefficients of |. The equation for Z(j)
therefore is, regardless of whether orddet j = 0 or > 0,

(3.5) bT? —2aT —c=0.

Case x superspecial: In this case, after replacing x by gx and j by gjg!
we may assume that X = pta,, where Ag = ([Aol, [A1]) is the standard
edge (1.9). Inthis case, | will liein the Iwahori subgroup (1.11). We write

=)= (%)

In this case we obtain from (1.12) thefollowing pair of equations describing
Q.
(3.7 To(boTo— (@—d) —€Ty) =0

T1(BoTo — (@—d) —€T1) =0,
where &, pby = pho, & = c, d are the coefficients of . We have used
the fact that ToT; = p. The equations for Z(j) are, regardiess of whether
orddet j =0or > 0O,
(38) To(boTo —2a— CTl) =0

Tl(boTo —2a— CTl) =0.

The reader may reassure himself that the locus defined by the equations

(3.8) induces on the open formal subscheme 24, Of $24,, cf. (1.14), the
locus defined by the equation (3.5).



178 S.S. Kudla, M. Rapoport

In the following statement we denote by an upper index ° the intersec-

tion with the ordinary locus of M resp. €2, i.e. the open formal subscheme
formed by the complement of the superspecia points. Define

(39) mult[A](j) = max(m[A](j), 0),
with mpa;(j) as defined in Lemma2.8.

Proposition 3.2. The closed formal subscheme Z(j)* of (stpfzp
Spf W) is a divisor. We have the following equality of divisors,

(3.10) Z(H™ = multi()) - PP,
[AleT())
unless q(j) = ¢ - p* where e € Zy and with o even and x(¢) = —1, in
which case
(3.11) Z(H =z DT multa(j) - PR,
[AleT())

where Z(j)°"%" (the* horizontal divisor” ) isisomorphictothedisjoint union
of two copies of Spf W and meets the special fibre in two ordinary special
points of P4 jy;. Here [A(j)] denotes the unique vertex fixed by .

Proof. We wish to determine Z(j) N (Q[A] X spfz, SPf W) for avertex [A]
wherethisintersection isnon-empty. Notethat thISImpheSthé‘([m 1() =0,
cf. Proposition 2.2. Replacing [A] by [gA] and j by gjg—t we may assume
that [A] = [Ag] isthe standard lattice. Let us write

312 = (i _ba> ey (

whered, b, € € Z, are not simultaneously divisible by p. The equation (3.5)
for Z(j) N (ag) X spfz, SPF W) may be written as

[@ el

b - .
_é) =p"-J, m=mpug()),

(3.13) p™. (bT2 —2aT —¢) = 0.

It follows already that Z(j) N (Q[A] X Stz ShW) isadivisor. The second
factor in the LHS of (3.13) isnot d|V|S|bIei)y p, i.e. isaunit after localizing

at theideal (p). Since P is defined by p = 0 in (4, the multiplicity
of Pa,) inthe divisor is equal to m, as asserted. We still have to determine

the zero set Z(j)%" N (Qaq) X sprz, SPF W) of the second factor of (3.13).
Now

(B.14)  Z(})™M N (Qqag) Xsprz, SPEW) = Z(J) N (Qag) X spr 2z, SPFW).
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Furthermore, P2, N Z(j) is precisely the set of linesin P! preserved by
red,, (]). Sincered,,(J) # 0, Proposition 2.3 impliesthat thislast intersec-
tion is empty, unless red, () is an invertible transformation of A/pA and
this intersection consists of two ordinary specia points. In the latter case
we have j(Ag) = p™Aog, hence [Ag] is afixed vertex under j. It follows
that o iseven and x(e) = —1, cf. Proposition 2.3, hence [Ag] is the unique
vertex fixed by j. Furthermore, the extension

(3.15) Zp[T1/(bT? — 2aT —¢)

is unramified, which finishes the proof. O
We next turn to the local equations of Z(j) at a superspecia point.

Proposition 3.3. Letq(j) =¢-p*, e € Z¥,a > 0.

(i) Mo =0and x(e¢) = —1, then Z(j) contains no superspecial points,
cf. Corollary 2.7, (i).

(i) Ifa =0and x(e) = 1, then Z(j) isequal to the digoint union of the
reduced superspecial points corresponding to the edges in the fixed
apartment B/, cf. Corollary 2.7, (ii).

(iii) If o > 1, then Z(j) is purely one-dimensional and contains superspe-
cial points. Let x = pt, be one of them, where A isan edge contained
in 7(j). Then, locally around pta, Z(j) isthe union of a divisor with
support inthe special fibre and an embedded component at pt, , except
in the case where « is odd and A = A() is the edge containing the
midpoint fixed by j. Inthelatter case, if « = 1, then Z(j) isthe union of
Z(j)" and an embedded component at ptaj), where Z(j)" isa divisor
isomorphic to Spf W where W' is the ring of integers in the ramified
quadratic extension of Wg. Finally, in the latter case, if « > 1, then
Z(j) islocally at pta(j, the union of a divisor Z(j)" = SpfW’, an
embedded component at pt, and a divisor with support in the special
fibre.

Proof. As before we may assume that Ag = ([Ag], [A1]) is the standard
simplex. Let usfirst assumethat [ Ao] isstrictly closer than [A4] to the fixed
point set B'. We therefore have

(316) m:= m[AO](j), m[Al](j) =m-1 > 0.

In terms of the canonical basis ey, & of Ag we may write

(3.17) i = (2 _ba> _ o ( _ba)

where &, b, € are not simultaneously divisible by p. On the other hand,
b = p- by, cf. (3.6), and in terms of the canonical basis pe;, & of A, the

o Qi
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a b\ . ifPa b
pc—a_p p’c —pa)’

with by = p™* - by. Since Mia,1(j) = m— 1 we conclude that bo is a unit.
Therefore the system of equations (3.8) for Z(j) N (QAO X spz, SPf W) is
given by

matrix of j is

(318) p™t To-(bo-To—2pa—pc-Ty) =Ty T u=0
p" . Ty(boTo—2pa—pc- Ty) =T - T"-u =0,
where B
u=bp—2a-T,—¢c - T?

isaunitin thelocal ring of pt,,. The above system of equations describes
the same locus as

(3.19) T¢ - (ToT)™ ! = (ToTy) - (ToT)™* = 0.

In this case we therefore see that Z(j) isthe union of adivisor with support
in the special fibre, and an embedded component at pt,,.

Now consider the case when [Ag] and [A 1] have the same distance to
the fixed point set. There are two alternatives.

First case: 8/ isthe midpoint of Aq (hence « isodd) . In this case j(Ao)
isascalar multipleof A; and j(A;) ascalar multiple of Ag,

(3.20) j(Ao) = p" - Aq
j(AD) = p™Ao.

In this case we conclude in terms of the equation (3.17) that

b_) _1
—a

Therefore b = p - by, and by and € are both units. Hence the system of
equations (3.8) isgiven by

[@ et

(3.21) pla, plb ord det(

(322) pm . To(BoTo —2a— CTl) =0
pm . Tl(E)oTo —2a— CT]_) =0.

Upto aunitinthelocal ring at pt, the second factor isequal to by Ty — Ty,
hence Z(j) isin aneighbourhood of pt, defined by the equations

(3.23) To" - T (boTo — €Ty) = T ™ (boTo — €Ty) = 0.
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We therefore see that Z(j) locally at pt, isthe union of the divisor Z(j)",
with
(3.24)

Z())" = Spf W[To, Tal"/(BoTo — €Tz, ToTe — p) 2 Spf W[X]/(X? — p)

(p # 2), an embedded component at pt,, and a divisor with support in the
special fibre provided that m > 0, i.e, « > 1. If « = 1, then m = 0 and
there is no divisor with support in the special fibre present.

Second case: Ag lies in the fixed apartment B! (hence « is even and
x(g) = 1). Inthis case

(3.29) j(Ao) = p" Ao
j(A1) = pAL.
In this case we conclude in terms of the equation (3.17) that
. ab
3.26 b, det 7y .
(3.26) pl (C _a> € Zy

We conclude that & is aunit. The system of equations (3.8) may be written
as

(327) pm . To(BoTo —2a— CT;[) =0
pm . T]_(E)oTo —2a— CT]_) =0,

where p - by = b. The second factor is aunit in the local ring at pt,, and
therefore Z(j) islocally around pt,, described by

(3.28) T T =TT =0

Ifm>1,i.e a > 2, then Z(j) isthe union of a divisor with support in
the specia fibre and an embedded component. If m = o = 0, then Z())
consists of the reduced origin only (Tg = T, = 0). O

Corollary 3.4. Supposethat q(j) = - p* with« even and x(e) = 1. Then
the support of Z(j) iscontained in the special fibre. O

Remark 3.5. Consider the special case « = 0, x(¢) = 1 of the previous
corollary, i.e. (ii) of Proposition 3.3. After correcting j by aunit scalar, we
may assumethat j? = id. Let (X, ) € Z(j)(k). Then j induces a Og-stable
decomposition into its +1-eigenspaces

(X, 1) = (Y1, 11) x (Y2, 12).

But then (Y;, ¢j) (i = 1, 2) are both isomorphic to the p-divisible group of
asupersingular eliptic curvewithits Os-action. Itiswell-known that (Y;, ¢;)
has no non-trivial deformations, hence neither has (X, ¢). This argument
gives an aternative proof of assertion (ii) of Proposition 3.3.

Later, when we make the connection with the global situation, we will
see amore convincing reason for the assertion of Corollary 3.4
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We next turn to the intersection of two specia cycles Z(j) and Z(j’).
We use the notation of (2.16), in particular the Z,-module j is supposed to
be nondegenerate of rank 2. We again write Z(j) = Z(j) N Z(j’).

Proposition 3.6. Z(j) has support in the special fibre.

Proof. We momentarily change notations and as in Sect. 2 denote by |, |’
generators of j which diagonalize the bilinear form, with matrix (2.18).
We assume Z(j) # ¢. We go through the Table (2.26), leaving aside the
@-entries. Thanksto Corollary 3.4 thereareonly two non-trivial possibilities.

Case 1: @ and B even, x(e1) = x(e2) = —1. In this case the only part
of Z(j) resp. Z(j") with support not in the specia fibre is the horizontal
divisor Z(j)*%" resp. Z(j)°®" which meetsthespecial fibreintwo ordinary
specia points Xy, Xo € Ppp; resp. Xj, X5 € Praj, cf. Propositions 3.2 and 3.3.
Here [A] = [A(j)] = [A(]")] is the unique vertex fixed by j and |/, cf.
Proposition 2.12. We may write

(329) J = pa/2‘ j_? j/ = pﬁ/Z‘ j_/’

where red, (J) and red,(J') are invertible traceless endomorphisms of
A/pA and whose eigen lines are x; and X, resp. x; and x5, cf. proof of
Proposition 3.2. Since these two endomorphisms anticommute, each onein-
terchangestheeigenlinesof the other (comp. proof of Proposition 2.10, (ii)),
hence they have no common eigen line. We conclude that in this case

(3.30) Z(Hh"nz(H" = 0.

Case 2. @ and B odd. In this case j and j’ both fix the midpoint of an
edge A and the only part of Z(j) resp. Z(j’) with support not in the special
fibre is the horizontal divisor Z(j)" resp. Z(j")" passing through pt,, cf.
Proposition 3.3. We write, asin (3.12)

a—1 = . g1 =

(3.31) j=pz -j, rep. j"=pz-j

- _(a b . . (& b
i=\e 5 = =1 4

with p dividing &, &, b, b’ and where, if b = p- by resp. b’ = p- by, the
elements by, by, ¢, T are al units, cf. (3.21). Then Z(j)" resp. Z(j")" is
defined inside Spf W[ To, T1]"/To Ty — p by the linear equation

where

(3.32) boTo—CTy =0 resp. B,To—CTy =0,
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cf. (3.24). Weclaim that these equations describe distinct subschemes which
will establish the proposition. Suppose to the contrary that

(3.33) boC = byc.
However, | and |’ anticommute, i.e.
(3.34) aa + p-bot = —(aa + p- bye).

Taking these identities together we therefore obtain
aa + pbot = 0.

But the first summand is divisible by p?, whereas the second summand is
only divisible by p which isthe desired contradiction. O

We note the following consequence of the proof.

Corollary 3.7. Let j and j" be generators of j which diagonalize the bilin-
ear form, with matrix (2.18). For the horizontal divisors Z(j)" and Z(j")"
we have Z(j)" N Z(j")" = @ unlessa and B are both odd. In the latter case
Z()H"and Z(j")" intersect transversally at a unique superspecial point.

Here, asintherest of the paper, weformally set Z(j)" = @if q(j) = - p*
witho evenand x(¢) = 1.

4. Intersection calculus of special cycles

Our next aim will be to determine the intersection numbers of specia cycles.
Before doing this we will have to explain briefly the kind of intersection
theory we will want to use. The definitions and facts we need are essentially
al well-known but we could not find a reference for them. The exposition
in the literature closest to our needsis Deligne's [4].

Let (S 7, s be the spectrum of a discrete valuation ring and let X be
an Sscheme f : X — Swhich is regular and localy of finite type and
flat over Swith all fibres of pure dimension 1. Let Y = f~%(s). For any
coherent @ x- module F with support proper over Sand contained in Y we
may define its Euler-Poincaré characteristic

(4.1) x(F)=Igf,F —IgRf,F.

Then x is additive in short exact sequences, and if ¥ is a skyscraper sheaf
concentrated iny € Y, then

(4.2) x(F)=I1gF = Ig(oy(}vy) - [k(y) : k(9)].

If K isacomplex of @ x-modules with finitely many cohomology sheaves
which are coherent and of the above type we set

(4.3) X(K) =) (=D x(H'(K)).
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Lemma4.l. Let ¥ be a skyscraper sheaf concentrated at y € Y and let §
be any coherent 0 x-module with supp § a proper closed subscheme of X
locally at y. Then

(44) x(F ®"“§) = x(F ®§) — x(Tori(F, §) + x(Tor(F, 4)) = 0.

[Here £ ®" g denotes the derived tensor product of # and g, acomplex of
quasicoherent (@ x-modules well defined in the derived category, with co-
homology sheavesin degree —i equal to TOI‘i@X (¥, 4).Since X issupposed
to be regular of dimension 2, the Tor-termsfori > 3 vanish.]

Proof. The sheaves Jor; (¥, §) are skyscraper sheaves concentrated in vy,
hence

X(F ®“g) =Y (~DilgTor” (Fy. §,).

Now §., has aresolution of length 3 by free ©,-modules of finite rank,
(4.5) 0— (9’;,1 — (9’;,2 — (9';,3 — G, — 0.

The hypothesis on § implies that n; — n, + ng = 0. Tensoring (4.5) with
Fy weobtain

X(}vy®%9y9’y):nl‘lg?y—nZ‘lg?erns-lg?y:0. o

Let now Z and Z' be closed subschemes of X such that (Z N Z')eq
is contained in Y and is proper over S. We then define their intersection
number by

(46) (Z,Z2)=x(0z®" Oz)
= x(0z ® Oz) — x(Tor1(Oz, Oz)) + x(Tora(Oz, O 7).

If Z and Z’ are divisors which meet in a finite number of points contained
inY then

4.7) (Z,Z)= ) 1900z ®Oz),

yeznz'

is the intersection number in the most naive sense. In [4] Deligne defines
the intersection number of two divisors by formula (4.6), if one of the two
divisorsis concentrated in Y (he also assumes f to be proper). We will see
now that the general case essentially reduces to the case of divisors.

Lemma4.2. Let Z be a closed subscheme of X and define ZP" to be the
closed subscheme of Z defined by the ideal sheaf of local sections with fi-
nite support. (In particular, if Z iszero-dimensional, then ZP""¢ = ¢). Then
ZPY¢ is Cohen-Macauley, i.e. has no embedded components. If dim Z = 1,
then ZP"¢ isadivisor on X (i.e. defined locally by one non—zero element).
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Proof. The cases when dmZ = 2 or dimZ = 0 are trivia. Now let
dimZ = 1. Then the first assertion implies the second (EGA 1V, 21.7.2,
21.6.9, 21.11.1). The first assertion is local around apoint y € Y. If ZPU®
had an embedded prime ided at v, it would have to be the maximal ideal
my of @y. But then there would exist a € O, such that

my = rad(l : &)
([1], Th. 45). Here | C @ istheideal of ZP"e, But then
m‘;.ac I, somen,

hence a would define a local section of O zere With support in y. By the
definition of ZP“¢ thisimpliesa € |, acontradiction. O

The next statement is analogous to Theorem 2.3.8, (iii) of Deligne [4].

Lemmad4.3. Let Z and Z’' be proper closed subschemes of X such that
their intersection number (4.6) is defined. Then

(4.8) (Z,Z)) = (ZPe, Z'Purey,
Proof. There are exact sequences

0— g—) (92—)(9zpure—>o
0— g/ e (92/ —> Qz/pure_> 0,

where ¢ and ¢’ havefinite support contained in Y. Using Lemma4.1 and the
bilinearity of the tensor product and the additivity of yx, the result follows.
]

One last fact we need is the following (Deligne [4]): Assume that the
morphism f is proper and let Z be a closed subscheme with support in Y.
Then

(4.9) (Z, fXs)) = 0.

Remark 4.4. The preceding theory applies equally well to the case when
X is aformal scheme which is regular and where f : X — Sisan adic
morphism into the formal spectrum of a complete discrete valuation ring
which isflat and locally of finite type and with one-dimensiona fibre over
s € S In this case we have defined the intersection number of closed
formal subschemes Z and Z’ such that the sum of their defining ideals is
open in @, with the same properties as before. Furthermore, there is an
obvious compatibility between these notions: if the adic morphism and the
closed formal subschemes are formal completions along the specia fibre
of amorphism of schemes and of closed subschemes then both intersection
numbers coincide.
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We now return to the case of interest, namely to the formal scheme

M 2= Q x gz, Spf W over Spf W. By Lemma 4.3 we need to know the
divisors Z(j)P""®. The following proposition is an immediate consequence
of Propositions 3.2 and 3.3.

Proposition 4.5. Letq(j) =¢- p*,e € Z5,a > 0.

() Ifaisevenand x(s) = 1, then

Z(PUe = multia)(j) - Pray

(Al

(equality of divisors on M).
(i) Ifaisevenand x(e) = —1, then

Z(jH™e=Z(H"+ Y multia(j) - Pray,
[A]

where Z(j)" (the horizontal part of Z(j)) is the digoint sum of two
divisors each projecting isomorphically to Spf W and meeting the
special fibreinanordinary special point of P, ;. Here[A ()] denotes
the unique vertex fixed by j.

(iii) If « isodd, then

Z(HP"e = Z()" + Y multia ()P
[A]

where the divisor Z(j)" is the formal spectrum of the ring of integers
in a ramified quadratic extension of Wy which meets the special fibre
in pta(j), where A(j) isthe edge containing the unique fixed point of j.

In particular, in all cases the divisor Z(j)P"" is the sum with multiplicities
of regular one-dimensional formal schemes (or empty).

Remark 4.6. Genestier [8] has formulated a moduli problem (over M)
whose solution is Z(j)P"®. The reason that we stick with the “uglier”
subscheme Z(j) is that its definition can be transposed easily to other
cases, [17],[18]. Dueto Lemma4.3thedifferencebetween Z(j) and Z(j)Pre
has no conseguences for the intersection numbers.

Next wewill have to determine the intersection numbers between all the
various summands of Z(j)P"® resp. Z(j’)Pe.

Lemma4.7. For any pair of vertices [A], [A’] we have
1 if ([A],[A]) isanedge

Pia Pap) = 1 —(p+1) if[A]l =[A"]
0 in all other cases.
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Proof. The first and the last entry on the RHS are obvious. Let I' C

PGL>(Qp) beacocompact discrete subgroup. Then /T isaformal scheme
whichisproper and flat over Spf Z,,. If I is sufficiently small the projection

Q—)Q/F

islocally around P, anisomorphism. Thespecial fibre Y of &2/ T isreduced
and is of the form
Y = Z P[A].

[A]mod T

Using now (4.9) we obtain

0= (Prap, Y) = (Plaj, O Piay)
[A']
= Pap P+ Y (Prag, Prar).
[A']
[A]#[A]

But P o) meets precisely p + 1 other irreducible components and with
multiplicity one. The result follows. O

Lemma4.8. Letj beanon-degenerate Z,-submodule of rank 2and let j, j’
be generators of j which diagonalize the bilinear form, with matrix (2.18).
For the horizontal part of the associated divisors Z(j)P®resp. Z(j")P""¢ we
have

1 ifeandgodd

- h inhy _
Z(hH", Z(H" = {o otherwise.

Proof. Thisfollows from Corollary 3.7. O

Lemma4.9. Letq(j) = ¢ - p* and let [A] be a vertex. Then

2 ifaisevenand x(¢) = —1and B! = {[A]}
(Z()" Paj) = §1 ifaisoddand d([A], 8)) =
0 inall other cases.

Proof. This follows immediately from Propositions 3.2 and 3.3 and the
local equations for Z(j)" appearing in their proofs ((3.15) resp. (3.24)). O

5. Aninvariance property of intersection numbers

The aim of this section is to establish the following invariance property
of the intersection numbers of special cycles. Recall that the special cycle
Z(j) can have embedded components, as described in Proposition 3.3. The
associated divisor, Z( )P, is defined by the procedure of Proposition 4.5.
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Theorem 5.1. Let (j1, j2) resp. (j1. j») be two Z,-bases of the same non-
degenerate submodule j of V with q(ji) € Z \ {0} and q(j)) € Z; \ {0},
i =1,2 Then

Ozjypue ®" Oz(jpmre = O z(j;pure ®" O zjppure
and hence, by Lemma 4.3,

(Z(j0), Z(j2)) = (Z(j0P", Z(j2™) = (Z(jpD™, Z(jp™")
= (Z(j) Z(jp)-

In the statement of the theorem it is obvious that the zero’th cohomol ogy
sheaves of these complexes are isomorphic since both of them are equal to
the structure sheaf of Z(j). The statement is also obvious locally around an
isolated ordinary point of Z(j) since here the special cycles are divisors and
hence there are no higher Tor-terms if the intersection is zero-dimensional.
But the full statement is non-trivial. One basic ingredient of its proof will
be to show that the equation defining Z( j)P""® globalizes to give aresolution
of the structure sheaf @ zjypure.

We first consider a single specia cycle Z(j). Let us suppose that the
matrix of j interms of the standard basis ey, & is

. [a b
=\c -a)-
If pta, € Z(j), then plb and, writing b = phyg, we have the global section
of @ on Qa,,
(5. f =byTo —2a— cTy.
Recall from (3.8) that the Genestier equations for theintersection 2,,NZ(j)

aregiven as
f-To=f -T; =0,

whereas the equation for Z(j)P""®issimply f = 0. Thisleads usto consider
the complex of free @-modules on Q A, concentrated in degrees —1 and O,

(5.2) KL ) : 0 —> o,

giving a free resolution of the structure sheaf of szo N Z(j). In order to
calculate with this complex, we write

(5.3) f=1f(j)=tr(j -7 -diag(—p 1 1)
with

(5.4) . ToTy =T _( P -T
. -To 1 -To 1 ’
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From now on we have no further use of the matrix representation of j and
the symbols a, b, c will denote the entries of other matrices appearing in the
proofs below.

More generaly, let g € G(Qp)° suchthat g - pta, € Z(j). We have the
homomorphism of sheaves (covering the automorphism g)

g*:(9§2—> (9@.

The global sections g..(Top), g.(Ty) of szng are just the global sections
congtructed like Tp, Ty but starting from the basis [ge;, gey] instead of
[e1, &]. Wethen obtain acomplex K(g, j) of @-moduleson §2ng by using

in (5.2) instead of Ty, T, the global coordinates on QgAO obtained from
To, Ty by transport via g, and in (5.1) the coefficients of the matrix of j in
terms of the basis ge;, ge,. We have an obvious isomorphism (the identity)

g*(K(g, gjg ™) — K(1, ),

which we prefer to view as a g,-linear homomorphism (between sheaves
on different spaces)

i.e. g.(Xs) = g.(X) - g.(s) for asection x of @ and asection sof K(1, j).

Lemmab.2. Assume pty, € Z(j). For every element g in the lwahori
subgroup (1.11) associated to Ag there is a g_!-linear isomorphism of
complexes of @-modules on 25,

0. : —1;
A K@ ) — K gtjg).
These isomor phisms satisfy the transitivity condition
0 0 0
)‘9192 = )‘92 °© )‘91’
Proof. Theisomorphism will be given in the following form

KLj) : 0 - o

(5.6) Agl al 1i

KL glig : 0 - o,

where @ € ©*. Of course, we are using here the usual convention for
describing a semi-linear map by a matrix, e.g. in degree —1 a section x of
O ismapped to o - g;1(x). Also we have abbreviated f(g=1jg) to f'.

Let uscalculate f'. We have

(5.7) f'=1tr(g *jg- 7 -diag(—p*, 1)
= tr(] . 'L'/ . dlag(_ p_19 1))9
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with

(5.8) U =g -t-diag(—p*,1-gt-dag-p Dt

Now
T

= - (To, =1).

T (—1>(0’ )
Let

_[(a b\ [a pbo

9=\cd)/=\c a )
Then

T1 _ aTl —b o ) g;l(Tl)
o9 0 (1) (D) <o (£0).

where we used the expression (1.12) for g, *(T;). We note that
(5.120) v=uv(g, ) = —cT; +d
is an automorphy factor for the action of the Iwahori subgroup on @, i.e.

(5.12) v(gg’, To) = v(g, g, () - v(g, To).

Similarly we have
(To, —1)-diag(—p~*, 1) - g~* - diag(—p~*, )+

= (To, —1) - det(g) - (d bo)
pc a

= det(g)™- (dTo — pc, beTo — @)
= det(g) - (—=boTo+a) - (9, *(To), —1) .

Again
(5.12) u=u(g, Tp) = —bgTog+a

is an automorphy factor valued in ©@*. Plugging in these expressions into
(5.7) we therefore obtain

(5.13) v = det(9) 'uv- g, (D),
and

(5.14) f' = det(g)"tuv - g ().
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We a so note that
—1 i -1 -1
Gy LT _—hrd v (6 ()
To —boTo +a u T1

We now fill in the diagram (5.6) by setting
(5.16) o = det(g) - u~tv7L,

It is clear that the resulting diagram commutes. The transitivity property
follows from the fact that u and v are automorphy factors. O

We now use the system of isomorphisms constructed above to construct
a well-defined complex on each open chart $2, of Q. If pta ¢ Z(j) this
complex iszero by definition. Next supposethat pty, € Z(j)andlet g, g, €
G(Qp)0 such that g1 Ag = goAg = A. Then g, = g; - h whereh liesin the
Iwahori subgroup for Ag. We define a (linear) isomorphism of complexes
on 2,

(517) )‘92.91 : K(gl9 J) — K(927 J)
by putting
(5.18) Agogr = G2« © )‘ﬂ © gI*l .

The transitivity assertion of Lemma5.2 yields
(5.19) Ags.g2 © Agpgr = Agsa

for any gz with gsAp = A. This is the precise meaning of the well-
definedness of the complex on 2.

Our next aim is to glue the complexes just constructed on common
overlaps of local charts.

Lemma5.3. Assume pta, € Z(j). For any g € GL2(Zp) thereisa g, *-
linear isomorphism of complexes of @-modules on 4,
ug: K@ Dlg,  — KA giglg, -
These isomor phisms satisfy the transitivity condition
0 0 0
MngZ = Mgz °© Mgl'
Furthermore, if g liesin the Iwahori subgroup corresponding to Ag, then

0 0 iﬂ[Ao] '

g = g
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Proof. The complexes in question have the following form:

. f
K(1, j)|Q[AO] : O — 0O

(5.20) | o
KLg gl : O 0.

Here f and f’ are the restrictions, via the open immersion of (1.15), of the
functions appearing in (5.6) and our am is to define « € @ to produce
acommutative diagram. Let us calculate f and f’. We have

_T-1
f=tr (j . (—ET Tl ) -diag(—p~%, 1)) e,
-1 -7
(5.22) f:tr(y(T 1 ))

Hence
-1 -T1
f'=tr|j-g- -t

We write

1 _T-1 _

T 1 T
Let

ab

Then

-1 bT —a -1
. = = _bT ’
’ (T ) (dT —C) e (9»? 1(T)>
where we use (1.8). We again note that

(5.22) u=-bT +a

is an automorphy factor for the action of GL»(Zp) on ©*. Similarly we
have

AT YH.gr=det(g - d—cT i b+arT™?
=det(g) ' d—cT™H- (L g (M™Y.
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Again
(5.23) v=d—cT?
is an automorphy factor valued in @*. We thus obtain
(5.24) f' = det(g) ™ - uv- g i(f).
We aso note that

AT v
(5.25) gT() =2

We now fill in diagram (5.20) by setting
(5.26) o = det(g) - u"tv7L,

Thecommutativity of thediagramisimmediate, and thetransitivity property
follows from the fact that u and v are automorphy factors. Finaly, if g lies
in the lwahori subgroup, the eement « here isjust the restriction of the one
used to define 1] since

u(g T0)|Q[A0] = (—boTo + a)|Q[AO] =—-bT+a=u
U(g, T1)|§2[A0] = (_CTl + d)|Q[AO] = d — CT_l =

Lemma5.4. Assume pty, € Z(j). Let

:(gg),

s0 that wGLz(Zp)w‘1 is the stabilizer of the lattice A1 = [pey, &]. For
any g € wGLy(Zp)w! thereisa g *-linear isomorphism of complexes of
©-modules on Q4,;,

0. ; - -1j
/"Lg . K(l, J)\Q[Al] — K(lv g Jg)iﬁ[[\l]

These isomorphisms satisfy the transitivity condltlon and if g liesin the

Iwahori subgroup corresponding to Ag we have Mg =0 \Q[A
1l

Proof. The element w lies in the normalizer of the Iwahori subgroup and

hence acts on €2 Ao- Theaction is given formally by the same formulaasin
(1.12), hence mterchanges To and T,. Furthermore the action takes the open

immersion of § (A1l in ©,, into the open immersion of (4, in $24,. Hence
after identifying Q[Al with Q[AO via w, this open immersion is given by

(5.27) Tor— T7' Ti— pT.
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For the restriction of f we therefore obtain

_ - p—pT PP |
(5.28) f_tr<1 (—T‘l 1 ) diag(—p ,1)).

We write

p _pT - a1 _ -1 )
<_T—1 1 ).duag( p ,1>—<p_1T_1> 1, pT).

For the restriction of f’ we obtain

1 : -1 _
f =tr (J g (p_lT_]_) : (1’ pT) : g 1) .

Letg= (‘2 Z) € wGLy(Zp)w L. Then

-1 —a+ ptbT?
5.29 . =
(529) g (p—lT—1> (—c+ p‘ldT‘l)

-1
=(a— p_le_l) . (—c+p‘1dT‘1) .

a—p~1bT-1

The second component of the last vector isequa to

(5.30) pt (%O)_l =p g, (M
Here

(5.31) g = wgw ' = (pf’lb F;C) € GLa(Zy) .
Similarly,

(532) (L pT)-gt=det(@ " (d—pcT) (L p-g, ().
Putting

(5.33) u=a—pb-T1 v=d-pcT

we therefore obtain

(5.34) f' = det(g) tuv - g, ().
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Of course, after reversing the identification of (4, with (4, the iso-
morphism g;‘l becomes g 1. We define

(5.35) o = det(g) - utvl,

and the proof proceeds as before. O

We now use the previous lemmas to glue the complexes on the open
charts Q4 with pty € Z(j). Let gi, g2 € G(Qp)° suchthat g; - pta, € Z(j)
fori = 1, 2 and with g1 Ag N g2Ap = {[A]}. We define an isomorphism of
complexes on €2,

(5.36) Kgo.gr  K(91, j)\Q[A] — K(Q2, j)|Q[A]
by putting
(5.37) Hapg1 = G2 0 If 0 O -

Here g = g1 - h where h € GL,(Zp) if [A] isin the G(Qp)o—orbit of
[Ao]l and h € wGLa(Zp)w™t if [A] isin the G(Qp)%-orbit of [A1]. The
isomorphism w9 has been defined in Lemma 5.3 resp. in Lemma5.4. Again
thereisatransitivity condition. If gs isathird element with gs - pta, € Z(j)
and with g3sAgN giAg = {[A]}, i = 1, 2, then

(5.38) Hgz.o1 = Mgs.02 © Mgp,01-

At this point we have achieved the following. First of all, we constructed
a locally free invertible sheaf .£ on €2 via the (system of) automorphy
factor(s) g — det(g) - u*v~L. This sheaf isindependent of j. Secondly, we
constructed aglobal resolution of the structure sheaf O z(j)mre of the form

(5.39) K(j) : £ —> 0.

Remark. In fact, the sheaf £ has an intrinsic global definition on Q inthe
Drinfeld picture. Up to the twist by det(g), it is smply the sheaf T, T, 7,
in the notation of [3], I.5. Again in this notation, the automorphy factors
u and v define the sheaves Ty and T, respectively. We have found it more
convenient to work directly with the machinery of Sect. 1.

Proof of Theorem5.1. Let (j1, j2) and (j;, j5) be as in the statement of
Theorem 5.1 and let y € GL»(Zp) be such that

(5.40) (ju. J2) - v = (1, i)
Associated to j; resp. j we have the complexes, cf. (5.39),

/

(5.41) K(iD =L 50, Kih=L—50, i=12
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Note that these are just the Koszul complexes associated to the linear forms
fi resp. f/ on £, cf. Bourbaki, Algebre, X, §9.1 (all higher exterior powers
of L arezero). By loc. cit., Prop. 2, we may identify the tensor products of
them again with Koszul complexes,

(5.42)
K(jp) ® K(j2) = K(L @ L, T), K(jp) @ K(jo) =KL DL, ).

Here K(L @ £, f) isthe Koszul complex associated to the linear form
f=fi+H:LBL— O,

and similarly for
ff=f+f:LdL— 0.

But y induces an automorphism
(5.43) ViLOL— LBL, (S,9)FH— (S1,%) Y

with f" = f o . Hence 7 induces an isomorphism K(£ & £, f) ~
K(L @ £, f’) and hence

O z(jpmre @ O z(jpmre = K(j1) ® K(j2) =K(j) ® K(j3)
— (Qz(ji)pure ®L Oz(jé)pure -

Remarks. The arguments of this section are a considerable simplification
of those of our original version and are based on suggestions of one of the
referees. Our original more elaborate argument, based on the globalization
of the Genestier equations (3.8) proved the isomorphism

L 0 . oL .
Oz @~ Oz(jp = Ozjp @~ Ogjy-

But, asthereferee observed, the easier statement of Theorem 5.1 sufficesfor
all of our applications, and henceit isenough to globalize the single equation
defining Z(j)P"¢. Thereferee also noted theintrinsic global definition of the
sheaf £ involved in the resolution (5.39) and suggested the Kosul complex
argument used above.

Example 5.5. Wegive an exampletoillustrate that in the situation of Theo-
rem 5.1 the relative positions of the cycles Z(j1) and Z(j,) resp. of Z(j;)
and Z(j5) can differ radically. Assumethat j,, j» isadiagonal basiswith

(5.44) d(j1) = &1 (thusa = 0), and q(j) = &2 P,

with 8 > Oevenand x(e1) = —1. Then Z(j,) issimply ahorizontal divisor
isomorphic to the digoint sum of two copies of Spf W meeting the special
fibre in two ordinary special points x;, X, of ]P[lA], where [A] is the unique



Height pairings on Shimura curves and p-adic uniformization 197

vertex fixed by j;. This vertex is aso fixed by j, and the component IP[lA]
occurs with multiplicity 8/2in Z(j2). In particular (Z(j))req = {X1, X2} and

(5.45) (Z(j1), Z(j2)) = B.
Asanew basisof j let ustake
ji, and jo=ja4+Arj1, A€Zp.
Then
a(jp) =A%+ e pf = Azel(l + 2% e, - p’) € Z \ZS’Z.

Hence q(j5) = &), with x(g5) = —1 and thus Z(j5) is, just as Z(j1),
a horizontal divisor isomorphic to the disoint sum of two copies of Spf W
and meeting the special fibre in x; and x,. In spite of the striking change
in the geometry of the pair of cycles, the intersection number remains the
same. Let us check this explicitly.

Let us calculate the intersection number (Z(j1), Z(j5)) by using the
local equations. Since Z(j;) and Z(j,) are coprime divisors, we only have
to determine the lengths of the local rings at x; and x,. Let us choose abasis

for A such that
. (01 o a b
Jl_ 81 O ’ 12— _glb _a .

a b+
e1(A — b) —a
are respectively

T2 —e1=0, (b+1)T?—2aT —e1(h —b) =0.
The affinering of Z(j1) N Z(j5) istherefore
WIT, (TP — T)™11"/(2aT — 2¢1b, T? — &)
which isisomorphic to
W/(a— nb) ® W/(a+ nb)
where n isasquare root of ¢1 in W. Therefore
(Z(j1), Z(j)) = ordp(a — nb) + ordp(a+ nb)
= ordp(a® — £1b%) = ordpq(jo) = B,

in accordance with (5.45). Of course, in this case the assertion of Theo-
rem 5.1 istrivia since

L L
Oz(j» ® Ozijp = Oz) = Oz(jp ®" Oz(jp)
is concentrated in degree zero.

Then j; = ) and the local equationsfor Z(j;) and Z(j5)
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6. Computation of intersection numbers

In this section, we combine the information obtained so far and give an
explicit expression for the intersection number (Z(j), Z(j’)).

Theorem 6.1. Let j and j’ be special endomorphisms such that their Z -
spanj = Zpj +Zpj’ isof rank 2 and nondegenerate for the quadratic form.
Let

po( ab 3G
i 1 =y . Y 9
045D adh)
and suppose that T is GL(Zp)-equivalent to diag(e1 p*, €2 p?), where 0 <
o < B.Then

(Z()), Z(J)) = &(T) =

p‘x/2+2% if o iseven and x(s1) = —1,
/2 __

(B—a+Dp/2+ 28
if o iseven and x(e1) = 1,

if o isodd.

=a+p+1-

p((’(+l)/2_1

28

By Theorem 5.1, we may assume that the elements j and j’ diagonalize
the quadratic form, i.e., that
with0 < o < B.

e1p”
T = ,
( wﬁ
Recall that

(Z(D), Z(J)) =(Z()P"e, Z(j)Pre)
=(Z(DH", Z(HM + 2D, Z(GHY) + 2y, Z(GHM
+(Z()", Z(j")Y,

where
Z(j)* =Y multin(j) - Pray,
(Al

asin Proposition 4.5. Here we assumethat q(j) = e1p% q(j’) = &,p# and
that jj’ = —j’j. Recdl from (3.9) that
mult;;(j) = max{a/2 — d([A], B), 0}.

We organize the calculation according to the cases in Table (2.26),
assuming from now onthat o < 8.
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First consider the quantity (Z()", Z(j)™) + (Z()", Z(j")) + (Z(j)",
Z(j"H"). Recall, for example, that in the case « is even and x(g1) = —1,
Z(j)" consists of two copies of Spf(W) meeting P jy;, while, if « is odd,
then Z(j)" consists of one copy of Spf(W’') meeting ptaj, where A(j)
is the edge containing the fixed point of j. Otherwise Z(j)" is empty.
Taking into account the multiplicities of the vertical components and Lem-
mas4.8 and 4.9, we obtain the following table of valuesof (Z())", Z(j")™ +
(Z(HM, Z(GHY) + (Z()Y, Z(j)HM), comp. Proposition 2.12.

iNT B even B even B odd
x(e2) = -1 | x(e2) =1
o even
x(e) = -1 a+p B )
(6.1) o even
x(e) =1 o 0 o
o odd @ B a+p-1

It then remains to calculate (Z(j)Y, Z(j")"), using Lemma4.7. Thefirst
step is the following simple observation.

Lemma6.2. For any vertex [A] € B, letr = d([A], 81" be the distance
to the fixed point set of j’. Note that [A] lies on the boundary of 7 (j’)
precisely whenr = /2. Then

1-p whenl<r <g/2-1,

x(e2) — p  whenr =0and g iseven,
(Pray, Z(HYHY =3 —p whenr = 1/2 and B isodd,

1 whenr = /2,

0 otherwise.

Proof. First supposethat 1 <r < /2 — 1, so that there is a unique edge
leading from [A] along the geodesic from [A] to B1', and there are p edges
at [A] leading away from B1". The intersection of Ppa; with Z(j")Y isthus

B/2=r+D—(pP+DB/2-+pB/2-r-D=1-p,

in this case. The other cases are similar. For example, if r = 1/2 and B is
odd, then [A] is one endpoint of the edge containing the unique fixed point
of j’. Themultiplicity in Z(j)” of the component corresponding to each of
_th&eetwo endpointsis (8 — 1)/2. Thus, the intersection of Pj,; with Z(j")"
is
B-1D/2—(pPp+D(B-D/2+ p(B—-3)/2=—p.

Finaly, note that if r = B/2, then the multiplicity of P, in Z(j’) is
zero, while the multiplicity of the component corresponding to the unique
neighboring vertex closer to B! is 1. O
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Proof of Theorem 6.1. In al calculations, wewill count, with multiplicity in
Z(j), the number of vertices [A] in 7(j) whose associated component has
afixed intersection number with Z(j’) given by Lemma6.2. Recall that we
always assume that o < B.

Webeginwiththesimplest case: « and 8 evenwith x(g1) = x(e2) = —1.
In this case, 7(j) N 7(j") = T(j) isjust the «/2 ball around the vertex
[A())] =[A(]j")] fixed by both j and j’. We have
(6.2

a/2-1
(Z())", Z(i"") = =(p+Da/2+ 1 —p) Y (@/2-0)(p+1p "
r=1
P21

=—(p+ D=

Inthe casea and B evenwith x(s1) = —1and x(e2) = 1L, T()HNT(j) =
7(j) isagain just the «/2 ball around the vertex [A(j)]. Thus,
(6.3)
a/2-1

(Z())", Z())") = =(p—Da/2+ 1 —p) Y (@/2-0)(p+1p "

r=1

P2 -1
=o— 1
a—(p+D 01
where the change from x(e;) = —110 x(g2) = 1 causes the change in the
first term.
The case o and B even with x(e;) = 1 and x(s2) = —1 is more

complicated. Here, the geodesic joining the fixed vertex [A ()] to any
given vertex [A] runs a distance ¢ along the fixed apartment B! and then
adistance r away from the apartment. The vertices [A] in 7(j) with£ =0
are all joined to [A(j’)] by a geodesic emanating along an edge outside
of B8!. The contribution of such verticesis:

a/2—-1
64 —(p+Da/2+1A-p Y (@/2—n(p-Dp*

r=1
=1—a—p/2

If1<¢ < (B—a)/2 thenvertices [A] withr = «/2liein 7(j"). Hence
the contribution of verticeswithl < ¢ < (B — o) /2is

(B—w)/2 a/2—-1
65) 21-p) ) (a/2+ > (@/2-n(p-1 pf—l)
(=1 r=1

= (@ — B(p? - 1).
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Next, if (B—a)/2 < £ < B/2,thenthevertices[A] withr < 8/2liestrictly
inside 7(j’), and contribute

B/2—1 B/2—t—1
69 20-p > (a2+ ¥ @z-ne-vp)
(=(—a)/2+1 r=1
/2 _
=20 —4 P 1.
p—1

Finally, the vertices on the boundary of 7(j") contribute

p/2-1

/2 _
(6.7) a+2 Z (/2—(B/2—)(p—DpPFtt=2 il 11.
t=(f—a)/2+1 p—

Here the initial « is the contribution from the two points of intersection
of the apartment B! with the boundary of 7 (j’), i.e., the two points with
= p/2.

Theset 7 (j))NT (j') inthecasea and B evenwith x(e1) = x(s2) = 1is
identical with the corresponding set in the previous case! The only change
in the formulas occurs in the first term (6.4), which is now

a/2—-1

68) —(p—Da/2+(1—p Y (@2-nN(p-Dp*t=1-p"?

r=1

due to the change in the contribution of the central vertex. In effect, the total
inthis caseis o plus that of the previous case. _

In the case @ iseven, x(e1) = 1and g isodd, Bl isthe midpoint of an
edge in the apartment B!. Each vertex [A] isjoined to this fixed midpoint
by a unique geodesic, which runs along the apartment 8! adistance ¢ + %
and then adistancer outside the apartment. The contribution of the vertices
with¢ = 0is

a/2-1
(69 —pr+21—p > (@/2-1)(p-Dp 7t =—a—2p"2-1),

r=1

where the initial — pa is the contribution of the two endpoints of the edge
containing the fixed vertex. When1 < ¢ < (8 — o — 1)/2, we may travel
adistancer = «/2 — 1 and remain strictly inside 7 (j’). Thus such vertices
contribute

(B—a—1)/2 a/2-1
610 21-p) Y. (a/2+ Z<a/2—r><p—1>pf—1)
r=1

=1
= (@ — B+ D(p”?-1).
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Similarly, the vertices strictly inside 7 (j’) but with £ > (B — a — 1)/2
contribute

(B—3)/2 (B—3)/2—L
61) 21-p Y (a/2+ > @2-np-1 pr‘l)
(=(B—a+1)/2 r=1
pr2-1

=20 —4 .
p—1

Finally, the vertices on the boundary of 7 (j’) contribute

(B—3)/2
(612 a+2 Y (@/2—((B—D/2—0)(p—DpPtt
t=(B—a+1)/2
/2 _
p—1

Note that herethe valuer = (8 — 1)/2 — ¢ puts [A] on the boundary.
The next caseis @ odd and B even with x(s2) = 1. Here the whole ball

7(j) lies entirely inside the tube 7(j’) around the fixed apartment B1". The
total contribution is

(@=1)/2
(6.13) 20-p Y (@=D/2-n)p
r=0
(a+1)/2 _

PV Y it

p—1
whered([A], 87) =1 + 1.

Thelast caseis« and 8 odd. Here j and j’ fix the same midpoint, and
we get

(@-1)/2

614 —pa—-D+21-p Y (@—1/2-ng
r=1
p(a+l)/2 -1

p—1

=2-2

Here the term —p(a — 1) comes from the pair of vertices of the edge
containing the fixed vertex. Note that they have multiplicity (« — 1)/2 in

Z(J).
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In each case, we sum the various contributions to obtain the following
table of values of (Z(})?, Z(j"?):

i\T B even Beven | Bodd
x(e2) = 1| x(e2) =1
o even
x(e1) = -1 (i) (if) ¥
(6.15) o een
x(e1) =1 (iii) (iv) V)
« odd Y (vi) (vii)
Here are the values:
L _ pe/2 —1
() =®2=-(p+D T
_— _ pr/2—1
(i) =63)=a—(p+121 51
, L P2-1
(iii) = (6.4)+ (6.5 +(6.6)+(6.7) = B+1—(B—a+1)pY/? -2 -
P21
(iv) =(ii)+ao=a+B+1— (/3—oz+1)p“/2—2ﬁ
(v) = (6.9) + (6.10) + (6.11) + (6.12)
P21
:,3‘}‘1—(,8—0[+1)pa/2—2ﬁ
N B p(a+1)/2 -1
L B p(a+1)/2 -1
(vii) = (6.14) =2 — 2?
Adding these to the expressions in (6.1), we obtain the result claimed in
the theorem. o

7. Inter section numbersand representation densities

In this section, we will express the intersection number (Z(j), Z(j")) =
&(T) given in Theorem 6.1 in terms of representation densities and their
derivatives. The analogous result in the case of a prime of good reduction
is contained in Sects. 8 and 14 (Proposition 14.6) of [16]. The result in the
present case is somewhat more complicated, and this reflects, perhaps, the
effect of bad reduction.

We begin by reviewing some facts about the representation densities
of quadratic forms, based on Sect. 8 of [16] and [22]. For simplicity, we
assumethat p # 2.
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Recall that, for Se Symy(Zp) and T € Symn(Zp) with det(S) # 0 and

det(T) £ O, the classical representation density is

(70) ap(ST) = lim p-nEm=D/2 1% € Mmn(Z/p'Z);

Sx]— T € p'Symn(Zp) }|.
Let

(7-2) S = 1
-1,

be the orthogonal sum of Sand a split space of dimension 2r. Then thereis
arationa function Ast(X) of X such that

(7.3) ap(§, T) = Ast(p ™).
The derivative of the representation density is then

0
7.4 (S T) = o (Asr00)

ad
= X (Olp(Sa T))

We will be concerned withthecasem =3 andn = 2. Let

X=1

r=0

1
(7.5) S=-— 1 ,
-1
and
n
(7.6) S=- p
—np

where n € Zg with x(n) = (n, p)p = —1. Here (a, b);, is the quadratic
Hilbert symbol for Q. Note that the form S (resp. S) is the matrix, with
respect to a suitable basis, of the restriction of the norm form of M»(Qp)
(resp. the division quaternion algebra B) to the integral trace zero elements
V(Zp) (resp. V'(Zy)). In particular,

(7.7) 1=det(S = det(S) € Q;/Q; >,
and Sand S have opposite Hasse invariants
(7.8) ep(S) = —gp(S) = 1.

Note that this corresponds to the choice « = —1 in Sect. 8 of [16].
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Remark. In earlier sections we have taken the quadratic form on V(Qp)
given by x? = q(x) - 1, so that q(x) = —v(X), where v is the restriction of
the reduced norm to V. In [16], the quadratic form Q(X) = v(x) was used.
Thus, to make a consistent link with results of [16] we use in this section
and in Sect. 9 below Q(x) rather than q(x). This change in convention
introduces slightly awkward signs at several points.

Also let

(7.9 S =- p
-Pp

0 that S’ is the matrix for the restriction of the norm form to the trace O
elementsin the lattice

ab
(7.10) [(C d) € Ma(Zp); c=0(p)¢.

The following Proposition summarizes results of Kitaoka, [12], [16],
Corollary 8.4 and 8.5, in the case of S and results of Myers, [19] and
T. Yang, [22] inthecaseof S and S'.

Proposition 7.1. Let T € Symy(Zp) and suppose that T is GL2(Zp)-
equivalent to the matrix diag(e1 p®, £2p) witha < B. Let

x(—e182) ifaand B are odd

(T) = x(—&2) if « isodd and 8 iseven
oll) =1 (=e))  ifaisevenand gisodd
1 if « and B are both even.
Then
() ap(ST) #0 <= up(T) =1,
and

(S, T) #0 & up(T) =—1.
(i) (Kitaoka) If yp(T) = 1, then
p”/2+2% if « and B are even
and x(—&1) = -1
/2_
(B—a+1)p/? + 28
if o iseven
and x(—e1) = 1,

if  isodd.

ap(ST)=(1—-p?)-

p((¥+1)/2_1

25—
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(iii) If p(T) = —1, then

(@=1)/2 _

> @+ B-4php

j=0

) = if o is odd.
ap(ST)=—-1—p )3
a/2-1 _ 1
D@+ p—4pp + (8 —a+ D
j=0
if « iseven and g is odd.

(iv) (Myers) If uy(T) = —1, then
ap(S. T)=2(p+ D).
(iv) (Myers, Yang) If pup(T) = 1, then
(S, T)=—(p+D@+L+2)

p“/2+2% if « and B are even
and x(—¢1) = -1
+2p- (13_05+1)p“/2+2% if o iseven
and x(—e1) = 1,
Rl if o is odd,

(v) (Yang) If up(T) = 1, then
P

1
1=— T)— ———ap(S, T).
p2 — 105p(Ss ) 2(p— 1)05p( )
Thelast relation follows immediately from Corollary 8.4in[22]. For an
explanation of the dichotomy of (i), see Proposition 1.3 of [16].
The following striking relation is then evident, [22], Theorem 8.1:

Corollary 7.2. If up(T) =1, then

3
(S, T)=—(p+D(a+B+2) + %ap(s T).
Remark. Kitaoka gave an explicit formula for the representation density
ap(ST) when T is any binary form, n = 2, and Sis unimodular, m is
arbitrary [12]. He dso handled the casewheren = 3and m = 4[13]. In his
thesis, [19], B. Myers gave a formula for «,(S T) in the case of a binary
form T where, when diagonalized, the entries of S have ord, < 1. This
formula made it possible to compute the derivative (S, T) above. The
relation of Corollary 7.2 wasfirst observed in the thesis of B. Myers, where
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theterm —(p+21) (@ + B+2) waserroneoudly given as —(p+1) (e +38+2)
in certain cases. Using anew method, Tongha Yang, [22], found an explicit
formulafor the representation density o, (S, T) for T abinary form and for
San arbitrary form. His result (which includes the case p = 2) thus allow
the computation of any (S T) for abinary T. Recently, Katsurada, [11],
gavean explicit (very complicated) formulafor ap(S T) when T isarbitrary
and Sisasum of hyperbolic planes. This should allow the computation of
the derivatives op(S T) incasesm = 2¢ and n = 2¢ — 1 in the interesting
casein which ap(S T) = 0, cf. Proposition 1.3 and Theorem 6.1 of [16].

Comparing the expressions of Proposition 7.1 and Corollary 7.2 with
the formula for the intersection number given in Theorem 6.1, we obtain
the following resuilt.

Theorem 7.3. As in Theorem 6.1, suppose that j and |’ are special en-
domorphisms with matrix of inner products T, defined using the quadratic
form Q. Then, up(T) = 1, and

(Z(]). Z() = &(~T) =~

2 2
op(S,T) — d )ap(s T

1
+1 (P+D3(p-1

1 4
2 ) ap(S T).

Indeed, theidentity 1.,(T) = 1isprecisely the content of Remark 2.11.
Notethat thisidentity holdsfor all T andthat the coefficientsareindependent
of T, so that there is not as much flexibility asit might at first appear. Also,
the occurrence of €,(—T) is due to our change in the sign of the quadratic
form in this section.

Asexplained in[16], Sect. 8 and Appendix, the representation densities
and their derivatives are closely related to certain generalized Whittaker
functions for the metaplectic cover of S,(Qp). In our present case, let ¢,
be the characteristic function of V(Zp), let (p/p be the characteristic function
of V/(Zp), and let ¢y be the characteristic function of the sublattice of
V(Zp) where c is divisible by p. Also let ®y(s), <I>/p(s), and CI>/r;(s) be the
standard sections of theinduced representation |5 ,(S) whosevaluesats = 0
are Ap(@p), A ((p ), and Ap(go//) respectively. Then, as in Proposition A.6
of [16], the values of the assoaated generalized Whittaker functions at
integersr > 0 are

(711) WT,p(e» r, q)p) = J/p(vp) : ap(sf» T)?

Wrp(e 1, @) = p~2yp(Vp) - ap(S, T),
and

1 Thus T in this Theorem is the negative of the matrix attached to j and j’ in previous
sections, e.g., in Theorem 6.1.
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(7.12) Wrp(e 1, @) = p~2yp(Vp) - ap(§. T).
Note that, by Proposition A.4 of [16],
(7.13) Yp(Vp) = ¥p(Vp) = vp(—1 ¥p)° =1,

for our standard vy, and p # 2. Inour case, since i ,(T) = 1, the quantities
of interest to us are then

(7.14) Wi (€, 0, @) = —p~2 log(p) ap(S, T),
Wr (€0, @p) = ap(S T),
and
(7.15) Wrp(e 0, @) = p~?ap(S', T).

The relation of Theorem 7.3 can be expressed in terms of the derivative of
aWhittaker function.

Corollary 7.4. Let A(s) and B(s) be rational functions of p—= satisfying
A(0) = B(0) =0,
and

1p+1

A0 = - log(p), and B'(0) = 5p—1

71 log(p).

Define a nonstandard section of 15 ,(s) by
D () = Py(S) + A(S) Dp(S) + B(9) P(9).

Then
p+1

P?

Notethat, sincethe standard sections ®, (s), CI>/p(s) and @) (s) arelinearly
independent at s = 0, the conditions on A(s) and B(s) uniquely determine
the first two terms of the Laurent expansion of ®,(s) at' s = 0.

log(p) &(=T) = Wi (e, 0, By).

8. Intersection numberson Shimura curves

In this section we compute the local contribution at p of the height pairing
of certain 0-cycles on a Shimura curve, where p is a prime dividing the
discriminant of the associated quaternion algebra. The computation usesthe
results on the intersection of special cycles on the Drinfeld space obtained
in the previous sections. Our result extends that of [16] where the case of
good reduction was considered. The notation will be slightly different from
that of the earlier sections.
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We begin by briefly reviewing the global moduli problem and the defin-
ition of cycles from Sect. 14 of [16].

Let B be an indefinite quaternion algebra over Q and let D(B) be the
product of the primes which ramify in B. Fix amaximal order Gg in B. Let

(8.1) V = {x € B; tr’(x) = 0},

with quadratic form defined by x? = q(x)1g, i.e., q(X) = —v(X) where v
is the reduced norm. Note that we are using the negative of the form used
in [16] and so the signature of this quadratic form is (2, 1). The action
of H = B* on V by conjugation, x — hxh~1, induces isomorphisms
H ~ GSuin(V) and H/Z ~ SO(V), where Z isthe center of H.

Fix aprime pwith p | D(B), and acompact open subgroup K C H(A¢)
of the form K = K,KP with KP ¢ H(A}) and K, € H(Qp). We assume
that the image KP/ZP of KPin SO(V)(A?) istorsion free and that K, =
(Cs ® Zp)™.

Let A bethefunctor on Schz,, which assigns to a scheme Sover Zp,
the set of isomorphism classes of triples (A, ¢, 77) where

(i) Aisan abelian scheme of relative dimension 2 over S, up to prime to
p isogeny,

(i) ¢: Gg —> Ends(A) isan embedding satisfying the specia condition
(cf. [3], p. 131132, [23], p. 17), and

(iii) n isan equivalence class, modulo right multiplication by KP, of Og-
equivariant isomorphisms n : VP(A) — B(A?), where

Ve = e,

U#£p
isthe rational Tate module of A.

We refer to [14] for the precise meaning of this last condition (cf. also [3],
p. 127); in particular, if S = Speck is the spectrum of a field, then the
equivalence class 7 is stable under Gal (k/K).

Asiswell known, thisfunctor isrepresented by aprojective scheme over
Z(py which we aso denote by . The generic fiber Ax = Ak Xspeczp,
Spec Q isthe canonical model of the Shimuracurve determined by Band K.

Next, we recall the definition of specia cycles. Fort € Q, let

(8.2 Vi={xeV;qx =t}

be the corresponding hyperboloid. For a fixed negative integer t € Z,

and a K P-stable compact open subset @ C V(AF), we consider the functor

C(t, w) which assigns to any Zp,-scheme Sthe set of isomorphism classes

of collections (A, ¢, 7, X), where (A, ¢, 77) is as before, and where

(iv) x € Ends(A, 1) is an endomorphism with tr%(x) = 0 and such that,
for any n € 7, the endomorphism 7..(x) of B(AY) is given by right
multiplication by an element of w.
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This functor is representable. There is a natural morphism C(t, w) —
Ak given by omitting the endomorphism x. This morphism is finite and
unramified. On the generic fiber, this defines a O-cycle

(8.3 Ct, ) == C(t, w) Xspecz,, SPECQ —> Ak,

described in more detail in Sect. 10 of [16].
Let Ak betheformal completion of Ak aong its specid fiber, and let

(8.4) A = (@)W = Ak X spfz, Spf W

be the base change of 1} toW = W(I_Fp). The Drinfeld-Cherednik p-adic
uniformization of -4 isgiven asfollows. Fix abase point & = (Ao, to, flo) €
A(F,), and let B' = End®(Ay, 1). Then B’ is a definite quaternion algebra
over Q whose invariants agree with those of B at al primes ¢ # p, co.
Let H = B"*. Fix g € 1. This choice induces an identification with the
opposite algebra

(85) B'(A}) = B(A)™

determined by the condition no(b'v) = no(v)b, and hence also an iden-
tification H'(AY) = H(AY), with order of multiplication reversed. Let
X = Ag(p) be the p-divisible group of Ag. Then ¢ induces an action of
Gs ® Zp on X and, by the condition (ii) above, X isas.f. Og ® Z,-module
over k = I_F‘p. Asin Sect. 1, we may aso assume that 0 and 1 are critical
indices of X and fix an identification End®(X, ¢g) = M2(Qp). This gives an
identification H'(Q,) = GL2(Qp).

Recall from Sect. 1 the category Nilp of W-schemes S such that p is
locally nilpotent in Os and the notation S= S x specw SPeCF,, for Se Nilp.
Let 4  bethefunctor on Nilpwhich associatesto Stheisomorphism classes
of callections (A, ¢, i, ¥) where (A, ¢, ) is as before, and where

(8.6) W:A0X3pecprs—> AxsS
isan Og-equivariant p-primary quasi-isogeny.

Let M* be the functor on Nilp which associates to S € Nilp the set of
isomorphism classes of pairs (X, p) where X is a p-divisible group over S
and
(8.7) p:XxSpeCprg—>XxS§

isaquasi-isogeny. Then M* isrepresentable by aformal scheme and breaks
up asadigoint sum

(8.9) Mo=]] M,

i€eZ
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where M isthelocuswhere the height of p isequal to p'. Wefix an element
IT € B'(Qp)* such that tr°(IT) = 0, and ord,(I1%) = 1. Using I1, we may
identify M' with M = M° (the Drinfeld space considered in Sect. 1) via

(8.9) M — M, (X, p) — (X, poTlh.

Thereis anatural morphism

ARy

(8.10) A — M* x H(AF)/K,.

This morphism is defined as follows. Given (A, ¢, 7, V) € AN(S), then
passing to the corresponding p-divisible groups, we obtain a quasi-isogeny
of p-divisible groups

(8.11) P(Y) : X X g, S—> A(P) x5S

and (A(p), p(¥)) isapoint of M*(S). Also, for achoice of n € 7 thereis
aunique element g € H(AY) for which the diagram, in which Ry denotes
right trandlation by g,

VP(A)) 25 VP(A)

(8.12) no 4 Nl

B(A) —> B(A?)

commutes, and the coset gK P is uniquely determined by 7. Note, in (8.12),
that VP(A) = VP(AxsS). Anelement y € H'(Q) actson /A by changing
the quasi-isogeny v to v o y~L. Since, for this change in v, the pair
((A(p), p(¥)), gKP) changes to ((A(p), p(¥) o y~1, ¥y~ 1gKP), the map
(8.10) is H'(Q)-equivariant.

The theorem of Drinfeld-Cherednik asserts that passage to the quotient
induces an isomorphism of formal schemes over W, [6], [20], [3]:

A — M* x H(AD)/KP
(8.13) \ 2
A H@\ (M x H(AP)/KP).
Now let
(8.14) V' = {x € B’; tr%x) = 0},

with its quadratic form g, which we regard as the space of special endo-
morphisms of Aq in B' = End®( Ay, t). Associating to any x € V/(Q) the
corresponding endomorphism of X = Aq(p), we obtain aspecial endomor-
phism j = j(x) of X, and in fact this induces an identification of V'(Qp)
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with the space of specia endomorphisms of X. Note that the notation has
shifted; V'(Qp) was denoted by V in the earlier sections. Fort € Q, let
(8.15) V{={xeV;qx =t}.

We may now relate the formal cycle C = m) X spfz, SPf W to the

cycles in M considered earlier. Let @ = € x ; A", so that a point of

¢” is a collection (A, ¢, 0, X, ¥). From this data, we obtain an element
Y*(X) € V/(Q). By (8.10), we obtain amap

7 — V/(Q) x M* x H(AP)/KP
(8.16) ) J

AN

A — M x H(AF)/KP,
and, upon passage to the quotient, an injection
e o H/(Q)\(V{(Q) X M* % H(A?)/KP)
(8.17) { A
A S H@\(M x H(AD)/KP),

The image of this map is determined by the following incidence relations:
the paint (X, (X, p), gKP) liesin theimage if and only if

(i) g7'xg € w, and

(i) for j = j(x), (X, p) € Z*()).

Here Z°(j) isthe formal subscheme of M* defined by the obvious analogue
of Definition 2.1.

Remark 8.1. Let Z'(j) = Z*(j) N M'. Then, under the identification (8.9),
we have

(8.18) Z(njn T =z oy = Z'(j).

In particular, since I is central, we have

(8.19) Z(h)=Z%() and  Z(jV) = Z7H(),
where j¥ = TTjIT 2.

Using the fact that H'(Q) acts transitively on V/(Q) whent # 0, we
obtain an isomorphism

(8.20) &= H@x\(Z() x 1x. ),
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where x is afixed element of V/(Q), j = j(x), Hy denotes the centralizer
of x and
(8.21) I(x, ) = {gKP € H(A})/KP; g7'xg € w}.

Relation (8.20) can be viewed as giving a p-adic uniformization of the
special cycle, analogous to the uniformization (8.13) of the whole space.

Remark 8.2. Assume that the generic fiber C(t, w) = C(t, ®) Xspecy,
Spec@Q is nonempty. Then t is represented by V(Q). This follows from
the fact that for any C-valued point (A, ¢, 7) of Ak we have an injection

End®(A, 1) — B.

Sincet isrepresented by V(Q), itisafortiori represented by V(Qp). For the
corresponding special endomorphism j in (8.20), thisimplies, since B(Qp)
is a quaternion division algebra, that Q,(j) is afield, i.e., does not split.
Thisisthe globa reason, referred to in Remark 3.5, for the observation in
Corollary 3.4, that Z(j)" = @ if q(j) = ep* with« even and x(e) = 1.

Next, we consider the intersection of a pair of cycles C; = C(t1, wy)
and C, = C(tp, wy), following the procedure of Sect. 3 of [17]. We change
notation and now denote by € the fiber product

(822) C= @(tlv Cl)l) X Ak @(t29 602).

Let S be a connected scheme. For a point § = (Ag,t,77) € Ak(9),
let V;: C End(A¢, 1) be the Q-vector space of special endomorphisms
(endomorphisms of trace 0). This space has a Q-valued quadratic form
defined by x? = Qs (X) - ida. For apoint £ = (Ag, ¢, 17, X1, X2) of C(S) the
pair X1, X, of elements of V; determine asymmetric matrix (the fundamental
matrix associated to &)

(8.23)
1 (X, X)) (Xa, X2) 20X %)
T. =2 = 2 € Symy(Q),
T2 ((Xz, X1) (X, Xz)) (%(Xz, X1) b ) Y
where (X, y) = Qs(X + Y) — Q:(X) — gz (Y) isthe bilinear form associated
tod;. Notethat det(T;) = tit, — 3 (X1, X2). A basic fact isthat T; isnegative

semi-definite. Asobserved in [17], thefunction & — T; is constant on each
connected component of ¢ and there is a decomposition

(8.24) e=]]er.
T

where, for T € Sym,(Q), C+ is the union of the components of € where
Tz = T. Notethat the only T’swhich actually contribute liein Symy(Zy)),
are negative semi-definite, and have diagonal termst; and t, as on the right
side of (8.23). Since the signature of V(Q) is (2, 1), and using an argument
similar to that in Remark 8.2, we obtain:
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Lemma 8.3. Suppose that det(T) # 0 and hence that T < 0. Then the
image in 4 of the underlying point set of Cr lies in the special fiber.
Moreover, Ct isproper over SpecZp,.

The last statement follows from Corollary 2.14.

If t1t, ¢ Q*2, so that det(T) # O for al T appearing in the decompos-
ition (8.24), then the discussion of Sect. 4 provides awell defined intersec-
tion number (C4, C»), cf. Remark 4.4. As a matter of fact, in that section,
we only considered intersection numbers (Z, Z') for closed subschemes of
aregular two dimensional scheme X. The extension to the case of finite
unramified morphisms Z — X and Z' — X isimmediate. In our case, we
obtain

(8.25) (C1. @) = x(C. ¢, ®" O¢,)

If t1t, isasquare, then singular T's can occur in (8.24), and we define

(8.26) (CLeCY™:= > x(Cr,0¢ ®" Oc,).
T,det(T)#0

Our next goal isto compute the quantity x(Ct, Oe, ®" O¢,) for agiven
nonsingular T € Sym,(Q). First we pass to the formal schemes ¢, ¢, and

(8.27) &=0C1x ;€
over W. Here
(8.28) e=]]ér.

T

where @ (resp. Cr) isthe base change to W of the formal completion of @
(resp. C1) dong its specid fiber. Passing to formal completions and making
aformally étale base change leaves the intersection number unchanged, cf.
Remark 4.4. Hence we obtain the following statement.

Lemma 8.4. Assume that det(T) # 0. Then
X(@Ta (9@1 ®]L (9@2) = X(éT9 (9@1 ®L 0@@)'
Let &1 = &7 x ; A , so that apoint & € G (9 is a collection

(Ae, 1, 1, X1, X2, ¥), where ¢ is a quasi-isogeny, as in (8.6). The spe-
cial endomorphisms x; and x, of A: determine an ordered pair X =
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[V*(X1), ¥*(Xp)] of specia endomorphisms of Ay, and these, in turn, deter-
mine an ordered pair j = []i, j2] of special endomorphisms of X and their

(8.29) Vit = {xe V& ixx =T}
Then x liesin V/(Q)2. Thus, we obtain an inclusion
(8.30) Er = V(@32 x M* x H(AD)/KP,

analogous to (8.16). Again, the point (x, (X, p), gKP) liesin the image of
this map if and only if

() 9g7'xg € w1 x wp, and

(i) (X, p) € Z*(j), where Z*(j) = Z*(j1) N Z*(j2).

Since det(T) # 0, thegroup H'(Q) actstransitively on V%Q)%, and the
stabilizer of afixed x isthe center Z'(Q), which actstrivially on V'. Letting

(8.31) I(X, w1 x @p) = {gKP € H(A}); g7'xg € w1 x wy}
and passing to the quotient, we obtain an isomorphism

(8.32) Cr —> Z@\(Z°G) x 10 01 % @)

Adgain, this can be viewed as a p-adic uniformization of the component ¢+
of the intersection.

We then have isomorphic fiber product diagrams of forma schemes
over W:

br 25 6
(8.33) prz | +
éz — o‘g
and
Z@\(Z*6) x 1% 01 x @2)) =5 H(@x\(Z°(J2) x 101, 01))
(8.34) pr2 | \

@5\ (Z°2) x 100, @2)) —  H@)\ (M x H(A])/KP).
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Observe that the projection maps pr; factor as.
(8.35)
Z@Q\(Z') x 1 o1 x w) 5 Z@\(Z () x 106, @)
PN\ 1
H@\ (20 x 106, @) ).

We may assume that the element IT chosen above lies in B'(Q)* =
H'(Q). Let Z'(Q)° be the set of elements z € Z'(Q) such that ordp(det(2))
= 0, and note that Z'(Q)° acts trivialy on M*. Then Z/(Q) =< TI1? >
x Z'(Q)°, and, using the isomorphisms (8.20), we obtain an identification:

(836) Z(@\(Z"(I) x 106, @)

~ (260 x Z@"106. @) [T (2(0) x 2@\ (. @) ).
There is an analogous decomposition
(837) Z/(@\(Z°() x | (X @1 x w2))

~ (ZG) x Z@N (% 01 x 02)) [ [(ZGY) x Z@\ (X", 01 x w2))

for the right side of (8.32) and the decompositions (8.36) and (8.37) are
compatible with the projections pr; .

Therefore the restriction of pr @, to thefirst (resp. second) component
in the decomposition (8.37) is

(8.38) PO 2(jiyx 2/ @O\ 1 (e -
(resp.

(8.39) POz )xz @0\ (1) -
Thus we have

(8.40) X(éT,(gél QF (9@2)
=x(Z(). Oz(j» ®" Ozjp) - |Z(@\I(X, 01 x wp)|

+x(ZGY). Oz(jy) ®" Ozy)) - |Z @M (X, w1 x w2)].

Note that 1(XY, w) = IT - (X, w) and that passing from x to X leaves
the matrix of inner products of the components unchanged. Since the inter-
section number

(Z(Jl)v Z(JZ)) = X(Z(J)v 02(]1) ®]L 02(]2))

depends only on the matrix T of inner products, we have proved the follow-
ing:
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Theorem 8.5. Assume that det(T) # 0. Then

X(€1.06,8"05,) = 2:x(Z(). 02y ®" Oz(jy) |Z @\ (X, w1 xwp)].

This result is analogous to Theorem 14.11 of [16] and Theorem 7.2
of [17] in that it expresses the intersection number as a product of a multi-
plicity and a counting function. The analysis in our present case is much
more elaborate, however, since the “multiplicity” isthe intersection number
x(Z(), Oz & Oz(j,), whichis global on the Drinfeld space!

To obtain the fina formula for the intersection number, we express
the counting function as an orbital integral. Let ¢ e S(V(AF)) be the
characteristic function of w;, so that ¢P ® ¢y € S(V(AF)?). Then, for
x € V(AD)Z, the cardinality |Z'(Q)%\1(X, @1 x wy)| isgiven by the orbital
integral

(841) [Z/(@°\I(X, w1 x wp)| = vOl(KP)™ Or (¢f ® ¢b)

=|Kp—1/ P(y-1 P (-1 da.
vol (KP) o (A?)wl(g x10)95 (97 '%20) dg

Combining thisfact with the explicit formulafor 6,(T) = (Z(j1), Z(j2)) of
Theorem 6.1, which, we recall, depends only on the GL»(Z)-equivalence
class of T, we obtain the following explicit expression for the intersection
number.

Theorem 8.6. If t3t, is ot a square in Q*, then the cycles C(ty, w;) and
C(to, wp) meet only in the special fiber of A, and their intersection number
isgiven by

(C(ty, w1), Cltz, ) =2 Y (T) - vol(KP) ™ Or (¢f ® ¢).
T
Here the sum runs over

t
T= (; t”) € SYM(Zip).

2

Or (¢ ® ¢y) isthe orbital integral (8.41), and, if T is GL,(Zp)-equivalent
to diag(e1p®, e2p%), With 0 < @ < B, then

P2 4 z% if o iseven and x(e1) = —1,

/2_1
if o iseven and x(&1) = 1,

if « isodd,

&(T) =a+B+1-

p((’(+l)/2_1

25—

asin Theorem 6.1.
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If t1t, isa square, then the quantity (C(ty, wy), C(t2, wy))™ isdefined by
(8.26), and

(C(ty, 1), Cltz, @)™ =2 ) &(T)-vol(KP)™* Or(¢p} ® ¢5).
T, det(T)#0

9. Intersection numbersand Fourier coefficients

In this section, we combine the results of Sects. 7 and 8 to prove arelation
between the intersection numbers of special cycles and the Fourier coeffi-
cients of the derivative of a certain Siegel Eisenstein series. This relation
extends Theorem 14.11 of [16] to the primes of bad reduction p | D(B)
of the Shimura curve 4. We refer to Sect. 7 of [16] for more details
concerning the definition of the incoherent Siegel Eisenstein series and its
derivative.

We continue to use the notation of Sect. 8, with one exception. To make
our results consistent with those of [16], we will change the sign of the
quadratic form on V, i.e., we now take the quadratic form Q(x) = v(X).
Thus, a specia cycle will be associated to data (t, w) wheret € QZ, with
ordp(t) > 0 and where w is a K P-stable compact open subset of V(A?). We
also assume that w islocally centrally symmetric.

For a pair of cycles €1 = C(t1, w1) and C, = C(ty, wy), With tit, not
asquarein Q*, let

(9.1) < C1, G2 >p:=vol(K) log(p) (C1, C2)

be the p part of their height pairing. Here K = K,KP isthe compact open
subgroup of Sect. 8, and the intersection number (C;, C») isasin (8.25). If
tit; isasquare, let

(9.2) < €1, @2 == vol(K) log(p) (C1, €)™

be the ‘nonsingular part’ of the height pairing, defined using (8.26). Of
course, (9.2) simply reduces to (9.1) when t;t, is not a square. Note that
the intersection number (C4, G,) is taken on the quotient Ak and hence
depends on the choice of K. On the other hand, due to the factor vol (K), the
quantity < C1, G2 > isindependent of K, but depends on the choice of
Haar measureon H(A ¢) usedto calculatevol (K ). Herewefix the Tamagawa
measure dh on H(A) and afactorization of thismeasureasdh = d,,h - d;h
asin [16], p. 573. The Haar measure d;h on H(A) is used to compute
vol(K). In addition, measures d;h are fixed for all ¢.

Next we introduce the relevant Eisenstein series. Let ¢f and ¢} €
S(V(A?))Kp be the characteristic functions of the sets w; and w,. Let

<I>‘f’(s) be the standard section of the induced representation |, A?(s) with
D0 = Af (9] ® ). Let dp(s) be the nonstandard section of 15, p(s)
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3
defined in Corollary 7.4, and let %, (s) be the standard section of weight g
asin (7.14) of [16]. Then

(9.3) d(s) = c1>§o(s) ® Pp(9 ® Y ()

is an incoherent section of the global induced representation of the meta-
plectic group G/ of genus 2. Let E(g’, s, ) be the associated incoherent
Eisenstein series.

Let G, be the metaplectic cover of S1(A) and recall that there is
ahomomorphism ¢ : G, x G, — G/{. Redtricting this to the real points,

3
let 9" = 1(g;. 0,), Where g; and g, € Gj. For g € G, let W (g') be the
holomorphic Whittaker function of Proposition 7.3 of [16].

Theorem 9.1. For g; and g, € G, and with the notation just introduced,
27 W () WE (Gp) < Cu. Cp > Z Er (91 62). 0, @),

where the sumis on positive definite T € Symy(Zp,)) with

k tz
andwith 1 p(T) = 1. Heretheinvariant u,(T) isdefined in Proposition 7.1.

Remark. Thecondition 1.,(T) = 1limpliesthat T isnot represented by the
quadratic form Q on V(Zy).

Notethat this result is consistent with Theorem 14.11, for p + D(B), and
Theorem 12.6, for p = oo, of [16]. Thusthe result of Sect. 15 of that paper
can be extended correspondingly.

Proof. For T € Sym,(Q), withdet(T) # 0, and for Re(s) sufficiently large,
the T-th Fourier coefficient of the incoherent Eisenstein series E(g’, s, ®)
has a product formula

(9.4)
3 ~
Er(g',s @) = Wro(g', s, @) - Wrpe s ®p) - [ [Wre(e s @)
e£p
We will write
(9.5) Wr (s, @F) = 1_[ Wr,(e s @),

t£p
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and werecall that thisfunction, initially defined for Re(s) sufficiently large,
has an entire analytic continuation, [16], p. 562. We will only be interested
inthose T for which Wr (e, 0, @) = 0, so that for the derivative
3 ~
(9.6) ET(Q".0,®) = Wro(g'. 0, &) - Wy (€, 0, &p) - Wr (0, @F).
We would like to prove the identity

= C - WZ(gy) W (g5) vol(K) log(p) (C1, C2)—1

3 3
= C - W (91) W (gp) vol (K) log(p) 2e,(—T)
-vol (KP) 7207 (¢f ® ¢f).
with constant C = 2r2. By (7.35) of [16], we have

3 3 3
(9.8 Wr oo (9", 0, @Z) = W (97) W (D),
while, by Corollary 7.4 above,

p+1

(9.9 W{p(e’ 0, &)p) = 7 log(p) &,(—=T).

Thus, substituting these in (9.7), we find that the desired identity is:
p+1

(9.10) T -Wr (0, ®F) = 2C - vol (Kp) - Or(¢f)

Wherego? = (pf ® gog.

An easy calculation showsthat vol (K ) = (p+ 1)/ p?, sothat it remains
to show that

(9.12) Wr (0, @) = 2C - Or(e}).

Thislast identity can be derived from the Siegel-Weil formula as follows.
Let B’ bethe definite quaternion algebra defined in Sect. 8 above and let

V'’ be the space of trace 0 elementsin B’ with quadratic form Q(x) = v(X)

given by the restriction of the reduced norm. The identification (8.5) gives

an identification

(9.12) V/(AF) = V(AD).

Let ¢ = ®,¢, € V'(A)?) be the factorizable, locally even, global

Schwartz function defined by

et (Q(X) if v = oo,
(9.13) @) = 1910 ®@p20(X) ifv=1¢#Dp,
Pp(X) ifv=np,
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for some (for the moment arbitrary) S S(V/(Qp)z). If T € Sym,(Q) with
det(T) # Oisrepresented by V', then, by (7.28) of [16], the T-th Fourier
coefficient of the thetaintegral of ¢’ is given by

Y wy(@)H¢'(h™x)dh

xeV' ()2
Q=T

1
IT(g//9 (p/) = é/
Z(AH(@\H'(&)

1

(0.14) —5 [ e ) ch
ZI(A\H'(A)

1
=5 Or(@y(g"9L) - Or(¢) - Or(ef).

Here xo € V(Q)? is an arbitrary base point, and the orbital integrals are
formed asin (8.41). We take ¢}, even so that ¢’ is locally even.

Note that the individual factors here depend on the choice of the Haar
measures, which are fixed as above. By the Siegel-Weil formula for the
coherent Eisenstein series associated to A/ (¢'),

(9.15) Er(g",0, @) =2-11(d", ¢,

i.e,

(9.16) Wr (9", 0, c1>§o) - Wrp(e, 0, @) - Wr (0, ®F)

= Or(wy(9")¢h) - Or(#}) - Or(¢f).
By (7.33)«7.35) of [16]:
(9.17) Or (wy (9")¢) = (2)* W, () Wy (05),
so that (9.16) becomes
(9.18)  Wrp(e 0, @) - Wr (0, @F) = (2m)? - Or(¢}) - Or(¢}).
We now choose ¢, so that Wr (e, 0, 7)) # 0, and we compute the ratio.

Lemma 9.2.
Or (¢})
WT’p(e, 0, q)/p)

Proof. We only sketch the argument which consists of two steps. In the
first step one proves that the ratio on the left hand side of Lemma 9.2 is
independent of T e Sym,(Q,) (withdet (T) # 0) and of ¢}, € S(V'(Qp)?).
In the second step one calculates the ratio by making a specia choice of T
and ¢,. Namely, if To = —1, and ¢ = char V'(Zp)?, then

(919) OTo (¢o) = vol (K;)) .
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With the measures as described on p. 573 of [16] the naive volume of K,
i.e., without the convergence factor A, = (1 — p1) is

P4 (p? — D(p* - p),

so that, dividing by the convergence factor the right hand side of (9.19) is
1- p

On the other hand, by Kitaoka's formula (cf. Proposition 8.3 of [16] and
noting that y(V'(Qp)) = 1)

Wi, (€, 0, ) = ap(STp) =1— p 2

In particular,
W (0, F) = (2m)% - Or(9}),

and the proof of Theorem 9.1 is complete.
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