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Introduction.

The classical Siegel-Weil formula relates a special value of a Siegel-Eisenstein series,
an analytic object, to the representation numbers of quadratic forms, essentially
diophantine quantities. Recent work has revealed that analogous relations should
exist between the special values of derivatives of such series and quantities in arith-
metical algebraic geometry, e.g., heights. One such relation involving Shimura
curves was proved by one of us in [19]. In that paper, it was established that the
nonsingular Fourier coefficients of the derivative at 0 of certain Siegel-Eisenstein
series of weight 3/2 on the metaplectic group in 4 variables2 are closely related to
the value of the height pairing of a pair of arithmetic cycles on a Shimura curve.

It is a hope, already expressed in [19], that a similar relation holds in general
between the derivative at 0 of certain incoherent Siegel-Eisenstein series on the
metaplectic group in 2n variables and the height pairing of suitable arithmetic
cycles on Shimura varieties associated to orthogonal groups of signature (n−1, 2) .
This would constitute an arithmetic analogue of the result of the first author [18]
which relates the value at 1/2 of certain coherent Siegel-Eisenstein series with the
intersection pairing on suitable classical cycles on these Shimura varieties. As a
basic first step in the incoherent case, it can be shown that (at least for non-
singular Fourier coefficients) both sides of the identity to be proved can be written
as a sum of terms enumerated by the places of Q . One can then hope to prove
identities between individual corresponding terms one place at a time.

This paper is the first of a pair in which we generalize some of the results of [19],

1NSF grant number DMS-9622987
2i.e., the metaplectic cover of the symplectic group of rank 2 over Q
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to higher dimensions in the case of finite primes of good reduction.

A first difficulty in the general program is that models over the integers of the
Shimura varieties associated to orthogonal groups are not well understood. For low
values of n there are, however, exceptional isomorphisms which relate the groups
in question to symplectic groups, and the Shimura varieties associated to them have
integral models which one can investigate. In the present paper we are concerned
with the exceptional isomorphism which relates the orthogonal group of signature
(3, 2) with the symplectic group in 4 variables. In the companion paper [21] we are
concerned with the Shimura variety associated to an orthogonal group of signature
(2, 2) which is related to certain Hilbert-Blumenthal surfaces.

Let us now be more specific about the contents of this paper. Let B be an
indefinite quaternion algebra over Q . Let C = M2(B) and put

(0.1) V = {x ∈ C; x′ = x, tr0(x) = 0} ,

where x �→ x′ = txι is the involution on C induced by the main involution on B .
Then (V, q) , with q defined by x2 = q(x) · 1 , is a quadratic space of signature
(3, 2) and the group G = GSpin(V ) of V can be identified with a twisted form of
the group of symplectic similitudes in 4 variables. Let D be the space of oriented
negative 2-planes in V (R) and let K be a compact open subgroup of G(Af ) .
Then, the Shimura variety Sh(G,D)K , whose complex points are given by

(0.2) Sh(G,D)K(C) = G(Q) \ [D × G(Af )/K],

is a (twisted) version of the Siegel 3-fold over Q . For example, the case of the split
quaternion algebra B = M2(Q) yields the usual Siegel modular variety of genus
2.
The exceptional isomorphism of G = GSpin(V ) with a form of GSp4 plays a
fundamental role throughout the paper. In particular, we use it to construct a
good integral model of Sh(G,D)K . More precisely, we fix a prime p > 2 such that
B is unramified at p and take K of the form K = Kp.Kp , where Kp ⊂ G(Ap

f )
is sufficiently small and where Kp is the natural maximal compact open subgroup
of G(Qp) . Then we use the modular interpretation of Sh(G,D)K to construct a
smooth model M over Spec Z(p) , as a parameter space of certain abelian varieties
with additional structure.

Algebraic cycles on Sh(G,D)K were defined analytically in [18] as follows. For
x ∈ V n let q(x) = 1

2

(
(xi, xj)

)
∈ Symn(Q) , be the matrix of inner products of the

compnents of x for the symmetric bilinear form ( , ) associated to q . Assume
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that d = q(x) is positive-definite (hence n ≤ 3 ), and let Dx be the subspace of
oriented negative 2-planes orthogonal to all entries of x . Let Gx be the pointwise
stabilizer of x . Then Sh(Gx,Dx) is a sub-Shimura variety of Sh(G,D) , and thus
defines a cycle of codimension n in Sh(G,D)K . These cycles are a special case
of the totally geodesic cycles in locally symmetric spaces studied in [20] and else-
where. A slight generalization of the previous construction yields a cycle Z(d, ω;K)
of Sh(G,D)K which is associated to any positive definite d ∈ Symn(Q) and any
K -invariant compact open subset ω of V (Af )n .
The next step is to give a modular definition of these cycles. First, for one of the
abelian varieties parametrized by M , we define the notion of a special endomor-
phism (Definition 2.1). The space of such endomorphisms is a finitely generated free
Z(p) -module equipped with a quadratic form q . The cycle Z(d, ω;K) ( = Z(d, ω)
if K is fixed) is then obtained by imposing an n -tuple j of special endomorphisms
such that q(j) = d , and satisfying an additional compatibility with respect to ω .
If ω satisfies an integrality condition at p , this definition can be used to extend
the cycle Z(d, ω) to a cycle Z(d, ω) for the integral model M of the Shimura va-
riety. Here, by a cycle on M , we mean a scheme which maps by a finite unramified
morphism to M . At this point we meet a very important problem: in contrast to
M , the cycles Z(d, ω) will no longer be smooth, in general. In fact, they often are
not flat over Z(p) and may even have embedded components. Our justification for
our choice of this integral extension of the classical cycles is that their definition is
very simple, has a nice inductive structure with respect to intersection, and that we
are able to prove something about them. Before stating these results, we note that,
while the arithmetic cycles Z(d, ω) can be defined for any d ∈ Symn(Q) , any n ,
they are nonempty only when d is positive semidefinite and with coefficients in
Z(p) .

We fix positive integers n1, . . . , nr with n1 + . . . + nr = 4 and, for each i ,
we choose a positive definite di ∈ Symni

(Z(p)) and a K -invariant open compact
subset ωi ∈ V (Af )ni . The resulting cycles Z(di, ωi) on M have generic fibres of
codimension ni . We form the fibre product

(0.3) Z = Z(d1, ω1) ×M . . . ×M Z(dr, ωr) .

To each point ξ of Z , we then associate its fundamental matrix Tξ ∈ Sym4(Z(p))≥0 ,
defined by Tξ = q(j) where j = (j1, . . . , jr) is the 4 -tuple of special endomor-
phisms imposed at a point of the fiber product. Note that the diagonal blocks of T

are (d1, . . . , dr) . The function ξ �→ Tξ is locally constant for the Zariski topology
on Z and induces a disjoint sum decomposition in which the summands are again
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special cycles of a definite kind,

(0.4) Z =
∐

T ∈ Sym4(Z(p))≥0

diag(T ) = (d1, . . . , dr)

Z(T, ω) .

Here ω = ω1 × . . .×ωr . The summand on the right corresponding to T is the set
of points ξ where Tξ = T . This decomposition illustrates the inductive nature of
the special cycles mentioned above.
The decomposition (0.4) bears some formal similarity to the partitioning into
isogeny classes that occurs in the approach of Langlands-Kottwitz to the calcu-
lation of the zeta function of a Shimura variety. In that approach the stable conju-
gacy class of the Frobenius endomorphism is the most basic invariant of an isogeny
class. In our context this role is played by the fundamental matrix. One of our
discoveries is that the fundamental matrix and more specifically its divisibility by p

governs the intersection behaviour of the special cycles. In any case, Z(T, ω) = ∅ if
ordpdet(T ) = 0 . Furthermore, if ξ ∈ Z(T, ω) with det(T ) �= 0 , i.e. T = Tξ is pos-
itive definite, then the point ξ lies in characteristic p and is not the specialization
of a point of Z in characteristic 0. In this case, the connected component Z(T, ω)
of Z containing ξ consists entirely of supersingular points of M . Contrary to
what one might expect, however, the condition det(Tξ) �= 0 is not sufficient to
ensure that ξ is an isolated point of intersection. One of our main results is the
characterization of when this is the case.

Theorem 0.1. Let ξ ∈ Z with det(Tξ) �= 0 . Then ξ is an isolated intersection
point if and only if Tξ represents 1 over Zp . In this case the underlying abelian
variety is isomorphic to a power of a supersingular elliptic curve.

When T = Tξ does not represent 1 over Zp (but still is positive definite), then
the connected component Z(T, ω) of Z containing ξ is a union of projective lines
and, in fact, one can enumerate these lines. It turns out that the more divisible Tξ

is by p , the more components there will be. A more thorough analysis of the set of
irreducible components can be found in [21]. We point out that this phenomenon
of excess intersection does not occur in the case of Shimura curves at a place of
good reduction [19], but it does occur at a place of bad reduction [22].
With the previous notation let us put

(0.5) < Z(d1, ω1), . . . ,Z(dr, ωr) >proper
p =

∑

ξ ∈ Z,
ξ isolated

e(ξ) ,
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where each isolated intersection point ξ appears with multiplicity e(ξ) = lgOZ,ξ ,
the length of the local ring of Z at ξ .

We next come to the relation with Eisenstein series, for which we refer the reader
to section 8 or the first part of [19] for more details. Let W be a symplectic space
over Q of dimension 8 and let

(0.6) W = W1 + . . . + Wr

be a decomposition of W into symplectic spaces Wi of dimension 2ni . Let

(0.7) i : Mp1,A × . . . × Mpr,A → MpA

be the corresponding embedding of metaplectic groups. Let Φ(s) be the stan-
dard section of the induced representation I(s, χV ) of MpA which is of the form
Φ(s) = Φ∞(s)⊗Φf (s) . Here the finite part is associated to the Schwartz function
charω ∈ S(V (Af )4) under the natural map S(V (Af )4) → If (0, χ) defined via the
Weil representation. Similarly, the component Φ∞(s) at ∞ is associated to the
Gaussian for the 5 -dimensional quadratic space V ′(R) over R of signature (5, 0)
under the map S(V ′(R)4) → I∞(0, χ) . Thus the section Φ(s) is determined by

(0.8) ω = ω1 × · · · × ωr,

and is incoherent in the sense of [19]. In particular, for h ∈ MpA(W ) , the corre-
sponding Eisenstein series E(h, s,Φ) vanishes at the center of symmetry s = 0 .
For any (h1, . . . , hr) ∈ Mp1,R × . . . × Mpr,R we put

(0.9) Fd1,... ,dr (h1, . . . , hr,Φ)proper
p =

∑

T∈Sym4(Z(p))>0

E′
T (i(h1, . . . , hr), 0,Φ)

For T in the sum, the diagonal blocks are d1, . . . , dr ; T is represented by V (Ap
f ) ,

but not by V (Qp) . Moreover, T represents 1 over Zp . On the right in (0.9), we
are summing over certain Fourier coefficients of the derivative at 0 of the Eisenstein
series for MpA . Our second main result is the following identity (Corollary 9.4).

Theorem 0.2. We have

Fd1,... ,dr (h1, . . . , hr,Φ)proper
p = c W

5/2
d1

(h1) . . . W
5/2
dr

(hr) · log p·

· vol(pr(K))· < Z(d1, ω1), . . . ,Z(dr, ωr) >proper
p ,(0.10)

where c = 1
2vol(SO(V ′(R))) .

Unexplained notation may be found in the body of the text. The identity is proved
by unravelling both sides of (0.10), where, for the right side, we use the decom-
position (0.4) and Theorem 0.1. The identity then reduces to the statement that,



6

for T ∈ Sym4(Z(p))>0 such that T is not represented by V (Qp) and where T

represents 1 over Zp , we have

(0.11)
[
(log p)−1 ·

W ′
T,p(e, 0,Φp)

WT,p(e, 0,Φ′
p)

] [
vol(K)−1 · IT,f (ϕ(p)

f )
]

=< Z(T, ω) >proper
p

Here, in the first factor on the left, there appears a quotient of the derivative at 0
of a certain Whittaker function for the quadratic space V (Qp) by the value at 0
of a Whittaker function for a twist V ′(Qp) , and, in the second factor, a Fourier
coefficient of a theta integral. In fact, the second factor can also be identified with
an orbital integral. It turns out that the first factor equals the multiplicity e(ξ)
of any point ξ ∈ Z(T, ω) (which is constant), while the second factor is equal to
the number of points in Z(T, ω) . For the multiplicity e(ξ) , the calculation can be
reduced to a problem on one-dimensional formal groups of height 2 which has been
solved by Gross and Keating [7]. For the calculation of the Whittaker functions we
use the results of Kitaoka [14] on local representation densities. It should be pointed
out that we are using here the length of the local ring OZ,ξ as the multiplicity of
a point ξ , whereas the sophisticated definition would also involve Tor-terms. It is
a fundamental question whether these correction terms vanish. This question we
have to leave open.
In summary, we may say that Theorem 0.2 is proved by explicitly computing both
sides of (0.10) and comparing them. It would of course be highly desirable to find
a more direct connection between the analytic side and the algebro-geometric side
of this identity.

We now give an overview of the structure of this paper. In section 1, we introduce
the Shimura variety and formulate the moduli problem solved by M . Our special
cycles are introduced in section 2. We define the fundamental matrix in section 3
and isolate there the part of Z lying purely in characteristic p . It is clear from
the above description that to proceed further we need a thorough understanding of
the supersingular locus of M×Spec Z(p) Spec Fp . This is essentially due to Moret-
Bailly [23] and Oort [24]. In section 4, we give a presentation of their results in
terms of Dieudonné theory, better suited for our needs. A similar presentation
was independently given by Kaiser [11] for a different purpose. The heart of the
paper is section 5. In it we determine the space of special endomorphisms of certain
Dieudonné modules and deduce the characterization of isolated intersection points
(Theorems 5.11, 5.12 and 5.14). Here again the exceptional isomorphism plays
a vital role. In section 6, we explain the reduction of the calculation of e(ξ) to
the result of Gross and Keating, and, in section 7, we explain how to count the
number of isolated points. Section 8 is a review of the Fourier coefficients of Siegel
Eisenstein Series. In section 9, we bring everything together and prove the identity
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(0.10) above. In section 10, we review some results of Kitaoka and show how
they can be used to prove the formulas on Whittaker functions needed in section
9. Finally there is an appendix containing some facts on Clifford algebras in our
special situation.
In conclusion we wish to thank A. Genestier for very useful discussions on our
special cycles which helped us to correct some misconceptions we had about them.
We also thank Th. Zink and Ch. Kaiser for helpful remarks, and the referee for his
comments. We thank the NSF and the DFG for their support. S. K. would like to
express his appreciation for the hospitality of the Univ. Wuppertal and the Univ. of
Cologne during January 1995 and May and June of 1997 respectively. Finally, M. R.
is very grateful to the Math Department of the University of Maryland for inviting
him and making his stay in Washington a memorable pleasure.

§1. The Shimura variety.

In this section, we review the construction of the Siegel 3-folds associated to
indefinite quaternion algebras over Q , and the corresponding moduli problem.
The use of the Clifford algebra is modeled on [28]. We refer to the appendix for
some facts on those Clifford algebras that will be relevant for our purposes.

Let B be an indefinite quaternion algebra over Q , let C = M2(B) , with
involution x′ = txι , and let

(1.1) V = { x ∈ C ; x′ = x and tr(x) = 0 }.

We define a quadratic form q on V by setting x2 = q(x) ·12 ∈ M2(B) , cf. Appen-
dix, A.3. Since B is indefinite, the signature of (V, q) is (3, 2) , cf. Appendix, A.6,
and the Witt index of V over Q is 2 if B = M2(Q) and 1 if B is a division
algebra, cf. Appendix, A.3. Let C(V ) be the Clifford algebra of the quadratic
space (V, q) . Since, for x ∈ V ⊂ C , x2 = q(x) , there is a natural algebra homo-
morphism C(V ) −→ C extending the inclusion of V into C . The restriction of
this map to the even Clifford algebra C+(V ) induces an isomorphism

(1.2) C+(V ) 
 C.

Let

(1.3) G = GSpin(V ) = {g ∈ C×; gg′ = ν(g) },

cf. Appendix, A.3, so that G is a twisted form over Q of GSp4 , cf. Appendix,
A.2. The group G acts on V ⊂ C by conjugation and this action yields an exact
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sequence

(1.4) 1 −→ Z −→ G −→ SO(V ) −→ 1,

where Z is the center of G .

Let D be the space of oriented negative 2 -planes in V (R) . This space has
two connected components and the group G(R) acts transitively on it, via its
action on V (R) . For an oriented 2 -plane z ∈ D , let z1 , z2 ∈ z be a properly
oriented basis such that the restriction of the quadratic form q from V (R) to z

has matrix −12 for the basis z1 , z2 . Let jz = z1z2 ∈ C(R) . Viewing jz as the
image of the element z1z2 ∈ C(V (R)) , the Clifford algebra of V (R) , and recalling
the commutative diagram of section A.3 of the Appendix, we see that j′z = −jz

and that j2
z = −z2

1z2
2 = −1 . Hence, jzj

′
z = 1 and so, jz ∈ G(R) . There is an

isomorphism of algebras over R ,

(1.5) C
∼−→ C+(z) i �→ z1z2,

where C+(z) is the even Clifford algebra of the real 2 -plane z . The composition
of this map with the map

(1.6) C+(z) ⊂ C+(V (R)) ∼−→ C(R) = M2(B(R))

induces a morphism, defined over R , hz : S −→ G , where S = RC/RGm , as usual.
Note that hz(i) = jz . The space D can thus be viewed as the space of conjugacy
classes of such maps under the action of the group G(R) . The data (G,D) or
(G, hz) defines a Shimura variety Sh(G,D) , [2], [3], whose canonical model is
defined over Q . Note that D is isomorphic to two copies of the Siegel space of
genus 2 , and, if B = M2(Q) , Sh(G,D) is just the Siegel modular variety of genus
2 .

Since G satisfies the Hasse principle, the Shimura variety represents a certain
moduli problem over (Sch/Q) , [17]. To define this we must introduce more nota-
tion.

Fix a maximal order OB in B such that Oι
B = OB , and let OC = M2(OB) .

Let D(B) be the product of the primes p at which Bp is division, and, as in
[1], choose τ ∈ B× such that τ ι = −τ , τ2 = −D(B) , and τOBτ−1 = OB . By
section A.5 of the Appendix, the map x �→ x∗ = τxιτ−1 is a positive involution of
B preserving OB . Also, for

(1.7) α =
(

τ
τ

)
∈ M2(B),
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α′ = −α and x∗ = αx′α−1 = α−1x′α is a positive involution of C , preserving
OC .

Let U = OC , viewed as a module for OC under both left and right multiplica-
tion. Define an alternating form:

(1.8) < , > : U × U −→ Z

by

(1.9) < x, y > = tr(y′α−1x).

Then

(1.10) < cx, y > = tr(y′α−1cx) = tr(y′α−1cαα−1x) = < x, c∗y >,

and

(1.11) < xc, y > = tr(y′α−1xc) = tr(cy′α−1x) = < x, yc′ > .

Thus, if g ∈ G ,

(1.12) < xg, yg >= ν(g) < x, y >,

and, in particular, for z ∈ D ,

(1.13) < xjz, yjz > = < x, y > .

We fix a compact open subgroup K ⊂ G(Af ) . The functor MK associates to
S ∈ (Sch/Q) the set of quadruples, (A, ι, λ, η̄) , up to isomorphism, where

(i) A is an abelian scheme over S , up to isogeny,
(ii) ι : C −→ End0(A) is a homomorphism such that

det(ι(c); Lie(A)) = No(c)2,

where No(c) is the reduced norm on C .
(iii) λ is a Q -class of polarizations on A which induce the involution ∗ on C :

λ ◦ ι̂(c) ◦ λ−1 = ι(c∗).

(iv) η̄ is a K -class of isomorphisms

η : V̂ (A) ∼−→ U ⊗ Af

which are C -linear (for the left module structure on U ) and respect the
symplectic forms on both sides up to a constant in A×

f . Here

V̂ (A) =
∏

�

T�(A) ⊗ Q.
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For the precise meaning of the datum (iv) we refer to [17], p. 390. In particular,
if S = Spec k is the spectrum of a field, the K -class η is supposed to be stable
under the action of the Galois group Gal(k/k) where k is the algebraic closure
used to form the Tate module of A .

Note that the abelian scheme A will have relative dimension 8 over S .

Proposition 1.1. For K neat this moduli problem is representable by a smooth
quasi-projective scheme MK over Q and

MK(C) 
 Sh(G,D)(C).

Proof. For the representability, see [17]. We prove the last assertion in detail, since
the conventions involved will be used later.

For τ ∈ B× , as above, let

(1.14) τ0 = D(B)−
1
2 τ ∈ B×(R),

so that τ2
0 = −1 . Choose β ∈ B× such that

(1.15) βτ = −τβ, and βι = −β.

Since B is indefinite, β2 > 0, and we can set

(1.16) β0 = (β2)−
1
2 β ∈ B×(R),

so that β2
0 = 1 . The vectors

(1.17)
(

β0

−β0

)
, and

(
τ0β0

−τ0β0

)
∈ V (R)

form a standard basis of an oriented negative 2 -plane z0 ∈ D , and

(1.18) jz0 =
(

β0

−β0

) (
τ0β0

−τ0β0

)
=

(
τ0

τ0

)
= D(B)−

1
2 α =: α0.

Lemma 1.2. For any z ∈ D ,

< xjz, y > = < yjz, x >,

and, for x ∈ U(R) , x �= 0 ,
< xjz, x > > 0,
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if z lies in the same connected component of D as z0 , and

< xjz, x > < 0,

if z and z0 lie in opposite components.

Proof. For the first assertion:

(1.19) < xjz, y > = − < x, yjz > = < yjz, x > .

For the second, write z = gz0 for g ∈ G(R) , so that

(1.20) jz = gjz0g
−1 = gα0g

−1.

Then, we have

< xjz, x > = < xgα0g
−1, x >

= ν(g)−1 < xgα0, xg >

= ν(g)−1tr((xg)′α−1xgα0)(1.21)

= ν(g)−1D(B)−
1
2 tr(α(xg)′α−1(xg))

= ν(g)−1D(B)−
1
2 tr((xg)∗(xg)).

Since x �→ x∗ is a positive involution, this gives the claim. �

Let D+ be the connected component of D containing z0 and D− the con-
nected component of D not containing z0 . Then, for any z ∈ D± , we obtain a
(principally) polarized abelian variety over C ,

(1.22) Az = (U(R), jz, U(Z),± < , >)

with dimAz = 8 and with an action, given by left multiplication,

(1.23) ι : OC ↪→ End(Az).

Note that ι satisfies condition (iii) for the polarization of Az induced by < , > ,
thanks to relation (1.10) above. Furthermore

(1.24) V̂ (Az) = U(Ẑ) ⊗ Q = U(Af ).

If

(1.25) γ ∈ Γ = { g ∈ G(Q)+;U(Z)g = U(Z) },
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then right multiplication by γ−1 induces an isomorphism

(1.26) Az
∼−→ Aγz.

Thus Γ\D+ parametrizes such principally polarized abelian varieties, up to iso-
morphism.

More generally, to (z, g) ∈ D × G(Af ) , we associate the collection (A, ι, λ, η̄)
defined by:

• (A, ι) = (Az, ι) , where Az is taken up to isogeny.
• λ is the Q -class of polarizations determined by < , > .
• η̄ is the K -class containing the isomorphism:

V̂ (Az) = U(Af )
r(g)
∼−→ U(Af ).

Note that, if γ ∈ G(Q) and k ∈ K , then (γz, γgk) defines a collection isomorphic
to that defined by (z, g) , via the element of Hom0(Az, Aγz) given on U(R) by
right multiplication by γ−1 . The map

(1.27) G(Q)(z, g)K �→ (A, ι, λ, η̄)/ ∼

yields the isomorphism

(1.28) G(Q)\D × G(Af )/K
∼−→ MK(C). �

We now turn to the construction of a p -integral model. Fix a prime p such
that p � D(B) , so that C ⊗ Qp 
 M4(Qp) . Let OC be the maximal order chosen
above, and note that the maximal order OC ⊗ Zp in C ⊗ Qp is the stabilizer of
the lattice UZp = U ⊗Zp in U ⊗Qp under both right and left multiplication. The
choice of τ made before (1.7) ensures that < , > defines a perfect pairing

(1.29) < , >: UZp × UZp −→ Zp.

Let Kp be the stabilizer of UZp in G(Qp) , acting on UQp via right multiplication.
Let Kp ⊂ G(Ap

f ) be compact open, and take K = Kp · Kp .

We now want to formulate a moduli problem over (Sch/Z(p)) which extends
the previous one. The functor MKp associates to S ∈ (Sch/Z(p)) the set of
isomorphism classes of quadruples (A, ι, λ, η̄p) where

(i) A is an abelian scheme over S , up to prime to p isogeny
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(ii) ι : OC⊗Z(p) −→ End(A)⊗Z(p) is a homomorphism such that, for c ∈ OC ,

det(ι(c); Lie(A)) = No(c)2,

where No is the reduced norm on C .
(iii) λ is a Z×

(p)-class of isomorphisms A −→ Â such that nλ , for a suitable
natural number n , is induced by an ample line bundle on A .

(iv) η̄p is a Kp-class of OC -linear isomorphisms (in the sense of Kottwitz)

ηp : V̂ p(A) ∼−→ U ⊗ A
p
f ,

which respects the symplectic form on both sides up to a constant in (Ap
f )× .

Here
V̂ p(A) =

∏

� �=p

T�(A) ⊗ Q.

In the determinant condition above, the equality is meant as an identity of
polynomial functions. In the case at hand, it simply says dimA = 8 .

Proposition 1.3. For Kp neat the above moduli problem is representable by a
smooth quasiprojective scheme MKp over Spec Z(p) . Its generic fibre can be
canonically identified with MK ,

MKp ×Spec Z(p) Spec Q = MK .

Let us briefly explain the last identification on geometric points. Let S be
the spectrum of an algebraically closed field of characteristic 0 . Let us consider
(A, ι, λ, η̄p) ∈ MKp(S) . Then the p -adic Tate module Tp(A) is equipped with
a perfect symplectic form, unique up to scaling by Z×

p and hence there is an
OC ⊗ Zp-linear isomorphism

ηp : Tp(A) ∼−→ UZp
,

which respects the symplectic forms up to Z×
p . The set of such ηp ’s form a single

orbit for Kp , which acts via right multiplication in UZp . Hence, from (A, ι, λ, η̄p) ,
we obtain an object (A⊗Q, ι⊗Q, λ⊗Q, η̄p · η̄p) of MK(S) . Passage in the other
direction is similar. For example, in the isogeny class A and for η ∈ η̄ , there is an
abelian variety B , unique up to prime to p isogeny, such that ηp(Tp(B)) = UZp .

The above proposition tells us that, when K = Kp · Kp , as above, then MKp

provides us with a smooth model of Sh(G, D)K over Z(p) . From now on, we will
use the same notation for both moduli problems, if this does not cause confusion.
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§2. Special cycles.

In this section we give a modular definition of the special cycles in Sh(G,D) ,
which were defined analytically in [18]. We then explain the relation between the
two definitions.

Recall that the quadratic form on the space V ⊂ C = M2(B) was defined by
x2 = q(x) · 12 . Let

(2.1) (x, y) = q(x + y) − q(x) − q(y)

be the corresponding bilinear form, so that q(x) = 1
2 (x, x) . If x = (x1, x2, . . . , xn) ∈

V n(Q) , we let

(2.2) q(x) =
1
2
((xi, xj))i,j ∈ Symn(Q).

This defines a quadratic map q : V n −→ Symn .

Fix a positive integer n . For d ∈ Symn(Q) a symmetric rational matrix, let

(2.3) Ωd = { x ∈ V n ; q(x) = d }

be the corresponding hyperboloid. The group G acts diagonally on V n and pre-
serves Ωd .

Cycles in Sh(G,D) were defined analytically in [18] as follows. For x ∈ Ωd(Q) ,
let < x > ⊂ V be the Q -subspace spanned by the components of x , and let
Vx = < x >⊥ be its orthogonal complement. Let Dx denote the space of oriented
negative 2 -planes in Vx(R) , and let Gx be the pointwise stabilizer of < x > in
G . Note that Gx 
 GSpin(Vx) , and that Dx ⊂ D . Moreover, for z ∈ Dx , the
homomorphism hz factors through Gx(R) . Thus there is a natural morphism of
Shimura varieties, rational over Q ,

(2.4) Sh(Gx,Dx) −→ Sh(G,D).

If the space < x > is not positive-definite, then Dx = ∅ . If < x > is positive-
definite of dimension r then d is positive semi-definite of rank r , sig(Vx) =
(3 − r, 2) and Dx has codimension r in D . Hence the previous construction is
only interesting when d is positive semi-definite and even only when d is positive
definite with n ≤ 3 .

For a fixed compact open subgroup K ⊂ G(Af ) and for h ∈ G(Af ) , there is a
cycle, namely the image of the map
(2.5)

Z(x, h;K) : Gx(Q)\Dx × Gx(Af )/(Gx(Af ) ∩ hKh−1) −→ G(Q)\D × G(Af )/K
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given by (z, g) �→ (z, gh) . This map is finite and generically injective, hence the
cycle image is taken with multiplicity 1. This cycle of codimension r = rk(d) on
Sh(G,D)K is rational over Q .

Assume that Ωd(Q) �= φ and fix x0 ∈ Ωd(Q) . Let ϕ ∈ S(V (Af )n)K be a
Schwartz function which is K -invariant, and write

(2.6) supp(ϕ) ∩ Ωd(Af ) =
∐

r

Kh−1
r x0

for elements hr ∈ G(Af ) . Then define the weighted cycle:

(2.7) Z(d, ϕ;K) =
∑

r

ϕ(h−1
r x0) · Z(x0, hr;K).

This cycle is independent of the choice of x0 and of the orbit representatives hr .
It is a (weighted linear combination of) cycle(s) of codimension r = rk(d) on
Sh(G,D)K and is rational over Q .

If ϕ is the characteristic function of a K -invariant compact open subset ω of
V (Af )n , then Z(d, ω;K) = Z(d, ϕ;K) can be considered as a disjoint union of
maps (2.5), or as the union of the images of these maps.

We introduce the following definition, which will play a key role throughout the
paper.

Definition 2.1. Let (A, ι, λ, η) ∈ MK(S) . A special endomorphism of (A, ι, λ, η)
is an element j ∈ End0

S(A, ι) which satisfies

(2.8) j∗ = j and tr0(j) = 0 .

Here ∗ denotes the Rosati involution of λ . Also note that End0(A, ι) is a
finite-dimensional semisimple Q -algebra, so that the reduced trace appearing here
makes sense. Indeed, this is well-known when S is the spectrum of a field. The
case when S is irreducible follows by reduction to its generic point, and the general
case follows by considering the irreducible components of S .

Lemma 2.2. Let j be a special endomorphism of (A, ι, λ, η) ∈ MK(S) , where S

is connected. Then

(2.9) j2 = q(j) · id ,
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with q(j) ∈ Q .

Proof. Again we may reduce first to the case where S is irreducible and then to
the case when S is the spectrum of a field. However for η ∈ η let x = η∗(j) ∈
EndC(U(Af )) = C(Af ) . Under the last identification the adjoint involution ∗
w.r.t. < , > corresponds to the involution ′ on C(A) , cf. (1.11). Hence x lies in
V (Af ) and the assertion follows, cf. appendix A.3. �

The previous Lemma justifies the following definitions. Let S be a connected
scheme and ξ = (A, ι, λ, η) ∈ MK(S) be an S -valued point of MK . Let

(2.10) C0
ξ = End0

S(A, ι)op

and

(2.11) V 0
ξ = {x ∈ C0

ξ ;x∗ = x and tr0(x) = 0} .

Then V 0
ξ is the finite-dimensional Q -vector space of special endomorphisms with

quadratic form

(2.12) qξ : V 0
ξ −→ Q

given by x2 = qξ(x) · idA . By the universal property of the Clifford algebra of
(V 0

ξ , qξ) there is a natural homomorphism

(2.13) C(V 0
ξ , qξ) −→ C0

ξ .

This structure is compatible with specialization. If S′ ⊂ S is a connected closed
subscheme, let ξ′ ∈ MK(S′) be the restriction of ξ . Then we have a homomor-
phism of Q -algebras

(2.14) C0
ξ = End0

S(A, ι)op ↪→ EndS′(A, ι)op = C0
ξ′

inducing a map

V 0
ξ ↪→ V 0

ξ′

of quadratic spaces.

Let us spell out these concepts in the classical case.
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Lemma 2.3. Let ξ ∈ MK(C) with parameter (z, g) in Sh(G,D)K . Let Atop
z =

U(R)/U(Z) be the real torus underlying Az .

(i)
C(Q) ∼−→ End0(Atop

z , ι)op, y �→ r(y),

where r(y) denotes the action of y ∈ C(Q) on U(R) ⊃ U(Q) by right multiplica-
tion. Moreover, r(y)∗ = r(y′) .
(ii)

C0
ξ 
 CentC(Q)(jz), and V 0

ξ 
 { x ∈ V (Q);xjz = jzx }.

(iii)
CentC(R)(jz) ∩ V (R) = z⊥.

In particular,
V 0

ξ = V (Q) ∩ z⊥,

and so 0 ≤ dimQ V 0
ξ ≤ 3 .

Proof. The first two assertions are obvious by (1.11). To prove the last assertion let
z1, z2 ∈ z be a properly oriented basis such that the restriction of the quadratic form
q to z has matrix −12 in terms of this basis. Let v ∈ V (R) with (v, zi) = ai ,
i = 1, 2 . Then

v · jz = v · (z1 · z2) = z1z2v − a2z1 + a1z2 = jzv − a2z1 + a1z2.

Hence v ∈ CentC(R)(jz) iff a1 = a2 = 0 , i.e. iff v ∈ z⊥ . �

Let us return to the abstract situation.

Lemma 2.4. Let ξ = (A, ι, λ, η) ∈ MK(S) be a point with values in a connected
scheme S . The quadratic space V 0

ξ is positive-definite.

Proof. We may assume that S is the spectrum of a field. The assertion follows
from the positivity of the Rosati involution, since

q(x) · idA = x2 = x · x∗ , x ∈ V 0
ξ . �

We next give a modular definition of the cycles introduced above. We take
here the point of view that a cycle is given by a finite unramified morphism into
the ambient scheme. Let K ⊂ G(Af ) be a compact open subgroup, and let
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ω ⊂ V (Af )n be a K -invariant compact open subset. Consider the functor on
(Sch/Q) which associates to a scheme S the set of isomorphism classes of 5-
tuples (A, ι, λ, η̄; j) where (A, ι, λ, η̄) ∈ MK(S) . Here the additional element j =
(j1, . . . , jn) ∈ End0(A, ι)n is an n-tuple of special endomorphisms of A , satisfying
the following conditions.

(2.15) For some (and hence for all) η ∈ η̄ , the element η∗(j) ∈ EndC(U(Af ))n

lies in ω .
(2.16) q(j) = d .

Let us explain the condition (2.15). As in the proof of Lemma 2.2 above, for any
η ∈ η

x = η∗(j) ∈ V (Af )n ⊂ C(Af )n = EndC(U(Af ))n .

The condition imposes that x ∈ ω . If η is changed to r(k) ◦ η , with k ∈ K and
r(k) ∈ EndC(U(Af )) the endomorphism defined by right multiplication by k , then

(2.17) (r(k) ◦ η)∗(j) = r(k) ◦ η∗(j) ◦ r(k)−1.

The condition (2.15) asserts that η∗(j) = r(x) for some x ∈ ω . If this is the case,
then

(2.18) (r(k) ◦ η)∗(j) = r(k) ◦ η∗(j) ◦ r(k)−1 = r(k−1xk),

and k−1xk ∈ ω . Thus the condition (2.15) depends only on η̄ .
To interpret condition (2.16) we may assume S to be connected. Let ( , ) be
the bilinear form on the space of special endomorphisms of (A, ι, λ, η) associated
to the quadratic form q of lemma 2.2. Then q(j) = 1

2 ((ji, jj))i,j ∈ Symn(Q) is
defined as in (2.2). The condition (2.16) requires that q(j) = d .

Proposition 2.5. The above functor has a coarse moduli scheme Z(d, ω) . If K

is neat, then Z(d, ω) is a fine moduli scheme and the forgetful morphism

(2.19) Z(d, ω) −→ MK

is finite and unramified. Furthermore Z(d, ω)(C) = Z(d, ω, K) .

Proof. The first statement follows easily from the second. Let us assume that K

is neat. The relative representability of the forgetful morphism by a morphism
of finite type follows in a standard way from Grothendieck’s theory of Hilbert
schemes since MK may be considered as a moduli scheme of polarized abelian
varieties with additional structure. To verify the valuative criterion of properness
for the morphism (2.19), we have to check that an endomorphism between the
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generic fibers of abelian schemes over the spectrum of a discrete valuation ring
extends uniquely. This follows from the Néron property of abelian schemes. Since
the matrix d gives the squares j2

i of the special endomorphisms, the morphism is
quasi-finite and hence finite. The unramifiedness follows from the rigidity theorem
for abelian varieties.
The last statement is to be interpreted as an equality between the image of (2.5)
and Z(d, ω)(C) , and follows easily from Lemma 2.3 above. �

We now assume that p � 2D(B) and that K = Kp · Kp with Kp neat, as
in Proposition 1.3, and we formulate a p -integral version of the previous moduli
problem.

Before doing this let us point out that for a point ξ = (A, ι, λ, ηp) ∈ MKp(S)
of the p -integral version of our moduli problem with values in a connected scheme
S we may transpose the concepts above. Hence we introduce the Z(p) -algebra

(2.20) Cξ = EndS(A, ι)op ⊗ Z(p)

and

(2.21) Vξ = {x ∈ Cξ; x∗ = x and tr0(x) = 0} .

The latter is a Z(p) -module with a Z(p) -valued positive definite quadratic form.
The elements of Vξ will again be called the special endomorphisms of (A, ι, λ, ηp) .

Let now again d ∈ Symn(Q) . Let ωp ⊂ V (Ap
f )n be a Kp -invariant open

compact subset. Then a point of the corresponding moduli problem Z(d, ωp) on a
Z(p) -scheme S is an isomorphism class of 5-tuples (A, ι, λ, η̄p; j) where (A, ι, λ, η̄p)
is an object of MKp(S) and where j ∈

(
End(A, ι)⊗Z(p)

)n is an n -tuple of special
endomorphisms which satisfies (2.16) above and, in addition,

(2.22) (ηp)∗(j) ∈ ωp.

These conditions are to be interpreted in the same way as (2.15)-(2.16) above.

To clarify the relation between the p -integral version Z(d, ωp) and the previous
Z(d, ω) , let

(2.23) ωp = V (Zp)n

where V (Zp) = V (Qp)∩(OC ⊗Zp) , the intersection taking place inside of C⊗Qp .
Let

(2.24) ω = ωp × ωp ,

a K -invariant open compact subset of V (Af )n .
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Proposition 2.6. If Kp is neat, the functor Z(d, ωp) is representable by a scheme
which maps by a finite unramified morphism to MKp . Furthermore, there is an
identification

Z(d, ωp) ×Spec Z(p) Spec Q = Z(d, ω) .

Remark 2.7: By Lemma 2.4 the scheme Z(d, ωp) is empty unless d is positive
semi-definite. Similarly Z(d, ωp) = ∅ , unless d ∈ Symn(Z(p)) . Note that it
may well happen that Z(d, ωp) is non-empty but where both sides of the equality
in Proposition 2.6 are empty. In fact we will later consider cases in which d ∈
Sym4(Z(p)) is positive definite so that Z(d, ω) = ∅ and when Z(d, ωp) �= ∅ .

¿From now on, since we will be interested in the arithmetic situation, we will
simplify our notation by denoting ω what is denoted by ωp above, i.e.,

(2.25) ω ⊂ V (Ap
f )n

is a Kp -invariant open compact subset.

§3. The intersection problem.

We continue to fix p � 2D(B) and a neat open compact subgroup Kp ⊂ G(Ap
f )

as at the end of section 2. Then M = MKp is a regular noetherian scheme of
dimension 4. We wish to consider the intersection of the cycles introduced in a
modular way in the previous section. Let us set up our problem in a more precise
way.

We fix integers n1, . . . , nr with 1 ≤ ni ≤ 4 and with n1+· · ·+nr = 4 . For each
i , we choose di ∈ Symni

(Q) positive definite, and a Kp -invariant open compact
subset ωi ⊂ V (Ap

f )ni . Let

(3.1) Z = Z(d1, ω1) ×M · · · ×M Z(dr, ωr)

be the fiber product of the corresponding special cycles.

By what has been said in section 2, since the codimensions of the generic fibres
of our special cycles add up to the arithmetic dimension of MKp , one might expect
that Z consists of finitely many points of characteristic p . We will see that this
is in fact quite false, but we will be able to determine that part of Z which lies
purely in characteristic p and also determine the isolated points of Z .

Let ξ be a point of Z , with corresponding point (Aξ, ι, λ, ηp) ∈ M . We denote
by Cξ and (Vξ, qξ) the Z(p) -algebra and the quadratic Z(p) -module associated to
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(Aξ, ι, λ, ηp) , cf. (2.20). The projections Z → Z(di, ωi) define ni -tuples of special
endomorphisms

(3.2) ji ∈ V ni

ξ , i = 1, . . . , r .

Let

(3.3) Tξ =
1
2






(j1, j1)ξ . . . (j1, jr)ξ

...
...

(jr, j1)ξ . . . (jr, jr)ξ




 ∈ Sym4(Z(p)),

where ( , )ξ is the bilinear form associated to qξ . Here, as always, p �= 2 . The
matrix Tξ is called the fundamental matrix associated to the intersection
point ξ of the special cycles Z(d1, ω1), . . . ,Z(dr, ωr) . We note that the blocks on
the diagonal of Tξ are d1, . . . , dr . By the results of section 2, the function ξ �→ Tξ

is constant on each connected component of Z . Therefore, for T ∈ Sym4(Z(p))
we may introduce

ZT = (Z(d1, ω1) ∩ · · · ∩ Z(dr, ωr))T =

union of the connected components of Z(3.4)

consisting of the points ξ with Tξ = T

We note here the hereditary nature of our construction, given by

(3.5) Z(T, ω1 × · · · × ωr) = (Z(d1, ω1) ×M · · · ×M Z(dr, ωr))T ,

valid provided that the blocks on the diagonal of T are d1, . . . , dr . We may
therefore write

Z = Z(d1, ω1) ×M . . . ×M Z(dr, ωr)

=
∐

T

ZT

=
∐

T ∈ Sym4(Z(p))≥0

diag(T ) = (d1, . . . , dr)

Z(T, ω) .(3.6)

Here ω = ω1 × . . . × ωr .

We shall see that the fundamental matrix governs the intersection behaviour of
our special cycles. We first note the following result.
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Proposition 3.1. Let ξ ∈ Z = Z(d1, ω1) ×M . . . ×M Z(dr, ωr) where ωi ⊂
V (Ap

f )ni and di ∈ Symni
(Q) positive-definite with n1 + . . . + nr = 4 . Suppose

that det(Tξ) �= 0 . Then ξ lies in the special fiber of Z , and ξ does not lie in the
closure of any point of Z in the generic fiber.

Proof. By Lemma 2.4 the assumption on Tξ means that Tξ ∈ Sym4(Z(p)) is
positive definite. However, for a point of M in characteristic zero, the space of
special endomorphisms is contained in a 3-dimensional positive definite quadratic
space. �

Next suppose that ξ ∈ M(F̄p) . In this case, the standard Honda-Tate results
yield information about the possibilities for C0

ξ . We have ι : M2(B) = C ↪→
End0(Aξ) , so that, up to isogeny Aξ 
 A × A where dim A = 4 and there is an
embedding B ↪→ End0(A) .

Lemma 3.2. Suppose that p � D(B) . Then there are no simple abelian varieties
A0 over F̄p with dimA0 = 2 or 4 and with B ↪→ End0(A0) .

Proof. If A0 is simple over Fq , then E = End0(A0) is a central simple algebra
over F = Q(πA0) , and

(3.7) 2 dimA0 = [E : F ]
1
2 · [F : Q].

Here πA0 denotes as usual the Frobenius endomorphism. If dimA0 ≥ 2 and A0

remains simple over F̄p , then F is a CM field. Suppose that dimA0 = 2 , so that
[F : Q] = 2 or 4 . The second case is excluded, since then E = F is commutative.
In the first case, E is a division quaternion algebra over F ramified only at places
over p . Thus p splits in F and invv(E) = invv̄(E) = 1

2 for v | p . But the
embedding B ↪→ E yields an isomorphism B ⊗Q F 
 E . This is possible only if
p | D(B) and F splits B at all other primes.

If dimA = 4 , then [F : Q] = 2 , 4 or 8 , and the last case is again excluded
since E = F . In the case [F : Q] = 4 , E is a quaternion algebra over F , ramified
only at primes lying over p , and B ⊗Q F 
 E . This cannot occur if p � D(B) .
Finally, if [F : Q] = 2 , then p splits in F and E is a division algebra over F

of dimension 16 with invariants 1
4 and 3

4 at the primes over p . There is no
homomorphism from a quaternion algebra B ⊗Q F into such an algebra. �

Returning to A , and assuming that p � D(B) , we see that A cannot be simple
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and that any simple factor of A of dimension 1 or 2 must occur with multiplicity
at least 2 . Thus we have various possibilities for A , up to isogeny:

(3.8.i) A 
 A2 ×A2 , with dimA2 = 2 simple and End0(A2) 
 F for a CM field
F with [F : Q] = 4 which splits B , i.e., such that B ⊗Q F 
 M2(F ) .
Then, End0(A) 
 M2(F ) , C0

ξ = End0(A, ι) 
 F , and V 0
ξ = Q .

(3.8.ii) A 
 A2 ×A2 , with dimA2 = 2 simple and End0(A2) 
 E , where E is a
quaternion algebra over a CM field F with [F : Q] = 2 . More precisely, p

splits in F and E 
 Hp ⊗Q F , where Hp is the quaternion algebra over
Q ramified at ∞ and p . Let B′ be the quaternion algebra over Q whose
invariants agree with those of B except at ∞ and p . Then End0(A) 

M2(E) , End0(A, ι) 
 B′ ⊗Q F , and V 0

ξ = {x ∈ B′; tr(x) = 0} . Here note
that B⊗Q B′ 
 M2(Hp) and hence that (B⊗Q F )⊗F (B′⊗Q F ) 
 M2(E) .

(3.8.iii) A 
 A2
0×A2

1 where A0 and A1 are non-isogenous ordinary elliptic curves.
Then End0(A) 
 M2(F0)×M2(F1) for imaginary quadratic fields F0 and
F1 , which split B . Then, End0(A, ι) 
 F0 × F1 , and V 0

ξ = Q .
(3.8.iv) A 
 A4

0 , for an ordinary elliptic curve A0 . Then End0(A) 
 M4(F0)
where the imaginary quadratic field F0 splits B , End0(A, ι) 
 M2(F0)
and V 0

ξ 
 {x ∈ M2(F0); tx̄ = x, tr(x) = 0} .
(3.8.v) A 
 A2

0 × A2
1 , where A0 is a supersingular elliptic curve and A1 is an

ordinary elliptic curve. Then End0(A) 
 M2(Hp)×M2(F1) , End0(A, ι) 

B′×F1 . Since the Rosati involution acts on End0(A, ι) by (b, a) �→ (bι, ā) ,
the conditions x∗ = x and tr(x) = 0 force V 0

ξ 
 Q .
(3.8.vi) A 
 A4

0 , for a supersingular elliptic curve A0 . Then End0(A) 
 M4(Hp) ,
End0(A, ι) 
 M2(B′) , and

V 0
ξ = {x ∈ M2(B′);x′ = txι = x, tr(x) = 0} = V ′.

For the last identification we are using the proposition in section A.4 of the Ap-
pendix. Indeed, by A.5 the Rosati involution on End0(Aξ) 
 M8(Hp) is of main
type. Since the Rosati involution induces via restriction to M2(B) the given invo-
lution of neben type, its restriction to M2(B′) is of main type by the proposition
of A.4.

Note that dimV 0
ξ ≤ 3 , with the exception of the supersingular case (3.8.vi). As

a consequence, we have the following:

Proposition 3.3. Let T ∈ Sym4(Z(p)) and ω ⊂ V (Ap
f )4 with corresponding

special cycle Z(T, ω) . If det(T ) �= 0 , then the point set underlying Z(T, ω) maps
to the supersingular locus of M×Spec Z(p) Spec Fp . In particular, Z(T, ω) is proper
over Spec Z(p) with support in the special fibre.
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Proof. Indeed the previous results imply that this is true for closed points.

Corollary 3.4. For i = 1, . . . , r , let di ∈ Symni
(Q) be positive definite with

n1+. . .+nr = 4 , and let ωi ⊂ V (Ap
f )ni with corresponding special cycles Z(di, ωi) .

For T ∈ Sym4(Z(p)) with diagonal blocks d1, . . . , dr , let ZT be the union of the
connected components of Z(d1, ω1) ×M . . . ×M Z(dr, ωr) where the fundamental
matrix has value T . If det(T ) �= 0 then the point set underlying ZT lies over the
supersingular locus of M×Spec Z(p) Spec Fp . �

Having answered these very crude questions on the intersection behaviour of our
special cycles, we are led to ask more precise questions. Again for i = 1, . . . , r let
di ∈ Symni

(Q) be positive-definite with n1 + . . . + nr = 4 and let ωi ⊂ V (Ap
f )ni

with corresponding cycles Z(d1, ω1), . . . ,Z(dr, ωr) . We then ask:

a) Under which conditions do the cycles Z(d1, ω1), . . . ,Z(dr, ωr) intersect prop-
erly? More precisely, can one parametrize the isolated points of Z = Z(d1, ω1)×M
. . . ×M Z(dr, ωr) and calculate at such an isolated point y ,

(3.9) e(y) = lgOZ,y
(OZ,y) ?

b) Let Y be a connected component of Z = Z(d1, ω1) ×M . . . ×M Z(dr, ωr)
lying over the supersingular locus of M×Spec Z(p) Spec Fp . The intersection number
along Y is

(3.10) χ(Y,OZ1 ⊗L

OM . . . ⊗L

OM OZr ) ,

cf. [22], [27]. An important question to answer is when the derived tensor product
here can be replaced by an ordinary tensor product, i.e. by OZ . In the case when
Y is an isolated point this would mean that the length in (3.9) is in fact the
intersection number of Z1, . . . ,Zr at y . In particular one may ask, when does
the intersection number along Y depend only on T with Y ⊂ ZT ? Related to
this question is the problem of the singularities of the schemes Z(d, ω) : under
which conditions are they Cohen-Macaulay, or even locally complete intersections?
In general they are neither [21].

Our next task will be to investigate the structure of the supersingular locus
Mss ⊂ M×Spec Z(p) Spec Fp .

§4. Structure of the supersingular locus.
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As mentioned in the introduction, the results of this section are a presentation of
results of Moret-Bailly [23] and Oort [24]. A similar presentation was independently
given by Kaiser [11].

We put F = F̄p , and let W = W (F) be the ring of Witt vectors of F and
K = W ⊗Zp Qp its quotient field. Also write W [F, V ] for the Cartier ring of F .

Throughout this section, we assume that p � D(B) , and we fix an isomorphism
OC ⊗Z Zp 
 M4(Zp) .

Suppose that ξ = (A, ι, λ, η̄p) ∈ Mss(F) , and let A(p) be the p-divisible (for-
mal) group of A . The action of OC ⊗Z Zp 
 M4(Zp) on A(p) then induces a
decomposition A(p) 
 A0(p)4 , where A0(p) is a p-divisible formal group of di-
mension 2 and height 4 . Let L0 be the (contravariant) Dieudonné module of
A0(p) and let L = L0 ⊗W K be the associated isocrystal. This does not depend
on the choice of ξ ∈ Mss(F) , up to isomorphism.
More precisely, we fix a base point ξo = (Ao, ιo, λo, η

p
o) ∈ Mss(F) and let L =

L0 ⊗W K be the isocrystal associated to it. The isocrystal L has a polarization
< , > , is isoclinic with slope 1

2 , and has dimK L = 4 . Then F is σ -linear,
V = pF−1 is σ−1 -linear, and

(4.1) < Fx, y > = < x, V y >σ .

If ξ = (A, ι, λ, ηp) ∈ Mss(F) is another point, then the choice of an isogeny between
ξ and ξo defines a W -lattice L ⊂ L .

For a W -lattice L ⊂ L of rank 4 , set

(4.2) L⊥ = { x ∈ L ; < x, L >⊂ W }.

Definition 4.1. a) A W -lattice L in L is special if and only if L = c · L⊥ ,
for some c ∈ K× .
b) A W -lattice L in L is admissible if

L ⊃ FL ⊃ pL .

For W -lattices L, L′ in L , we define the (generalized) index [L′ : L] as
length (L′/L ∩ L′) − length (L/L ∩ L′) . If L is special, then [L⊥ : L] ∈ Z

is divisible by 4. We can replace L by α · L , for α ∈ K× to obtain a lattice with
L = L⊥ or L = pL⊥ . In this case we call L standard.
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We note that, if L is an admissible lattice, then, since L is isoclinic of slope 1/2 ,
we have

dimF L/FL = 2 .

We define a set of lattices as follows:

(4.3) X = {L ⊂ L; L admissible and special} .

If L ∈ X then FL ∈ X . This follows from (FL)⊥ = V −1 · L⊥ , cf. (4.1).

The conditions in our moduli problem imply that the lattice L ⊂ L associated
to ξ ∈ Mss(F) and an isogeny between ξ and ξo actually lies in X . Note that
each admissible lattice is the Dieudonné module of a p -divisible formal group of
dimension 2 and height 4 over F .

Recall from (3.8.vi) that End0(Aξo , ι)
op =: C ′ 
 M2(B′) , where B′ is the

definite quaternion algebra over Q with the same local invariants as B at all
primes � �= p . As before, let V ′ = { x ∈ M2(B′);x′ = x and tr(x) = 0 } . Let

(4.4) G′ = { g ∈ C ′,×; gV ′g−1 = V ′ and gg′ = ν(g) }.

Note that the action of G′(Qp) on Aξo(p) up to isogeny passes to L . In fact,

(4.5) G′(Qp) 
 { g ∈ GL(L); < gx, gy > = ν(g) < x, y >, Fg = gF }.

Here ν(g) ∈ K× .
The action of G′(Qp) preserves the set of lattices X . Fix an isomorphism B(Ap

f ) 

B′(Ap

f ) and, hence, an isomorphism G(Ap
f ) 
 G′(Ap

f ) . Then, the usual analysis
identifies G′(Q) with the group of self-isogenies of ξo and yields an isomorphism

(4.6) Mss(F) 
 G′(Q)\
(

X × G′(Ap
f )/Kp

)
.

We will now describe the lattices in X in more detail.

Definition 4.2. For L ∈ X , let

a(L) = dimF L/(FL + V L) .

Since a(L) = dimFHomW [F,V ](L, F) , we see that a(L) is the a -number, [24],
of the p -divisible group A0(p) associated to L , i.e.

a(L) = HomF(αp, A0(p)) .
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Since

(4.7)

L

↑
FL + V L

↗ ↖
FL V L

↖ ↗
FL ∩ V L

↑
pL

,

we have

(4.8) a(L) =
{

2 if FL = V L,
1 if [L : FL + V L] = 1.

Let

(4.9) X0 = { L ∈ X; a(L) = 2 }.

Such lattices will be called superspecial.

In addition to the superspecial lattices, the following type of lattice will play a
key role in the description of the structure of X .

Definition 4.3. A lattice L̃ ⊂ L is distinguished if L̃ is admissible and FL̃ =
cL̃⊥ for some c ∈ K× .

We denote by X̃ the set of distinguished lattices. Obviously, if L̃ ∈ X̃ is
distinguished, the index [L̃⊥ : L̃] is congruent to 2 mod 4. Note that if L̃ is
distinguished, then FL̃ = V L̃ . Indeed, by (4.1) for any lattice L̃ we have (FL̃)⊥ =
V −1L̃⊥ . Hence if FL̃ = c · L̃⊥ we get

L̃ = c(FL̃)⊥ = cV −1L̃⊥ = cV −1c−1FL̃ = V −1FL̃ ,

i.e. V L̃ = FL̃ , as claimed. Similarly one sees that if L̃ ∈ X̃ , then FL̃ ∈ X̃ .

Starting with a distinguished lattice, we can scale it to obtain a distinguished
lattice L̃ with either

(4.10) L̃⊂
�=

L̃⊥ ⊂
�=

p−1L̃, or L̃⊥ ⊂
�=

L̃⊂
�=

p−1L̃⊥,
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with all indices equal to 2. We will call distinguished lattices scaled in this way
standard. We note that if, in the identity defining a distinguished lattice L̃ , the
order of c is odd, then L̃ may be scaled to be standard in the sense of the first
alternative of (4.10) above. If the order of c is even, then L̃ can be scaled to be
standard in the sense of the second alternative of (4.10), and hence, FL̃ can be
scaled to be standard in the sense of the first alternative of (4.10).

For any L̃ ∈ X̃ and for any F -line � ⊂ L̃/F L̃ , let L = L(�) be the inverse
image of � in L̃ . Thus

(4.11)
L̃ ⊃ L ⊃ FL̃

↓ ↓ ↓
L̃/F L̃ ⊃ � ⊃ 0

Lemma 4.4. For � ⊂ L̃/F L̃ , L = L(�) ∈ X .

Proof. First, since FL̃ = V L̃ , we have

(4.12) FL ⊂ FL̃ ⊂ L,

and

(4.13) FL ⊃ FV L̃ = pL̃ ⊃ pL.

Hence L is admissible.
Next, we have

(4.14) L̃ ⊃ L ⊃ FL̃,

where all inclusions have index 1 . Furthermore on L̃/F L̃ we have a nondegenerate
alternating form with values in F induced by c−1· < , > if FL̃ = cL̃⊥ . Clearly
L/FL̃ is a maximal isotropic subspace and hence L is special. �

The above proof in fact shows the following. Suppose that L̃ ∈ X̃ with FL̃ =
p · L̃⊥ . Then L(�)⊥ = pL(�) . If FL̃⊥ = pL̃ , then L(�)⊥ = L(�) .

Thus to any distinguished L̃ we have associated a projective line P(L̃/F L̃)
and a family of admissible special lattices parametrized by the F -points of this
projective line. These projective lines have a natural Fp2 -structure which we now
describe.

For any W -lattice L in L , we have

(4.15) FL = V L ⇐⇒ F 2L = FV L = pL ⇐⇒ p−1F 2L = L.
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Lemma 4.5. Suppose that p−1F 2L = L , and let

L0 = { x ∈ L; p−1F 2x = x }.

Then L0 is a Zp2 -module and

L0 ⊗Zp2 W 
 L. �

If L̃ ∈ X̃ is distinguished, then L̃ is preserved by the σ2 -linear endomorphism
p−1F 2 , and we have L̃ 
 L̃0 ⊗Zp2 W . Moreover, FL̃ is also preserved by p−1F 2 ,
and (FL̃)0 = F (L̃0) . Thus, the two dimensional F -vector space L̃/F L̃ has a
natural Fp2 -structure:

(4.16) L̃/F L̃ 
 L̃0/F L̃0 ⊗Fp2 F.

We may then view any line � as an element of P(L̃0/F L̃0)(F) . We denote by PL̃

the projective line P(L̃0/F L̃0) over Fp2 .

Lemma 4.6. Under the isomorphism

L̃/F L̃ 
 L̃0/F L̃0 ⊗Fp2 F,

the automorphism induced by p−1F 2 on L̃/F L̃ coincides with 1 ⊗ σ2 on
L̃0/F L̃0 ⊗Fp2 F . Hence,

p−1F 2(L(�)) = L(σ2(�)),

where � is identified with a point in PL̃(F) . �

Corollary 4.7. A lattice L(�) associated to a distinguished L̃ is superspecial, i.e.,
has a(L(�)) = 2 , if and only if � ∈ PL̃(Fp2) .

Proposition 4.8. Suppose that L ∈ X with a(L) = 1 , and let

L̃ = F−1(FL + V L) .

Then L̃ is distinguished and L = L(�) for a unique line � ∈ PL̃(F) \ PL̃(Fp2) .

Proof. Let L⊥ = c · L . Then

(FL̃)⊥ = (FL)⊥ ∩ (V L)⊥ = V −1L⊥ ∩ F−1L⊥ = p−1c · (FL ∩ V L).
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On the other hand, F 2L̃ = F 2L + pL . Let S = L/pL , and let f and v be
the σ -linear resp. σ−1 -linear endomorphisms of S induced by F and V . Since
FV = V F = p , we have fv = vf = 0 and so ker(f) = im(v) and ker(v) = im(f)
are 2-dimensional subspaces of S . However, for any L ∈ X there is some j ≥ 2
with F jL ⊂ pL and hence f is nilpotent. If f2 = 0 , then F 2L = pL since
both lattices have index 4 in L and this would imply a(L) = 2 , contrary to our
assumption. Therefore, since im(f) is 2-dimensional we must have that im(f2) is
one-dimensional and im(f2) = im(f) ∩ im(v) . Hence

F 2L̃ = F 2L + pL = FL ∩ V L .

It follows that F (FL̃) = p ·c−1(FL̃)⊥ . On the other hand, FL̃ is admissible, since

pF L̃ = p(FL + V L) ⊂ pL ⊂ F 2L̃ = FL ∩ V L ⊂ FL ⊂ FL̃ = FL + V L

where all inclusions are of index 1. It follows that FL̃ ∈ X̃ and hence also L̃ ∈ X̃ .
Finally L = L(�) for the line

� = L/FL̃ ⊂ L̃/F L̃ . �

We summarize the above construction in the following theorem.

Theorem 4.9. There is a natural G′(Qp) -equivariant map
∐

L̃∈X̃

PL̃(F) −→ X

which induces a bijection
∐

L̃

(PL̃(F) \ PL̃(Fp2)) ∼−→ X \ X0 .

The map associates to (L̃, �) , where � ⊂ L̃/F L̃ is a line, the element L = L(�) ∈
X .

The action of g ∈ G′(Qp) on the index set of the left hand side is lifted in the
obvious way to the whole set appearing on the left hand side.

Remark 4.10. It can be shown that the map above is in fact a morphism, i.e., is
the map on F -points induced by a morphism of schemes over Spec Fp ,

∐

L̃∈X̃

PL̃ −→ Mss .
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This can be shown by the method of Oort, [24], or using Cartier theory, as in
Stamm, [30]. Using either of these methods one can construct a morphism of
schemes over Spec Fp ,

G′(Q) \



(
∐

L̃∈X̃

PL̃) × G′(Ap
f )/Kp



 −→ Mss

which turns out to be the normalization of the curve Mss .

The ‘distinguished curves’ cross at the superspecial points. To describe this, it
will be useful to have a normal form for superspecial lattices.

Lemma 4.11. Fix δ ∈ Z×
p2 with δσ = −δ . Let L ∈ X0 be superspecial and

standard.
(i) Suppose that L = L⊥ . Then there is a basis e1 , e2 , e3 , e4 for L over W

such that e3 = Fe1 , e4 = Fe2 , Fe3 = pe1 , Fe4 = pe2 and such that the matrix
for the polarization is

(< ei, ej >)i,j = δ ·
(

0 12

−12 0

)
,

(ii) If L = pL⊥ , then L = FL′ where L′ ∈ X0 with L′ = (L′)⊥ .

Proposition 4.12. Suppose that L ∈ X0 is superspecial and standard.
(i) If L⊥ = L , consider lattices L̃ such that L⊃

�=
L̃⊃

�=
FL and such that FL̃ =

pL̃⊥ . Such L̃ ’s are distinguished; there are p+1 of them, and they can be described
explicitly as follows. Let e1, . . . , e4 be a standard basis as in Lemma 4.11. Then
the distinguished L̃ ’s have the form

L̃ = W (e1 + µe2) + FL

where µ ∈ Z×
p2 such that µµσ ≡ −1 mod p .

(ii) If L = pL⊥ , then the distinguished L̃ ’s containing L with index 1 are those
associated, as in (i), to L′ = F−1L .

Proof of Lemma 4.11. Since p−1F 2 is a σ2 -linear automorphism of L , we can
write L = L0 ⊗Zp2 W for the rank 4 lattice L0 of fixed points of p−1F 2 . Let
S0 = L0/pL0 , a 4 -dimensional symplectic vector space over Fp2 , and note that
FL0/pL0 is an isotropic 2-plane in S0 , which is paired with the quotient L0/FL0 .
We can then choose e1 and e2 ∈ L0 whose images form a basis for L0/FL0 and
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such that < e1, e2 >= 0 , after modification by elements of FL0 , if necesssary.
The elements e1 , e2 , e3 := Fe1 and e4 := Fe2 then give a W -basis for L , and
Fe3 = F 2e1 = pe1 , and Fe4 = F 2e2 = pe2 , as required, since e1 and e2 ∈ L0 .
The matrix for the polarization is then

(4.17)
(

0 A
−tA 0

)
where A =< e, Fe >, with e =

(
e1

e2

)
.

Note that det(A) ∈ Z×
p2 , and that

(4.18) −tAσ =< Fe, e >σ=< e, V e >=< e, Fe >= A,

since V = pF−1 and so, on L0 , V = F 2 · F−1 = F . If we change the vector e

to a · e , for a ∈ GL2(Zp2) , then A changes to aAtaσ . Since det(A) ∈ Z×
p2 and

since the norm map N : Z×
p2 −→ Z×

p is surjective, it is easy to check that, for a
suitable choice of a we can obtain aAtaσ = δ · 12 . �

Proof of Proposition 4.12. Let us prove (i). Using the standard basis of Lemma 4.11,
we have L = [e1, e2, e3, e4] (the square brackets indicate the W -span) and FL =
[pe1, pe2, e3, e4] . Any lattice L̃ with L ⊃ L̃ ⊃ FL and with [L : L̃] = 1 has the
form

(4.19) L̃ = W · (ae1 + be2) + FL,

where at least one of a and b ∈ W is a unit. If a is a unit, we can write
L̃ = [e1 + µe2, pe2, e3, e4] . Then

(4.20) FL̃ = [e3 + µσe4, pe4, pe1, pe2] and pL̃⊥ = [e4 − µe3, pe4, pe1, pe2].

Comparing, we see that µ must be a unit and that µµσ ≡ −1 mod p , as claimed.
It is easy to check that the case in which a is not a unit yields no solutions. The
assertion (ii) is trivial. �

Corollary 4.13. The map appearing in Theorem 4.9. is surjective. Any lattice in
X0 has p + 1 preimages which all lie on distinct lines. In fact, the preimages of
L ∈ X0 correspond to the distinguished lattices F−1L̃ where L̃ ranges over the
lattices associated to L in (i) of Proposition 4.12 ( resp. to distinguished lattices
L̃ associated to L in (ii) of Proposition 4.12). Finally, the images of two distinct
lines PL̃ and PL̃′ have at most one lattice in common which then lies in X0 .

Proof. The last assertion follows since, if L, L′ ∈ X , L �= L′ , both lie on PL̃ ,
then L̃ = L + L′ . �

The next result gives a standard basis for a distinguished lattice.
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Lemma 4.14. Let L̃ be a distinguished lattice which is standard.
(i) If FL̃ = pL̃⊥ , then there exists a W -basis e1, . . . , e4 of L̃ such that e3 = Fe1 ,
e4 = Fe2 , Fe3 = pe1 , Fe4 = pe2 , and such that the polarization has matrix

(< ei, ej >)i,j = δ






1
−1

−p
p




 .

(ii) If FL̃⊥ = pL̃ , then L̃ = FL̃′ where L̃′ ∈ X̃ with FL̃′ = p · L̃′⊥ .

Proof of (i). Let L̃0 be the fixed points of p−1F 2 on L̃ . Since FL̃ = pL̃⊥ , < , >

induces a nondegenerate symplectic form on the two dimensional Fp2 -vector space
L̃0/F L̃0 . Choose e1 and e2 ∈ L̃0 whose images in L̃0/F L̃0 are a basis for this
space and such that < e1, e2 >= δ . Let e3 = Fe1 and e4 = Fe2 , so that, as in
Lemma 4.11, Fe3 = F 2e1 = pe1 and Fe4 = F 2e2 = pe2 . The polarization then
has matrix

(4.21)
(

δJ A
−tA −pδJ

)

where J =
(

1
−1

)
and A =< e, Fe >= −tAσ , as in the proof of Lemma 4.11.

In the present case, however, A ≡ 0 mod p . A Hensel’s Lemma argument shows
that we can replace e by ae + bFe with a ∈ GL2(Zp2) and b ∈ M2(Zp2) to
achieve A = 0 , while preserving the condition < e, e >= δJ . �

Recall that G′(Qp) , given by (4.6) above, acts on the set of admissible lattices.
For any lattice L , (gL)⊥ = ν(g)−1g(L⊥) . If L ∈ X is a special lattice, with
L = c · L⊥ , then gL = ν(g)c · (gL)⊥ , so that gL is again special. Moreover,
a(gL) = a(L) so that the subset of superspecial lattice is preserved. Also, if L̃

is distinguished, and if g ∈ G′(Qp) , then gL̃ is again distinguished. Since the
valuation of ν(g) is an arbitrary integer, for any L ∈ X (resp. L̃ ∈ X̃ ) there
is g ∈ G′(Qp) such that gL (resp. gL̃ ) is standard with (gL)⊥ = gL (resp.
F (gL̃) = p · (gL̃)⊥ ). By Lemmas 4.11 and 4.14, we have:

Corollary 4.15. G′(Qp) acts transitively on the set of superspecial lattices and
on the set of distinguished lattices.

We would finally like to compute the stabilizers in G′(Qp) of the superspecial
and distinguished lattices.
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Let B′ be as above, and, identifying Qp2 with a subfield of B′
p , write B′

p =
Qp2 + ΠQp2 for an element Π ∈ B′,×

p with Π2 = p and such that Πa = aσΠ ,
for a ∈ Qp2 . Let L0 be the fixed set for the automorphism p−1F 2 of L , and let
Π operate on L0 by F . By construction, Π2 = p , and so L0 is naturally a left
vector space over B′

p of dimension 2 .

Lemma 4.16. Let

EndK(L, F ) := {α ∈ EndK(L);Fα = αF }.

Then,
EndK(L, F ) = EndQp2 (L0, F ) = EndB′

p
(L0).

The polarization on L induces a Qp2 -bilinear symplectic form on L0 , which
still satisfies < Fx, y >=< x, V y >σ .

Lemma 4.17. Let U be a left B′
p -vector space with a B′

p -Hermitian form ( , ) :
U × U → B′

p . Thus (bx, cy) = b(x, y)cι and (y, x) = (x, y)ι , where b �→ bι is the
main involution on B′

p . Write

(x, y) = (x, y)0δ + (x, y)1δΠ,

where (x, y)0 and (x, y)1 ∈ Qp2 . Then,

( , )1 : U × U −→ Qp2

is a symplectic Qp2 -bilinear form on the Qp2 -vector space U such that

(*) (Πx, y)1 = (x,Πy)σ
1 ,

and
(x, y)0 = −(x,Πy)1.

The map ( , ) �→ ( , )1 yields a bijection between the space of B′
p -Hermitian forms

on U and the space of symplectic forms satisfying (*).

Proof. We just check the behavior of Π . We have

(Πx, y) = Π(x, y)0δ + Π(x, y)1δΠ(4.22)

= −p(x, y)σ
1 δ − (x, y)σ

0 δΠ

and
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(x,Πy) = −(x, y)0δΠ − p(x, y)1δ .(4.23)

Thus

(4.24) (Πx, y)1 = −(x, y)σ
0 = (x,Πy)σ

1 ,

as required. It is at this point that the factor of δ is required in the formulas. �

In terms of the B′
p -hermitian form ( , ) on L0 determined by the restriction

to L0 of < , > , we obtain an identification of G′(Qp) with the unitary group of
a B′

p -hermitian form,

G′(Qp) = { g ∈ GL(L);< gx, gy >= ν(g) < x, y > and Fg = gF}

 { g ∈ GLB′(L0); (gx, gy) = ν(g) · (x, y) , ν(g) ∈ Q×

p }.

Let O′ = OB′
p

= Zp2 +ΠZp2 be the maximal order in B′
p . If L is an admissible

lattice such that p−1F 2L = L , then the fixed point set L0 of p−1F 2 is naturally
an O′ -lattice in the B′

p -vector space L0 , and dimFp2 L0/ΠL0 = 2 . Conversely,
given any O′ -lattice Λ with this last property, we set F = σ⊗Π on L = L(Λ) :=
W⊗Zp2 Λ . Then since Π2 = p on Λ , we have L ⊃ FL ⊃ pL and dimF L/FL = 2 ,
i.e., L is admissible, and p−1F 2L = L . The following is easily checked, using the
formulas of Lemma 4.17.

Lemma 4.18. (i) Suppose that L ∈ X0 is superspecial with L = L⊥ , and let
e1, . . . , e4 be a standard basis as in Lemma 4.11. Then e′1 = δ−1e1 and e′2 = δ−1e2

is an O′ -basis for L0 , and the matrix for the B′
p -Hermitian form on L0 is

((e′i, e
′
j))i,j = 12 .

(ii) Suppose that L̃ ∈ X̃ is distinguished and that FL̃ = pL̃⊥ , and let e1, . . . , e4

be a standard basis as in Lemma 4.14. Then e′1 = δ−1e1 and e′2 = −δ−1e2 form
an O′ -basis for L̃0 and

((e′i, e
′
j))i,j =

(
Π

−Π

)
.

Thus, in classical language, cf. [29], [8], the superspecial lattices correspond to
local components of the principal genus of quaternion Hermitian lattices, while the
distinguished lattices correspond to local components of a non-principal genus of
such lattices.
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In less classical language we may describe our results in terms of the Bruhat-Tits
building of the adjoint group G′

ad over Qp , comp. [11]. The building B(G′
ad, Qp)

is a tree and may be identified with the fixed points

B(G′
ad, Qp) = B(G′

ad,K)F .

There are two kinds of vertices in B(G′
ad, Qp) . The vertices of the first kind corre-

spond to the equivalence classes of lattices L ⊂ L which are F -invariant. Here two
lattices L1 and L2 are equivalent if L1 is homothetic to L2 or to L⊥

2 . Hence the
vertices of the first kind are in one-to-one correspondence with the distinguished
lattices L̃ which are standard and with FL̃ = pL̃⊥ . The vertices of the second
kind in B(G′

ad, Qp) correspond to the edges in B(G′
ad,K) whose vertices are inter-

changed by F . Equivalently, they correspond to pairs {L, FL} of lattices in X0

which are standard. We thus obtain bijections

X̃ ↔ Z × {vertices of the first kind in B(G′
ad, Qp)}

and

X0 ↔ Z × {vertices of the second kind in B(G′
ad, Qp)} .

These bijections are G′(Qp) -equivariant, where g ∈ G′(Qp) acts on the Z -compo-
nent on the right via n �→ n + ord(ν(g)) . The action of F on the left corresponds
to the translation n �→ n+1 on the first factor and the trivial action on the second
factor on the right. Furthermore, a lattice L ∈ X0 and L̃ ∈ X̃ are incident (i.e.
L ∈ PL̃) if and only if the corresponding vertices of B(G′

ad, Qp) lie on one and the
same edge.

In these terms the stabilizer Kd of a distinguished lattice L̃ ∈ X̃ is a max-
imal compact subgroup of the first kind of G′(Qp) , and the stabilizer Kss of a
superspecial lattice L ∈ X0 is a maximal compact subgroup of the second kind of
G′(Qp) .

Remark 4.19. We return, for a moment, to the global situation, and recall
that X̃ is the set of distinguished lattices in L . As observed in Remark 4.10, our
calculations ‘show’ that the supersingular locus Mss is a union of rational curves
and that the irreducible components are in bijection with the set

(4.25) G′(Q)\
(

X̃ × G(Ap
f )/Kp

)

 G′(Q)\

(
G′(Qp)/Kd

p × G(Ap
f )/Kp

)
,

where Kd
p is the stabilizer in G′(Qp) of a fixed distinguished lattice L̃ ∈ X̃ . These

curves cross, p+1 at a time, at the superspecial points, and there are p2 +1 such



37

crossing points on each component. The set of all crossing points is in bijection
with the set

(4.26) G′(Q)\
(

X0 × G(Kp
f )/Kp

)

 G′(Q)\

(
G′(Qp)/Kss

p × G(Ap
f )/Kp

)
,

where Kss
p is the stabilizer in G′(Qp) of a fixed superspecial lattice L ∈ X0 .

We finally observe two consequences of our description of Mss .

Fix a factorization D(B) = D1D2 , and let K =
∏

� K� be the compact open
subgroup of G(Af ) with local factors

K� =






Kss
� if � | D1,

Kd
� if � | D2,

K0
� if � � D(B).

Here, we have fixed a maximal order R in B , and for � � D(B) , we fix an
isomorphism M2(B�) 
 M4(Q�) such that M2(R�) 
 M4(Z�) . Then let K0

� =
G(Q�) ∩ M4(Z�) . Thus, for � | D1 (resp. � | D2 ), K� is the stabilizer of a
Hermitian OB�

-lattice of principal (resp. non-principal) type, and, for � � D(B) ,
K� is a hyperspecial maximal compact subgroup of G(Q�) . Note that, in contrast
to the general assumptions above, K is not neat. Still, for a fixed prime p � D(B) ,
one can consider the coarse moduli space MK (the quotient by a finite group of
one of the schemes considered above) and its points over F . Let B(p) denote
the definite quaternion algebra with D(B(p)) = D(B)p . Then, by (4.25), the
components of the supersingular locus in the fiber of MK at p correspond to the
classes of maximal Hermitian lattices in the genus of type (D1, pD2) for B(p) .
An explicit formula for this number H(D1, pD2) was found by Hashimoto and
Ibukiyama [9]. In the case D(B) = 1 , so that B = M2(Q) , the abelian varieties
parameterized by MK(F) have the form A 
 A4

0 , where A0 is a principally
polarized abelian surface. Thus, in this case, MK 
 A2,1 , and the description of
the supersingular locus reduces to some of the information given by Katsura and
Oort [12], Theorem 5.7, and Ibukiyama, Katsura and Oort [10]. In particular, the
number of irreducible components of the supersingular locus is H(1, p) .

As another example, fix a square free positive integer D and distinct primes p1

and p2 relatively prime to D . Consider indefinite quaternion algebras B1 and
B2 over Q with discriminants D(B1) = Dp1 and D(B2) = Dp2 . Let G1 and
G2 be the associated groups, via (1.3). As in (4.5), let G′

1 be the twist of G1

at p2 and let G′
2 be the twist of G2 at p1 . These groups are both associated

to the definite quaternion algebra B
(p2)
1 
 B

(p1)
2 , and are isomorphic. Fix an
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isomorphism G′
1 
 G′

2 and compatible isomorphisms

G1(A
p1p2
f ) 
 G′

1(A
p1p2
f ) 
 G′

2(A
p1p2
f ) 
 G2(A

p1p2
f ),

and let Kp1p2 = Kp1p2
1 = Kp1p2

2 be a sufficiently small compact open subgroup.
Also let

K1,p1 = K∗1
p1

, for ∗1 = d or ss,

K1,p2 = K0
p2

,

K2,p1 = K0
p1

,

K2,p2 = K∗2
p2

, for ∗1 = d or ss,

where the notation is as above. Let

K∗1
1 = Kp1p2K1,p1K1,p2 ,

K∗2
2 = Kp1p2K2,p1K2,p2 .

Let M∗1
1 = MK

∗1
1

and M∗2
2 = MK

∗2
2

be the corresponding moduli schemes,
defined over Z(p2) and Z(p1) respectively.

Then, using (4.25) and (4.26), there are (non-canonical but equivariant) bijec-
tions between various sets of irreducible components or crossing points as follows:

Components
(

(Md
2 × Fp1)

s.s.

)

 Components

(
(Md

1 × Fp2)
s.s.

)
,

Components
(

(Mss
2 × Fp1)

s.s.

)

 Crossing points

(
(Md

1 × Fp2)
s.s.

)
,

Crossing points
(

(Md
2 × Fp1)

s.s.

)

 Components

(
(Mss

1 × Fp2)
s.s.

)
,

Crossing points
(

(Mss
2 × Fp1)

s.s.

)

 Crossing points

(
(Mss

1 × Fp2)
s.s.

)
.

Here we have written (Mss
1 × Fp2)

s.s. for the supersingular locus of the fiber over
p2 of M∗1

1 , where ∗1 = ss , for example. These results are in the spirit of those of
Ribet [25], [26], who considers components and their crossing points for the fibers
of Shimura curves and modular curves at primes of bad reduction.

§5. Endomorphism algebras and points of proper intersection.
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In this section, we consider the points of intersection of the special cycles in the
supersingular locus, using the information obtained in section 4 about the structure
of this locus. In particular, in the decomposition

Z(d1, ω1) ×M . . . ×M Z(dr, ωr) =
∐

T ∈ Sym4(Z(p))≥0

diag(T ) = (d1, . . . , dr)

Z(T, ω)

of (3.6), we fix a matrix T and we obtain a criterion, in terms of T , for Z(T, ω)
to consist of isolated points. We also show that, even when det(T ) �= 0 , there can
be components of the supersingular locus in the image of Z(T, ω) in Mss .

We retain the notation of sections 2–4, and we begin by obtaining information
about the endomorphism rings of various types of admissible lattices.

For an admissible lattice L , let OL = EndW (L, F ) be the Zp -algebra of W -
linear endomorphisms of L which commute with F . Note that EndW (L, F ) is an
order in the Qp -algebra EndK(L, F ) = C ′

p = C ′ ⊗Q Qp 
 M2(B′
p) . Also, observe

that EndW (L, F ) = EndW (F jL, F ) for any j ∈ Z . If L = c · L⊥ is special, we
have

(5.1) (F jL) = pjc · (F jL)⊥.

Thus, to determine OL for L ∈ X0 we may assume L = L⊥ .

By Lemma 4.18, we immediately have the following.

Lemma 5.1. For any superspecial lattice L ∈ X0 , (resp. any distinguished lattice
L̃ ∈ X̃ ) EndW (L, F ) (resp. EndW (L̃, F ) ) is a maximal order in C ′

p .

In either case, this order is isomorphic to M2(O′) , where O′ = Zp2 + ΠZp2 , as
in section 4. The map M2(O′) −→ M2(Fp2) given by reduction modulo Π can be
described as follows. Consider the case of L ∈ X0 . As in section 4, let L0 be the
fixed points of p−1F 2 on L . Then define

(5.2) redL : EndW (L, F ) −→ EndFp2 (L0/FL0) 
 M2(Fp2)

as the composition

(5.3) EndW (L, F ) ∼−→ EndZp2 (L0, F ) −→ EndFp2 (L0/FL0).

This map is surjective. The surjective reduction map for L̃ ∈ X̃

(5.4) redL̃ : EndW (L̃, F ) −→ EndFp2 (L̃0/F L̃0) 
 M2(Fp2)
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is defined analogously. Note that L̃/F L̃ 
 L̃0/F L̃0 ⊗Fp2 F , and that the endomor-
phism ᾱ induced on L̃/F L̃ by α ∈ EndW (L̃, F ) is redL̃(α) ⊗ 1 .

Next, suppose that L ∈ X \ X0 , and let L̃ be the unique distinguished lattice
associated to L by Proposition 4.8. Recall that FL̃ = FL + V L . In particular,
for every element α ∈ EndW (L, F ) , αFL̃ ⊂ FL̃ , so that αL̃ ⊂ L̃ , and there is a
natural homomorphism which is injective,

(5.5) EndW (L, F ) ↪→ EndW (L̃, F ).

On the other hand, there is a unique line � ⊂ L̃/F L̃ such that L = L(�) is the
inverse image of � in L̃ .

Lemma 5.2. Let L ∈ X \ X0 . With the notations introduced above,

EndW (L, F ) = { α ∈ EndW (L̃, F ); ᾱ(�) ⊂ � }.

Here ᾱ is the endomorphism of L̃/F L̃ induced by α . In fact, there are two
possibilities.
(i) If � ∈ PL̃(F) − PL̃(Fp4) , then

EndW (L, F ) = (redL̃)−1(Fp2 · 12).

(ii) If � ∈ PL̃(Fp4) − PL̃(Fp2) , then

EndW (L, F ) = (redL̃)−1(Fp4),

for some embedding Fp4 ↪→ M2(Fp2) .

Proof. As remarked above, the automorphism of L̃/F L̃ = L̃0/F L̃0 ⊗Fp2 F induced
by p−1F 2 is just 1 ⊗ σ2 . Since, for any α ∈ EndW (L̃, F ) , ᾱ commutes with
this automorphism, ᾱ(�) ⊂ � implies that ᾱ(σ2(�)) ⊂ σ2(�) . Since a non-scalar
endomorphism can have at most two eigenlines, ᾱ(�) ⊂ � and σ4(�) �= � implies
that ᾱ = a · 12 , for a ∈ Fp2 . If σ4(�) = � but σ2(�) �= � , and if ᾱ is not a
scalar endomorphism, then � and σ2(�) are the distinct eigenlines of ᾱ . Then
Fp2 [ᾱ] 
 Fp4 , and any endomorphism β̄ , with β ∈ EndW (L, F ) must lie in this
subfield of M2(Fp2) . �

Note that the lattices in (ii) of lemma 5.2 are characterized intrinsically by the
condition that F 4L = p2L but F 2L �= pL . We let X(ii) be the set of lattices
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appearing in (ii) and X(i) = X \ X(ii) \ X0 the set appearing in (i). Recall that
OL = EndW (L, F ) and OL̃ = EndW (L̃, F ) . Then

redL(OL) = redL(EndW (L, F )) 
 M2(Fp2) if L ∈ X0

redL̃(OL) = redL̃(EndW (L, F )) 
 Fp4 if L ∈ X(ii)(5.6)

redL̃(OL) = redL̃(EndW (L, F )) 
 Fp2 if L ∈ X(i).

In particular, the endomorphism algebras of all the L ’s with L ∈ X(i) and with
a given associated L̃ coincide. Any endomorphism of one such L preserves all
lattices L′ ∈ X in the image of PL̃ .

Recall that C ′
p = EndK(L, F ) , and let

(5.7) V ′
p = { x ∈ C ′

p;x
∗ = x, and tr0(x) = 0 },

where ∗ is the adjoint with respect to the polarization < , > on the isocrystal L .

Note that OL and OL̃ are invariant under the involution ∗ on C ′
p . Indeed,

let L⊥ = cL and x ∈ OL . Then

x∗(L⊥) ⊂ L⊥ , i.e. x∗(L) ⊂ L .

Similarly, if FL̃ = cL̃⊥ and x ∈ OL̃ , then x∗(L̃⊥) ⊂ L̃⊥ , i.e. x∗(FL̃) ⊂ FL̃ , i.e.,
x∗(L̃) ⊂ L̃ , since x∗ commutes with F .

For L ∈ X and for L̃ ∈ X̃ , let

(5.8) NL = EndW (L, F ) ∩ V ′
p and NL̃ = EndW (L̃, F ) ∩ V ′

p .

These are Zp -lattices in V ′
p on which the quadratic form given by squaring, x2 =

q(x) · id is valued in Zp .

We now describe the reduction maps for distinguished and for superspecial lat-
tices. We start with the case of distinguished lattices.

Lemma 5.3. Let L̃ ∈ X̃ , and put nL̃ = redL̃(NL̃) . Then nL̃ is equal to

{x = a · 12; a ∈ Fp2 , aσ = −a}

and the Fp -valued quadratic form q on nL̃ is given by x2 = q(x) · 12 , i.e. q(x) =
−a ·aσ . In particular, q does not represent 1 and hence the Clifford algebra C(nL̃)
is isomorphic to Fp2 . The following diagram is commutative

NL̃

q−→ Zp

redL̃


�


�

nL̃

q−→ Fp .
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Proof. Replacing L̃ by F jL̃ we may assume that L̃ is standard with FL̃ = p·L̃⊥ .
The symplectic form < , > on L induces a nondegenerate alternating pairing

(5.9) < , >: L̃/F L̃ × L̃/F L̃ −→ F .

This pairing descends to a non-degenerate alternating Fp2 -bilinear pairing on
L̃0/F L̃0 with values in Fp2 . The induced involution on EndFp2 (L̃0/F L̃0) is com-
patible with the reduction map,

redL̃(x∗) = redL̃(x)∗ , x ∈ OL .

Now any endomorphism x of the 2-dimensional symplectic vector space L̃0/F L̃0

over Fp2 with x∗ = x is a scalar. Hence for x ∈ NL̃ we get

red(x) = a · 12 , a ∈ Fp2 .

But x ∈ NL̃ acts on L̃0/pL̃0 preserving the subspace FL̃0/pL̃0 . Since x com-
mutes with F , it acts on the subspace as aσ ·12 . The condition tr0(x) = 0 implies
therefore that a = −aσ . Therefore we have proved that nL̃ is contained in the
subspace above. It is easy to see that we have in fact an equality. The remaining
assertions are obvious. �

Next we consider the case of superspecial lattices.

Lemma 5.4. Let L ∈ X0 and put nL = redL(NL) .
(i) nL is isomorphic to

{ x ∈ M2(Fp2); txσ = x and tr(x) = 0 }

={ x =
(

a b
bσ −a

)
; a ∈ Fp, b ∈ Fp2 }.

The Fp -valued quadratic form q on nL is given by x2 = q(x) · 12 , i.e., q(x) =
−(a2 + bbσ) .
(ii) Let C(nL) be the Clifford algebra of the three dimensional quadratic space nL .
Then the natural map C(nL) ∼−→ M2(Fp2) is an isomorphism.
(iii) The following diagram is commutative.

NL
q−→ Zp

redL


�


�

nL
q−→ Fp .
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Proof. Replacing L by F jL we may assume L⊥ = L . On L0/FL0 we have the
non-degenerate anti-hermitian form

(5.10) ( , ) : L0/FL0 × L0/FL0 −→ Fp2

induced by the formula

(5.11) (v, w) = 〈ṽ, F w̃〉 mod p ,

where ṽ and w̃ are representatives of v and w in L0 . We may find a basis of
L0/FL0 such that the induced involution on M2(Fp2) is given by x �→ txσ . Now
the lemma is proved in a way similar to Lemma 5.3. above. �

We now return to the points of intersection of the special cycles in the super-
singular locus. Let T ∈ Sym4(Z(p)) with detT �= 0 and ω ⊂ V (Ap

f )4 with
corresponding special cycle Z(T, ω) . Let ξ ∈ Z(T, ω) correspond to the collec-
tion (Aξ, ι, λ, η̄p; j) . By Corollary 4.3, the point corresponding to the collection
(Aξ, ι, λ, η̄p) lies in Mss(F) . Thus, End0(Aξ, ι)op = C0

ξ = C ′ 
 M2(B′) , where
B′ is the definite quaternion algebra over Q with discriminant D(B)p . The last
isomorphism here can be chosen so that the Rosati involution corresponds to the
involution x �→ x′ = txι of M2(B′) . Then, as in (3.8.vi),

(5.12) V 0
ξ = V ′ 
 {x ∈ M2(B′);x′ = x and tr(x) = 0 }.

The components j1, . . . , j4 of j lie in V ′ , and therefore, in particular, we must
have T > 0 if Z(T, ω) is to be non-empty.

Let L be the contravariant Dieudonné module of the formal group A0(p) , where
we write Aξ(p) 
 A0(p)4 , as in section 4. By choosing an isogeny of ξ with the
chosen base point ξo we obtain, as in section 4, an identification L = L ⊗W K
of its isocrystal with that of the base point. Then L ∈ X , and there is a natural
algebra homomorphism

(5.13) Cξ ⊗Z Zp = End(Aξ, ι)op ⊗Z Zp ↪→ EndW (L, F ) = OL ⊂ C ′
p.

Let NL = EndW (L, F )∩V ′
p , as in (5.8) above. The collections of endomorphisms

j induce collections of elements of EndW (L, F ) and of V ′
p , which we will denote by

the same letters. Let M be the Zp -submodule of NL spanned by the components
j1, j2, j3, j4 of j . We have the following commutative diagram:

(5.14)
{j1, . . . , j4} ⊂ Cξ −→ EndW (L, F ) ⊃ NL ⊃ M

↓ ↓ ↓ ↓
V ′ ⊂ C ′ −→ C ′

p ⊃ V ′
p .

Recall that T = Tξ ∈ Sym4(Z(p)) ⊂ Sym4(Zp) is the matrix of inner products of
the elements j1, . . . , j4 with respect to the quadratic form on V ′

p . Thus we have
the following basic observation:
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Lemma 5.5. At a point of intersection ξ ∈ Z(T, ω)∩Mss(F) with corresponding
lattice L ∈ X , the matrix Tξ = T is represented by the lattice NL = EndW (L, F )∩
V ′

p in the quadratic space V ′
p . In fact, T is the matrix for the restriction of the

quadratic form on NL to the sublattice M spanned by j1, . . . , j4 .

Suppose L ∈ X \ X0 with associated distinguished lattice L̃ . Recall that
OL ⊂ OL̃ and let OM be the Zp -subalgebra of OL̃ = EndW (L̃, F ) generated
by j1, . . . , j4 , i.e., by M . Also let C(M) be the Clifford algebra of M . Let
nL = redL̃(NL) and let mL̃ = redL̃(M) , so that

(5.15)
M ⊂ NL ⊂ NL̃

↓ ↓ ↓
mL̃ ⊂ nL ⊂ nL̃.

Lemma 5.6. Suppose that L ∈ X \ X0 with associated distinguished lattice L̃ .
(i) The natural map C(M) → OM is an isomorphism.
(ii) There is a commutative diagram

OM ⊂ OL̃

↓ ↓
redL̃(OM ) redL̃(OL̃) 
 M2(Fp2)

|| ∪
C(mL̃) ↪→ C(nL̃) = Fp2 · 12,

Proof. The inclusion of C(mL̃) into C(nL̃) is induced by the inclusion of qua-
dratic spaces mL̃ ⊂ nL̃ . We obviously have a commutative diagram with surjective
vertical arrows,

(5.16)
C(M) −→ OM

↓ ↓
C(mL̃) −→ redL̃(OM ).

But the upper horizontal arrow is surjective since both algebras are generated by
M . This proves that the lower horizontal arrow is surjective. By the statement at
the beginning it is also injective which proves the equality sign at the south-west
corner of the diagram in (ii). The rest of the Lemma follows from Lemma 5.3. �

Next let us consider the case when L ∈ X0 . We use somewhat similar notation:
let nL = redL(NL) and mL = redL(OM ) .

The same arguments yield:
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Lemma 5.7. Suppose that L ∈ X0 is superspecial. There is a commutative dia-
gram:

OM ⊂ OL

↓ ↓
redL(OM ) ⊂ redL(OL) 
 M2(Fp2)

|| ||
C(mL) C(nL) .

Our next task will be to show that the matrix T mod p in M4(Fp) controls the
size of m = mL̃ or mL . Recall that, as in Lemma 5.5,

T =
1
2
((jr, js)) ,

where ( , ) is the bilinear form on NL associated to q , i.e. (x, y) = q(x + y) −
q(x) − q(y) . By Lemmas 5.3 and 5.4, (iii), therefore

T mod p =
1
2
((red(jr), red(js)) .

We now list the possibilities for m , which is the span of red(j1), . . . , red(j4) , in
the non-superspecial and the superspecial case separately.

Lemma 5.8. Let L ∈ X \ X0 with associated L̃ ∈ X̃ . The possibilities for
m = mL̃ are the following:

(i) If dimFp m = 1 , then T has rank 1 modulo p and does not represent 1.
(ii) If m = 0 , then p | T .

Proof. The first alternative corresponds to the case where m = nL̃ , by Lemma 5.3.
The assertion now follows from Lemma 5.5. �

Lemma 5.9. Let L ∈ X0 . The possibilities for m = mL and C(m) ⊂ M2(Fp2)
are the following:

(i) The rank of T mod p is 3, or equivalently dimm = 3 . Then C(m) 

M2(Fp2) .

(ii) The rank of T mod p is 2. Then dimm = 2 and C(m) 
 M2(Fp) .
(iii) The rank of T mod p is 1 and dimm = 2 . Then m is of the form

m = m0 + r where r is the radical and dimm0 = dim r = 1 . In this case

C(m) 
 C(m0)∼[ε]/(ε2)
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where

C(m0) 

{

Fp ⊕ Fp

Fp2
,

and the element ε acts on C(m0) by the nontrivial automorphism of order
2 .

(iv) The rank of T mod p is 1 and dimm = 1 . Then

C(m) 

{

Fp ⊕ Fp

Fp2
.

(v) T ≡ 0 mod p and dimm = 1 . Then

C(m) = ∧(m) 
 Fp[ε ]/(ε2) .

(vi) m = 0 . Then T ≡ 0 mod p and C(m) = Fp is in the center of M2(Fp2) .

In cases (iii) resp. (iv), m0 resp. m is a nondegenerate line, so that the quadratic
form on it is isomorphic to either x2 or ax2 , with a ∈ F×

p \F×,2
p , yielding a Clifford

algebra Fp ⊕ Fp or Fp2 .

Lemma 5.10. In cases (iii) and (iv) above, when an Fp2 arises in the Clifford
algebra C(m) , this Fp2 is not central in M2(Fp2) .

Proof. Choose x ∈ m spanning a nondegenerate line for which C(Fpx) 
 Fp2 .
Then x is an endomorphism of the 2 -dimensional Fp2 -vector space L̃0/F L̃0 with
tr(x) = 0 , and with x2 = q(x) · id where q(x) /∈ F×,2

p . This last condition is
equivalent to our hypothesis on the Clifford algebra. Thus, x has two distinct
eigenvalues ±

√
q(x) on L̃0/F L̃0 , and hence does not lie in the center. �

We can now describe the intersections of our special cycle with the supersin-
gular locus. For this, we use the following basic observation. Let L̃ ∈ X̃ be a
distinguished lattice. Suppose that ξ ∈ Z(T, ω) , with associated module of spe-
cial endomorphisms M , lies on PL̃ . Then M prolongs into a module of special
endomorphisms for all points of PL̃ if and only if M ∈ EndW (L̃, F ) . This follows
from Lemma 5.3. Indeed, by this Lemma,

redL̃(M) ⊂ redL̃(NL̃) ⊂ Fp2 · 1 ⊂ redL̃(OL′)

for all L′ ∈ (X \ X0) ∩ PL̃ . Hence M ⊂ OL′ for all L′ ∈ PL̃ by continuity.
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Theorem 5.11. Suppose that ξ ∈ Z(T, ω) with image in the supersingular locus
Mss(F) with corresponding L ∈ X .
(i) The rank of T = Tξ modulo p is at most 3 .
(ii) If Tξ represents 1, then L ∈ X0 and ξ is a point of proper intersection.
(iii) If L ∈ X \X0 , with associated distinguished lattice L̃ , the whole distinguished
PL̃ associated to L̃ in the supersingular locus, and passing through ξ , occurs in
Z(T, ω) . In particular, ξ is not a point of proper intersection.

Proof. The reduction of T = Tξ modulo p is the matrix for the quadratic form
on the images of j1, . . . , j4 in m = mL , resp. m = mL̃ , and m has dimension at
most 3 . This proves (i). If L ∈ X \ X0 , then T = Tξ does not represent 1 , by
Lemma 5.8. Furthermore in this case by Lemma 5.3.

C(m) ⊂ Fp2 · 1 ⊂ redL̃(OL′) ,

for any L′ ∈ PL̃ , which is not superspecial. This implies M ⊂ OM ⊂ OL′ . If
now L′ ∈ PL̃ is superspecial it follows that M ⊂ OM ⊂ OL′ by specialization.
This proves (iii). Finally, returning to (ii), the argument just given shows that
if ξ ∈ Z(T, ω) lies on PL̃ , then T is represented by mL̃ and hence does not
represent 1. �

It remains to consider the cases where T does not represent 1 . We first treat
the case when p | T .

Theorem 5.12. Suppose that p | T and that ξ ∈ Z(T, ω) has image in Mss(F)
with corresponding L ∈ X0 . Then ξ is not a point of proper intersection. More
precisely:
(i) If m = redL(M) = 0 then each of the p+1 distinguished P1 ’s through pr(ξ) ∈
Mss occurs in the image of Z(T, ω) , i.e., for every distinguished L̃ with L̃ ⊃ L ⊃
FL̃ , we have M ⊂ EndW (L̃, F ) ; furthermore redL̃(M) = 0 .
(ii) If m = redL(M) is a null line in nL , then there is a unique distinguished L̃

with L̃ ⊃ L ⊃ FL̃ and with M ⊂ EndW (L̃, F ) ; furthermore redL̃(M) = 0 . Hence
there is a unique distinguished P1 passing through pr(ξ) ∈ Mss and contained in
the image ofZ(T, ω) .

Proof. We may assume that L⊥ = L . First suppose that m is a null line, and
choose x0 ∈ M such that x̄0 = redL(x0) spans m = redL(M) . The endomorphism
x̄0 of the two dimensional vector space L0/FL0 satisfies x̄2

0 = 0 but x̄0 �= 0 . Thus
im(x̄0) is a line in L0/FL0 .
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Lemma 5.13. Assume that L = L⊥ . The lattice L̃ defined by FL̃ = x0(L)+FL

lies in X̃ and L ∈ PL̃ . Moreover, M ⊂ EndW (L̃, F ) , and redL̃(M) = 0 .

Proof. Since x0 commutes with F , we clearly have F (FL̃) = x0(FL) + F 2L =
x0(FL) + pL ⊂ FL̃ . Similarly one sees that V (FL̃) ⊂ FL̃ , i.e., pF L̃ ⊂ F (FL̃) ,
hence FL̃ is admissible. Note that (FL̃)⊥ ⊃ L⊥ = L ⊃ FL̃ with [(FL̃)⊥ : L] =
[L : FL̃] = 1 .

To show that FL̃ is distinguished, it will suffice to prove that F (FL̃) ⊂ p(FL̃)⊥ ,
i.e., that < F 2L̃, F L̃ >⊂ pW . But

< F 2L̃, F L̃ > = < x0(FL) + pL, x0(L) + FL >

⊂ < x0(FL), x0(L) > +pW

= < FL, x2
0(L) > +pW(5.17)

⊂ < FL,FL > +pW

⊂ pW.

Here we have used the fact that x∗
0 = x0 and that x̄2

0 = 0 , i.e., that x2
0(L) ⊂ FL .

We conclude that FL̃ ∈ X̃ and hence also L̃ ∈ X̃ .

Next, we must show that every element of M preserves L̃ or, equivalently,
FL̃ . In fact, we show that M · L̃ ⊂ FL̃ , so that redL̃(M) = 0 . First consider the
reduction sequence

(5.18) 0 −→ M0 −→ M
redL−→ Fp · x̄0 −→ 0,

where

(5.19) M0 = { y ∈ M ; y(L) ⊂ FL }.

It suffices to prove the inclusions x0(L̃) ⊂ FL̃ and y(L̃) ⊂ FL̃ for all y ∈ M0 .
Recall that, for x ∈ M , x2 = q(x) · id . Since p | Tξ , the resulting quadratic form
on M/pM is identically zero, and so C(M/pM) = ∧(M/pM) . In particular, for
any x1 and x2 ∈ M , x1x2 ≡ −x2x1 mod p , i.e.,

(5.20) x1x2(L) ⊂ x2x1(L) + pL.

Now, for y ∈ M0 ,

y(FL̃) = yx0(L) + y(FL)

⊂ x0y(L) + pL + F (y(L))(5.21)

⊂ x0(FL) + F 2L

⊂ F (x0(L) + FL) = F 2L̃.
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Next, observe that x2
0 = q(x0)·id and q(x0) ≡ 0 mod p implies that x2

0(L) ⊂ pL ,
not just FL . Thus

x0(FL̃) = x2
0(L) + Fx0(L)

⊂ pL + Fx0(L)(5.22)

= F (FL + x0(L)) = F 2L̃.

This completes the proof of the Lemma. �

To finish the proof of (ii), we show that the distinguished lattice FL̃ constructed
in Lemma 5.13 is unique. Note that ker(x̄0) = im(x̄0) . If L̃′ = W · u + FL is
another distinguished lattice, whose image �′ = L̃′/FL is distinct from ker(x̄0) ,
then

(5.23) x̄0(�′) = im(x̄0) �= �′,

so that L̃′ is not preserved by x0 .

Now suppose that redL(M) = 0 , i.e., that M ·L ⊂ FL . Let FL̃ = W · u + FL

be any distinguished lattice with L ⊃ FL̃ ⊃ FL . We want to show that, for any
x ∈ M , x(L̃) ⊂ FL̃ = pL̃⊥ or, equivalently x(FL̃) ⊂ F 2L̃ = p · (FL̃)⊥ . But now

< x(FL̃), F L̃ > = < Wx(u) + Fx(L), Wu + FL >(5.24)

⊂ W < x(u), u > +pW.

But now, since x∗ = x ,

(5.25) < x(u), u > = < u, x(u) > = − < x(u), u >

so that < x(u), u >= 0 . Thus < x(FL̃), F L̃ > ⊂ pW , i.e., x(FL̃) ⊂ pF (L̃)⊥ =
F 2L̃ , as required. This concludes the proof of Theorem 5.12. � �

We now turn to the case when p � T but T does not represent 1 .

Theorem 5.14. Suppose that p � T and that T does not represent 1 . Let ξ ∈
Z(T, ω) with pr(ξ) ∈ Mss(F) and with corresponding L ∈ X0 . Then ξ is not a
point of proper intersection. More precisely:
(i) If dimFp

m = 1 and m does not represent 1 , then precisely two of the p + 1
distinguished PL̃ ’s through pr(ξ) occur in the image of Z(T, ω) . These are the
only two distinguished lattices L̃1 and L̃2 with L̃i ⊃ L ⊃ FL̃i and with M ⊂
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EndW (L̃i, F ) (i = 1, 2) . Furthermore redL̃i
(M) �= (0) , i = 1, 2 .

(ii) If dimFp
m = 2 and m = m0 + r as in Lemma 5.9, (iii), where m does not

represent 1 , then precisely one of the p + 1 distinguished PL̃ ’s through pr(ξ)
occurs in pr(Z(T, ω)) . It is the only distinguished lattice L̃1 with L̃1 ⊃ L ⊃ FL̃1

and with M ⊂ EndW (L̃1, F ) . Furthermore redL̃1
(M) �= (0) .

Proof. We may again assume L⊥ = L . We first consider case (i). Choose x0 ∈ M

such that x0 = redL(x0) spans m = redL(M) . Then x0 is an automorphism of
L0/FL0 with

x2
0 = ε · 1 ,

where ε ∈ F×
p \ F×,2

p . Furthermore, by Lemma 5.8., x0 is not central. Hence x0

has two distinct eigenvalues ε1 =
√

ε and ε2 = −√
ε in Fp2 . Let E1 and E2 be

the corresponding eigenspaces and let FL̃1 and FL̃2 be the corresponding lattices
in L ,

FL ⊂ FL̃i ⊂ L , i = 1, 2 .

Since x0 commutes with F and V , the eigenspaces E1 and E2 are preserved
by F and V , hence FL̃1 and FL̃2 are admissible. To see that FL̃1 and FL̃2

are distinguished, it suffices to see that FL̃i ⊂ p · L̃⊥
i , i.e., that

〈FL̃i, L̃i〉 ⊂ p · W , i = 1, 2 .

Equivalently we have to see that the eigenspaces E1 and E2 are isotropic with
respect to the antihermitian form (5.11) on L0/FL0 . If v ∈ Ei , then x0v = εi · v
and

ε · (v, v) = (εv, v) = (x2
0v, v) = (x0v, x0v) = (εiv, εiv) = −ε · (v, v).

It follows that FL̃1 and FL̃2 are distinguished.

The lattices L̃i = F−1(FL̃i) ∈ X̃ for i = 1 and 2 are the distinguished lattices
appearing in the statement of (i). We have redL̃i

(M) �= 0 since x0 induces
an automorphism of the eigenspace Ei . On the other hand any y ∈ M with
redL(y) = 0 , i.e., with y(L) ⊂ FL , also satisfies y(L̃i) ⊂ L ⊂ L̃i . It follows that
M ⊂ EndW (L̃i, F ) , hence (i), by the remark preceding Theorem 5.11.

Now we consider case (ii). Let x0 ∈ m0 with x2
0 = ε · 1 , for ε ∈ F×

p \ F×,2
p , and

let y0 be a generator of the radical r . Then x0y0 = −y0x0 . Therefore y0 maps
the eigenspace E1 of x0 in L0/FL0 to the eigenspace E2 and the eigenspace
E2 to E1 . Since y2

0 = 0 , but y0 �= 0 , precisely one of the two eigenspaces is
annihilated by y0 . The corresponding lattice is distinguished and yields as in case
(i) the lattice L̃1 appearing in the statement of (ii). �
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Corollary 5.15. Let ξ ∈ Z(T, ω) ⊂ Z(d1, ω1) ×M · · · ×M Z(dr, ωr), where di ∈
Symni

(Q)>0 with n1 + · · · + nr = 4 , cf. (3.1) and (3.6). Then ξ is a point of
proper intersection if and only if its fundamental matrix T = Tξ is non-singular
and represents 1 over Zp . In this case ξ is supersingular and superspecial.

A topic we have not touched upon in the present paper is to describe the shape of
the intersection of our cycles in the case of improper intersection, or, equivalently,
to describe, for T ∈ Sym4(Q)>0 , the cycle Z(T, ω) when its dimension is positive.
We refer to the companion paper [21] to the present one for more information on
this topic.

§6. Intersection multiplicities.

In this section we consider the intersection multiplicity at a point of proper in-
tersection. More precisely we return to the setup of the third section, i.e., we fix a
decomposition 4 = n1+· · ·+nr , where ni ≥ 1 for all i , elements di ∈ Symni

(Q)>0

and ωi ⊂ V (Ap
f )ni giving rise to special cycles Z(d1, ω1), . . . ,Z(dr, ωr) . We fix a

point ξ ∈ Z(d1, ω1)×M . . .×MZ(dr, ωr) with det(Tξ) �= 0 and where T = Tξ rep-
resents 1 over Zp . Let ξ correspond to (A, ι, λ, ηp; j1, . . . , jr) . Since det(T ) �= 0
and since T represents 1 over Zp , the associated Dieudonné module L is super-
special and corresponds to a formal group A of dimension 2 and height 4, with
a collection of endomorphisms j = (j1, . . . , j4) spanning a Zp -submodule M of
rank 4 in EndW (L, F ) . By changing the trivialization of the rational Dieudonné
module we may assume that L = L⊥ , i.e., that A is equipped with a princi-
pal quasi-polarization λA . By the Theorem of Serre and Tate, the infinitesimal
deformations of (A, ι, λ, ηp) correspond to those of (A, λA) , i.e.,

(6.1) M̂ξ = Def(A, λA)

Here M̂ξ denotes the formal completion of M at ξ and Def(A, λA) the formal
deformation space of (A, λA) over Spf W . Similarly, for the special cycles one
has, with obvious notation,

Ẑ(di, ωi)ξ = Def(A, λA; ji)(6.2)

Ẑ(T, ω)ξ =
(
Z(d1, ω1) ×M · · · ×M Z(dr, ωr)

)
ξ
ˆ(6.3)

= Def(A, λA; j) = Def(A, λA;M).

Here ω = ω1 × · · · × ωr . Recall that any x ∈ M satisfies x∗ = x and tr(x) = 0 ,
that the quadratic form on M is given by x2 = q(x) · id , and that T is the matrix
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for that quadratic form with respect to the basis j1, . . . , j4 . Since T represents
1 over Zp , there exists an x0 ∈ M such that x2

0 = id . The quadratic lattice M

can be written as M = Zp ·x0 +M0 , where M0 = x⊥
0 . Moreover, if x ∈ M0 , then

xx0 = −x0x , since the subalgebra of EndW (L, F ) generated by M is the image
of C(M) , the Clifford algebra of M .

The idempotents e1 = 1
2 (1 + x0) , e2 = 1

2 (1 − x0) – recall that p �= 2 – give
a splitting A 
 A1 × A2 , with A1 = e1A and A2 = e2A of dimension 1 and
height 2 . If x ∈ M0 , xe1 = e2x , and so M0 can be viewed as a submodule of
Hom(A1,A2) . Let Li = eiL be the Dieudonné module of Ai . Then L = L1⊕L2 .
Furthermore L1 and L2 are paired trivially under the symplectic pairing on L .
Indeed, if v1 ∈ L1 and v2 ∈ L2 , we have

< v1, v2 > = < e1v1, e2v2 > = < v1, e1e2v2 > = 0 ,

since e∗1 = e1 . It follows that < , > induces a perfect symplectic pairing < , >i

on Li , i.e., A1 and A2 are equipped with principal quasi-polarizations. Since
a principal quasi-polarization on a p -divisible formal group of dimension 1 and
height 2 deforms automatically we obtain a natural identification

Def(A, λA;M) = Def(A1,A2;M0) .

The length e(ξ) of the local Artin ring appearing on the right was determined by
Gross and Keating in section 5 of [7]. Since we have assumed in all of the above
that p �= 2 , we may as well continue to make this assumption, although Gross and
Keating do not. Choose a basis ψ1, ψ2, ψ3 for M0 such that

q(u1ψ1 + u2ψ2 + u3ψ3) = ε1p
a1u2

1 + ε2p
a2u2

2 + ε3p
a3u2

3,

with 0 ≤ a1 ≤ a2 ≤ a3 , and ε1, ε2, ε3 ∈ Z×
p . Thus, over Zp , T is equiv-

alent to the diagonal matrix diag(1, ε1pa1 , ε2p
a2 , ε3p

a3) . Recall that by Lemma
5.9, Z(T, ω) = ∅ unless ordp det T ≥ 1 , i.e., a3 ≥ 1 . In addition, the matrix
diag(ε1pa1 , ε2p

a2 , ε3p
a3) is represented by the norm form on the maximal order in

the quaternion division algebra over Qp . This imposes additional restrictions on
the ai , see section 10.

Proposition 6.1. (Gross, Keating, [7], Proposition 5.4) If a1 + a2 is even, then
e(ξ) = ep(Tξ) is equal to:

a1−1∑

i=0

(i + 1)(a1 + a2 + a3 − 3i)pi +
(a1+a2−2)/2∑

i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi

+
1
2
(a1 + 1)(a3 − a2 + 1)p(a1+a2)/2.
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If a1 + a2 is odd, then e(ξ) = ep(Tξ) is equal to:

a1−1∑

i=0

(i + 1)(a1 + a2 + a3 − 3i)pi +
(a1+a2−1)/2∑

i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi.

Corollary 6.2. We have e(ξ) = 1 if and only if ordp(det(Tξ) = 1 . In this case
the special cycles Z(d1, ω1), . . . ,Z(dr, ωr) are all regular at ξ and their tangent
spaces give a direct sum decomposition of the tangent space of M at ξ .

Proof. The first statement follows from the formulas above. In this case, the cycles
Z(di, ωi) have to be irreducible and reduced locally at ξ , and the intersection
multiplicity in the sense of Serre, which is bounded by the length, is equal to 1.
The rest follows from [5], Prop. 8.2, and Example 8.2.1. �

At this point we have completely answered the question a) at the end of section 3.
What is not clear is whether the length e(ξ) is indeed the intersection multiplicity
of Z(d1, ω1), . . . ,Z(dr, ωr) at ξ . This is the content of the question b) of section
3.

Conjecture 6.3. Let ξ be an isolated intersection point of Z(d1, ω1), . . . ,Z(dr, ωr) .
Then

(OZ(d1,ω1)

L

⊗ . . .
L

⊗OZ(dr,ωr))ξ = (OZ(d1,ω1) ⊗ . . . ⊗OZ(dr,ωr))ξ ,

hence e(ξ) is the intersection multiplicity of Z(d1, ω1), . . . ,Z(dr, ωr) at ξ .

We stress that this conjecture is reasonable only because M is smooth over
Spec Z(p) . Indeed, Genestier [6] (comp. [22]) has shown that in the Drinfeld-
Cherednik situation of bad reduction the analogues of the special cycles considered
here may have embedded components. On the other hand, assume in our situation
that Z(di, ωi) is an intersection of ni divisors in M . Then if ξ is an isolated
intersection point of Z(d1, ω1), . . . ,Z(dr, ωr) it follows that each partial intersec-
tion Z(di1 , ωi1) ∩ . . . ∩ Z(dis

, ωis
) ( 1 ≤ i1 ≤ . . . ≤ is ≤ r ) is locally at ξ a

complete intersection. Hence it also follows that the length e(ξ) is the intersection
multiplicity of Z(d1, ω1), . . . ,Z(dr, ωr) at ξ , and the above conjecture holds true.

Remark 6.4. Assume that ξ ∈ Z(d1, ω1) ∩ · · · ∩ Z(dr, ωr) is a point with
fundamental matrix T = Tξ which is non-singular and represents over Zp a unit
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ε ∈ Z×
p \ Z×,2

p . Therefore there exists x1 ∈ M such that x2
1 = ε · id . Hence we

obtain an action of Zp2 = Zp[
√

ε] on A ,

α : Zp2 −→ End(A) .

We may write M in the form M = Zp · x1 + M1 , where M1 = x⊥
1 . For x ∈ M1

we have xx1 = −x1x . Comparing with the definitions in the companion paper to
this one, we see that (A, α) is precisely one of the formal groups with Zp2 -action
considered there [21] and that the elements of M1 are special endomorphisms
in the sense of that paper. In particular, the formal completion of Z(d1, ω1) ∩
· · · ∩ Z(dr, ωr) at ξ coincides with the formal completion of the corresponding
subvariety of the Hilbert-Blumenthal surface considered in [21].

§7. The total contribution of isolated points.

In this section we will consider the total contribution of the points of proper in-
tersection of our special cycles. Using our previous results and a counting argument,
we are able to give an explicit formula.

We return to the global situation of sections 1 and 2 and fix data as follows. We
assume as always that p � 2D(B) and that K = Kp ·Kp where Kp is the standard
maximal compact subgroup ( see the end of section 4), and where Kp is neat. We
then have the moduli scheme M = MKp which is smooth over Spec Z(p) . As
in section 3, we fix n1, . . . , nr with 1 ≤ ni ≤ 4 and with n1 + . . . + nr = 4 .
For i = 1, . . . , r , choose positive definite matrices di ∈ Symni

(Z(p))>0 and Kp -
invariant open compact subsets ωi ⊂ V (Ap

f )ni . We then have the cycles Z(di, ωi) ,
i = 1, . . . , r . We then define the contribution of the points of proper intersection
to the intersection number of Z(d1, ω1), . . . ,Z(dr, ωr) to be

(7.1) < Z(d1, ω1), . . . ,Z(dr, ωr) >proper
p :=

∑

ξ

e(ξ) .

Here the sum runs over the points of proper intersection ξ in Z(d1, ω1)×M . . .×M
Z(dr, ωr) , and e(ξ) denotes the length of the local ring at ξ , as described in section
6. Note that, if Conjecture 6.3 were known to hold, this is also the local intersection
multiplicity at ξ .

In the special case r = 1 , we let d1 = T , and we have the cycle Z(T, ω) , whose
image in M lies in the supersingular locus Mss . Then Z(T, ω) is a collection of
isolated points if and only if T represents 1 over Zp (Corollary 5.15). In this case
we use the notation

(7.2) < Z(T, ω) >p =
∑

ξ∈Z(T,ω)

e(ξ) .
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In general, by (3.6) and the analysis of the previous sections, we may write

(7.3) < Z(d1, ω1), . . . ,Z(dr, ωr) >proper
p =

∑

T

< Z(T, ω) >p,

where the summation is over T ∈ Sym4(Z(p))>0 which are nonsingular, represent
1 over Zp , and have diagonal blocks d1, . . . , dr :

T =







d1 . . .
d2 . . .

...
...

. . .
. . . dr





 .

We will now give more explicit expressions for the above entities. For this it
will suffice to give an expression for (7.2). But the results of section 6 show that
the intersection multiplicities e(ξ) in the sum of (7.2) only depend on T and even
only on its Zp -equivalence class. As in Proposition 6.1, we denote this integer by
ep(T ) and thus may write

(7.4) < Z(T, ω) >p = ep(T ) · |Z(T, ω)(F)| .

It remains to determine the cardinality of Z(T, ω)(F) .

As before, let B′ be the definite quaternion algebra with discriminant D(B)p ,
let C ′ = M2(B′) , and let V ′ = {x ∈ C ′;x′ = x and tr(x) = 0 } . Let G′ be
as in (4.5). Recall that we also have fixed an isomorphism G′(Ap

f ) 
 G(Ap
f ) , and

a base point ξo = (Ao, ιo, λo, η
p
o) ∈ Mss(F) such that the associated Dieudonné

module Lo ∈ X is superspecial, with stabilizer K ′
p in G′(Qp) . Then, under the

parametrization (4.7), the set of superspecial points in Mss(F) corresponds to the
double coset space

(7.5) G′(Q)\
(

G′(Qp)/K ′
p × G(Ap

f )/Kp

)
,

cf. Corollary 4.15. For a superspecial point (A, ι, λ, η̄p) of Mss(F) , the choice of
an isogeny γ : (A, ι) → (Ao, ιo) compatible with the polarizations determines a
pair (gp, g

p) ∈ G′(Qp)/K ′
p ×G(Ap

f )/Kp , and the passage to G′(Q) -orbits removes
the dependence on the choice of γ .

The choice of an isogeny γ also yields an identification of the space End0(A, ι)op

with End0(Ao, ιo)op = C ′ , and of the space of special endomorphisms of (A, ι, λ)
with V ′(Q) . Let Ω′

T (Q) ⊂ V ′(Q)4 be the fibre over T of the map defined by the
quadratic form on V ′(Q) ,

(7.6) V ′(Q)4 −→ Sym4(Q) .
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Returning to the set Z(T, ω)(F) , we consider the map

(7.7) Z(T, ω)(F) ↪→ G′(Q)\
(

Ω′
T (Q) × G′(Qp)/K ′

p × G(Ap
f )/Kp

)

defined as follows. To a point ξ = (A, ι, λ, ηp; j) ∈ Z(T, ω)(F) , and a choice of
isogeny γ : (A, ι) → (Ao, ιo) , there is an associated triple (γ∗j, gp, g

p) , where
γ∗j ∈ V ′(Q)4 is the 4-tuple of endomorphisms determined by j and γ . Again, the
passage to G′(Q) -orbits removes the dependence on the choice of γ .

It is not difficult to describe the image of Z(T, ω)(F) . For y ∈ Ω′
T (Q) , the

triple (y, gp, g
p) lies in the image if and only if

(i) The images of the components of y under the inclusion V ′ ↪→ EndW (L, F )
preserve the lattice gpLo , and

(ii) The image of y under ηp
o lies in gp · ω .

We note that the condition (i) is equivalent to the assertion that the components
of the 4-tuple g−1

p y lie in

(7.8) V ′(Zp) = V ′(Qp) ∩ EndW (L, F ) = NL .

We let ϕ′
p be the characteristic function of V ′(Zp)4 , let ϕp

f = char(ω) be the
characteristic function of ω , and set ϕ′

f = ϕ′
p ⊗ ϕp

f . Then ϕ′
f ∈ S(V ′(Af )4)K′

.
Conditions (i) and (ii) can then be summarized as follows.

Lemma 7.1. The G′(Q) -orbit of the triple (y, gp, g
p) lies in the image of Z(T, ω)(F)

if and only if ϕ′
f (g−1y) �= 0 , where g = (gp, g

p) ∈ G′(Af ) .

Note that the function (y, g) �→ ϕ′
f (g−1y) is invariant under the diagonal action

of G′(Q) on the left and under the action of K ′ = K ′
pK

p and of Z ′(Af ) on the
right. The total contribution of the superspecial points may be expressed as an
integral.

Theorem 7.2. Let T ∈ Sym4(Z(p))>0 be non-singular and such that T repre-
sents 1 over Zp . Let ω ⊂ V (Ap

f )4 be Kp -invariant open and compact, and let
K ′ = K ′

pK
p ⊂ G′(Af ) . Let pr(K ′) be the image of K ′ in Z ′(Af )\G′(Af ) 


SO(V ′)(Af ) . Then

< Z(T, ω) >p = ep(T ) · vol(pr(K ′))−1 · IT,f (ϕ′
f ) .

Here ϕ′
f = ϕ′

p⊗ϕp
f ∈ S(V (Af )4) as above, and IT,f (ϕ′

f ) denotes the theta integral

IT,f (ϕ′
f ) =

∫

G′(Q)Z′(Af )\G′(Af )

∑

y∈Ω′
T

(Q)

ϕ′
f (g−1y) dg .
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The measure dg is induced by an arbitrary Haar measure on Z ′(Af )\G′(Af )
and the atomic measure on Z ′(Q)\G′(Q) . The coefficient ep(T ) is given by the
formulas in Proposition 6.1. The identity of the Theorem remains valid if T is
nonsingular but not positive definite, since, in that case, T is not represented by
V ′ , and hence both sides of the identity vanish.

Proof. By Lemma 7.1, we see that

(7.9) |Z(T, ω)(F)| =
∑

G′(Q)\
(
Ω′

T
(Q)×G′(Af )/K′Z′(Af )

)
ϕ′

f (g−1y).

On the other hand, since pr(K ′) is neat, the stabilizer in Z ′(Q)\G′(Q) of a coset
gK ′Z ′(Af )/Z ′(Af ) is trivial. Thus, we have

(7.10) |Z(T, ω)(F)| = vol(pr(K ′))−1

∫

G′(Q)Z′(Af )\G′(Af )

∑

y∈Ω′
T

(Q)

ϕ′
f (g−1y) dg,

for a measure as described in the Theorem. In combination with (7.4), this gives
the claimed expression. �

Corollary 7.3. In the situation of the beginning of this section,

< Z(d1, ω1), . . . ,Z(dr, ωr) >proper
p =

∑

T

ep(T ) vol(pr(K ′))−1 · IT,f (ϕ′
f ) .

where T runs over all T ∈ Sym4(Z(p))>0 which represent 1 over Zp and have
diagonal blocks d1, . . . , dr . The function ϕ′

f = ϕ′
p ⊗ ϕp

f ∈ S(V ′(Af )4) is defined
by

ϕ′
p = char V ′(Zp)4

ϕp
f = char(ω1 × . . . × ωr).

Remark 7.4. Formula (7.10) expresses the quantity |Z(T, ω)(F)| as a product of
orbital integrals. More precisely, note that the components of y ∈ Ω′

T (Q) span
a 4 -dimensional subspace of the 5 -dimensional space V ′ . Since G′ acts on V ′

via its projection to SO(V ′) , the stabilizer of y in G′(Q) is precisely Z ′(Q) , the
kernel of this projection. Since G′(Q) acts transitively on Ω′

T (Q) , we can unfold
to obtain:

|Z(T, ω)(F)| = vol(K ′)−1

∫

Z′(Q)\G′(Af )

ϕ′
f (g−1y) dg

(7.11)

= vol(K ′)−1vol(Z ′(Q)\Z ′(Af ))OT (ϕ′
p) OT (ϕp),
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for orbital integrals which depend on T ,

(7.12) OT (ϕp) =
∫

Z(Ap
f
)\G(Ap

f
)

ϕp
f (g−1y) dg,

and

(7.13) OT (ϕ′
p) =

∫

Z′(Qp)\G′(Qp)

ϕ′
p(g

−1y) dg.

In our main theorem (in section 9), we will identify the right hand sides of the
formulas of Theorem 7.2 and Corollary 7.3 as special values of derivatives of Fourier
coefficients of certain Eisenstein series. In the next section we will explain more
precisely the Eisenstein series in question.

§8. Fourier coefficients of Siegel Eisenstein series.

In this section, we recall, from [19], the construction of certain incoherent Siegel
Eisenstein series and the structure of the Fourier coefficients of their derivative at
s = 0 , the center of symmetry. To be more precise, these Eisenstein series occur
on the metaplectic cover of the symplectic group of rank 4 over Q , and have an
odd functional equation. Their Fourier coefficients are parameterized by rational
symmetric matrices T ∈ Sym4(Q) . In [19], a formula was given for the derivative
at s = 0 of such a coefficient, when det(T ) �= 0 .

We retain the notation of section 1, and we refer to sections 1 – 6 of [19] for more
details. Thus B is an indefinite quaternion algebra over Q of discriminant D(B) ,
C = M2(B) , V is given by (1.1), and G is given by (1.3), etc.. In particular, V

is a five-dimensional quadratic space over Q with signature (3, 2) . Let χ = χV

be the quadratic character of A×/Q× attached to V : χ(x) = (x,det(V ))A , where
( , )A is the global Hilbert symbol. Note that χ∞(−1) = 1 .

Let W be a symplectic vector space of dimension 8 over Q , with a fixed
symplectic basis e1, . . . , e4, e

′
1, . . . , e′4 , and let HA be the metaplectic extension of

Sp(WA) , with Siegel parabolic PA . For s ∈ C and for χ as above, let I4(s, χ) be
the global degenerate principal series representation of HA . As explained in [19],
(2.9), the representation I4(0, χ) has a direct sum decomposition into two types of
irreducible representations. One of these types are the irreducible summands, like
Π4(V ) , associated to five-dimensional quadratic spaces with character χV . The
other type are the irreducible summands associated to incoherent collections,
in the sense of section 2 of [19]. One such summand is Π4(C) , associated to the
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incoherent collection C , defined as follows. For any finite prime � , C� = V� , while
C∞ = V ′

∞ , where V ′
∞ is the quadratic space over R of signature (5, 0) . There is

a surjective map

(8.1) λf : S((CAf
)4) = S(V (Af )4) −→ Π4(C)f ⊂ I4(0, χ)f .

A section Φ(s) ∈ I4(s, χ) is standard if its restriction to the standard maximal
compact subgroup KH in HA is independent of s . For ϕf ∈ S(V (Af )4) , let
Φf (s) be the standard section of I4(s, χ)f such that Φf (0) = λf (ϕf ) . Let Φ(s) =

Φ
5
2∞(s)⊗Φf (s) , where Φ

5
2∞(s) is the standard section of I4(s, χ)∞ whose restriction

to KH∞ is the character det
5
2 . Then Φ(s) is an incoherent section with Φ(0) ∈

Π4(C) . The incoherent Eisenstein series

(8.2) E(h, s,Φ) =
∑

γ∈PQ\HQ

Φ(γh, s)

converges for Re(s) > 5
2 , and its analytic continuation vanishes at the point s = 0 ,

[19]. There is a Fourier expansion

(8.3) E(h, s,Φ) =
∑

T∈Sym4(Q)

ET (h, s,Φ),

with respect to the unipotent radical of P . When Φ(s) = ⊗�Φ�(s) is a factorizable
section, and when det(T ) �= 0 , there is a product formula

(8.4) ET (h, s,Φ) =
∏

�≤∞
WT,�(h�, s,Φ�),

where WT,�(h�, s,Φ�) is the local generalized Whittaker integral, cf. section 4 of
[19]. For fixed h , T , and Φ , there is a finite set of places S such that, [19],
Proposition 4.1,

(8.5)
∏

�/∈S

WT,�(h�, s,Φ�) = ζS(2s + 4)−1ζS(2s + 2)−1,

and hence

(8.6) ET (h, s,Φ) = ζS(2s + 4)−1ζS(2s + 2)−1 ·
∏

�∈S

WT,�(h�, s,Φ�).

Since det(T ) �= 0 , the factors WT,�(h�, s,Φ�) have an entire analytic continuation.

Fix T with det(T ) �= 0 . Since ET (h, 0,Φ) = 0 , at least one of the factors in
the product formula (8.6) vanishes at s = 0 . In particular, by Proposition 1.4 of
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[19], the factor at � vanishes whenever the five-dimensional quadratic space C�

does not represent T . Let Diff(T, C)f be the set of finite places at which C� fails
to represent T , and let

(8.7) Diff(T, C) =
{

Diff(T, C)f ∪ {∞} if sig(T ) = (3, 1) or (1, 3)
Diff(T, C)f otherwise.

By Corollary 5.3 of [19], |Diff(T, C)| is odd; and, by Corollary 5.4 of loc. cit.,

(8.8) ord
s=0

ET (h, s,Φ) ≥ |Diff(T, C)|.

Thus, the only nonsingular T for which E′
T (h, 0,Φ) can be nonzero are those for

which |Diff(T, C)| = 1 . We will relate the value E′
T (h, 0,Φ) for Diff(T, C) = {p}

to the numbers < Z(T, ω) >p in the previous section.

Let us fix a finite prime p . We wish to give a formula for E′
T (h, 0,Φ) if T ∈

Sym4(Q) is nonsingular with Diff(T, C) = {p} . Let B′ be the definite quaternion
algebra over Q which is ramified at p and whose invariants coincide with those of
B at all finite primes other than p . Let C ′ = M2(B′) , and let

(8.9) V ′ = { x ∈ M2(B′);x′ = x and tr(x) = 0 },

with quadratic form defined by squaring, as in section 1. Let G′ = GSpin(V ′) be
defined by the analogue of (1.3). Note that there is an exact sequence

(8.10) 1 −→ Z ′ −→ G′ −→ SO(V ′) −→ 1

of algebraic groups over Q , where Z ′ is the center of G′ .

We fix identifications B′(Ap
f ) = B(Ap

f ) , and hence V ′(Ap
f ) = V (Ap

f ) , and
G′(Ap

f ) = G(Ap
f ) . We also assume that ϕf ∈ S(V (Af )4) is factorizable, so that

ϕf = ϕp ⊗ ϕp
f , and we can view ϕp

f as a Schwartz function on V ′(Ap
f )4 . Recall

that there is a surjective map

(8.11) λ′
f : S(V ′(Af )4) −→ Π4(V ′)f ⊂ I4(0, χ)f .

Recall, [31], [19], that the local degenerate principal series representation I4,p(0, χp)
has a direct sum decomposition with irreducible factors

(8.12) I4,p(0, χp) = R4(Vp) ⊕ R4(V ′
p).

Let T ∈ Sym4(Q) be nonsingular with Diff(T, C) = {p} . Then the linear func-
tional

(8.13) WT,p(h, 0, ·) : I4,p(0, χp) −→ C
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vanishes identically on R4(Vp) = R4(Cp) , and does not vanish identically on the
summand R4(V ′

p) , [19], Proposition 1.4. We choose a standard section Φ′
p(s) ,

with Φ′
p(0) ∈ R4(V ′

p) , and such that

(8.14) WT,p(e, 0,Φ′
p) �= 0.

Let ϕ′
p ∈ S((V ′

p)4) be a Schwartz function whose image λp(ϕ′
p) in I4,p(0, χp) is

Φ′
p(0) . Note that V ′ is positive definite, and let ϕ′

∞ ∈ S((V ′
∞)4) be the Gaussian,

ϕ′
∞(x) = exp (−πtr(q(x))) . Finally, let ϕ′

f = ϕ′
p ⊗ ϕp

f so that

(8.15) ϕ′ = ϕ′
∞ ⊗ ϕ′

f = ϕ′
∞ ⊗ ϕ′

p ⊗ ϕp
f ∈ S(V ′(A)4).

Recall that the metaplectic group HA acts on the space S(V ′(A)4) via the Weil
representation ω = ωψ , defined using our fixed additive character ψ of A/Q . For
g ∈ G′(A) and h ∈ HA , let

(8.16) θ(g, h, ϕ′) =
∑

y∈V ′(Q)4

(
ω(h)ϕ′)(g−1y)

be the theta function attached to ϕ′ , and let

(8.17) I(h, ϕ′) =
1
2

∫

G′(Q)Z(A)\G′(A)

θ(g, h, ev(ϕ′)) dg,

for the Tamagawa measure dg on Z(A)\G′(A) , and where ev(ϕ′) denotes the
projection of ϕ′ to the subspace of functions all of whose local components are
even, cf. [19], (7.19). Note that θ(g, h, ϕ′) can be defined by the same formula for
g ∈ O(V ′)(A) , and that

(8.18) I(h, ϕ′) =
∫

O(V ′)(Q)\O(V ′)(A)

θ(g, h, ϕ′) dg,

where vol(O(V ′)(Q)\O(V ′)(A), dg) = 1 .

For g ∈ G′(A) and h ∈ H∞ , let

(8.19) θT (g, h;ϕ′) =
∑

y∈Ω′
T

(Q)

(
ω(h)ϕ′)(g−1y),

and

(8.20) θT,f (g, ϕ′
f ) =

∑

y∈Ω′
T

(Q)

ϕ′
f (g−1y),
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where θT,f (g, ϕ′
f ) depends only on gf . The function ϕ′

∞ is invariant under G′(R)
and, for y ∈ Ω′

T (Q) , it has the value

(8.21) ϕ′
∞(y) = e−2πtr(T ).

Therefore, for h ∈ H∞ , we have

θT (h, g;ϕ′) =
∑

y∈Ω′
T

(Q)

(
ω(h)ϕ′)(g−1y)(8.22)

=
(
ω(h)ϕ′

∞
)
(y0) · θT,f (g, ϕ′

f ),

where y0 is any fixed element of Ω′
T (Q) .

For h ∈ H∞ , and for y0 ∈ Ω′
T (Q) , set

(8.23) W
5
2

T (h) :=
(
ω(h)ϕ′

∞
)
(y0).

More explicitly, as in (11.74) of [19], if h has Iwasawa decomposition h = (n(b)m(a)k, t) ∈
Sp4(R)×C1 
 Mp4(W∞) , for b ∈ Sym4(R) , a ∈ GL4(R)+ , and k ∈ KH∞ , then

W
5
2

T (h) = t · det(a)
5
2 e(tr(Tb)) e−πtr(taTa) det(k)

5
2(8.24)

= t · det(a)
5
2 e(tr(Tτ)) det(k)

5
2 ,

where τ = b + iata .

Recalling that Z ′(R)\G′(R) 
 SO(V ′)(R) is compact, we have the following
formula for the T -th Fourier coefficient of the theta integral:

2 IT (h, ϕ′)
(8.25)

=
∫

G′(Q)Z′(A)\G′(A)

θT (g, h; ev(ϕ′)) dg

= W
5
2

T (h) ·
∫

G′(Q)Z′(A)\G′(A)

θT,f (g, ev(ϕ′
f )) dg

= W
5
2

T (h) · vol(SO(V ′)(R), d∞g) ·
∫

G′(Q)Z′(Af )\G′(Af )

θT,f (g, ev(ϕ′
f )) dfg,

where dfg is the measure arising from the counting measure on Z ′(Q)\G′(Q) and
the Haar measure on Z ′(Af )\G′(Af ) 
 SO(V ′)(Af ) coming from some choice of a
gauge form µ on SO(V ′) . Also d∞g is the Haar measure on SO(V ′)(R) induced
by µ .
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With the notation just described, and for h ∈ H∞ , Corollary 6.3 of [19] spe-
cializes to

(8.26) E′
T (h, 0,Φ) =

W ′
T,p(e, 0,Φp)

WT,p(e, 0,Φ′
p)

· 2IT (h, ϕ′),

if T is nonsingular with Diff(T, C) = {p} .

Substituting the expression (8.25) for the Fourier coefficient of the theta integral
found above, we obtain:

Proposition 8.1. Suppose that Φ(s) = Φ
5
2∞(s) ⊗ Φf (s) with Φf (0) = λf (ϕf ) , is

an incoherent standard section. For h ∈ H∞ , and for each T ∈ Sym4(Q) with
det(T ) �= 0 and Diff(T, C) = {p} , choose ϕ′

p and Φ′
p(s) , such that WT,p(e, 0,Φ′

p) �=
0 . Then

E′
T (h, 0,Φ) = vol(SO(V ′)(R)) · W 5/2

T (h) ·
W ′

T,p(e, 0,Φp)
WT,p(e, 0,Φ′

p)
· IT,f (ϕ′

f ).

Here

IT,f (ϕ′
f ) =

∫

G′(Q)Z′(Af )\G′(Af )

∑

y∈Ω′
T

(Q)

ev(ϕ′
f )(g−1y) dfg

=
∫

G′(Q)Z′(Af )\G′(Af )

θT,f (g, ev(ϕ′
f )) dfg,

and the measures are as described after (8.25) above.

If the function ϕ′
f is locally even, then the integral

(8.27) IT,f (ϕ′
f ) =

∫

G′(Q)Z′(Af )\G′(Af )

θT,f (g, ϕ′
f ) dfg

occurs in Theorem 7.2, where the measure arises from an arbitrary Haar measure
on Z ′(Af )\G′(Af ) , and the quantity

(8.28) vol(pr(K ′))−1IT,f (ϕ′
f )

is independent of the choice. Therefore, we can obtain the expression

(8.29) E′
T (h, 0,Φ) = vol(SO(V ′)(R)pr(K ′)) · W 5/2

T (h)·

·
W ′

T,p(e, 0,Φp)
WT,p(e, 0,Φ′

p)
· vol(pr(K ′))−1IT,f (ϕ′

f ),

where the factor vol(SO(V ′)(R)pr(K ′)) is computed using the Tamagawa measure
on SO(V ′)(A) . Hence, since pr(K ′) is neat,

(8.30) vol(SO(V ′)(R)pr(K ′)) = 2|SO(V ′)(A) : SO(V ′)(Q)SO(V ′)(R)pr(K ′)|−1,

and the quantities in (8.29) separated by a dot do not depend on any choice of
measure.
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§9. The main theorem.

In this section we assemble the results of previous sections and state our main
results.

We begin by further specializing the formula of Proposition 8.1. Specifically, we
need more information about the factor

(9.1)
W ′

T,p(e, 0,Φp)
WT,p(e, 0,Φ′

p)
.

Fix the prime p with p � 2D(B) , and assume that ϕp is the characteristic function
of V (Zp)4 . Recall that Φp(s) is the standard section with Φp(0) = λp(ϕp) . Also,
let ϕ′

p be the characteristic function of the lattice V ′(Zp)4 , and let Φ′
p(s) be the

standard section with Φ′
p(0) = λ′

p(ϕ
′
p) .

Recall that a nonsingular T ∈ Sym4(Qp) is represented by precisely one of the
quadratic spaces V (Qp) and V ′(Qp) , [19], Proposition 1.3.

Proposition 9.1. Suppose that ϕp, ϕ
′
p,Φp,Φ′

p are as above, and that T ∈ Sym4(Qp)
with det(T ) �= 0 .
(i) If W ′

T,p(e, 0,Φp) �= 0 , then T ∈ Sym4(Zp) .
(ii) If T ∈ Sym4(Zp) and if T is represented by V ′(Qp) , then WT,p(e, 0,Φ′

p) �=
0 .
(iii) If T ∈ Sym4(Zp) is represented by V ′(Qp) , and if T represents 1 , then

W ′
T,p(e, 0,Φp)

WT,p(e, 0,Φ′
p)

=
1
2
log p · (p2 + 1)(p − 1) · ep(T ),

where ep(T ) is the local intersection multiplicity given in Proposition 6.1.

The proof will be given in section 10.

A subset ω ⊂ V (Ap
f )n is said to be locally centrally symmetric if it is

invariant under the action of the group µ2(A
p
f ) . The characteristic function ϕω ∈

S(V (Ap
f )n) of such a set is locally even, as in (8.17), i.e. ϕω = ev(ϕω) . The

function ϕ′
f = ϕ′

p ⊗ ϕω ∈ S(V ′(Af )n) is then locally even as well, so that the
expression (8.29) holds for the derivative of the Fourier coefficients of the associated
Eisenstein series.

We can now state our main result.
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Theorem 9.2. Assume that p � 2D(B) and that ϕp, ϕ
′
p,Φp,Φ′

p are as above.
Let ω ⊂ V (Ap

f )4 be a locally centrally symmetric Kp -invariant compact open
subset. Let Φ(s) = Φ∞(s) ⊗ Φp(s) ⊗ Φp

f (s) be the standard section corresponding
to ϕ = ϕ∞ ⊗ ϕp ⊗ ϕp

f ∈ S(V (p)(A)4) with ϕp
f = char(ω) , cf Lemma 7.1. Suppose

that T ∈ Sym4(Q) with det(T ) �= 0 and with Diff(T, C) = {p} .
(i) If T �∈ Sym4(Z(p))>0 , then Z(T, ω) = ∅ , < Z(T, ω) >p= 0 , and

E′
T (h, 0,Φ) = 0.

(ii) If T ∈ Sym4(Z(p))>0 represents 1 over Zp , then Z(T, ω) is zero dimensional,
and, for h ∈ H∞ ,

E′
T (h, 0,Φ) =

1
2
vol(SO(V ′)(R)) · W 5/2

T (h) · vol(pr(K)) · log p < Z(T, ω) >p .

Note that, if T ∈ Sym4(Z(p))>0 does not represent 1 , then Z(T, ω) contains
components of the supersingular locus (Corollary 5.15 and Theorems 5.12 and 5.14).
In this case, we do not have a formula for the contribution of Z(T, ω) to the
intersection number.

In Theorem 9.2, the chosen gauge form µ on SO(V ′) = Z ′\G′ determines
the Haar measure on SO(V ′)(R) used to compute vol(SO(V ′)(R)) . The cor-
responding gauge form on the inner twist SO(V ) = Z\G determines the mea-
sure on Z ′(Af )\G′(Af ) used to compute vol(pr(K)) . Note that the product
vol(SO(V ′)(R)vol(pr(K)) is independent of the choice of µ .

Proof of Theorem 9.2. Beginning with formula (8.29), and using (iii) of Proposi-
tion 9.1 and Theorem 7.2, we have

E′
T (h, 0,Φ) = vol(SO(V ′)(R)pr(K ′)) · W 5/2

T (h)·

·
W ′

T,p(e, 0,Φp)
WT,p(e, 0,Φ′

p)
· vol(pr(K ′))−1IT,f (ϕ′

f )(9.2)

= vol(SO(V ′)(R)pr(K ′)) · W 5/2
T (h)·

· 1
2
log p · (p2 + 1)(p − 1) · ep(T ) · vol(pr(K ′))−1IT,f (ϕ′

f )

= vol(SO(V ′)(R)pr(K ′)) · W 5/2
T (h)·

· 1
2
log p · (p2 + 1)(p − 1)· < Z(T, ω) >p .

To finish the proof, we simply note the following relation between volumes.
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Lemma 9.3. Recall that Kp = GL2(OBp
)∩G(Qp) and K ′

p = GL2(OB′
p
)∩G′(Qp) .

Then, for the Haar measures on Z ′(Af )\G′(Af ) , Z ′(Qp)\G′(Qp) , Z(Af )\G(Af ) ,
and Z(Qp)\G(Qp) determined by the fixed gauge form µ and the corresponding
form on the inner twist,

vol(pr(K))
vol(pr(K ′))

=
vol(pr(Kp))
vol(pr(K ′

p))
= (p2 + 1)(p − 1).

This finishes the proof of Theorem 9.2 �

Proof of Lemma 9.3, following Kottwitz [16]. We may replace G/Z and G′/Z ′ by
their simply connected coverings G̃ resp. G̃′ and pr(Kp) and pr(K ′

p) by their
inverse images K̃p resp. K̃ ′

p . We use on G̃(Qp) resp. G̃′(Qp) the Haar measure
induced by a top differential form on the Zp -form of G̃ resp. G̃′ corresponding
to an Iwahori subgroup Ĩp ⊂ K̃p resp. Ĩ ′p ⊂ K̃ ′

p . These measures are compatible,
cf. [16], p. 632. The volumes of Ĩp and Ĩ ′p are related as follows. Choose as in
[16] a maximal split torus S in G̃ and a maximal torus S1 containing S which
splits over an unramified extension. We also denote by S1 the canonical Zp -form
of S1 . Choose S′, S′

1 of the same sort for G̃′ . Then

vol(Ĩp)
vol(Ĩ ′p)

=
S1(Fp)
S′

1(Fp)
=

(p − 1)2

p2 − 1
,

since in the case at hand S1
∼= G2

m and S′
1
∼= ResQp2/Qp

Gm . The result follows
since

|K̃p/Ĩp| = 1 + 2p + 2p2 + 2p3 + p4 , |K̃ ′
p/Ĩ ′p| = p + 1 ,

hence

vol(pr(Kp))
vol(pr(K ′

p))
=

vol(Ĩp)
vol(Ĩ ′p)

· |K̃p/Ĩp|
|K̃ ′

p/Ĩ ′p|
=

(p − 1)2

p2 − 1
· p4 − 1

p − 1
. �

We next formulate the corresponding result for the intersection of special cycles.

For n1, . . . , nr with 1 ≤ ni ≤ 4 and with n1 + . . . + nr = 4 , let di ∈
Symni

(Z(p))>0 and fix locally centrally symmetric Kp -invariant open compact
subsets ωi ⊂ V (Ap

f )ni . Let

(9.3) W = W1 + . . . + Wr

be a decomposition of W into symplectic subspaces of dimensions 2ni , compatible
with the fixed symplectic basis, and let

(9.4) ι : H1,A × . . . × Hr,A −→ HA
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be the corresponding homomorphism of metaplectic groups, covering the embedding

(9.5) ι : Sp(W1,A) × . . . × Sp(Wr,A) ↪→ Sp(WA).

Restricting to the archimedean place, for (h1, . . . , hn) ∈ H1,∞ × . . . × Hr,∞ , we
have

(9.6) W
5
2

T (ι(h1, . . . , hr)) = W
5
2

d1
(h1) . . . W

5
2

dr
(hr),

where T has diagonal blocks d1, . . . , dr . Thus, by (7.3), we obtain:

Corollary 9.4. With the above notations,

∑

T

E′(ι(h1, . . . , hr), 0,Φ) =
1
2
vol(SO(V ′)(R)) · W

5
2

d1
(h1) . . . W

5
2

dr
(hr)

× vol(pr(K)) · log p < Z(d1, ω1), . . . ,Z(dr, ωr) >proper
p ,

where the intersection number on the right side is defined by (7.3), and the sum-
mation runs over T ∈ Sym4(Z(p))>0 such that Diff(T, C) = {p} , diag(T ) =
(d1, . . . , dr) , and T represents 1 over Zp . Also, Φ is determined as in The-
orem 9.2 with ω = ω1 × · · · × ωr .

Of course, the left side of the expression of Corollary 9.4 is part of the (d1, . . . , dr) -
th Fourier coefficient of the pullback

(9.7) F (h1, . . . , hr; Φ) := E′(ι(h1, . . . , hr), 0,Φ),

cf. [19], (6.13). This result gives an analogue of the results of [19].

§10. Representation densities.

In this section, we give the proof of Proposition 9.1, which is based on a formula
of Kitaoka, [14], for representation densities. In this section, for x ∈ Q×

p , χ(x) =
(x, p)p .

We begin by recalling the well known relation between the values of the function
WT,p(e, s,Φp) , at integer values of s and classical representation densities.

For a suitable choice of basis for V (Zp) the quadratic form q has matrix

(10.1) S = S0 =




1

1
2 · 12

1
2 · 12



 .
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For r ≥ 0 , let

(10.2) Sr =




S0

1
2 · 1r

1
2 · 1r



 .

For nonsingular matrix T ∈ Sym4(Zp) , let
(10.3)
αp(Sr, T ) = lim

t→∞
p−t(10+8r)#{ x ∈ M5+2r,4(Z/ptZ) ; Sr[x] − T ∈ ptSym4(Zp) }

be the classical representation density [15], p.98. This quantity depends only on
the GL4(Zp) -equivalence class of T , so we assume that

(10.4) T = diag(ε0pa0 , ε1p
a1 , ε2p

a2 , ε3p
a3),

with εi ∈ Z×
p and 0 ≤ a0 ≤ a1 ≤ a2 ≤ a3 . Then, as explained in Corollary A.1.5

of [19], WT,p(e, r,Φp) = 0 if T ∈ Sym4(Qp) \ Sym4(Zp) , and

(10.5) WT,p(e, r,Φp) = αp(Sr, T )

if T ∈ Sym4(Zp) , since the factor γp(Vp) in loc.cit. is 1 in our present case.
Recall – see [14], Lemma 9 and the discussion on pp. 450–453, for example –
that αp(Sr, T ) is a rational function of X = p−r , i.e. there is a rational function
AS,T (X) such that

(10.6) αp(Sr, T ) = AS,T (p−r) .

We therefore have

(10.7) W ′
T,p(e, 0,Φp) = − log(p) · ∂

∂X
{AS,T (X)}

∣
∣
X=1

.

At this point we have proved part (i) of Proposition 9.1.

Similarly, let ϕ′
p be the characteristic function of the lattice V ′(Zp)4 = V (p)(Zp)4

and let Φ′
p(s) be the corresponding standard section. Again, for a suitable choice

of basis for V ′(Zp) , the quadratic form on V ′(Zp) has matrix

(10.8) S′ = S′
0 = diag(1, 1,−β,−p, pβ),

where β ∈ Z×
p \ Z×,2

p . Again, the factor γp(V ′
p) = 1 , and so

(10.9) WT,p(e, 0,Φ′
p) = p−4 · αp(S′

0, T ).

The following two results imply parts (ii) and (iii) of Proposition 9.1.
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Proposition 10.1. Suppose that T ∈ Sym4(Zp) is not represented by V (Qp) and
that T represents 1 . Let ep(T ) be the local intersection multiplicity, given by the
formulas of Proposition 6.1. Then,

W ′
T,p(e, 0,Φp) = − log(p) · ∂

∂X
{AS,T (X)}

∣
∣
∣
∣
X=1

= log p · (1 − p−4)(1 − p−2) · ep(T ).

Proposition 10.2. Suppose that T ∈ Sym4(Zp) with det(T ) �= 0 represents 1 .
Then

WT,p(e, 0,Φ′
p) = p−4·αp(S′

0, T ) =

{
p−4(1 − p−2)2(p + 1) if V ′(Qp) represents T

0 otherwise.

Of course, we would like to have analogous information about W ′
T,p(e, 0,Φp)

and WT,p(e, 0,Φ′
p) for all T . At first, we simply restrict to the case where p � T ,

so that we may assume that a0 = 0 , i.e.,

(10.10) T = diag(ε0, ε1pa1 , ε2p
a2 , ε3p

a3).

Note that S 
 15 . Then, by the standard reduction formula, [13], p.149,

(10.11) αp(Sr, T ) = αp(Sr, ε0)αp(S̃r, T̃ ),

where S̃r is obtained by adding a split space of dimension 2r to

(10.12) S̃ = diag(1, 1, 1, ε0)

and

(10.13) T̃ = diag(ε1pa1 , ε2p
a2 , ε3p

a3).

Note that

(10.14) αp(Sr, ε0) = (1 + χ(ε0)p−2−r) = (1 + χ(ε0)p−2X),

where X = p−r , [32].

Now suppose that χ(ε0) = 1 , i.e., that T represents 1 . Let H2m be the split
quadratic form of rank 2m over Zp , so that

(10.15) H2m =
(

1m

1m

)
.

Then S̃r is isomorphic to the split space H2r+4 , and Kitaoka gives an explicit
formula for the representation density αp(H2m, T̃ ) for any ternary form T̃ , [14].
His formulas, in the cases a1 − a2 even and a1 − a2 odd, are given as a sum of
five double sums! These can be simplified to yield the following expressions:
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Proposition 10.3. (Kitaoka, [14]) Let X = p−r , and let

T̃ = diag(ε1pa1 , ε2p
a2 , ε3p

a3),

with 0 ≤ a1 ≤ a2 ≤ a3 .

Let

χ(T̃ ) =






1 if a1 ≡ a2 ≡ a3 mod (2),
χ(−ε1ε2) if a1 ≡ a2 �≡ a3 mod (2),
χ(−ε1ε3) if a1 �≡ a2 �≡ a3 mod (2),
χ(−ε2ε3) if a1 �≡ a2 ≡ a3 mod (2).

(i) If a1 ≡ a2 mod (2) , then

αp(H2r+4, T̃ )
(1 − p−2X)(1 − p−2X2)

=

a1+a2
2 −1∑

�=0

p�

( min(a1,�)∑

k=0

X2�−k + χ(T̃ )Xa1+a2+a3+k−2�

)

+ p
a1+a2

2 Xa2

( a1∑

k=0

Xk

)( a3−a2∑

j=0

(εX)j

)
,

where ε = χ(−ε1ε2) .

(ii) If a1 �≡ a2 mod (2) , then

αp(H2r+4, T̃ )
(1 − p−2X)(1 − p−2X2)

=

a1+a2−1
2∑

�=0

p�

( min(a1,�)∑

k=0

X2�−k + χ(T̃ )Xa1+a2+a3+k−2�

)
.

Note that these expressions exhibit the functional equation of the local degener-
ate Whittaker function under X �→ X−1 . Evaluating at X = 1 and taking (10.11)
and (10.14) into account, we obtain:

Corollary 10.4. Suppose that T represents 1 .
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(i) If a1 ≡ a2 mod (2) , then

αp(S, T )
(1 − p−2)(1 − p−4)

= (1 + χ(T̃ ))

a1+a2
2 −1∑

�=0

(
min(a1, �) + 1

)
p�

+ p
a1+a2

2
(
a1 + 1

)
( a3−a2∑

j=0

εj

)
,

where ε = χ(−ε1ε2) .

(ii) If a1 �≡ a2 mod (2) , then

αp(S, T )
(1 − p−2)(1 − p−4)

= (1 + χ(T̃ ))

a1+a2−1
2∑

�=0

(
min(a1, �) + 1

)
p�.

In case (ii), this quantity vanishes if and only if χ(T̃ ) = −1 . In case (i), if
a2 ≡ a3 mod (2) , then χ(T̃ ) = 1 and there are an odd number of terms in the last
sum, so that the whole expression is nonzero. If a2 �≡ a3 mod (2) , then χ(T̃ ) =
χ(−ε1ε2) = ε , so that the whole expression vanishes if and only if χ(T̃ ) = −1 .

Proposition 10.5. Suppose that T represents 1 . Also suppose that χ(T̃ ) = −1 ,
so that T is not represented by S , i.e., by V (Qp)
(i) If a1 ≡ a2 mod (2) , then

∂

∂X

{
AS,T (X)

(1 − p−2X2)(1 − p−4X2)

}∣
∣
∣
∣
X=1

= −
a1+a2

2 −1∑

�=0

p�

( min(a1,�)∑

k=0

(a1 + a2 + a3 + 2k − 4�)
)

− p
a1+a2

2
(
a1 + 1

)(a3 − a2 + 1
2

)
.

(ii) If a1 �≡ a2 mod (2) , then

∂

∂X

{
AS,T (X)

(1 − p−2X)(1 − p−4X2)

}∣
∣
∣
∣
X=1

= −
a1+a2−1

2∑

�=0

p�

min(a1,�)∑

k=0

(a1 + a2 + a3 + 2k − 4�).

After a short manipulation, these expressions coincide, up to sign, with those
given in Proposition 6.1 for the local intersection multiplicity ep(T ) !
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Corollary 10.6. Suppose that p � T and ε0 is a square, i.e., that T represents
1 over Zp . Also suppose that T is not represented by S . Then

∂

∂X

{
AS,T (X)

}
∣
∣
∣
∣
X=1

= −(1 − p−2)(1 − p−4) ep(T ),

where ep(T ) is as in Proposition 6.1.

This completes the proof of Proposition 10.1.

Proof of Proposition 10.2. We apply the reduction formula to S′ = S′
0 to obtain:

(10.15) αp(S′, T ) = αp(S′, ε0)αp(S̃′, T̃ ),

where

(10.16) S̃′ = diag(1,−ε0β,−p, pβ)

and T̃ is as in (10.13).

If ε0 is a square, then
αp(S′, ε0) = 1 − p−1,

[32]. On the other hand, S̃′ is just the norm form on the maximal order of the
division quaternion algebra over Qp . The following result is due to Gross and
Keating, [7], Proposition 6.10. For convenience, we give a proof.

Lemma 10.7.
αp(S̃′, T̃ ) = 2p−1(p + 1)2.

Proof. Let B be the division quaternion algebra over Qp , and let R be its maximal
order. Then, for a suitable Zp -basis, S̃′ is the matrix for the quadratic form Q

given by the reduced norm on R . Let

Apr (T ) = #{x ∈ (R/prR)3;Q[x] ≡ T̃ mod pr},

so that
αp(S̃′, T̃ ) = lim

r→∞
p−6rApr (T ).

Choose a uniformizer π ∈ R such that π2 = −p , and hence Q[πx] = pQ[x] . Note
that x ∈ R if and only if Q[x] ∈ Zp . Thus there is a bijection

{x ∈ (R/prR)3;Q[x] ≡ pT̃ mod pr} ∼−→
{y ∈ (R/pr−1πR)3;Q[y] ≡ T̃ mod pr−1},
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given by x �→ π−1x . Since |R/πR| = p2 , we have

Apr (pT̃ ) = p6Apr−1(T̃ ),

and hence
αp(S̃′, pT̃ ) = αp(S̃′, T̃ ).

Thus, we may replace T̃ by T ′ = diag(ε1, ε2pa2−a1 , ε3p
a3−a1) . Here ε1 can be

taken to be equal to either 1 or β . Using reduction, we have

αp(S̃′, T ′) = αp(S̃′, ε1)αp(S′′, T ′′),

where

S′′ = diag(−ε1β, p,−βp), and T ′′ = diag(ε2pa2−a1 , ε3p
a3−a1).

By Theorem 3.1 of [32],
αp(S̃′, ε1) = 1 + p−1.

If ε1 = 1 , the form S′′ is just the norm form on the trace zero elements in
R , while, if ε1 = β , then S′′ is isomorphic to β times this norm form. Since
αp(βS′′, βT ′′) = αp(S′′, T ′′) , Proposition 8.6 of [19] yields

αp(S′′, T ′′) =
{

2(p + 1) if T ′′ is anisotropic,
0 otherwise.

�

Thus

αp(S′, T ) = αp(S′, 1)αp(S̃′, T̃ )

= 2(1 − p−2)(p + 1),

as claimed in Proposition 10.2. � �

Notes on Clifford algebras

A.1. Let (V, q) be a non-degenerate quadratic space of dimension 5 over a field
F of characteristic not 2. Let C(V ) be its Clifford algebra, with its 2-grading

C(V ) = C+(V ) ⊕ C−(V ) .
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The Clifford involution c �→ c′ of C(V ) is the unique involution which acts by
the identity map on V ⊂ C−(V ) . Thus

(v1 · · · vr)′ = v′r · · · v′1 .

If v1, . . . , v5 is a basis for V , then the element δ = v1 · · · v5 lies in the center of
C(V ) and satisfies

δ′ = δ .

Let
G = G Spin(V ) = {g ∈ C+(V )×; gV g−1 = V, and gg′ = ν(g)}

which may be considered as an algebraic group over SpecF .

A.2. In this section suppose that F is algebraically closed and choose a Witt
decomposition of the quadratic space V ,

V = V+ ⊕ V0 ⊕ V−

where dim V± = 2 and V± are maximal isotropic subspaces of V . Let v0 ∈ V0

be a basis vector with q(v0) = 1 . We recall the Spin representation of G . We use
the identifications of representations of C(V ) ,

C(V )/C(V )C(V−)>0 = C(V+ ⊕ V0) =

= C(V+)(1 + v0) ⊕ C(V+)(1 − v0) .

As C(V )+ -modules the last two modules are isomorphic. Either one of them
defines the Spin representation W of G . Its dimension is 4.

Fix an isomorphism Λ2V+ = F and let

λ : W → F

be the linear functional obtained by composing this isomorphism with the projection
of C(V+) = Λ(V+) onto Λ2V+ . We obtain an alternating F -form on W by

< x, y >= λ(x′y) .

Lemma. For c ∈ C(V ) , and for x and y ∈ W ,

< σ(c)x, y >=< x, σ(c′)y > .
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In particular, for g ∈ G = GSpin(V ) ,

< σ(g)x, σ(g)y >= ν(g) < x, y > .

Here σ(g) denotes the spin representation action of g on W , and ν : G −→ F× ,
ν(g) = gg′ is the restriction to G of the spinor norm on C(V ) .

Proof. Choose a basis e0, e1, v0, f0, f1 for V such that the matrix for the
quadratic form is








1 0
0 1

1
1 0
0 1








.

In C(V ) , v2
0 = 1 , e0f0+f0e0 = 1 , e1f1+f1e1 = 1 , e2

0 = 0 , v0(1+v0) = (1+v0) ,
etc. The spin representation W = C(V+)(1 + v0) has basis (1 + v0) , e0(1 + v0) ,
e0e1(1 + v0) , and e1(1 + v0) . We take λ to be the coefficient of e0e1(1 + v0) and
the symplectic form has matrix

J =
(

12

−12

)
.

It is easy to check that

σ(e0) =






0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0






σ(e1) =






0 0 0 0
0 0 0 0
0 −1 0 0
1 0 0 0






σ(v0) =






1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1






σ(f0) =






0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0





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and

σ(f1) =






0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0




 .

If σ(c) is any of these matrices, then J tσ(c)J−1 = σ(c) , and hence, for any
c ∈ C(V ) , J tσ(c)J−1 = σ(c′) , as claimed. �

Corollary. σ : G = GSpin(V ) ∼−→ GSp(W ).

A.3. In this section F is again arbitrary, of characteristic not 2.

Lemma. Let (V, q) be a non-degenerate quadratic space of dimension 5. The
subspace δ · V ⊂ C+(V ) is characterized as:

δ · V = { x ∈ C+(V );x′ = x and tr(x) = 0 }.

Proof. Recall that δ ∈ C−(V ) is central in C(V ) and satisfies δ′ = δ . It is, thus,
clear that x = δv satisfies x′ = x . On the other hand, x2 = q(v)δ2 = a lies in
F , the center of C+(V ) . In addition, if x �= 0 , then x cannot lie in the center of
C+(V ) , since, if it did, then v = δ−1x would lie in the center of C(V ) , and this
is not the case. If a = 0 , so that x2 = 0 , the condition tr(x) = 0 is immediate.
If x2 = a �= 0 , choose u ∈ V with q(u) �= 0 but with (u, v) = 0 , and set y = δu .
Then xy = −yx , and so, over an algebraic closure of F , left multiplication by y

gives an isomorphism between the ±√
a eigenspaces of x , and thus these spaces

have the same dimension and tr(x) = 0 . This proves that δV is contained in
the space on the right hand side. The converse inclusion will be proved further
down. �

Let B be a quaternion algebra over F with main involution ι , and let C =
M2(B) with involution x �→ x′ = txι . Let

VB = { x ∈ C ; x′ = x and tr(x) = 0 }

= { x =
(

a b
bι −a

)
; a ∈ F, b ∈ B }.

Note that

xx′ = x2 =
(

a2 + ν(b)
a2 + ν(b)

)
,
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so that the inclusion VB ↪→ M2(B) induces a homomorphism

C(VB , qB) −→ M2(B),

where the quadratic form on VB is qB(x) = xx′ . The diagram

C(VB , qB) −→ M2(B)
↓ ′ ↓ ′

C(VB , qB) −→ M2(B)

commutes, and induces an isomorphism C+(VB , qB) ∼−→ M2(B) , compatible with
the involutions.

Conversely, let V be a nondegenerate quadratic space of dimension 5. The
Clifford involution induces an isomorphism C+(V ) 
 C+(V )op , hence C+(V ) is
of the form

C+(V ) 
 M2(B) ,

for a quaternion algebra B over F . We may choose the isomorphism compatible
with the involutions x �→ x′ . This map then carries δV into VB . For dimension
reasons we obtain an isometry,

(V, δ2 · qV ) 
 (VB , qB) .

This also concludes the proof of the lemma above.

Corollary.
G = {g ∈ C+(V )×; gg′ = ν(g)} .

A.4. Any involution of the central simple algebra C = Mn(B) , has the form
x �→ hx′h−1 where x′ = txι , where h ∈ GLn(B) with h′ = ±h . If h′ = h , we
say that the involution is of main type, while, if h′ = −h , we say that h is of
nebentype. As observed above, the Clifford involution on M2(B) is of main type.

Let E be a central simple algebra over F , with dimF E = 162 , and with a
nontrivial involution x �→ xη whose restriction to F is trivial. Then there is a
quaternion algebra B over F and an isomorphism E 
 M8(B) . For a quaternion
algebra B1 over F , let C1 = M2(B1) and let x �→ xη1 be an involution of C1

whose restriction to F is trivial. Suppose that there is a (unitary) homomorphism

i1 : C1 = M2(B1) ↪→ E = M8(B)
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such that
i1(c)η = i1(cη1).

Let
C2 = CentE(i1(C1))

be the centralizer of the image of C1 and let i2 : C2 ↪→ E be the natural inclusion.
Then C2 
 M2(B2) , where

B1 ⊗ B2 
 M2(B),

and we have an isomorphism

i = i1 ⊗ i2 : C1 ⊗ C2
∼−→ E

such that
i(c1 ⊗ c2)η = i(cη1

1 ⊗ cη2
2 ),

for an involution η2 of C2 .

Proposition. The types of the involutions η = η1 ⊗ η2 are:

main =
{

main ⊗ neben
neben ⊗ main

and

neben =
{

main ⊗ main
neben ⊗ neben.

Proof. We can assume that F is algebraically closed. Then, on B = B1 = B2 =
M2(F ) , (

a b
c d

)ι

=
(

d −b
−c a

)
,

as usual, and a main involution on C1 = C2 = M2(B) or on E = M8(B) , is given
by x �→ txι . On Mn(B) 
 M2n(F ) , this amounts to applying transpose on the
matrix of the 2× 2 blocks and then applying ι blockwise. We denote this type of
transpose by x �→ tx and write x �→ T x for the usual transpose on M2n(F ) . Let

τ =
(

1
−1

)
∈ B = M2(F ) , so that τ ι = −τ , and, for x ∈ B ,

τxιτ−1 = T x.

Setting
h = hn = diag(τ, . . . , τ)
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in Mn(B) , we have involutions of nebentype

x �→ htxιh−1

which, on Mn(B) 
 M2n(F ) are just given by x �→ T x , the usual transpose, rather
than the blockwise transpose.

Now consider the explicit isomorphism

i : M4(F ) ⊗ M2(B) ∼−→ M8(B)

(aij) ⊗ y �→ (aijy).

Applying the involution of main type on M8(B) , we have

ti(x ⊗ y)ι = i(T x ⊗ tyι).

Similarly, applying the involution of nebentype on M8(B) , we have

T i(x ⊗ y) = i(T x ⊗ htyιh−1) = i(T x ⊗ T y).

Every involution on E compatible with the isomorphism i : C1 ⊗ C2
∼−→ E

is conjugate to one of these two by an element of the form g = i(g1 ⊗ g2) , with
tgι = ±g . Note that

tgι = g ⇐⇒
{ T g1 = g1 and tgι

2 = g2

T g1 = −g1 and tgι
2 = −g2,

and
tgι = −g ⇐⇒

{ T g1 = g1 and tgι
2 = −g2

T g1 = −g1 and tgι
2 = g2.

Also observe that the involution

x �→ g1
T xg−1

1 = g1h
txιh−1g−1

1

is of main type if T g1 = −g1 and of nebentype if T g1 = g1 , since

T g1 = htg1h
−1 = ±g1 ⇐⇒ ±t(g1h)ι = −g1h.

�

A.5. Let B be a quaternion algebra over R .
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Lemma. For τ ∈ B× with τ ι = ±τ , the involution x �→ x∗ = τxιτ−1 on B is
positive if and only if:

{
τ ι = −τ and τ2 < 0 if B = M2(R)
τ ι = τ if B = H is division.

In particular, if B = H , then x∗ = xι is the unique positive involution on B .

Proof. Take τ ∈ B× such that τ ι = −τ and τ2 < 0 . Note that the condition
on τ2 is automatic when B = H . Choose η ∈ B× such that ητ = −τη and
ηι = −η . Then every element x ∈ B can be written uniquely in the form x = a+bη

with a and b ∈ R(τ) 
 C . Then

x∗ = τ(a + bη)ιτ−1 = aι − ηιbι

and

tr(xx∗) = tr((a + bη)(aι − ηιbι))

= tr(aaι + bηaι − aηιbι − bηηιbι)

= 2(aaι + bbιη2).

If B = M2(R) , then η2 > 0 , and this quantity is positive, while, if B = H , then
η2 < 0 , and this quantity can be negative. Note that, when B = M2(R) , then an
involution defined by a τ with τ2 > 0 cannot be positive. �

A.6. Let B = M2(R) and let C = M2(B) with involution x′ = txι as above
and let

V = {x ∈ C; x′ = x and tr(x) = 0} .

Then the signature of V for the form qB of A.3 is (3,2).
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