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Abstract

We prove a relation between a generating series for the heights of Heegner cycles on the
arithmetic surface associated to a Shimura curve and the second term in the Laurent
expansion at s = 1/2 of an Eisenstein series of weight 3/2 for SL(2). On the geometric
side, a typical coefficient of the generating series involves the Faltings heights of abelian
surfaces isogenous to a product of CM elliptic curves, an archimedean contribution, and
contributions from vertical components in the fibers of bad reduction. On the analytic
side, these terms arise via the derivatives of local Whittaker functions. It should be noted
that s = 1/2 is not the central point for the functional equation of the Eisenstein series
in question. Moreover, the first term of the Laurent expansion at s = 1/2 coincides with
the generating function for the degrees of the Heegner cycles on the generic fiber, and, in
particular, does not vanish.

0. Introduction

In a series of papers, [25], [33], [31], [32], [34], [26], we showed that certain quantities from the
arithmetic geometry of Shimura varieties associated to orthogonal groups occur in the Fourier
coefficients of the derivative of suitable Siegel-Eisenstein series. It was essential in these examples
that this derivative was the second term in the Laurent expansion of a Siegel-Eisenstein series at the
center of symmetry, and that the first term in this Laurent expansion vanished (incoherent case).
In the present paper we prove a relation between a generating function for the heights of Heegner
cycles on the arithmetic surface associated to a Shimura curve and the second term in the Laurent
expansion at s = 1

2 of an Eisenstein series of weight 3
2 for SL2. It is remarkable that s = 1

2 is not
the center of symmetry and that the first term of the Laurent expansion is non-zero. In fact, this
nonzero value has a geometric interpretation in terms of the Shimura curve over the field of complex
numbers. Considering the fact that the Eisenstein series is a rather familiar classical object, it is
surprising that this interpretation of its Laurent expansion at s = 1

2 has not been noticed before.
As we will argue below in this introduction, we believe that our result is part of a general pattern
involving the heights of divisors on arithmetic models of Shimura varieties associated to orthogonal
groups.

We now describe our results in more detail.
Let B be an indefinite division quaternion algebra over Q and let OB be a maximal order in

B. Let D(B) be the product of all primes p at which B is division. Let M be the moduli space
of abelian varieties of dimension 2 with a (special) action of OB. Then M is an integral model of
the Shimura curve attached to B; it is proper of relative dimension 1 over Spec Z, with semi-stable
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reduction at all primes and is smooth at all primes p at which B splits, i.e., for p � D(B). Ignoring,
for the moment, the fact that M is only a stack, we may consider M as an arithmetic surface in
the sense of Arakelov theory, [14], [3].

For each m ∈ Z and for v ∈ R×
+, we define a class in the arithmetic Chow group

Ẑ(m, v) =
(
Z(m),Ξ(m, v)

)
∈ ĈH

1
(M). (0.1)

Here, for m > 0, Z(m) is the divisor on M corresponding to those OB–abelian varieties which
admit a special endomorphism x with x2 = −m. These cycles can be viewed as the Shimura curve
analogues of the cycles on the modular curve defined by elliptic curves with CM by the order
Z[
√
−m]. For m < 0, Z(m) = ∅. For all m �= 0, Ξ(m, v) is the (non-standard) Green’s function

introduced in [25]. The class Ẑ(0, v) will be defined presently.
The moduli stack M carries a universal abelian variety A/M, and the Hodge bundle ω on M

is defined by

ω = ∧2( Lie(A))∗. (0.2)

We equip ω with the metric || || which, for z ∈ M(C) is given by

||α||2z = e−2C · 1
4π2

∣
∣
∣
∣

∫

Az(C)
α ∧ ᾱ

∣
∣
∣
∣, (0.3)

where

C =
1
2
(

log(4π) + γ
)
, (0.4)

for Euler’s constant γ. The reason for this normalization will be explained below. We thus obtain a
class ω̂ = (ω, || ||) ∈ P̂ic(M). Also writing ω̂ for the image of this class in ĈH

1
(M), we set

Ẑ(0, v) = −ω̂ − (0, log(v)) + (0, c) ∈ ĈH
1
(M), (0.5)

for a constant c which will be defined in a moment.
Using the Gillet–Soulé height pairing 〈 , 〉 between ĈH

1
(M) and P̂ic(M), [18], we form the

height generating series

φheight(τ) =
∑

m

〈 Ẑ(m, v), ω̂ 〉 qm, (0.6)

where, for τ = u + iv in the upper half plane H, we have set q = e(τ) = e2πiτ . The quantities
〈 Ẑ(m, v), ω̂ 〉 can be thought of as arithmetic degrees [5], [2]. At the same time, we can define the
more elementary generating series

φdeg(τ) =
∑

m

deg(Ẑ(m, v)) qm , (0.7)

where deg(Ẑ(m, v)) = deg(Z(m)) is simply the usual (geometric) degree of the 0–cycle Z(m)C on
the complex Shimura curve MC.

To see that these generating series are the q–expansions of modular forms, we consider a family
of Eisenstein series. In 1975, Zagier [49], [8], introduced a (non-holomorphic) Eisenstein series of
weight 3

2 , whose Fourier expansion is given by

F(τ) = − 1
12

+
∑

m>0

H(m) qm +
∑

n

1
16π

v−
1
2

∫ ∞

1
e−4πn2vr r−

3
2 dr q−n2

, (0.8)

where H(m) is the number of classes of positive definite integral binary quadratic forms of dis-
criminant −m. This series, which played a key role in the work of Hirzebruch and Zagier [21] on
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generating functions for intersection numbers of curves on Hilbert modular surfaces, can be viewed
as the value at s = 1

2 of an Eisenstein series F(τ, s), defined for s ∈ C and satisfying a functional
equation F(τ,−s) = F(τ, s). In fact, there is a whole family of such series, E(τ, s;D), where D is a
square free positive integer, whose values at s = 1

2 , for D > 1, are given by1

E(τ,
1
2
;D) = −(−1)ord(D) 1

12

∏

p|D
(p − 1) +

∑

m>0

2 δ(d;D) H0(m;D) qm. (0.9)

Here H0(m;D) is a variant of the class number H(m), and δ(d;D) is either 0 or a power of 2,
cf. (8.17) and (8.18) respectively, and ord(D) is the number of prime factors of D. In the case
D = D(B) > 1, a simple calculation of deg(Z(m)) proves the (known) relation

φdeg(τ) = E(τ,
1
2
;D(B)), (0.10)

so that the value of E(τ, s;D(B)) at s = 1
2 is the degree generating function. The main result of this

paper asserts that the second term in the Laurent expansion of the Eisenstein series E(τ, s;D(B))
at the point s = 1

2 contains information about the arithmetic surface M:

Theorem A. For D(B) > 1,

φheight(τ) = E ′(τ,
1
2
;D(B)).

This identity is proved by a direct computation of the two sides. The resulting formulas, cf. The-
orem 8.8, are quite complicated. For example, for m > 0 in the case in which deg(Z(m)C) �= 0, the
coefficient of qm in the derivative of the Eisenstein series is given by

2 δ(d;D(B))H0(m;D(B)) ·
[

1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ (0.11)

+
1
2
J(4πmv) +

∑

p
p�D(B)

(
log |n|p −

b′p(n, 0;D)
bp(n, 0;D)

)
+

∑

p
p|D(B)

Kp log(p)
]
.

Here we write the discriminant of the order Z[
√
−m] as 4m = n2d for a fundamental discriminant

−d, and the other notation is explained in Theorem 8.8. Theorem A asserts that this expression
coincides with the height pairing 〈 Ẑ(m, v), ω̂ 〉! A point over Q̄ of Z(m) corresponds to an OB–
abelian surface A over Q̄, equipped with an action of Z[

√
−m] commuting with that of OB. Such a

surface is isogenous to a product Ed ×Ed, where Ed is an elliptic curve with complex multiplication
by the maximal order Ok in the imaginary quadratic field Q(

√
−d). With our normalization of the

metric on the Hodge bundle, the Faltings height of Ed × Ed is given by

h∗
Fal(Ed × Ed) = 2h∗

Fal(Ed) =
1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ, (0.12)

so that the geometric meaning of the first terms of (0.11), and of our title, emerges. The change in
the Faltings height due to the isogeny is accounted for by the term involving the sum over p � D(B),
where the logarithmic derivatives occurring there are given explicitly in Lemma 8.10. The sum over
p | D(B) has the following geometric meaning. The arithmetic surface M has bad reduction at such
primes and the cycle Z(m), defined as a moduli space, can include components of the special fiber
Mp, i.e., vertical components [32]. Their contribution to the height pairing coincides with the term
Kp · log(p) in (0.11), where Kp is given explicitly in Theorem 8.8. Finally, there is an additional
‘archimedean’ term in the height pairing, which arises from the fact that the Green’s function

1Our normalization of these series differs slightly at 2 from that used by Zagier, so that our E(τ, 1
2
; 1) is not quite

Zagier’s function, cf. (8.23) below.
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Ξ(m, v) is not orthogonal to the Chern form µ = c1(ω̂) of the Hodge bundle. This contribution
coincides with the term involving 1

2J(4πmv).
For m = 0, the constant term of the derivative of the Eisenstein series at s = 1

2 with D =
D(B) > 1 is given by

E ′
0(τ,

1
2
;D(B)) = ζD(−1)

[
1
2

log(v) − 2
ζ ′(−1)
ζ(−1)

− 1 + 2C +
∑

p|D

p log(p)
p − 1

]
. (0.13)

where ζD(s) = ζ(s)
∏

p|D(1−p−s). On the other hand, by (0.5), the constant term of the generating
function for heights is given by

φheight,0(τ) = 〈 Ẑ(0, v), ω̂ 〉 = −〈 ω̂, ω̂ 〉−1
2

log(v) deg(ω) +
1
2

c · deg(ω). (0.14)

Noting that deg(ω) = −ζD(−1), we see that the constant terms coincide provided c has the value
determined by the relation

1
2

deg(ω̂) · c = 〈 ω̂, ω̂ 〉−ζD(B)(−1)
[

2
ζ ′(−1)
ζ(−1)

+ 1 − 2C −
∑

p|D(B)

p log(p)
p − 1

]
. (0.15)

We take this value for c in our definition of Ẑ(0, v) above.
In fact, we conjecture that c = 0, i.e., that

〈 ω̂, ω̂ 〉 ??= ζD(B)(−1)
[

2
ζ ′(−1)
ζ(−1)

+ 1 − 2C −
∑

p|D(B)

p log(p)
p − 1

]
. (0.16)

If we write ω̂o = (ω, || ||nat) for the Hodge bundle with the more standard choice of metric, cf. (3.11)
below and [3], and if we delete the ‘extra’ factor of 1

2 which occurs due to the fact that M is a stack,
cf. section 4, then (0.16) amounts to

〈 ω̂o, ω̂o 〉nat ??= 4 ζD(−1)
[
ζ ′(−1)
ζ(−1)

+
1
2
− 1

2

∑

p|D

p log(p)
p − 1

]
. (0.17)

If we take formally D = D(B) = 1, so that M would be the modular curve and ω̂o the bundle of
modular forms of weight 2 with the Petersson metric, then, indeed, by the result of Bost, [4], and
Kühn, [37],

〈 ω̂o, ω̂o 〉nat = 4 ζ(−1)
[
ζ ′(−1)
ζ(−1)

+
1
2

]
. (0.18)

Thus, (0.16) holds for D(B) = 1, i.e., in the case of the modular curve M.
We expect that Theorem A will hold when D(B) = 1 as well. There are, however, extra compli-

cations. The first is that the metric on ω̂ becomes singular at the cusp. This difficulty was overcome
by Bost, [3], [4], and Kühn, [37], by extending the definition of P̂ic(M) � ĈH

1
(M) to allow more

general Green’s functions. On these more general Chow groups, the geometric degree map should
be defined as

deg : ĈH
1
(M) −→ R, (Z, gZ) 
→

∫

M(C)
ωZ , (0.19)

where ωZ is the (now not necessarily smooth) form occuring on the right hand side of the Green’s
equation

ddc gZ + δZ = ωZ . (0.20)

Note that this definition agrees with the previous one in the case D(B) > 1. With our previous
definition of Ẑ(m, v) for m �= 0 and m = −n2 and with a slight modification when m = 0 or
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m = −n2, the result of Funke [15], [16] shows that, indeed,

φdeg (τ) = E(τ,
1
2
; 1) (0.21)

= − 1
12

+
∑

m>0

2 H0(m; 1) qm +
∑

n∈Z

1
8π

v−
1
2

∫ ∞

1
e−4πn2vr r−

3
2 dr · q−n2

.

In fact, if we had defined the cycles Z(m) by imposing the action of an order of discriminant m
(rather than 4m) on our OB–abelian surface, then the degree generating function would coincide
exactly with Zagier’s function (0.8)! We defer the calculations of the additional terms which occur
in the derivative E ′(τ, 1

2 ; 1) and in the height generating function for D(B) = 1 to a sequel to this
paper [35].

Relations like the ones proved here between the first (resp. second) term of the Laurent expansion
of an Eisenstein series and the generating function for degrees (resp. heights) should hold in much
greater generality. More precisely, suppose that V is a rational vector space with nondegenerate
inner product of signature (n, 2). Let H = GSpin(V ) and let D be the space of oriented negative
2–planes in V (R). Then, for each compact open subgroup K ⊂ H(Af ), there is a quasiprojective
variety XK , defined over Q, with

XK(C) � H(Q)\
(

D × H(Af )/K

)
. (0.22)

For each integer m > 0, and each K–invariant ‘weight function’ ϕ ∈ S(V (Af ))K in the Schwartz
space of V (Af ), there is a divisor Z(m, ϕ)K on XK , rational over Q, [24]. The variety XK comes
equipped with a metrized line bundle L̂ = (L, || ||), and it is proved in [27] that, with the exception
of the cases n = 1 with V isotropic and n = 2 with V split, the degree generating function

φdeg(τ ;ϕ) := vol(XK)ϕ(0) +
∑

m>0

deg(Z(m, ϕ)) qm (0.23)

coincides with the value E(τ, n
2 ;ϕ) of an Eisenstein series E(τ, s;ϕ) of weight n

2 +1 associated to ϕ.
Here vol(XK) (resp. deg(Z(m, ϕ))) is the volume of XK(C), (resp. Z(m, ϕ)K) with respect to Ωn

(resp. Ωn−1), where Ω is the negative of the first Chern form of L̂. We believe that there should be
an analogue of Theorem A in this situation. To obtain such a result, one needs, first of all, suitable
extensions Z(m;ϕ) of the cycles Z(m, ϕ) to suitable integral models XK of the XK ’s. Next, since
the varieties XK are, in general, not projective, one needs nice compactifications X̄K and, more
importantly, an extension of the Gillet–Soulé theory, general enough to allow the singularities of
the metric on the extension ω̂ of L̂∨ to the compactification, etc. Assuming all of this, one would
have cycles

Ẑ(m, v;ϕ) = (Z(m;ϕ),Ξ(m, v)) ∈ ĈH
1
(X̄)K (0.24)

and a class ω̂ ∈ ĈH
1
(X̄)K . The analogue of Theorem A would identify the height generating series

φheight(τ ;ϕ) :=
∑

m

〈 Ẑ(m, ϕ; v), ω̂n 〉 qm (0.25)

with the derivative E ′(τ, n
2 ;ϕ) at s = n

2 of a normalized (and possibly slightly modified, cf. section 6
below) version E(τ, s;ϕ) of the Eisenstein series E(τ, s;ϕ). However, it seems a challenge to go
beyond the case considered in the present paper and to obtain such results for more general level
structures (even for n = 1) and for higher values of n, e.g. for n = 2 (Hilbert-Blumenthal surfaces)
or n = 3 (Siegel threefolds). Nonetheless, the results of [27] provide some additional evidence in
favor of this picture for general n. Further discussion of this picture can be found in [28], [29] and
[30].
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With hindsight, it may be said that the results in [34] support our picture in the case n = 0.
This is the one case which is common to the general picture developed here and the general picture
of our papers [25], [33], [31], [32], [34], [26]. In this rather degenerate case, the variety XK is zero
dimensional, so that the cycles Z(m;ϕ) on the generic fiber are actually empty, and the degree
generating function φdeg(τ ;ϕ) is identically zero. On the other hand, the associated Eisenstein
series E(τ, s;ϕ) of weight 1 is incoherent, in the sense of [25], [26], so that E(τ, 0;ϕ) = 0 as well.
The main result of [34], Theorem 3, may be interpreted as the identity

φheight(τ, ϕ0) = E ′(τ, 0;ϕ0) . (0.26)

Here, as in the present paper, ϕ = ϕ0 is the characteristic function of a certain standard lattice and
K is the maximal open compact subgroup. To make the transition to the result in [34] one has to

take into account the following two remarks. First, the arithmetic degree d̂eg(·) on ĈH
1
(XK) used

in [34] may be viewed as

d̂eg(Z) = 〈Z, ω̂0〉 . (0.27)

Second, in defining the degree generating function in this case, we set

Ẑ(0, v) = ω̂ + (0, log v) ∈ ĈH
1
(XK) , (0.28)

where ω̂ is the Hodge bundle on X (the moduli stack of elliptic curves with complex multiplication by
Oq for a prime q ≡ 3 mod (4)), with metric normalized as in (10.16) of the present paper. Indeed,
this particular choice of normalization, i.e., the choice of the constant C in (10.16) in general and
hence in (0.3), was motivated by the requirement that no ambiguous constant like c should be
needed in (0.28). Specifically, the constant term which occurs in [34] is given by

a0(φ, v) = −2 h(k)
( 1

2
log(v) + 2hFal(E) − log(2π) − 1

2
log(π) +

1
2
γ + 2 log(2π)

)

= −2 h(k)
( 1

2
log(v) + 2hFal(E) +

1
2

log(π) +
1
2
γ + log(2)

)
(0.29)

= −2 h(k)
( 1

2
log(v) + 2h∗

Fal(E)
)
.

Here the quantity hFal(E) − 1
2 log(2π) is the Faltings height in the normalization of Colmez [9],

which was used in (0.16) of [34], cf. Proposition 10.10 below. We found it particularly striking that
the normalization of the metric on the Hodge bundle which eliminates any garbage constant in the
case n = 0 also gives a precise match in the positive Fourier coefficients in our Shimura curve case
(n = 1). Of course, this is perhaps not so surprising, given the fact that the cycles in the case of
signature (n, 2) are themselves (weighted) combinations of Shimura varieties of the same type for
signature (n− 1, 2). Thus a main term in the arithmetic degrees which occur in the positive Fourier
coefficients of the height generating function for the signature (n, 2) case is the ‘arithmetic volume’
occuring in the constant term for the (n−1, 2) case. This ‘explains’ the relation between the present
paper and the results of [34]. It should not be difficult to verify that the positive Fourier coefficients
of the derivatives of Eisenstein series of weight n

2 + 1 at s = n
2 are related to the constant terms of

the derivatives of those of weight n−1
2 + 1 at s = n−1

2 in a similar way.
In a similar vein, we remark that the height generating function which, according to our picture

above, is related to the derivative of Eisenstein series on SL2 = Sp1 of weight n
2 + 1 at s = n

2 , is
connected with the singular Fourier coefficients of the derivative of Eisenstein series of genus 2, i.e.,
on Sp2, of weight n

2 +1 at s = n−1
2 . In fact, this is how we arrived at the height generating function

considered in this paper. We hope to elaborate on this point in a future paper.
The results of this paper are an outgrowth of a project begun during the first author’s visit to the

Mathematische Institut of the University of Cologne in the fall of 1999. He would like to thank the
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Institut for providing a congenial and stimulating working environment. The second author thanks
the department of mathematics of the University of Maryland for its (by now almost customary)
hospitality during his sabbatical in the spring of 2001.
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Part I. Arithmetic geometry

1. The moduli stack M

Let B be an indefinite quaternion algebra over Q. We fix a maximal order OB in B, and we let
D(B) be the product of the primes p at which Bp is a division algebra. For the moment, we allow
the case B = M2(Q) and OB = M2(Z), where D(B) = 1.

We denote by M the stack over Spec Z representing the following moduli problem. The moduli
problem associates to a scheme S the category M(S) whose objects are pairs (A, ι), where A is an
abelian scheme over S and

ι : OB −→ EndS(A)
is a homomorphism such that, for a ∈ OB,

det(ι(a); Lie(A)) = Nmo(a). (1.1)

Here Nmo is the reduced norm on B and, as usual, [22], [41], the identity (1.1) is meant as an
identity of polynomial functions on S. All morphisms in this category are isomorphisms.

Proposition 1.1. M is an algebraic stack in the sense of Deligne-Mumford. Furthermore, M is
proper over Spec Z if B is a division algebra. The restriction of M to Spec Z[D(B)−1] is smooth of
relative dimension 1. Finally, if p | D(B), then M×Spec Z Spec Zp has semi-stable reduction.

2. Uniformization

Let H = B×, considered as an algebraic group over Q. Let

D = HomR(C, BR), (2.1)
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be the set of homomorphisms of R–algebras, taking 1 to 1, with the natural conjugation action of
H(R). This action is transitive. We fix an isomorphism BR � M2(R), so that H(R) � GL2(R),
and a compatible isomorphism D � C \ R, the union of the upper and lower half planes. Also let
K = Ô×

B ⊂ H(Af ), be the compact open subgroup determined by OB, where ÔB = OB ⊗Z Ẑ. Then
we have, as usual, an isomorphism of Deligne-Mumford stacks over C,

M×Spec Z Spec C = [H(Q)\D × H(Af )/K ] , (2.2)

where the right is to be understood in the sense of stacks, [10], p.99. The stack on the right hand
side may be written in a simpler way using the fact that H(Af ) = H(Q)K. Let

Γ = H(Q) ∩ K = O×
B . (2.3)

Then

M×Spec Z Spec C = [Γ\D]. (2.4)

Note that Γ acts on D through its image Γ̄ = Γ/{±1} in PGL2(R), with finite stabilizer groups.
Instead of considering [Γ\D] as an algebraic stack, it is more traditional to view this quotient as
an orbifold [20]. Intuitively speaking, this means that the quotient of D by the action of Γ is not
carried out, but rather, all information obtained from the action of Γ on D is stored. As a particular
instance, consider the hyperbolic volume form µ on D, normalized as

µ =
1
2π

y−2 dx ∧ dy, (2.5)

in standard coordinates on C \ R. Since this volume form is Γ–invariant, it induces a volume form
on the orbifold [Γ\D] = M(C). The volume of the orbifold M(C) is given by

vol(M(C)) =
∫

[Γ\D]
µ =

1
2

∫

Γ\D
µ, (2.6)

where the extra factor of 1
2 in the second expression is due to the fact that the stablizer in Γ of a

generic point of D, has order 2. Explicitly, we have, [13],

vol(M(C)) =
1
12

∏

p|D(B)

(p − 1) = − ζD(B)(−1), (2.7)

where
ζD(s) = ζ(s)

∏

p|D
(1 − p−s).

We now turn to p–adic uniformization, [12], [6], [32]. We fix a prime p | D(B). Let B′ be the
definite quaternion algebra over Q whose invariants agree with those of B at all primes � �= p, ∞.
Let H ′ = B′ × considered as an algebraic group over Q. We fix identifications H ′(Ap

f ) � H(Ap
f ) and

H ′(Qp) = GL2(Qp). Let Ω̂2 be the Deligne-Drinfeld formal scheme relative to GL2(Qp). Then

M×Spec Z Spec W (F̄p) �
[
H ′(Q)\

(
Ω̂2 ×Spf Zp SpfW (F̄p)

)
× Z × H ′(Ap

f )/K ′ p
]
. (2.8)

Here K ′ p corresponds to (OB ⊗ Ẑp)× under the identification of H(Ap
f ) with H ′(Ap

f ), and g ∈ H ′(Q)
acts on the Z factor by shifting by ordp(det(g)). Again, this formula can be simplified since H ′(Q)Kp

f

maps surjectively onto Z × H ′(Ap
f ). Let

H ′(Q)1 = { g ∈ H ′(Q) | ordp(det(g)) = 0 }. (2.9)

Put Γ′ = H ′(Q)1 ∩ Kp
f . Then

M×Spec Z Spec W (F̄p) �
[

Γ′\Ω̂2 ×Spec Zp Spec W (F̄p)
]
, (2.10)

8
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where, again the right hand side is considered as (the algebraization of) a formal Deligne-Mumford
stack. The group Γ′ acts through Γ̄′ = Γ′/{±1} ⊂ PGL2(Qp) with finite stabilizer groups.

3. The Hodge bundle

We denote by (A, ι) the universal abelian scheme over M and by ε : M → A, its zero section. The
Hodge line bundle on M is the following line bundle,

ω = ε∗(Ω2
A/M) = ∧2Lie(A/M)∗. (3.1)

For convenience, we will refer to ω as the Hodge bundle.

Remark 3.1. Assume that (B, OB) = (M2(Q), M2(Z)). In this case, M may be identified with the
moduli stack of elliptic curves, and the universal object A with (E2, ι0) where E is the universal
elliptic curve and ι0 : M2(Z) → End(E2) = M2(End(E)) is the natural embedding. In this case,
Lie(A/M) = Lie(E/M)⊕2 and hence

ω = ω⊗2
E/M. (3.2)

Here ωE/M = Lie(E/M)∗. Recall [11], VI.4.5, that ω⊗2
E/M can be identified with the module of

relative differentials of M/Spec Z. The following proposition generalizes this fact.

Proposition 3.2. The Hodge bundle ω is isomorphic to the relative dualizing sheaf ωM/Z.

Proof. Since the fibers of M over Spec Z are Gorenstein, ωM/Z is an invertible sheaf. Since M is reg-
ular of dimension 2, it suffices to show that the restrictions of ω to the smooth locus Msmooth is iso-
morphic to the restriction of ωM/Z to Msmooth, i.e., to the sheaf of relative differentials Ω1

Msmooth/Z
.

By deformation theory we have a canonical identification

Ω1
Msmooth/Z

= HomOB
(LieA, (Lie(Â)∗) , (3.3)

where (A, ι) is, as before, the universal object over M and where Â denotes the dual abelian variety.
This formula shows that it suffices to check the claimed equality after passing to the completion

Zp for each prime p. For any prime p � D(B) our identification problem reduces to the situation
considered in Remark 3.1. Hence, all we need to do is to extend to Msmooth the isomorphism between
ω and Ω1

M/Spec over M[D(B)−1]. Fix a prime number p | D(B). Denote by R the involution on OB

α 
−→ αR = δ αι δ−1, (3.4)

where δ ∈ OB satisfies δ2 = D(B), and where α 
→ αι is the main involution on B. After choosing
a p–principal polarization on A whose Rosati involution induces the involution R on OB, we may
identify (Lie Â)∗ with (LieA)∗, in such a way that α ∈ OB acts on (LieA)∗ as (αR)∗. We write

OBp = Zp2 [Π]/(Π2 = p, Πa = aσΠ, ∀a ∈ Zp2) . (3.5)

Here Zp2 is the ring of integers in the unramified quadratic extension of Zp. We may assume that
the restriction of R to Zp2 is trivial and that ΠR = −Π. After extending scalars from Z to Zp2 , we
have the eigenspace decomposition of LieA as

LieA = L0 ⊕ L1 , (3.6)

such that the action of Π on LieA is of degree 1 with respect to this Z/2-grading. The condition
(1.1) ensures that L0 and L1 are both line bundles. It now follows, via (3.3) and (3.6), that the local
sections of Ω1

M/Z
are given by local homomorphisms ϕi : Li → L∗

i (i = 0, 1) forming a commutative

9
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diagram

L0
ϕ0−→ L∗

0

Π0


�


�−Π∗

1

L1
ϕ1−→ L∗

1

Π1


�


�−Π∗

0

L0
ϕ0−→ L∗

0

(3.7)

The pair (ϕ0, ϕ1) therefore defines an injective homomorphism

α : Ω1
M/Z

−→ L⊗(−2)
0 ⊕ L⊗(−2)

1 ⊂ (LieA)∗ ⊗ (LieA). (3.8)

On the generic fiber, L⊗(−2)
0 and L⊗(−2)

1 both coincide with ω and α induces an isomorphism of
Ω1
M/Z

with the diagonal. On the smooth locus either Π0 or Π1 is an isomorphism locally around
any given point. Assume for instance that Π0 is an isomorphism. Then ϕ0 determines ϕ1 by the
commutativity of the upper square in (3.7),

ϕ1 = (−Π∗
1) ◦ ϕ0 ◦ Π−1

0 . (3.9)

But then also the lower square commutes. Since Π0 is an isomorphism, it suffices to check this after
premultiplying ϕ1 with Π0. But

(−Π∗
0) ◦ ϕ1 ◦ Π0 = (−Π∗

0) ◦ (−Π∗
1) ◦ ϕ0 = ϕ0 ◦ Π1 ◦ Π0 . (3.10)

It follows that on the open sublocus of Msmooth where Π0 is an isomorphism, the first projection
applied to (3.8) induces an isomorphism between Ω1

M/Z
and L⊗(−2)

0 . On the other hand on this open

sublocus, ω can be identified with L⊗(−2)
0 , which proves the claim.

By base change to C, the Hodge bundle induces a line bundle ωC on MC = [Γ\D]. In the orbifold
picture, we may view ωC as being given by a descent datum with respect to the action of Γ on the
pullback of ωC to D. At a point z of MC, a section α of ωC corresponds a holomorphic 2 form on
Az, and so there is a natural norm [3] on ωC given by:

||αz||2nat =
∣
∣
∣
∣

(
i

2π

)2 ∫

Az(C)
α ∧ ᾱ

∣
∣
∣
∣. (3.11)

Equivalently, ωC is given by the automorphy factor (cz + d)2, i.e., by the action of Γ on D × C

defined by

γ =
(

a b
c d

)
: (z, ζ) 
→ (γ(z), (cz + d)2ζ ). (3.12)

More precisely, for z ∈ D � C \ R, we have an isomorphism

BR � M2(R) ∼−→ C2, u 
→ u ·
(

z
1

)
=

(
w1

w2

)
, (3.13)

and the corresponding abelian variety Az has Az(C) = C2/Λz, where Λz is the image of OB in C2.
The pullback of ωC to D is trivialized via the section α = dw1 ∧ dw2. The Petersson norm, || ||Pet

on the bundle of modular forms of weight 2, is defined by the Γ-invariant norm on the trivial line
bundle D × C given by

||(z, ζ)||2Pet = |ζ|2 (4πIm(z))2. (3.14)

If f is such a modular form, then we identify f with the section, [7], pp141–2,

α(f) = f(z) (2πi dw1 ∧ 2πi dw2) = −4π2f(z)α.

10
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Lemma 3.3. The two norms on ωC are related by

|| ||2nat = D(B)2 || ||2Pet.

Proof. The pullback to M2(R) of the form α ∧ ᾱ = dw1 ∧ dw2 ∧ dw̄1 ∧ dw̄2 above is 4 Im(z)2 times
the standard volume form, and so, via (3.11),

||α||2nat =
1

4π2
· 4 Im(z)2 vol(M2(R)/OB). (3.15)

Then

||α(f)||2nat = 16π4 |f(z)|2 · D(B)2

π2
Im(z)2.

Definition 3.4. The metrized Hodge bundle ω̂ is ω equipped with the metric

|| || = e−C || ||nat,

where

C =
1
2
(

log(4π) + γ
)
.

Here γ is Euler’s constant.

The motivation for this normalization is explained in the introduction.
The Chern form c1(ω̂) for this metric is then

c1(ω̂) = −ddc log ||α||2 = µ (3.16)

with µ as in (2.5), and so

deg(ω̂) =
∫

[Γ\D]
c1(ω̂) = vol(M(C)). (3.17)

4. The arithmetic Picard group and the arithmetic Chow group

From now on, we assume that D(B) > 1, so that B is a division algebra and M is proper over
Spec Z. If we had imposed a sufficient level structure, then M would be an arithmetic surface over
Spec Z, [18], [3], etc. Then the Chow groups (tensored with Q) CHr(M) and arithmetic Chow

groups ĈH
r
(M) would be defined, with ĈH

1
(M) � P̂ic(M), the group of isomorphism classes of

metrized line bundles, and these would be equipped with a height pairing

〈 , 〉 : ĈH
1
(M) × ĈH

1
(M) −→ ĈH

2
(M) (4.1)

and the arithmetic degree

d̂eg : ĈH
2
(M) −→ C. (4.2)

In this section, we explain how to carry over (parts of) this formalism to our DM–stack M.

We begin with P̂ic(M). There are two ways to define the concept of a metrized line bundle on
M. First, one can define such an object to be a rule which associates, functorially, to any S–valued
point S → M of M, a line bundle LS on S equipped with a C∞–metric on the line bundle LS,C on
S ×Spec Z Spec C. Second, one can define a metrized line bundle on M to be an invertible sheaf on
M together with a Γ–invariant metric on the pullback of LC to D under the identification of MC

with the orbifold [Γ\D]. These definitions are equivalent. As usual, we denote the set of isomorphism
classes of metrized line bundles on M by P̂ic(M). This is an abelian group under the tensor product
operation.

11
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Let L̂ = (L, || · ||) be a metrized line bundle on M. Then L̂ determines a height of a one
dimensional irreducible reduced proper DM–stack Z mapping to M. To define it , we are guided
by the heuristic principle that, in a numerical formula, a geometric point x of a stack counts with
fractional multiplicity 1/|Aut(x)|. Let Z̃ be the normalization and ν : Z̃ → M be the natural
morphism.

If Γ(Z̃,OZ̃) = OK for a number field K, then

hL̂(Z) = d̂eg ν∗(L̂) (4.3)

Here the right hand side is defined by setting, for a meromorphic section s of ν∗(L),

d̂eg ν∗(L̂) =
∑

p

( ∑

x∈Z̃(F̄p)

ordx(s)
|Aut(x)|

)
· log p − 1

2

∫

Z̃(C)
log ‖s‖2. (4.4)

Here the integral is defined as
∫

Z̃(C)
log ‖s‖2 =

∑

z∈Z̃(C)

1
|Aut(z)| · log ‖s(z)‖2. (4.5)

Also ordx(s) is defined by noting that the strict henselization ÕZ̃,x of the local ring OZ̃,x is a discrete
valuation ring. Let us check that the expression (4.4) is independent of the choice of s. This comes
down to checking for a function f ∈ Q(Z̃)× = K× that

0 =
∑

p

( ∑

x∈Z̃(F̄p)

ordx(f)
|Aut(x)|

)
· log p − 1

2

∑

σ:K→C

1
|Aut(σ)| · log |σ(f)|2 (4.6)

For x ∈ Z̃(F̄p), let x be the corresponding geometric point of the coarse moduli scheme Z = Spec OK

of Z̃. Then

ÕZ,x = (ÕZ̃,x)Aut(x)/Aut(η̄) (4.7)

where η̄ is any generic geometric point of Z̃, and ÕZ̃,x is a totally ramified extension of degree
|Aut(x)|/|Aut(η̄)| of ÕZ,x. Inserting this into (4.6), we obtain for the right hand side the expression

1
|Aut(η̄)|

( ∑

p

∑

x∈(Spec OK)(F̄p)

ordx(f) · log p −
∑

σ

log |σ(f)|
)

(4.8)

which is zero by the product formula for f ∈ K×.
If Γ(Z̃,OZ̃) = Fq, we put

hL̂(Z) = deg ν∗(L) · log q =
( ∑

x∈Z̃(F̄p)

ordx(s)
|Aut(x)|

)
· log p, (4.9)

where s is a meromorphic section of ν∗(L). Here deg ν∗(L) coincides with the definition given in
[11], V.4.3.

Next we need to define the (arithmetic) Chow group of M. By a prime divisor on M we mean
a closed substack Z of M which is locally for the étale topology a Cartier divisor defined by an
irreducible equation. Let Z1(M) be the free abelian group generated by the prime divisors on M.
Any rational function f ∈ Q(M)× (i.e. a morphism U → A1 defined on a non-empty open substack
U of M) defines a principal divisor

div(f) =
∑

Z
ordZ(f) · Z , (4.10)

12
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where the sum is over the prime divisors Z of M, and where we note that the strict henselization
of the local ring at Z, ÕM,Z , is a discrete valuation ring. The factor group of Z1(M) by the group
of principal divisors is the Chow group CH1(M), comp. [44].

Let Z ∈ Z1(M). Then the divisor ZC of MC = [Γ\D] is of the form ZC = [Γ\DZ ] for a unique
Γ-invariant divisor DZ of D. By a Green’s function for Z we mean a real current g of degree 0 on
D which is Γ-invariant and such that

ω = ddcg + δDZ (4.11)

is C∞. We denote by Ẑ1(M) the group of Arakelov divisors, i.e., of pairs (Z, g) consisting of a
divisor Z on M and a Green’s function for Z, with componentwise addition. If f ∈ Q(M)×, then
f |MC corresponds to a Γ-invariant meromorphic function f̃C on D and we define the associated
principal Arakelov divisor

d̂iv(f) = ( div(f),− log |f̃C|2 ) . (4.12)

The factor group of Ẑ1(M) by the group of principal Arakelov divisors is the arithmetic Chow

group ĈH
1
(M). The groups ĈH

1
(M) and P̂ic(M) are isomorphic. Under this isomorphism, an

element L̂ goes to the class of
( ∑

Z
ordZ(s)Z, − log ‖s‖2

)
, (4.13)

where s is a meromorphic section of L. Conversely, if (Z, g) ∈ Z1(M), then its preimage under this
isomorphism is

(O(Z), ‖ ‖) , (4.14)

where − log ‖1‖2 = g, with 1 the canonical Γ-invariant section of the pullback of Ô(Z) to D.

We define a pairing

〈 , 〉 : Ẑ1(M) × P̂ic(M) −→ C (4.15)

by formula (5.11) in Bost [3],

〈 (Z, g), L̂ 〉 = hL̂(Z) +
1
2

∫

[Γ\D]
g · c1(L̂). (4.16)

Here c1(L̂) is the Γ-invariant form on D defined by the pullback to D of L̂ (analogously to c1(ω̂) in
section 3 above). The integral is defined as

∫

[Γ′\D]
g · c1(L̂) = |Γ′|−1 ·

∫

Γ\D
g · c1(L̂), (4.17)

where Γ′ = ker(Γ → Aut(D)).

It seems very likely that under the identification ĈH
1
(M) � P̂ic(M), the pairing (4.15) descends

to a symmetric bilinear pairing

〈 , 〉 : ĈH
1
(M) × ĈH

1
(M) −→ C , (4.18)

as is the case for arithmetic surfaces. For ease of expression we will proceed as if this were the case,
although we have not checked it. Since all we will actually use is the pairing (4.15), this will cause
no harm.
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5. Special cycles and the generating function

In this section, we will define for each m ∈ Z and each v ∈ R×
+ a class

Ẑ(m, v) = (Z(m),Ξ(m, v)) ∈ ĈH
1
(M). (5.1)

We first assume that m > 0. Then we consider the DM–stack Z(m) classifying triples (A, ι, x)
where (A, ι) is an object of M and where x is a special endomorphism, [25],[32], with x2 = −m, i.e.,

x ∈ End(A, ι), tro(x) = 0, x2 = −m. (5.2)

Then Z(m) maps to M by a finite unramified morphism. Furthermore, Z(m) is purely one dimen-
sional, except in the following cases, [32] and the Appendix to section 11,

∃ p | D(B), p �= 2, such that m ∈ Z×,2
p . (5.3)

In the cases covered by (5.3), we set Ẑ(m, v) = 0. In all other cases, we define a Green’s function
for the unramified morphism Z(m) → M, in the sense of section 4, as follows ([25]). Let

V = {x ∈ B | tro(x) = 0 } (5.4)

with quadratic form Q(x) = −x2 = No(x) given by the restriction of the reduced norm and with
associated inner product (x, y) = tro(xyι). Note that the signature of V (R) is (1, 2). As in [25], we
can identify D with the space of oriented negative 2-planes in V (R). For x ∈ V (R) and z ∈ D, let
prz(x) be the projection of x to z and let

R(x, z) = −(prz(x),prz(x)) � 0. (5.5)

This quantity vanishes precisely when prz(x) = 0, i.e., when z ∈ Dx where

Dx = { z ∈ D | (x, z) = 0 }. (5.6)

Let L = V (Q) ∩ OB, and let

L(m) = { x ∈ L | Q(x) = m }. (5.7)

Then, for m ∈ Z
=0, and v ∈ R×
+, let

Ξ(m, v) =
∑

x∈L(m)

ξ(v
1
2 x, z) (5.8)

where

ξ(x, z) = −Ei(−2πR(x, z)) (5.9)

for the exponential integral

−Ei(−t) =
∫ ∞

1
e−tr r−1 dr. (5.10)

The properties of this function are described in [25], section 11. For m > 0, Ξ(m, v) is a Γ–invariant
Green’s function for the divisor

DZ(m) :=
∐

x∈L(m)

Dx (5.11)

in D.
When m < 0, Ξ(m, v) is a smooth Γ–invariant function on D. Therefore,

Ẑ(m, v) = (0,Ξ(m, v)), m < 0 (5.12)

again defines an element of ĈH
1
(M).
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For m = 0, the definition of Ẑ(0, v) is more speculative. Using the canonical map from P̂ic(M)

to ĈH
1
(M), we let

Ẑ(0, v) = −ω̂ − (0, log v) + (0, c), (5.13)

where the constant c has the value given in (0.15) of the introduction.

We now have defined elements Ẑ(m, v) ∈ ĈH
1
(M) for all m ∈ Z and v ∈ R×

+. We define the
following two generating series, which are formal Laurent series in a parameter q. Later we will take
q = e(τ) = e2πiτ , where τ = u + iv ∈ H.

The first generating function involves only the orbifold M(C) = [Γ\D]. Let

ω(m, v) = ddcΞ(m, v) + δDZ(m)
(5.14)

be the right hand side of the Green’s equation for Ξ(m, v). Then let

deg(Ẑ(m, v)) =
∫

[Γ\D]
ω(m, v). (5.15)

If m > 0, then deg(Ẑ(m, v)) is just the usual degree of the 0–cycle Z(m)C (in the stack sense). If
m < 0, then deg(Ẑ(m, v)) = 0, since Ξ(m, v) is smooth in this case so that ω(m, v) is exact. For
m = 0, we take ω(0, v) to be the Chern form of −ω̂, i.e., −µ, and hence

deg(Ẑ(0, v)) :=
∫

[Γ\D]
ω(0, v) = − vol(M(C)). (5.16)

The generating function for degrees is then

φdeg(τ) : =
∑

m

deg(Ẑ(m, v)) qm (5.17)

= − vol(M(C)) +
∑

m>0

deg(Z(m)C) qm.

For the second generating function, we use the height pairing (4.15) of our cycles with the class
ω̂ ∈ P̂ic(M), and let

φheight(τ) =
∑

m

〈 Ẑ(m, v), ω̂ 〉 qm. (5.18)

For the moment, we regard φdeg(τ) (resp. φheight(τ) ) as a formal generating series, but our main
theorem will identify it as a bona fide holomorphic (resp. non-holomorphic) function of the variable
τ by identifying it with the Fourier expansion of a special value of an Eisenstein series (resp. of the
derivative of an Eisenstein series).

Part II. Eisenstein series

6. Eisenstein series of weight 3/2

In this section, we introduce the Eisenstein series of half–integral weight which will be connected
with the arithmetic geometry discussed in Part I. A more general discussion of such series from
an adelic point of view can be found in [25]. The series we consider are, of course, rather familiar
from a classical point of view, and an expression for them in this language will emerge in section 8
and 15 below. Thus, one purpose of the present section is to explain how such classical series are
associated to indefinite quaternion algebras in a natural way, via the Weil representation. A second
advantage of the adelic viewpoint is that it allows one to assemble the Fourier coefficients out of
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local quantities. This construction shows in a very clear way the dependence of these coefficients,
and more importantly, of their derivatives on the choice of local data.

Let G′
A

be the metaplectic extension of Sp1(A) = SL2(A) by C1, and let P ′
A

be the preimage of
the subgroup N(A)M(A) of SL2(A) where

N(A) = {n(b) =
(

1 b
0 1

)
| b ∈ A} (6.1)

and

M(A) = {m(a) =
(

a 0
0 a−1

)
| a ∈ A×}. (6.2)

As in [45] we have an identification G′
A
� SL2(A)×C1 where the multiplication on the right is given

by [g1, z1][g2, z2] = [g1g2, c(g1, g2)z1z2] with cocycle c(g1, g2) as in [45] or [17]. Let G′
Q

= SL2(Q),
identified with a subgroup of G′

A
via the canonical splitting homomorphism G′

Q
→ G′

A
, and let

P ′
Q

= P ′
A
∩ G′

Q
. An idèle character χ of Q×\A×, determines a character χψ of P ′

Q
\P ′

A
via

χψ([n(b)m(a), z]) = z χ(a) γ(a, ψ)−1, (6.3)

where ψ is our fixed additive character of Q\A and γ(a, ψ) is the Weil index ([46] or [40], appendix).
For s ∈ C, let

I(s, χ) = IndG′
A

P ′
A
χψ| |s (6.4)

be the principal series representation of G′
A

determined by χψ. A section Φ(s) ∈ I(s, χ) is thus a
smooth function on G′

A
such that

Φ(p′g′, s) = χψ(p′) |a|s+1Φ(g′, s). (6.5)

where p′ = [n(b)m(a), z]. Such a section is called standard if its restriction to the maximal compact
subgroup K ′ ⊂ G′

A
is independent of s and factorizable if Φ(s) = ⊗pΦp(s) for the decomposition

of the induced representation I(s, χ) = ⊗′
pIp(s, χp). Here, for each prime p, Ip(s, χp) is the corre-

sponding induced representation of G′
p, the metaplectic extension of SL2(Qp). The Eisenstein series

associated to a standard section Φ(s) ∈ I(s, χ) is given by

E(g′, s,Φ) =
∑

γ∈P ′
Q\G′

Q

Φ(γg′, s). (6.6)

This series is absolutely convergent for Re(s) > 1 and has a meromorphic continuation to the whole
complex s-plane. Note that this series is normalized so that it has a functional equation

E(g′,−s, M(s)Φ) = E(g′, s,Φ), (6.7)

where M(s) : I(s, χ) → I(−s, χ−1) is the intertwining operator. It has a Fourier expansion

E(g′, s,Φ) =
∑

m∈Q

Em(g′, s,Φ) (6.8)

where, in the half-plane of absolute convergence,

Em(g′, s,Φ) =
∫

Q\A

E(n(b)g′, s,Φ) ψ(−mb) db, (6.9)

for db the self-dual measure on A with respect to ψ. When m �= 0 and Φ(s) = ⊗pΦp(s) is factorizable,
the mth Fourier coefficient has a product expansion

Em(g′, s,Φ) =
∏

p�∞
Wm,p(g′p, s,Φp), (6.10)
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where

Wm,p(g′p, s,Φp) =
∫

Qp

Φp(wn(b)g′p, s)ψ(−mb) db (6.11)

is the local Whittaker function, and w =
(

0 −1
1 0

)
∈ G′

Q
. Here db is the self dual measure on Qp

for ψp. On the other hand, the constant term is

E0(g′, s,Φ) = Φ(g′, s) +
∏

p�∞
W0,p(g′p, s,Φ). (6.12)

Recall that the poles of the Eisenstein series are precisely those of its constant term.
In this paper, we will only be concerned with the case of a quadratic character χ given by

χ(x) = (x, κ)A for κ ∈ Q×, where ( , )A denotes the global quadratic Hilbert symbol, so we will
omit χ from the notation and write I(s) = ⊗′

pIp(s) for the induced representation, etc. We now
begin to make specific choices of the local sections Φp(s).

As before, let B be an indefinite quaternion algebra over Q with a fixed maximal order OB.
Once again, the case B = M2(Q) and OB = M2(Z) will be allowed. Let

V = { x ∈ B | tro(x) = 0 } (6.13)

with quadratic form defined by Q(x) = −x2, and let L = OB ∩ V . Note that the determinant of
the quadratic space (V, Q), i.e., det(S) where S is the matrix for the quadratic form, is a square.
Therefore, the discriminant −det(S) is −1 and the quadratic character χV associated to V is given
by χV (x) = (x,−1)A. We therefore take χ = χV and κ = −1 in this case.

The group G′
A

(resp. G′
p) acts on the Schwartz space S(V (A)) (resp. S(Vp) ) via the Weil

representation ω (resp. ωp) determined by ψ (resp. ψp).
For a finite prime p, let Φp(s) ∈ Ip(s) be the standard section extending λp(ϕp), where

λp : S(Vp) → Ip(
1
2
), λp(ϕp)(g′) =

(
ω(g′)ϕp

)
(0) (6.14)

is the usual map and ϕp ∈ S(Vp) is the characteristic function of Lp = L ⊗Z Zp.
Let K ′

∞ be the inverse image in G′
A

of SO(2) ⊂ SL2(R). For � ∈ 1
2Z, there is a character ν	 of

K ′
∞ such that

ν	([kθ, 1])2 = e2iθ	. (6.15)

For � ∈ 3
2 + 2Z, there is a unique standard section Φ	

∞(s) ∈ I∞(s) with

Φ	
∞(k, s) = ν	(k), (6.16)

for k ∈ K ′
∞.

Let

Φ	,D(B)(s) = Φ	
∞(s) ⊗

(
⊗p Φp(s)

)
(6.17)

be the associated global standard section. A little more generally, for a finite prime p, let Φ+
p (s)

be the standard section arising from the maximal order M2(Zp) in M2(Qp) and let Φ−
p (s) be the

standard section arising from the maximal order in the division quaternion algebra over Qp. Then
for any square free positive integer D, we have a global section

Φ	,D(s) = Φ	
∞(s) ⊗

(
⊗p Φε(Dp)

p (s)
)

, (6.18)

where ε(Dp) = (−1)ordp(D).
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Since, by strong approximation, G′
A

= G′
Q
G′

R
K0 for any open subgroup K0 of G′

Af
, we loose

no information by restricting automorphic forms to G′
R
, the inverse image of SL2(R) in G′

A
. For

τ = u + iv ∈ H, let

g′τ = [n(u)m(v
1
2 ), 1 ] ∈ G′

∞ ⊂ G′
A. (6.19)

Then, if Φ(s) is a standard factorizable section with Φ∞(s) = Φ	
∞(s), we set

E(τ, s,Φ) = v−
�
2 E(g′τ , s,Φ), (6.20)

and, by (6.10), we have

Em(τ, s,Φ) = v−
�
2 Wm,∞(g′τ , s,Φ

	
∞) ·

∏

p

Wm,p(s,Φp), (6.21)

for m �= 0, and

E0(τ, s,Φ) = v
1
2
(s+1−	) · Φf (e) + v−

�
2 W0,∞(g′τ , s,Φ

	
∞)

∏

p

W0,p(s,Φp). (6.22)

The main series of interest to us will be E(τ, s,Φ	,D), associated to the standard section Φ	,D(s)
of (6.18). This series has weight �, where � = 3

2 , 7
2 , 11

2 , . . . . Note that the character χ is given by
χ(x) = (x,−1)A in this case. A second family E(τ, s,Φ	,D), with � = 1

2 , 5
2 , 9

2 , . . . etc. is obtained
by the same construction applied to the quadratic space (V, Q−) where Q−(x) = x2. In this case,
κ = 1 and χ is trivial. These cases will be discussed in more detail in [36]. In the present paper, we
will only be concerned with the case � = 3

2 , and so, from now on, we take κ = −1.
In the next section, we will give a geometric interpretation of the first two terms of the Laurent

expansion of the series E(τ, s,Φ
3
2
,D(B)) at the point s = 1

2 . For this it will be convenient to normalize
the series as follows. For any square free positive integer D, let

E(τ, s;D) := (s +
1
2
) c(D) ΛD(2s + 1)E(τ, s,Φ

3
2
,D), (6.23)

where

ΛD(2s + 1) =
(

D

π

)s+ 1
2

Γ(s +
1
2
) ζ(2s + 1) ·

∏

p|D
(1 − p−2s−1), (6.24)

and

c(D) = −(−1)ord(D) 1
2π

D
∏

p|D
(p + 1)−1, (6.25)

where ord(D) =
∑

p ordp(D). Note that at the point s = 1
2 , of interest to us, the normalizing factor

has value

c(D) ΛD(2) = −(−1)ord(D) 1
12

∏

p|D
(p − 1). (6.26)

Then, in the case D = D(B), and recalling (2.7),

c(D) ΛD(2) = − vol(M(C)). (6.27)

This expression explains the choice of c(D). In addition, the normalized Eisenstein series satisfies
the simple functional equation, cf. section 15,

E(τ, s;D) = E(τ,−s;D). (6.28)
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Finally, we restrict to the case D = D(B) > 1 and introduce the modified Eisenstein series

E(τ, s;D(B)) := E(τ, s;D(B)) +
∑

p|D
cp(s) E(τ, s;D(B)/p), (6.29)

where cp(s) is any rational function of p−s satisfying

cp(
1
2
) = 0, and c′p(

1
2
) = −p − 1

p + 1
log(p). (6.30)

To retain the functional equation (6.28) one should also require that cp(s) = cp(−s), although we will
not use this. The motivation for the definition of E(τ, s,D(B)) comes from geometric considerations
which will emerge below. Note that

E(τ,
1
2
;D(B)) = E(τ,

1
2
;D(B)), (6.31)

and

E ′(τ,
1
2
;D(B)) = E′(τ,

1
2
;D(B)) +

∑

p|D
c′p(

1
2
) · E(τ,

1
2
;D(B)/p). (6.32)

7. The main identities

In this section, we state our main results on the generating functions

φdeg(τ) = −vol(M(C)) +
∑

m>0

deg(Z(m)C) qm (7.1)

and

φheight(τ) =
∑

m

〈 Ẑ(m, v), ω̂ 〉 qm (7.2)

introduced in section 5.
The following result is actually well known, cf., for example, [16]. We state it here to bring out

the analogy with Theorem 7.2.

Proposition 7.1. For any indefinite quaternion division algebra B over Q with associated moduli
stack M, as in section 1–5 above, the generating function for the degrees of the special cycles
coincides with the value at s = 1

2 of the Eisenstein series E(τ, s;D(B)) of weight 3
2 :

φdeg(τ) = E(τ,
1
2
;D(B)).

Theorem 7.2. Under the same assumptions, the generating series for heights of the special cycles
coincides with the derivative at s = 1

2 of the Eisenstein series E(τ, s;D(B)) of weight 3
2 :

φheight(τ) = E ′(τ,
1
2
;D(B)).

These identities are to be understood as follows. We write the Fourier expansion of the modified
Eisenstein series as

E(τ, s;D(B)) =
∑

m

Am(s, v) qm, (7.3)

so that the Fourier expansions of the value and derivative at s = 1
2 are

E(τ,
1
2
;D(B)) =

∑

m

Am(
1
2
, v) qm, (7.4)
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and

E ′(τ,
1
2
;D(B)) =

∑

m

A′
m(

1
2
, v) qm. (7.5)

Proposition 7.1 then says that

Am(
1
2
, v) =






deg(Z(m)C) if m > 0,

− vol(M(C)) if m = 0,

0 if m < 0.

(7.6)

Analogously, Theorem 7.2 says that

A′
m(

1
2
, v) = 〈 Ẑ(m, v), ω̂ 〉 . (7.7)

As already explained in the introduction, Theorem 7.2 is proved by an explicit computation of
both sides of (7.7). For the left hand side, this will be done in the next section. The right hand side
will be computed in sections 9–12.

8. Fourier expansions and derivatives

In this section, we describe the first two terms of the Laurent expansion of the Eisenstein series
E(τ, s;D(B)) at the point s = 1

2 . By (6.21) and (6.22), the essential point is to describe the behaviour
of the local Whittaker functions Wm,p(s,ΦD

p ) and

Wm,∞(τ, s,Φ
3
2∞) := v−

3
4 Wm,∞(g′τ , s,Φ

3
2∞). (8.1)

The calculations of this section will be elementary manipulations based on results about these
Whittaker functions quoted from Part IV below.

In what follows, for a nonzero integer m, we write

4m = n2d , (8.2)

where −d is a fundamental discriminant, i.e., discriminant of the field k = kd = Q(
√
−m). Note

that if 4m = −n2, then k = Q ⊕ Q. Let χd be the corresponding Dirichlet character, so that

χd(p) =






1 if p is split in kd,
−1 if p is inert in kd,

0 if p is ramified in kd.

(8.3)

For a given m and for a square free positive integer D, define a modification of the standard
Dirichlet L-series L(s, χd) by

L(s, χm;D) := L(s, χd)
∏

p|nD

bp(n, s;D) , (8.4)

where bp(n, s;D) is defined as follows. Set

k = kp(n) = ordp(n) (8.5)

and X = p−s. Then for p � D

bp(n, s;D) =
1 − χd(p)X + χd(p) pkX(1+2k) − (pX2)k+1

1 − pX2
, (8.6)
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and, for p | D,

bp(n, s;D) (8.7)

=
(1 − χ X)(1 − p2X2) − χ pk+1X2k+1 + pk+2X2k+2 + χ pk+1X2k+3 − p2k+2X2k+4

1 − pX2
.

Here, for a moment, we write χ for χd(p). Depending on whether or not p | d we can rewrite (8.7)
as

bp(n, s;D) =
1 − p2X2 + pk+2X2k+2(1 − X2)

1 − pX2
, if p | d and p | D, (8.8)

and

bp(n, s;D) =
(1 − χ X)(1 − p2X2) − χ pk+1X2k+1(1 − χ pX)(1 − X2)

1 − pX2
, if p � d and p | D.

(8.9)

In all cases the local factor bp(n, s;D) is, in fact, a polynomial in X = p−s and is, hence, entire in
s. It satisfies the functional equation

|nD|−s
p bp(n, s;D) = |nD|s−1

p bp(n, 1 − s;D). (8.10)

One of the main results of section 13 is the following.

Proposition 8.1. For a fixed prime p,
(i) if m �= 0, then

Wm,p(s +
1
2
,ΦD

p ) = Lp(s + 1, χd) bp(n, s + 1;D) ·
{

C+
p · ζp(2s + 2)−1 if p � D,

C−
p if p | D.

where the constants C±
p are given by

C+
p =

{
1 if p �= 2,
1√
2
ζ−1
8 if p = 2,

and C−
p = −p−1C+

p . Here ζ8 = e(1
8).

(ii) If m = 0, then

W0,p(s +
1
2
,ΦD

p ) = ζp(2s) ·
{

C+
p · ζp(2s + 1)−1 if p � D,

C−
p · ζp(2s − 1)−1 if p | D.

From (6.21), (6.22), and these formulas, we obtain a nice description of the Fourier expansion
of E(τ, s;D).

Corollary 8.2. Let Cf (D) =
∏

p C
ε(D)
p .

(i) For m �= 0,

Em(τ, s;D) = Cf (D) · Wm,∞(τ, s,Φ
3
2∞) · L(s + 1

2 , χd)
ζD(2s + 1)

· (nD)−2s
∏

p

bp(n,
1
2
− s;D),

and

Em(τ, s;D) = c(D)Cf (D)
(

D

π

)s+ 1
2

Γ(s +
3
2
) · Wm,∞(τ, s,Φ

3
2∞)

× L(s +
1
2
, χd) · (nD)−2s

∏

p

bp(n,
1
2
− s;D).
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(ii) For m = 0,

E0(τ, s;D) = v
1
2
(s− 1

2
) + W0,∞(τ, s,Φ

3
2∞)Cf (D) · ζ(2s)

ζD(2s + 1)
·
∏

p|D

1
ζp(2s − 1)

,

and

E0(τ, s;D) = v
1
2
(s− 1

2
) (s +

1
2
) c(D) ΛD(2s + 1)

+ W0,∞(τ, s,Φ
3
2∞) c(D)Cf (D)

(
D

π

)s+ 1
2

Γ(s +
3
2
) · ζ(2s) ·

∏

p|D

1
ζp(2s − 1)

.

Here

c(D) Cf (D) = − 1√
2

ζ−1
8

1
2π

∏

p|D
(p + 1)−1. (8.11)

Using Corollary 8.2, we now compute the value of E(τ, s;D) at s = 1
2 . We start with the constant

term.
The following result is a special case of (iii) of Proposition 14.1 below.

Lemma 8.3.

W0,∞(τ, s,Φ
3
2∞) = 2π (−i)

3
2 v−

1
2
(s+ 1

2
) 2−s Γ(s)

Γ(α)Γ(β)
,

for α = 1
2(s + 5

2) and β = 1
2(s − 1

2). Here (−i)
3
2 = e(−3

8).

Since the zero of Γ(β)−1 at s = 1
2 cancels the pole of ζ(2s) there, the second term in E0(τ, s; D)

has a zero of order equal to the number of primes dividing D, and we obtain

Corollary 8.4. For D > 1, the constant term at s = 1
2 is

E0(τ,
1
2
;D) = c(D) ΛD(2) = −(−1)ord(D) 1

12

∏

p|D
(p − 1) = ζD(−1).

Next we consider the coefficients of E(τ, 1
2 ;D) for m �= 0.

If p � D, then by (8.6),

bp(n, 0;D) =
1 − χd(p) + χd(p) pk − pk+1

1 − p
. (8.12)

Note that, when χd(p) = 1, this simplifies to pk = |n|−1
p .

If p | D, then by (8.7)–(8.9),

bp(n, 0;D) = (1 − χd(p))(1 + p). (8.13)

Note that this quantity is actually independent of n, and that bp(n, 0;D) = 0 if and only if p | D
and χd(p) = 1.

The proof of the following identity is a simple combinatorial exercise, which we omit.

Lemma 8.5. (i) For p � D, and k = ordp(n),

bp(n, 0;D) =
∑

c|pk

c
∏

	|c
(1 − χd(�)�−1),
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where � runs over the prime factors of c and the product is taken to be 1 when c = 1.
(ii)

∏

p�D

bp(n, 0;D) =
∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1).

Here, again, � runs over the prime factors of c and the product is taken to be 1 when c = 1.

On the other hand, the following fact is a special case of (iv) of Proposition 14.1 below.

Lemma 8.6.

Wm,∞(τ,
1
2
,Φ

3
2∞) =

{
2 C∞ · m 1

2 qm if m > 0, and

0 otherwise,

where C∞ = (−2i)
3
2 π.

Combining these facts, we obtain the following results.
For m < 0, the vanishing of the archimedean factor yields:

Em(τ,
1
2
;D) = 0, when χd �= 1, or D > 1. (8.14)

For m > 0, (i) of Corollary 8.2 gives

Em(τ,
1
2
;D) = c(D)Cf (D)C∞ · D

π
· 2 m

1
2 qm · L(1, χd) (nD)−1

∏

p

bp(n, 0;D)

= c(D)Cf (D)C∞ · qm · 2 h(d)
w(d)

·
( ∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1)

)
(8.15)

×
( ∏

p|D
(1 − χd(p))(1 + p)

)

= qm · 2 h(d)
w(d)

·
( ∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1)

)
·
( ∏

p|D
(1 − χd(p))

)
.

Here, w(d) = |O×
k | is the number of roots of unity in the maximal order Ok of kd, h(d) is the class

number, and

c(D) Cf (D) C∞ =
∏

p|D
(p + 1)−1. (8.16)

For m > 0, let

H0(m;D) =
h(d)
w(d)

·
( ∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1)

)
, (8.17)

where, as before, in the product, � runs over the prime factors of c and the product is taken to be
1 when c = 1, and

δ(d;D) =
∏

p|D
(1 − χd(p)). (8.18)

Thus, we obtain the Fourier expansion of E(τ, 1
2 ;D).
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Proposition 8.7. For D > 1,

E(τ,
1
2
;D) = c(D) ΛD(2) +

∑

m>0

2 δ(d;D)H0(m;D) qm.

Here

c(D) ΛD(2) = −(−1)ord(D) 1
12

∏

p|D
(p − 1).

This Eisenstein series of weight 3
2 is a familiar object. Recall that, if Oc2d is the order in Ok of

conductor c, with class number h(c2d) and with w(c2d) = |O×
c2d

|, then [1], p.2502,

h(c2d)
w(c2d)

=
h(d)
w(d)

· c
∏

	|c
(1 − χd(�)�−1). (8.19)

Thus,

H0(m;D) =
∑

c|n
(c,D)=1

h(c2d)
w(c2d)

. (8.20)

For example, if D = 1, i.e., in the case of B = M2(Q),

H0(m; 1) =
∑

c|n

h(c2d)
w(c2d)

(8.21)

is quite close to3 the ‘class number’ H(m) which appears in the Fourier expansion

F(τ) = − 1
12

+
∑

m>0

H(m) qm +
∑

n∈Z

1
16π

v−
1
2

∫ ∞

1
e−4πn2vr r−

3
2 dr q−n2

, (8.22)

of Zagier’s nonholomorphic Eisenstein series of weight 3
2 , [8], [49]. In fact, when D = 1, we have

E(τ,
1
2
; 1) = − 1

12
+

∑

m>0

2 H0(m; 1) qm +
∑

n∈Z

1
8π

v−
1
2

∫ ∞

1
e−4πn2vr r−

3
2 dr · q−n2

. (8.23)

This case will be discussed in detail in the sequel [35].
Next we consider the derivative E ′(τ, 1

2 ;D) in the case D = D(B) > 1. In this case, the only
terms which contribute are the following:

(i) m > 0 and δ(d;D) �= 0,

(ii) m > 0 and there is a unique p | D(B) such that χd(p) = 1,

(iii) m < 0 and δ(d;D) �= 0, and

(iv) m = 0.

In cases (i) and (iv), Em(τ, 1
2 ;D) �= 0. In cases (ii) and (iii), Em(τ, s;D) has a simple zero at s = 1

2 due

to the vanishing of the local factor bp(n, 0;D) in case (ii) and the archimedean factor Wm,∞(τ, 1
2 ; Φ

3
2∞)

in case (iii). In all other cases, Em(τ, 1
2 ;D) has a zero of order at least 2 at s = 1

2 .

Theorem 8.8. Assume that D = D(B) > 1.

2The quantity ec there is |O×
d : O×

c2d
| = w(d)/w(c2d)

3Precisely, 2 H0(m; 1) = H(4m).
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(i) If m > 0 and there is no prime p | D for which χd(p) = 1, then

E ′
m(τ,

1
2
;D)

= 2 δ(d;D) H0(m;D) · qm ·
[

1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ

+
1
2
J(4πmv) +

∑

p
p�D

(
log |n|p −

b′p(n, 0;D)
bp(n, 0;D)

)
+

∑

p
p|D

Kp log(p)
]
.

Here

Kp =






−k + (p+1)(pk−1)
2(p−1) if χd(p) = −1, and

−1 − k + pk+1−1
p−1 if χd(p) = 0,

with k = ordp(n), and

J(t) =
∫ ∞

0
e−tr

[
(1 + r)

1
2 − 1

]
r−1 dr.

An explicit expression for the logarithmic derivative of bp(n, s;D) is given by (i) of Lemma 8.10,
and H0(m;D) and δ(d;D) are given by (8.17) and (8.18) respectively.
(ii) If there is a unique prime p | D such that χd(p) = 1, then with K = ordp(n),

E ′
m(τ,

1
2
;D) = 2 δ(d;D/p)H0(m;D) · (pk − 1) log(p) · qm.

(iii) If m < 0, then

E ′
m(τ,

1
2
;D) = 2 δ(d;D)H0(m;D) · qm · 1

4π
|m|− 1

2 v−
1
2

∫ ∞

1
e−4π|m|vrr−

3
2 dr,

where, for m < 0, H0(m;D) is defined by (8.29) below.
(iv)

E ′
0(τ,

1
2
;D) = c(D) ΛD(2)

[
1
2

log(v) − 2
ζ ′(−1)
ζ(−1)

− 1 + 2C +
∑

p|D

p log(p)
p − 1

]
.

(v) All other Fourier coefficients of E ′(τ, 1
2 ;D) vanish.

Proof. We begin with the Eisenstein series E(τ, s;D) for any D > 1.
First consider case (i), so that m > 0 and that there are no primes p | D with χd(p) = 1. Then,

using (i) of Corollary 8.2, we have

E′
m(τ,

1
2
;D) = Em(τ,

1
2
;D)

[
log(D)− log(π) + 1 − γ +

W ′
m,∞(τ, 1

2 ,Φ
3
2 )

Wm,∞(τ, 1
2 ,Φ

3
2 )

+
L′(1, χd)
L(1, χd)

− 2 log(nD) −
∑

p

b′p(n, 0;D)
bp(n, 0;D)

]

The following fact is proved in section 14.

Lemma 8.9. For m > 0,

W ′
m,∞(τ, 1

2 ,Φ
3
2 )

Wm,∞(τ, 1
2 ,Φ

3
2 )

=
1
2

[
log(πm) − Γ′(3

2)
Γ(3

2)
+ J(4πmv)

]
.
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Using this result and the fact that

Γ′(3
2)

Γ(3
2)

= 2 − γ − 2 log(2),

and recalling that 4m = n2d, we obtain

E′
m(τ,

1
2
;D) (8.24)

= Em(τ,
1
2
;D)

[
1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ +

1
2
J(4πmv)

+
∑

p
p�D

(
log |n|p −

b′p(n, 0;D)
bp(n, 0;D)

)

− log(D) +
∑

p
p|D

(
log |n|p −

b′p(n, 0;D)
bp(n, 0;D)

) ]
.

Next we note the explicit expressions for the logarithmic derivatives of the bp(n, s;D)’s which will
be useful later.

Lemma 8.10. (i) For a prime p � D,

1
log p

·
b′p(n, 0; D)
bp(n, 0; D)

=
χd(p) − χd(p) (2k + 1)pk + (2k + 2)pk+1

1 − χd(p) + χd(p) pk − pk+1
− 2p

1 − p

=






pk−1
pk(p−1)

− 2k if χd(p) = 1,

−2p(1−(k+1)pk+kpk+1)
(p−1)(pk+1−1)

if χd(p) = 0,

−1+3p−(2k+1)pk−3pk+1+2kpk+2

(p−1)(pk+1+pk−2)
if χd(p) = −1.

(ii) For a prime p | D with χd(p) �= 1,

1
log p

·
b′p(n, 0;D)
bp(n, 0;D)

=






−2p(pk+1−1)
p2−1

if χd(p) = 0,

−2(1+p)pk+1+p2−4p−1
2(p2−1)

if χd(p) = −1.

Here k = ordp(n).

In case (ii), m > 0 and there is a unique prime p | D such that χd(p) = 1. In this case, it is easy
to verify

b′p(n, 0;D) = (1 + p − 2pk+1) log p. (8.25)

Then, with the notation introduced above and using (8.13), we have

E′
m(τ,

1
2
;D) = −2 δ(d;D/p)H0(m;D) · qm · (p + 1)−1 · (1 + p − 2pk+1) log p. (8.26)

Recall that k = ordp(n).
Finally, in case (iii), we need another result to be proved in section 14.

Lemma 8.11. For m < 0:

W ′
m,∞(τ,

1
2
,Φ

3
2∞) = C∞ |m| 12 qm e−4π|m|v

∫ ∞

0
e−4π|m|vr(r + 1)−1 r

1
2 dr

= C∞ · 1
4

qm v−
1
2

∫ ∞

1
e−4π|m|vr r−

3
2 dr.
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Using the second expression of this Lemma and (i) of Corollary 8.2, we have, for m < 0,

E′
m(τ,

1
2
;D) = c(D)Cf (D) · D

π
· W ′

m,∞(τ,
1
2
,Φ

3
2 ) · L(1, χd) · (nD)−1

∏

p

bp(n, 0;D) (8.27)

= c(D)Cf (D)C∞ · 4 h(d) log |ε(d)|
w(d) |d| 12

· n−1

( ∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1)

)

×
( ∏

p|D
(1 − χd(p))(1 + p)

)

× qm 1
4π

v−
1
2

∫ ∞

1
e−4π|m|vr r−

3
2 dr.

where ε(d) is the fundamental unit of the real quadratic field kd = Q(
√
|d|). Using the value (8.16),

this can rewritten as

E′
m(τ,

1
2
;D) = 2H0(m;D) δ(d;D) · qm · 1

4π
|m|− 1

2 v−
1
2

∫ ∞

1
e−4π|m|vrr−

3
2 dr (8.28)

where

H0(m;D) =
h(d) log |ε(d)|

w(d)
·
( ∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1)

)
(8.29)

=
∑

c|n
(c,D)=1

h(c2d) · log |ε(c2d)|
w(c2d)

is the analogue of (8.17) and (8.20) in the case of a real quadratic field, i.e., for m < 0.
Finally, we consider the constant term using (ii) of Corollary 8.2 and noting that for D = D(B),

the second term there has a zero of order at least 2. This gives

E′
0(τ,

1
2
;D) = c(D) ΛD(2)

[
1
2

log(v) + 1 + 2
Λ′

D(2)
ΛD(2)

]
(8.30)

= c(D) ΛD(2)
[
1
2

log(v) + 1 + log(D) − log(π) − γ + 2
ζ ′(2)
ζ(2)

+ 2
∑

p|D

log(p)
p2 − 1

]
.

Now we return to the modified Eisenstein series

E(τ, s;D) = E(τ, s;D) +
∑

p|D
cp(s) E(τ, s;D/p)

of (6.29) for D = D(B) > 1. By (6.32), the Fourier coefficients of E ′(τ, 1
2 ;D) for m < 0 agree with

those of E′(τ, 1
2 ;D), so that (8.28) gives part (iii) of Theorem 8.8.

If m > 0 and for all p | D, χd(p) �= 1, note that by (8.12) and Lemma 8.5,

Em(τ,
1
2
;D/p) = 2 δ(d;D/p)H0(m;D/p) qm (8.31)

= (1 − χd(p))−1 · 1 − χd(p) + χd(p)pk − pk+1

1 − p
· 2 δ(d;D) H0(m;D) · qm

= (1 − χd(p))−1 · 1 − χd(p) + χd(p)pk − pk+1

1 − p
· Em(τ,

1
2
;D).
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Therefore,

E ′
m(τ,

1
2
;D) = Em(τ,

1
2
;D)

[
· · · +

∑

p|D
c′p(

1
2
) · (1 − χd(p))−1 · 1 − χd(p) + χd(p)pk − pk+1

1 − p

]
(8.32)

where the dots indicate the expression in (8.24) for E′
m(τ, 1

2 ;D). For a prime p | D, we write c′ for
c′p(

1
2)/ log(p) and k = ordp(n). Then, the coefficient of log(p) inside the bracket is

−1 − k − 1
log(p)

·
b′p(n, 0; D)
bp(n, 0; D)

+ c′ · (1 − χd(p))−1 · 1 − χd(p) + χd(p)pk − pk+1

1 − p
. (8.33)

We now use (ii) of Lemma 8.10. If χd(p) = −1, (8.33) gives

Kp := −1 − k+
2(p + 1)pk+1 + p2 − 4p − 1

2(p2 − 1)
+ c′ · 1

2
· pk+1 + pk − 2

p − 1
(8.34)

= −1 − k +
1
2

+
pk+1 + pk − 2

2(p − 1)

= −k +
(p + 1)(pk − 1)

2(p − 1)
.

If χd(p) = 0, (8.33) gives

Kp := −1 − k+
2p(pk+1 − 1)

p2 − 1
+ c′ · pk+1 − 1

p − 1
(8.35)

= −1 − k +
pk+1 − 1

p − 1
.

Thus, (8.26), (8.32), and these expressions for the coefficients Kp of log(p) for p | D yield (i) of
Theorem 8.8.

To prove (ii), suppose that m > 0 and that there is a unique prime p | D for which χd(p) = 1.
Then, using (8.26) and (6.32), we have

E ′
m(τ,

1
2
;D) = E′

m(τ,
1
2
;D) +

∑

	|D
c′	(

1
2
) · Em(τ,

1
2
;D/�) (8.36)

= −2 δ(d;D/p)H0(m;D) · qm · (p + 1)−1 · (1 + p − 2pk+1) log p

+ c′p(
1
2
) · 2 δ(d;D/p)H0(m;D/p) qm

= 2 δ(d;D/p)H0(m;D) · qm ·
[
− (p + 1)−1 · (1 + p − 2pk+1) + c′ · pk

]
log(p)

= 2 δ(d;D/p)H0(m;D) · qm · (pk − 1) log(p),

as claimed.
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Finally, we consider the constant term. By (8.30), Corollary 8.4 and (6.32), we have

E ′
0(τ,

1
2
;D) (8.37)

= E′
0(τ,

1
2
;D) −

∑

p|D

p − 1
p + 1

log(p) · c(D/p) ΛD/p(2)

= c(D)ΛD(2)
[

1
2

log(v) + 1 + log(D) − log(π) − γ + 2
ζ ′(2)
ζ(2)

+
∑

p|D

(
2

p2 − 1
+

1
p + 1

)
log(p)

]

= c(D)ΛD(2)
[

1
2

log(v) + 1 − log(π) − γ + 2
ζ ′(2)
ζ(2)

+
∑

p|D

p log(p)
p − 1

]

= c(D) ΛD(2)
[
1
2

log(v) − 2
ζ ′(−1)
ζ(−1)

− 1 + 2 log(2) + log(π) + γ +
∑

p|D

p log(p)
p − 1

]

= c(D) ΛD(2)
[
1
2

log(v) − 2
ζ ′(−1)
ζ(−1)

− 1 + 2C +
∑

p|D

p log(p)
p − 1

]
,

where C is as in Definition 3.4. Here we use the fact that

c(D/p) ΛD/p(2) = −c(D) ΛD(2)
p + 1
p2 − 1

. (8.38)

For later comparison, we note that the coefficient A′
m(1

2 , v) in the term

E ′
m(τ,

1
2
;D) = A′

m(
1
2
, v) qm (8.39)

in (i) of Theorem 8.8 can be written as a sum of four quantities:

2 δ(d;D)H0(m;D) ·
[

1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ

]
, (8.40)

2 δ(d;D)H0(m;D) · 1
2
J(4πmv), (8.41)

2 δ(d;D)H0(m;D) ·
∑

p
p�D

(
log |n|p −

b′p(n, 0;D)
bp(n, 0;D)

)
, (8.42)

and

2 δ(d;D)H0(m;D) ·
∑

p
p|D

Kp log(p). (8.43)

Part III. Computations: geometric

9. The geometry of Z(m)’s

In this section we will prepare the calculation of the coefficients of the generating series φdeg(τ) and
φheight(τ) by describing some of the geometry of the special cycles Z(m).

It turns out that the primes of bad reduction (i.e. p | D(B)) play a very special role. Namely,

Z(m) ×Spec Z Spec Z[D(B)−1] is reduced and is finite and flat over Spec Z[D(B)−1]. (9.1)
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We denote by Z(m)horiz the closure of Z(m) ×Spec Z Spec Z[D(B)−1] in Z(m) and call it the
horizontal part of the special cycle.

We first describe the generic fiber of Z(m). As in section 5, let L = V ∩ OB, let L(m) be as in
(5.7), and let

DZ(m) =
∐

x∈L(m)

Dx , (9.2)

as in (5.11). Then Γ acts on DZ(m) compatibly with its action on D, and we may represent Z(m)C

as an orbifold mapping to [Γ \ D]

Z(m)C = [ Γ\DZ(m) ] . (9.3)

We next give the degree of this orbifold. We recall the following notation from (8.2). For x ∈ L with
Q(x) = m > 0, let

k = Q[x] � Q[X]/(X2 + m) = Q(
√
−m) . (9.4)

Let Ok be its ring of integers and let −d = disc(Ok) be its discriminant. Then the discriminant of
the order Z[x] = Z[X]/(X2 + m) is equal to −4m. Write 4m = n2d, as in (8.2). We note that there
is a map of discrete orbifolds

[Γ\DZ(m)] −→ [Γ\L(m)], (9.5)

which is 2 to 1.

Proposition 9.1. For m > 0 and k as above,
(i) if k cannot be embedded into B, then Z(m)Q = ∅,
(ii) otherwise,

deg Z(m)Q = 2 δ(d, D)H0(m, D).

Here the degree of Z(m)Q is taken in the stack sense, i.e. each geometric point η of Z(m)Q

counts with multiplicity 1/|Aut(η)|.

Proof. (i) For any C-valued point (A, ι) of M we have an injection

End(A, ι) ↪→ B .

Hence, if (A, ι, x) is a C-valued point of Z(m) we obtain an injection k = Q[x] ↪→ B.
(ii) Using (9.3), we obtain

deg Z(m)Q = 2
∑

x∈L(m)

mod Γ

1
|Γx|

. (9.6)

The following result finishes the proof of the Proposition.

Lemma 9.2. If m > 0, then
∑

x∈L(m)

mod Γ

1
|Γx|

= δ(d;D) · H0(m;D),

where H0(m;D) and δ(d;D) are given by (8.17) and (8.18).

Proof. For any x ∈ V (Q)∩OB with Q(x) = m, there is an associated embedding ix : Q(
√
−m) → B,

taking
√
−m to x. The order Oc2d = i−1

x (OB) is an invariant of the Γ = O×
B conjugacy class of ix
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and ix is an optimal embedding of Oc2d, in the terminology of Eichler, [13]. Recall that the order
Z[
√
−m] has discriminant −4m and hence, conductor n.
Let

Opt(Oc2d, OB) = { i : Q(
√
−m) → B | i−1(OB) = Oc2d }/Γ (9.7)

be the set of Γ orbits of optimal embeddings. Recall that the order i−1(OB) is maximal at all primes
p | D(B). The following fact is classical, [13]:

|Opt(Oc2d, OB)| = δ(d;D) · h(c2d). (9.8)

Using (8.19), we have
( ∑

x∈L(m)

Q(x)=m

mod Γ

|Γx|−1

)
=

∑

c|n
(c,D)=1

|Opt(Oc2d, OB)| · |O×
c2d

|−1

= δ(d;D)
h(d)
w(d)

∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1) (9.9)

= δ(d;D) H0(m;D).

Proof of Proposition 7.1. Comparing the expression just found for degZ(m)Q together with (2.7),
we have

φdeg(τ) = ζD(−1) +
∑

m>0

2 δ(d;D(B))H0(m;D(B)) qm,

which coincides with E(τ, 1
2 ;D(B)), via Proposition 8.5, so that Proposition 7.1 is proved.

Remark 9.3. The map Z(m)Q → MQ is not a closed immersion, hence Z(m)Q is not a divisor on
MQ. In fact, the morphism is of degree 2 over its image. To see this, note that if (A, ι, x) ∈ Z(m)(C),
then End(A, ι)Q = k = Q(

√
−m). Hence the only other point of Z(m)(C) mapping to (A, ι) ∈ M(C)

is (A, ι,−x). That the degree is 2, even in the stack sense, follows from

Aut(A, ι) = Aut(A, ι, x).

The stack Z(m) can have some pathological features in characteristic p for p | D(B). Namely,
as already mentioned in section 5, it can happen that Z(m) has dimension 0 (only if k = Q(

√
−m)

does not embed into B, cf. (i) of Proposition 9.1) and also that Z(m) has embedded components.
This leads us to introduce the Cohen-Macauleyfication Z(m)pure, [32]. In the case that Z(m) has
dimension 0, this is empty. In all other cases Z(m) may be considered a divisor on M (but note that
since Z(m) is not a closed substack of M, the degree of Z(m) over its image must be taken into
account). But even after Z(m) is replaced by Z(m)pure, one interesting feature remains, namely the
existence of vertical components in characteristic p | D(B). We write

Z(m)pure = Z(m)horiz + Z(m)vert (9.10)

(equality of “divisors” on M), where Z(m)vert is the sum with multiplicities of the irreducible
vertical components in characteristic p as p runs over primes dividing D(B). We note that if we
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redefine

Ẑ(m, v) = (Z(m)pure,Ξ(m, v) ) (9.11)

then the expression 〈Ẑ(m, v), ω̂〉 appearing in the definition of φheight(τ) remains unchanged, cf.
[32], section 4. We remark in passing that if Z(m)Q = ∅, then Ξ(m, v) = 0, cf. (5.8)

Taking (9.10) into account and using formula (5.11) of Bost [3], we may write

〈 Ẑ(m, v), ω̂ 〉 = hω̂(Z(m)horiz) + hω̂(Z(m)vert) +
1
2

∫

[Γ\D]
Ξ(m, v)c1(ω̂) . (9.12)

Also note that the second summand on the right hand side may be written as the sum over contri-
butions of the bad fibers ,

hω̂(Z(m)vert) =
∑

p|D(B)

hω̂(Z(m)vert
p ) , (9.13)

where, since Z(m)vert has empty generic fiber,

hω̂(Z(m)vert
p ) = deg(ω|Z(m)vert

p ) log(p) . (9.14)

Here Z(m)vert
p = Z(m)vert ×Spec Z Spec Zp.

In the next three sections we will evaluate explicitly each summand on the right hand side of
(9.12).

10. Contributions of horizontal components

In this section, we compute the quantity hω̂(Z(m)horiz). This will be done in two steps. We first
express this quantity in terms of the Faltings heights of certain abelian surfaces which are isogenous
to products of CM–elliptic curves. We then determine the effect of the isogeny on the Faltings
height.

Observe that Z(m)horiz is a union of horizontal integral substacks

Z(m)horiz =
∑

ξ∈Z(m)horiz
Q

Zξ, (10.1)

where ξ is the generic point of Zξ. Let Z̃ξ be the normalization of Zξ and let jξ : Z̃ξ → M be the
composition of the normalization map Z̃ξ → Zξ with the morphism Zξ → M. By linearity and the
definition of hω̂ for horizontal cycles, cf. (4.4) section 4 and [3], we have

hω̂(Z(m)horiz) =
∑

ξ∈Z(m)horiz
Q

hω̂(Zξ)

=
∑

ξ∈Z(m)horiz
Q

d̂egj∗ξ ω̂ · 1
|Aut(ξ̄)| (10.2)

=
1

|L : Q| ·
∑

η∈Z(m)horiz(L)

d̂egj∗η ω̂ · 1
|Aut(η)| ,

for any sufficiently large number field L ⊂ Q̄, where η runs over the L points of Z(m) and where the
factors involving Aut(ξ̄) = Aut((A, ι, x)ξ̄) and Aut(η) = Aut((A, ι, x)η) come in due to the stack.
Here we also write η for the extension to η : Spec (OL) → M. We may assume that Aη, the abelian
variety over L determined by η, has semistable reduction over L. Then, by definition, the Faltings
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height h∗
Fal(Aη) is given by

h∗
Fal(Aη) = |L : Q|−1d̂egj∗η ω̂. (10.3)

Here the notation h∗
Fal indicates that we have used the metric || || given in Definition 3.4, rather

than the standard metric of (3.11). This point is discussed further below. Then:

hω̂(Z(m)horiz) =
∑

η∈Z(m)horiz(L)

h∗
Fal(Aη) ·

1
|Aut(η)| (10.4)

= 2
∑

x∈L(m)

mod Γ

h∗
Fal(Ax) · 1

|Γx|
.

In the last expression, we have used the description of Z(m)(C) = Z(m)horiz(C) as the orbifold
[Γ\DZ(m)], as in section 9, where the map [Γ\DZ(m)] → [Γ\L(m)] is 2 to 1, together with the
fact that the abelian varieties associated to the two points in Dx (i.e., having opposite complex
structures) have the same Faltings height.

We next turn to the computation of the Faltings height h∗
Fal(A) of an abelian surface A occuring

in a triple (A, ι, x) where ι : OB → End(A) and x ∈ End(A, ι) is a special endomorphism with
Q(x) = m, all defined over a number field L, where they all have good reduction. Let φx : k →
End0(A) be the embedding determined by φx(

√
−m) = x and let

Oc2d = φ−1
x (Q[x] ∩ End(A)), (10.5)

where Oc2d is the order in Ok of conductor c. In this case, we will say that the triple (A, ι, x) is of
type c. Recall that the order Z[

√
−m ] ⊂ Oc2d ⊂ Ok has discriminant 4m, and that we have written

4m = n2 d, where −d is the discriminant of Ok. Then the order Z[
√
−m ] has conductor n and

c | n. Note, in addition, that the order Oc2d must be maximal at all primes p | D(B), and hence
(c, D(B)) = 1.

Here the key point is that the special endomorphism x with x2 = −Q(x) · 1A forces A to be
isogenous to a product of elliptic curves with CM by k = Q(

√
−m). The isogeny of interest is

constructed as follows. Since k splits B, we can choose an embedding of ψ : k ↪→ B such that

Ok = ψ−1(OB), (10.6)

i.e., an optimal embedding, in the sense of Eichler. Then the endomorphisms

α±
x := x ± ι ◦ ψ(

√
−m) ∈ End(A) (10.7)

satisfy

α+
x + α−

x = 2x and α+
x · α−

x = 0. (10.8)

Let

E± = (ker(α±
x ))0 (10.9)

be the identity component of the kernel of the endomorphism α±
x . Choose an element η ∈ OB with

tr(η) = 0 and such that conjugation by η induces the Galois automorphism on ψ(k). Note that

ι(η) α+
x = α−

x ι(η), (10.10)

and so

ι(η)E± = E∓. (10.11)
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Thus E± are both elliptic curves, and we obtain an isogeny

uL : E+ × E− = (ker(α+
x ))0 × (ker(α−

z ))0 −→ A, (10.12)

rational over L. Moreover, the elliptic curves E± = (ker(α±
x ))0 are stable under ψ(Ok), i.e., have

complex multiplication by the full ring of integers of k. Note that the kernel of uL is the subgroup

ML = (ker(α+
x ))0 ∩ (ker(α−

x ))0 (10.13)

embedded antidiagonally in E+ × E−.
The behavior of the Faltings height under isogeny is nicely described in the article of Raynaud,

[42]. Our normalization of the Faltings height is the following. For an abelian variety B of dimension
g over a number field L, let N(B) be the Néron model of B over S = Spec (OL), and let ωB =
ε∗(∧gΩN(B)/S) be the pullback by the zero section ε of the top power of the sheaf of relative
differentials on N(B). This invertible sheaf on Spec (OL) has natural metrics; if σ : L ↪→ C is an
embedding of L, then a section β of ωB determines a holomorphic g–form on Bσ(C), and4

||β||2σ,nat =
∣
∣
∣
∣

(
i

2π

)g ∫

Bσ(C)
β ∧ β̄

∣
∣
∣
∣. (10.14)

If B has semi–stable reduction, then the Faltings height of B is given by

hFal(B) = |L : Q|−1 d̂eg(ωB) (10.15)

where d̂eg(ωB) denotes that Arakelov degree of ωB. The quantity hFal(B) does not depend on the
choice of L over which B has semi–stable reduction.

In view of the normalization used in Definition 3.4, we introduce the metrics

||β||2σ =
∣
∣
∣
∣

(
e−C i

2π

)g ∫

Bσ(C)
β ∧ β̄

∣
∣
∣
∣, (10.16)

where, as before, C = 1
2

(
log(4π)+ γ

)
. We denote the resulting height by h∗

Fal(B). The two heights
are related by

h∗
Fal(B) = hFal(B) +

1
2
gC. (10.17)

Assume that A has good reduction over L and let uL : A → B be an isogeny defined over L. Let
u : N(A) → N(B) be the resulting homomorphism of Néron models with M := ker(u). Then, as a
special case of [42], p.205,

hFal(B) = hFal(A) +
1
2

log(deg(uL)) − |L : Q|−1 log |ε∗(Ω1
M/R)|. (10.18)

The quantity δ(u) := log |ε∗(Ω1
M/S)| is a sum of local contributions as follows. For each prime v of

L with v | deg(uL), let Rv be the completion of OL at v and let Mv = M ⊗OL
Rv. Then

δ(u) = log |ε∗(Ω1
M/R)| =

∑

v|deg(uL)

log |ε∗(Ω1
Mv/Rv

)|. (10.19)

For convenience, we set

δv(u) = log |ε∗(Ω1
Mv/Rv

)|. (10.20)

This quantity is invariant under base change in the sense that if L′ is a finite extension of L and if
u′ is the base change of u to Spec (OL′), then

δv(u) =
∑

w|v
δw(u′), (10.21)

4Note that we use the factor
(

i
2π

)g
rather than

(
i
2

)g
. This is the normalization used in Bost, [3], for example.
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where w runs over the primes of L′ dividing v.
We now return to our isogeny uL, noting that A and E± all have good reduction over L. Let

u : N(E+) × N(E−) −→ N(A) (10.22)

be the homomorphism induced by uL and let M be its kernel. To calculate δv(u) for a prime
v | deg(uL), we pass to the p-divisible groups, where p is the residue characteristic for v.

Let G = G+ × G− (resp. A(p)) be the p-divisible group over Rv associated to E+ × E− (resp.
A) so that we have an exact sequence

0 −→ C −→ G −→ A(p) −→ 0 (10.23)

determined by the isogeny u. Since the prime to p part of the kernel of u is automatically étale over
Rv, the invariant δv(u) depends only on the p–divisible groups and hence on C. The isogeny (10.23)
corresponds to a submodule T ′ of V (G), the rational Tate module of G,

T (G) ⊂ T ′ ⊂ V (G) = V (G+) ⊕ V (G−). (10.24)

The fact that E± maps injectively into A implies that G± ↪→ A(p) and hence

T ′ ∩ V (G±) = T (G±). (10.25)

Thus there are isomorphisms

pr+(T ′)/T (G+) ∼←− T ′/T (G) ∼−→ pr−(T ′)/T (G−). (10.26)

Proposition 10.1. Suppose that p splits in k. Then ordp(deg(uL)) = 2 ordp(c). Moreover, for any
place v of L with v | p, the group C is étale over Rv, and hence

δv(u) = log |ε∗(Ω1
Mv/Rv

)| = log |ε∗(Ω1
C/Rv

)| = 0.

Proof. We write

kp � Qp ⊕ Qp, α 
→ (α1, α2), (10.27)

and let λ1 and λ2 be the corresponding algebra homomorphisms from kp to Qp. Let G0 (resp. Gét)
be the connected (resp. étale) part of G, and note that, for example

G0 = G+
0 × G−

0 . (10.28)

Since the action of O := Ok ⊗ Zp � Zp ⊕ Zp preserves G±
0 , the action of O on the Tate module

T (G±) must have the form

T (G+) = T (G+
0 ) ⊕ T (G+

ét) � Zp ⊕ Zp, λ1 ⊕ λ2 (10.29)

T (G−) = T (G−
0 ) ⊕ T (G−

ét) � Zp ⊕ Zp, λ2 ⊕ λ1,

where the switch of characters is due to the fact that the isogeny induced by η is O–antilinear but
must preserve the connected–étale decomposition. Thus there is a canonical decomposition

T (G) = T (G+
0 ) ⊕ T (G−

0 ) ⊕ T (G+
ét) ⊕ T (G−

ét), λ1 ⊕ λ2 ⊕ λ2 ⊕ λ1. (10.30)

Since the Zp–lattice T ′ ⊂ V (G) is stable under O, it must be generated by coset representatives of
the form (x, 0, 0, w) and (0, y, z, 0). Condition (10.24) implies, for example, that if x = 0 for such a
representative, then w = 0 (i.e., lies in Zp). It follows that

T ′ = Zp · (p−r, 0, 0, ε1p
−r) + Zp · (0, p−s, ε2p

−s, 0) + T (G). (10.31)

for units ε1 and ε2 and non–negative integers r and s. In addition, we can choose the element η ∈ OB

above so that η2 is prime to p and so η induces an automorphism on A(p). Since T ′ is stable under
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this automorphism, we must have r = s and ε1 ≡ ε2 mod pr. On the other hand, the φx–action of
O on V (G) is given by

λ2 ⊕ λ2 ⊕ λ1 ⊕ λ1. (10.32)

The φx action of α ∈ O preserves T ′ if and only if

α ∈ Oc2d ⊗ Zp = {(a1, a2)O | a1 ≡ a2 mod pordp(c)}. (10.33)

Thus, we conclude that r = ordp(c). This proves that ordp(deg(uL)) = 2 ordp(c).
To finish the proof of the Proposition, it suffices to show that

T ′ ∩ V (G0) = T (G0), (10.34)

so that the projection to the étale part G → Gét induces an isomorphism on C. But this is clear
from our description of the coset representatives.

Proposition 10.2. Suppose that p is inert or ramified in k.
(i) If p � D(B), then for any place v of L with v | p, there is a factorization u = u† ◦uo with isogenies
u† and uo such that

δv(uo) =
1
2
· |Lv : Qp| ·

(
ordp(deg(uL)) − 2 ordp(c)

)
,

and ordp(deg(u†)) = 2ordp(c) = 2s. Moreover,

δv(u†) = |Lv : Qp|
(1 − p−s) · (1 − χ(p))
(1 − p−1) · (p − χ(p))

log(p).

Here χ(p) = −1 if p is inert and χ(p) = 0 if p is ramified in k.
(ii) If p | D(B), then ordp(deg(uL)) = 0 and δv(u) = 0.

Proof. Let Fq be the residue field O/πO, where π is a fixed prime element of O. Also write Os =
Oc2d ⊗ Zp, where s = ordp(c). For convenience, we temporarily write L in place of Lv and OL in
place of OLv .

Now G± = E±(p) is a formal group of dimension 1 and height 2 over Rv = OLv with an action
of O, i.e., a special formal O–module in the sense of Drinfeld. We consider the sequence

C −→ G+ × G− u−→ A(p) (10.35)

and note that OB⊗Os acts on A(p). After replacing L by a finite extension and using the invariance
property (10.21), we may assume that G0 := G+ � G−.

First suppose that p � D(B). Then, fixing an isomorphism

OB ⊗Z Os � M2(Zp) ⊗ZpOs � M2(Os), (10.36)

we may write A(p) � Gs ×Gs, where Gs is a 1–dimensional formal group of height 2. Since (A, ι, x)
was supposed to be of type c, we have End(Gs) = Os, hence the notation for Gs, consistent with
that for G0. The isogeny u corresponds to an inclusion of Tate modules

T (G0) ⊕ T (G0) = T (G0 × G0) ⊂ T (A(p)) = T (Gs × Gs) = T (Gs) ⊕ T (Gs). (10.37)

Note that the two direct sums here are not necessarily compatible. Let T (Gs)† be the largest O–
module contained in the Os–module T (Gs). Note that

T (Gs)† ⊕ T (Gs)† (10.38)

is the largest O–module contained in T (Gs) ⊕ T (Gs). Hence the inclusion (10.37) gives rise to a
chain of inclusions

T (G0) ⊕ T (G0) ⊂ T (Gs)† ⊕ T (Gs)† ⊂ T (Gs) ⊕ T (Gs). (10.39)
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Hence the isogeny u factors as

G0 × G0
uo

−→ G†
s × G†

s
u†
−→ Gs × Gs. (10.40)

By the elementary divisor theorem, we can then find automorphisms α of G0×G0 and β of G†
s×G†

s

such that β ◦ uo ◦ α is of the form uo
1 × uo

2 for isogenies uo
i : G0 → G†

s, i = 1, 2. Each of the
isogenies uo

i corresponds to an inclusion of Tate modules T (G0) ⊂ T (G†
s) ⊂ V (G0). Since both

Tate modules are free O–modules of rank 1, there exists an isomorphism G0 � G†
s such that uo

i is
given by multiplication by an element νi ∈ O. On the other hand, the isogeny u† is of the form
u† = u†

1 × u†
1, where the isogeny u†

1 is determined by the inclusion T (Gs)† ⊂ T (Gs). If we choose an
isomorphism T (Gs)† � O, then

T (Gs) � p−sε Zp + O, (10.41)

where ε is a unit in O. This implies that the degree of the isogeny u†
1 is ps, as claimed.

The contribution δv(u†) = 2δv(u
†
1) of the isogeny u† to the invariant δv(u) = δv(u0) + δv(u†) can

now be obtained from the following result, whose proof we include, for the sake of completeness.

Proposition 10.3 (Nakkajima–Taguchi, [39]). Let kp/Qp be a quadratic extension and let L/kp

be a finite extension. Let G0 be a one-dimensional formal O-module over OL. For s � 0 suppose
that λ : G0 → Gs is an isogeny of degree ps over OL such that End(Gs) = Os. Let D = Kerλ. Then

log|ε∗Ω1
D/OL

| =
1
2
|L : Qp|

(1 − p−s) · (1 − χ(p))
(1 − p−1) · (p − χ(p))

log p .

Here χ(p) is −1 (resp. 0) depending on whether kp/Qp is unramified or ramified.

Proof. (Sketch) Let G0 be defined by the formal group law g(X, Y ) ∈ OL[[X, Y ]]. Then by Serre’s
isogeny formula, [19],

D = Spec OL[[X]]/
∏

d∈D

g(X, d). (10.42)

It follows that

ε∗Ω1
D/OL

= OL/

( ∏

d∈D

g(X, d)
)′

X=0

(10.43)

= OL/(
∏

d∈D\{0}
d) .

A consideration of the Newton polygon of [πr]G0 = πrX + . . . shows that if d ∈ D \ {0} is of precise
π-order r then

ord(d) =
1

qr − qr−1
. (10.44)

Here, as before, π denotes a prime element of kp and the ord function is normalized by ord(π) = 1.
It follows that

lgOL
(ε∗Ω1

D/OL
) = eL/kp

·
∑

d∈D\{0}
ord(d) (10.45)

= eL/kp
·

∞∑

r=1

· �(r)
qr − qr−1

.
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Here �(r) denotes the number of elements of D(L̄) of exact π-order r. But the conditions deg(λ) = ps

and End(Gs) = Os imply that

D(L̄) ∼= T (Gs)/T (G0) ∼=
(
p−sε Zp + O

)
/O ∼= p−s Zp/Zp, (10.46)

where ε is a unit in O. Hence, for r � 1.

�(r) =

{
pr − pr−1 1 � r � s, if kp/Qp is unramified

p
r
2 − p

r
2
−1 1 � r � 2s, 2 | r, if kp/Qp is ramified

(10.47)

and is zero in all other cases. It follows that

log|ε∗Ω1
D/OL

| = fL/Qp
· lgOL

(ε∗Ω1
D/OL

) · log p (10.48)

= fL/Qp
· eL/kp

·
s∑

r=1

�(r)
qr − qr−1

· log p ,

which yields the assertion.

Finally, the contribution δv(uo) = δv(uo
1) + δv(uo

2) is given by the following result.

Lemma 10.4. For extensions L/kp/Qp as in the previous Proposition, suppose that G0 is a one-
dimensional formal O-module over OL. Let λ : G0 → G0 be the isogeny given by multiplication by
a non-zero element ν ∈ O. Let D = ker(λ). Then

log|ε∗Ω1
D/OL

| =
1
2
|L : Qp| · log(deg λ) .

Proof. Let s = ord(ν). Then, there are qr − qr−1 elements in D(L̄) � π−sO/O of exact order πr,
for 1 � r � s, and none for all other r. Hence

lgOL
(ε∗Ω1

D/OL
) = eL/kp

·
s∑

r=1

qr − qr−1

qr − qr−1
= eL/kp

· s. (10.49)

It follows that

log|ε∗Ω1
D/OL

| = eL/kp
· fL/Qp

· s · log p =
1
2
|L : Qp| · s · log(q). (10.50)

The assertion follows since the isogeny λ has degree qs.

Finally, we consider the case p | D(B), and we recall that ordp(c) = 0, so that Os = O0 = O.
Once again, we consider the action of OB ⊗O on A(p). We fix an isomorphism

B ⊗ kp � M2(kp), with OB ⊗O ↪→ M2(O). (10.51)

and such that, for α ∈ kp,

1 ⊗ α 
→
(

α
α

)
and ψ(α) ⊗ 1 
→

(
α

ασ

)
, (10.52)

where ψ is the embedding of k into B chosen above.

Lemma 10.5. (i) If kp/Qp is unramified, then the image of OB ⊗O in M2(O) is the order
(
O O
pO O

)
.
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(ii) If kp/Qp is ramified, then there is an element λ ∈ (OB ⊗ O)× whose image in GL2(Fp) under
the composition of maps

OB ⊗O −→ M2(O) −→ M2(Fp)

has eigenvalues which are not rational over Fp.
(iii) In the ramified case, suppose that Λ is an O–lattice contained in k2 which is stable under
OB ⊗O. Then Λ is homothetic to Λ0 = O2.

Remark 10.6. In fact, if p �= 2 and kp/Qp is ramified, then the image of OB ⊗ O in M2(O) is
conjugate to red−1(Fp2), where

red : M2(O) −→ M2(Fp)

is the reduction modulo π, and Fp2 is the nontrivial quadratic extension of Fp, viewed as a subalgebra
of M2(Fp).

Proof. In the unramified case, we may write

OB ⊗ Zp = O 〈 Π 〉, (10.53)

where Π ∈ OB is an element with Π2 = p which normalizes ψ(kp) and acts on it by the Galois
automorphism σ, i.e., Πα = ασΠ. The image of OB ⊗O in M2(O) is then generated by the elements
of the form

(
α

α

)
,

(
α

ασ

)
, and

(
1

p

)
, (10.54)

for α ∈ O. Since kp is unramified, there is an α ∈ O such that α − ασ is a unit, and hence such
elements generate the Eichler order as claimed in (i).
Next suppose that kp is ramified. Let ko be the unramified quadratic extention of Qp and let Oo be
its ring of integers, with generator λ having unit norm. Again, we can write OB ⊗ Zp = Oo 〈 Π 〉.
But now, the image of λ ⊗ 1 ∈ (OB ⊗O)× gives the element required in (ii).
Finally, to prove (iii), observe that the lattice Λ0 = O2 is preserved by OB ⊗O, and hence is fixed
by the element λ of part (ii). If Λ is another O–lattice, preserved by OB ⊗O, then Λ must also be
fixed by λ. The whole geodesic joining the vertices [Λ0] and [Λ] in the building of PGL2(kp) is then
fixed by λ. In particular, λ must then fix a vertex at distance 1 from [Λ0]. But this implies that
the image of λ in PGL2(Fp) has a fixed point on P1(Fp) = P(Λ0/πΛ0), and hence an Fp–rational
eigenvector/eigenvalue, which has been excluded.

Returning to A(p) and our isogeny, the isomorphism (10.51) determines an isomorphism

V (A(p)) � k2, (10.55)

under which

V (G+) = k ·
(

0
1

)
and V (G−) = k ·

(
0
1

)
. (10.56)

The image of the Tate module T (A(p)) in k2 is an O–lattice which is stable under the action of
OB ⊗O.

If kp is unramified, then T (A(p)) ⊂ k2 is an O–lattice stable under the Eichler order O′ ⊂ M2(O)
in (i) of Lemma. Let 12 = e+ + e− ∈ O′ where

e+ =
(

0 0
0 1

)
and e− =

(
1 0
0 0

)
∈ O′. (10.57)

If y = y+ + y− ∈ T (A(p)) with y± ∈ V (G±), then y± = e±y ∈ V (G±) ∩ T (A(p)) = T (G±), and
hence T (A(p)) = T (G+ × G−). Thus, our isogeny has degree 1 and δv(u) = 0.
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If kp/Qp is ramified, then, by (iii) of Lemma 10.5, T (A(p)) is homothetic to Λ0 = O2. But then,
since T (G±) = T (A(p))∩V (G±), we have simply T (G+ ×G−) = T (A(p)), so again our isogeny has
degree 1 and δv(u) = 0. This finishes the proof of (ii) of Proposition 10.2.

We can now compute the Faltings height.

Theorem 10.7. Suppose that the triple (A, ι, x), defined over a number field L, is of type c. Write
4m = n2d, with −d a fundamental discriminant, and let E = Ed be an elliptic curve over L with
complex multiplication by Ok, the ring of integers in k = Q(

√
−d). Then

h∗
Fal(A) = 2h∗

Fal(E) + log(c) −
∑

p

(1 − p−ordp(c)) · (1 − χ(p))
(1 − p−1) · (p − χ(p))

· log(p).

Here χ = χd is as in (8.3).

Proof. We apply formula (10.18) to the isogeny E+ × E− → A defined above. The change in the
Faltings height due to the isogeny has the form

1
2

log(deg(uL)) − 1
|L : Q|

∑

v

δv(u). (10.58)

We write
1
2

log(deg(uL)) =
∑

p

1
2

ordp(deg(uL)) · log(p), (10.59)

so that (10.58) can be written as a sum of local contributions (10.58)p which we now describe case
by case.

If p is split in k, then by Proposition 10.1,

(10.58)p = ordp(c) · log(p). (10.60)

If p � D(B) is inert or ramified, by Proposition 10.2 , (10.58)p is equal to:

1
2
ordp(deg(uL)) · log(p) (10.61)

− 1
|L : Q|

∑

v|p
|Lv : Qp|

(
1
2
[
ordp(deg(uL)) − 2r

]
+

(1 − p−r) · (1 − χ(p))
(1 − p−1) · (p − χ(p))

)
log(p)

=
(

r − (1 − p−r) · (1 − χ(p))
(1 − p−1) · (p − χ(p))

)
log(p)

where we have set r = ordp(c).
If p | D(B), then by the considerations after Lemma 10.5, (10.58)p = 0.

Theorem 10.8. The contribution of the ‘horizontal’ part to the pairing 〈Ẑ(m, v), ω̂〉 is

hω̂(Z(m)horiz) = 2 δ(d, D) H0(m, D(B)) 2h∗
Fal(E)

+ 2δ(d, D)
h(d)
w(d)

∑

c|n
(c,D(B))=1

c
∏

	|c
(1 − χ(�)�−1) ·

∑

p

ηp(ordp(c)) log(p),

where, for r ∈ Z�0,

ηp(r) = r − (1 − p−r) · (1 − χ(p))
(1 − p−1) · (p − χ(p))

.
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Proof. Continuing (10.4) above, we have

hω̂(Z(m)horiz)

= 2
∑

c|n

∑

x∈L(m)

mod Γ

type c

h∗
Fal(Ax) · 1

|Γx|

= 2
∑

c|n

( ∑

x∈L(m)

mod Γ

type c

1
|Γx|

)(
2 h∗

Fal(E) + log(c) −
∑

p

(1 − p−ordp(c)) · (1 − χ(p))
(1 − p−1) · (p − χ(p))

log(p)
)

= 2 δ(d, D) H0(m, D(B)) 2h∗
Fal(E)

+ 2δ(d, D)
h(d)
w(d)

∑

c|n
(c,D(B))=1

c
∏

	|c
(1 − χ(�)�−1) ·

∑

p

ηp(ordp(c)) log(p),

as claimed.

We now make the comparison of this expression with terms arising in the positive Fourier
coefficients of the derivative of the modified Eisenstein series. To do this, we need a better expression
for the sum on c in the second term in Theorem 10.8. For convenience in the calculations, we let

βp(k) = −2k +






pk−1
pk(p−1)

, if χd(p) = 1,
(3p+1)(pk−1)−4k(p−1)

(p−1)(pk+1+pk−2)
, if χd(p) = −1,

2
p−1 − 2k+2

pk+1−1
if χd(p) = 0.

(10.62)

Note that when k = ordp(n), then, by (i) of Lemma 8.7,

βp(k) =
1

log(p)
·
b′p(n, 0;D)
bp(n, 0;D)

. (10.63)

Lemma 10.9. Let 4m = n2d, as before. Then the following identity holds for any square-free D > 0:

h(d)
w(d)

∑

c|n
(c,D)=1

c
∏

p|c
(1 − χd(p) p−1)

∑

p|c
ηp(ordp(c)) log(p)

= H0(m;D) ·
∑

p
(p,D)=1

(
− ordp(n) − βp(ordp(n))

)
log(p)

= H0(m;D) ·
∑

p
(p,D)=1

(
log |n|p −

b′p(n, 0;D)
bp(n, 0;D)

)
.

Proof. We note that the sum in the last expression of the Lemma (right hand side) is finite since
only summands for p with p|n are non-zero. We proceed by induction on the number of prime factors
of n. To start the induction, let n = pt. Then the first expression of the Lemma (left hand side) is
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equal to

h(d)
w(d)

·
t∑

r=1

pr (1 − χd(p)p−1) ηp(r) · log p (10.64)

(note that the contribution of c = 1 is trivial). By (8.17) and (10.62), the right hand side is equal
to

h(d)
w(d)

·
(

t∑

r=1

pr(1 − χd(p)p−1) + 1

)

· (−t − βp(t)) · log p. (10.65)

Case by case, one can check that these two expressions coincide.

Case χd(p) = 1: Then (10.64) without the factor h(d)
w(d) · log(p) is equal to

t∑

r=1

pr (1 − p−1) r = (p − 1)
t∑

r=1

r pr−1 = t pt − pt − 1
p − 1

. (10.66)

On the other hand, (10.65) without the factor h(d)
w(d) · log(p) is equal to

(
t∑

r=1

pr(1 − p−1) + 1

)

·
(

t − p−t pt − 1
p − 1

)
= pt

(
t − p−t pt − 1

p − 1

)
. (10.67)

Case χd(p) = −1: Then (10.64) without the factor h(d)
w(d) · log(p) is equal to

t∑

r=1

pr(1 + p−1)
(

r − 2 p−r+1 pr − 1
p2 − 1

)

= (1 + p−1)
t∑

r=1

(
rpr − 2p

pr − 1
p2 − 1

)
(10.68)

=
(p − 1) t (pt(p + 1) + 2) − (3p + 1) (pt − 1)

(p − 1)2
.

On the other hand, (10.65) without the factor h(d)
w(d) · log(p) is equal to

(
t∑

r=1

pr(1 + p−1) + 1

)(
t − (3p + 1) (pt − 1) − 4t(p − 1)

(p − 1) (pt+1 + pt − 2)

)

=
pt+1 + pt − 2

p − 1

(
t − (3p + 1)(pt − 1) − 4t(p − 1)

(p − 1) (pt+1 + pt − 2)

)
(10.69)

=
(p − 1) t (pt(p + 1) + 2) − (3p + 1) (pt − 1)

(p − 1)2
.
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Case χd(p) = 0: Then (10.64) without the factor h(d)
w(d) · log(p) is equal to

t∑

r=1

pr

(
r − p−r pr − 1

p − 1

)

=
t∑

r=1

r pr −
t∑

r=1

pr − 1
p − 1

(10.70)

=
pt+1 − 1
p − 1

(
t − 2

p − 1
+

2t + 2
pt+1 − 1

)
.

On the other hand, (10.65) without the factor h(d)
w(d) · log(p) is equal to

(
t∑

r=0

pr

) (
t − 2

p − 1
+

2t + 2
pt+1 − 1

)
=

pt+1 − 1
p − 1

(
t − 2

p − 1
+

2t + 2
pt+1 − 1

)
. (10.71)

We therefore have checked the beginning of the induction. Let us now perform the induction step.
Let n = pt · n0 where p � n0. Let us put m0 = m/p2t, so that 4m0 = n2

0d. We may assume that
p � D because otherwise both sides of the identity for n coincide with the corresponding sides of the
identity for n0, so that we may apply the induction hypothesis. We write L(m) resp. R(m) for the
left hand side resp. right hand side of our identity corresponding to m. Then L(m) is equal to

h(d)
w(d)

t∑

r=1

pr(1 − χd(p)p−1)
∑

c0|n0
(c0,D)=1

c0 ·
( ∏

	|c0
(1 − χd(�)�−1)

) [
ηp(r) log(p) +

∑

	|c0
η	(r	(c0)) log(�)

]

+
h(d)
w(d)

∑

c0|n0
(c0,D)=1

c0 ·
( ∏

	|c0
(1 − χd(�)�−1)

)
·
∑

	|c0
η	(r	(c0)) log(�) (10.72)

We recall that

h(d)
w(d)

·
∑

c0|n0

(c0,D)=1

c0

∏

	|c0
(1 − χd(�)�−1) = H0(m0;D). (10.73)

Hence we can write the above expression as a sum of three terms, the first one being

h(d)
w(d)

∑

c0|n0
(c0,D)=1

c0

( ∏

	|c0
(1 − χd(�)�−1)

)
· (1 − χd(p)p−1)

t∑

r=1

pr ηp(r) log(p) (10.74)

= H0(m0, D) · (1 − χd(p)p−1)
t∑

r=1

pr ηp(r) log(p) .

The second and the third term are respectively equal to

L(m0) · (1 − χd(p) · p−1)
t∑

r=1

pr = L (m0) · (1 − χd(p)p−1) p
pt − 1
p − 1

(10.75)

and L(m0).
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We thus obtain

L(m) =
pt+1 − χd(p)pt + χd(p) − 1

p − 1
· L(m0) + H0(m0, D) · (1 − χd(p)p−1)

t∑

r=1

pr ηp(r) log(p) .

(10.76)

By induction we have for the last summand

H0(m0;D) · (1 − χd(p)p−1)
t∑

r=1

prηp(r) log(p)

= H0(m0;D) ·
( t∑

r=1

pr (1 − χd(p)p−1) + 1
)

(
− t − βp(t)

)
log(p) (10.77)

= H0(m;D) ·
(
− t − βp(t)

)
log(p) .

Hence

L(m) =
pt+1 − χd(p)pt + χd(p) − 1

p − 1
· L(m0) + H0(m;D) · (−t − βp(t)) log(p). (10.78)

Now recall from (8.12) and Lemma 8.5 that

H0(m;D) =
h(d)
w(d)

∏

q�D

qt+1 − χd(q)qt + χd(q) − 1
q − 1

. (10.79)

It follows that

H0(m;D)
H0(m0;D)

=
pt+1 − χd(p)pt + χd(p) − 1

p − 1
. (10.80)

From the definition of R(m) we have

R(m) =
H0(m, D)
H0(m0;D)

· R(m0) + H0(m, D) · (−t − βp(t)) log(p) (10.81)

=
pt+1 − χd(p)pt + χd(p) − 1

p − 1
· R(m0) + H0(m;D) · (−t − βp(t)) log(p) .

Comparing (10.78) with (10.81), the induction hypothesis L(m0) = R(m0) implies the assertion.

The following result is well known, cf., for example, [9].

Proposition 10.10. With the normalization given by (10.14) above, the Faltings height hFal(E) of
an elliptic curve E with CM by Ok is given by

2 hFal(E) = −1
2

log(d) − L′(0, χd)
L(0, χd)

=
1
2

log(d) − w(d)
2h(d)

d−1∑

a=1

χd(a) log Γ
(a

d

)

=
1
2

log(d) +
L′(1, χd)
L(1, χd)

− log(2π) − γ.

Remark 10.11. The value for 2hFal(E) in Colmez [9], p.633 is our 2hFal(E) − log(2π) due to a
difference in the normalization of the metric on the Hodge bundle.
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Our renormalized Faltings height is then given by

2 h∗
Fal(E) = 2hFal(E) +

1
2

log(π) +
1
2
γ + log(2) (10.82)

=
1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ

Combining these facts, we have

Corollary 10.12. The contribution of the ‘horizontal’ part to the pairing 〈 Ẑ(m, v), ω̂ 〉 is

hω̂(Z(m)horiz) = 2 δ(d;D) H0(m;D)
[

1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ

+
∑

p
p�D

(
log |n|p −

b′p(n, 0;D)
bp(n, 0;D)

) ]
.

Proof of Theorem 7.2. Looking back to the end of section 8, we see that the expression of Corol-
lary 10.12 for hω̂(Z(m)horiz) coincides exactly with the sum of (8.40) and (8.42). The remaining
terms will be considered in the next two sections.

11. Contributions of vertical components

In this section we fix a prime number p with p | D(B). We wish to determine the quantity
deg(ω|Z(m)vert

p ), cf. (9.14), using the results of [32].
We describe Z(m) ×Spec Z Spec W (F̄p) in terms of the p-adic uniformization of M ×Spec Z

Spec (Fp), comp. section 2. To this end we fix x ∈ OB′ with tr◦(x) = 0 and x2 = −m. As in section
2 we identify B′ ⊗ A

p
f with B ⊗ A

p
f and H(Ap

f ) with H ′(Ap
f ) and Kp with K ′p. Put

I(x) = {gKp ∈ H ′(Ap
f )/K ′,p | g−1xg ∈ Ôp

B′} . (11.1)

We also use the abbreviation Ω̂W (F̄p) for Ω̂2 ×Spf Zp SpfW (F̄p). Let x̃ = x, if ordp(m) = 0 (resp.
x̃ = 1 + x, if ordp(m) > 0). Let

Z(x) = (Ω̂W (F̄p) × Z)x̃ (11.2)

be the fixed point set of x̃ ∈ H ′(Qp). Denoting by H ′
x the stabilizer of x in H ′, we have, [32],

Z(m) ×Spec Z Spec W (F̄p) = [H ′
x(Q) \ I(x) × Z(x)] (11.3)

(quotient in the sense of stacks). Since ordp det(x̃) = 0, we have

Z(x) = Ω̂x̃
W (F̄p) × Z . (11.4)

Since the set
H ′

x(Ap
f ) \ {g ∈ H ′(Ap

f ) | g−1xg ∈ Ôp
B′}

is compact, the group H ′
x(Ap

f ) has only finitely many orbits on I(x). Let g1, . . . , gr ∈ H ′(Ap
f ) such

that

I(x) =
r∐

i=1

H ′
x(Ap

f ) gi K
′,p . (11.5)

Then we may rewrite (11.3) as
r∐

i=1

[
H ′

x(Q) \
(

H ′
x(Ap

f )/(K ′,p
i ∩ H ′

x(Ap
f )) × Z × Ω̂x̃

W (F̄p)

)]
,
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where K ′p
i = giK

′pg−1
i .

Note that H ′
x(Q) ∼= k×, where k = Q(

√
−m) is the imaginary quadratic field associated to m.

Let us first consider the case where p does not split in k. Then

ordp det(k×p ) = δp · Z , (11.6)

where δp = 2 if p is unramified in k and δp = 1 if p is ramified in k. Let

H ′
x(Q)1 = {g ∈ H ′

x(Q) | ordp(det(g)) = 0} . (11.7)

Then H ′
x(Q)1 acts with finite stabilizer groups on H ′

x(Ap
f )/(K ′,p

i ∩ H ′
x(Ap

f )). Hence we may rewrite
(11.3) as δp copies of

r∐

i=1

[
H ′

x(Q)1 \
(

H ′(Ap
f )/(K ′,p

i ∩ H ′
x(Ap

f ))
)]

× Ω̂x̃
W (F̄p) (11.8)

(here the first factor is taken in the sense of stacks).
Appealing now to [32], Proposition 3.2, we obtain the following expression for the vertical com-

ponents of Z(m):

Z(m)vert ×Spec Z Spec W (F̄p) (11.9)

= Z/δpZ ×
r∐

i=1

[
H ′

x(Q)1 \
(

H ′(Ap
f )/(K ′,p

i ∩ H ′
x(Ap

f ))
)]

×
( ∑

[Λ]∈B
mult[Λ](x) · P[Λ]

)
.

Here [Λ] ranges over the vertices of the Bruhat-Tits tree of PGL2(Qp) and the multiplicity with
which the prime divisor P[Λ] occurs is given by loc.cit., (3.9) for p �= 2 and by Proposition A.1 in
the Appendix below for p = 2.

Proposition 11.1. For any [Λ] ∈ B we have

deg(ω|P[Λ]) = p − 1 .

Proof. Of course, here deg(ω|P[Λ]) is shorthand for

deg i∗[Λ](ω ⊗Z W (F̄p)) ,

where i[Λ] : P[Λ] → M×Spec Z Spec W (F̄p) is the natural morphism. We write OBp as

OBp = Zp2 [Π]/(Π2 = p, Πa = aσΠ, ∀a ∈ Zp2) .

For the inverse image of the universal abelian scheme (A, ι) on M×Spec Z Spec W (F̄p) we have

LieA = L0 ⊕ L1 , (11.10)

where Li = {x ∈ LieA | ι(a)x = aσ−i
x, ∀a ∈ Zp2}.

Due to the determinant condition (1.1), both L0 and L1 are line bundles on M×Spec ZSpec W (F̄p)
and

ω ⊗Z W (F̄p) = L−1
0 ⊗ L−1

1 . (11.11)

The fiber of Li at a F̄p-valued point of M is expressed as follows in terms of the Dieudonné module
M of the corresponding abelian variety,

L0 = M0/V M1 , L1 = M1/V M0 . (11.12)

Here M = M0 ⊕ M1 is the eigenspace decomposition under the action of Zp2 analogous to (11.10).
To fix ideas assume that Λ is even ([32]). Then for every x ∈ P[Λ](F̄p) we have

M0 = Λ ⊗Zp W (F̄p), V M0 = ΠM0; L0x = M0/�x , (11.13)
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where �x is the line in Λ ⊗Zp F̄p corresponding to x. It follows that

i∗[Λ](L0) = OP[Λ]
(1) . (11.14)

(It is OP[Λ]
(1) rather than OP[Λ]

(−1) since L0 obviously has global sections.) To calculate i∗[Λ](L1),

we use the exact sequence of coherent sheaves on Ω̂W (F̄p)

0 −→ L1
Π−→ L0 −→ OPodd −→ 0 . (11.15)

Here OPodd denotes the structure sheaf of the closed subscheme of the special fiber ([32], section 2),
⋃

[Λ] odd

P[Λ] ⊂ Ω̂W (F̄p) ⊗W (F̄p) F̄p . (11.16)

This sequence remains exact after pulling back and yields

0 −→ i∗[Λ](L1) −→ i∗[Λ](L0) −→ OP[Λ](Fp) −→ 0 (11.17)

(note that i∗[Λ](L1) is torsion-free). Here we used that P[Λ](Fp) = P[Λ] ∩ (
⋃

[Λ] odd

P[Λ]). From (11.14)

we obtain

deg i∗[Λ](L1) = deg i∗[Λ](L0) − (p + 1) (11.18)

= −p .

Now the identity (11.11) yields the assertion. The case where [Λ] is odd is similar.

Remark 11.2. Another proof of Proposition 11.1 may be obtained by using Proposition 3.2. Indeed,
by that proposition we may identify ω and the relative dualizing sheaf ωM/Z. It follows that

deg(ω|P[Λ]) = deg(ωM/Z|P[Λ]) = deg(ωM⊗Z F̄p/F̄p
|P[Λ]) .

By expressing the dualizing sheaf ωM⊗Z F̄p/F̄p
explicitly, it is easy to calculate the last term.

Corollary 11.3. Let k = ordpn, where, as usual, 4m = n2d. Then

∑

[Λ]∈B
mult[Λ](x) · deg(ω|P[Λ]) =






−2k + (p + 1) · pk−1
p−1 if p is unramified in k

−2k − 2 + 2 · pk+1−1
p−1 if p is ramified in k.

Proof. It remains to calculate
∑

[Λ] mult[Λ](x). If p is odd, this is an easy exercise using the results
of [32], section 6. For instance, let p be odd and unramified and put α = ordp(m) so that α = 2k.
Then

∑

[Λ]

mult[Λ](x) =
α

2
+ (p + 1)

α
2
−1∑

r=1

pr−1
(α

2
− r

)
=

−α

p − 1
+

p + 1
p − 1

· p
α
2 − 1
p − 1

.

The case p = 2 is handled in the Appendix to this section.

It now remains to determine the degree of the discrete stack
r∐

i=1

[
H ′

x(Q)1 \
(
H ′(Ap

f )/(K ′,p
i ∩ H ′

x(Ap
f ))

)]
.

Now the elements g1, . . . , gr are in one-to-one correspondence with the Ôp,×
B –conjugacy classes of

embeddings of rings

jp : k⊗ A
p
f −→ B ⊗ A

p
f ,
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with x ∈ (jp)−1(Ôp
B). To each embedding jp there is associated an order of k,

O(jp) = ((jp)−1(Ôp
B).Okp) ∩ k.

The conductor c = c(jp) of this order satisfies (c, D(B)) = 1 and c | n, because x ∈ (jp)−1(Op
B).

Conversely, given c with those two properties, there are precisely
∏

	|D(B),	 
=p

(1 − χd(�))

classes of embeddings jp yielding the order of conductor c. Finally, if gi yields the order of conductor
c, the stack [H ′

x(Q)1 \ (H ′(Ap
f )/K ′

i ∩ H ′
x(Ap

f ))] may be identified with

[k×,1 \ (k⊗ A
p
f/Ôp,×

c2d
)]

which has degree h(c2d)/w(c2d). Summarizing these arguments, we therefore obtain

Lemma 11.4.

δp · deg

(
∐

i=1

[H ′
x(Q)1 \ H ′(Ap

f )/K ′,p
i ∩ H ′

x(Ap
f )]

)

=
∏

	|D(B)

(1 − χd(�)) ·
∑

c|n
(c,D(B))=1

h(c2d)/w(c2d)

= δ(d;D(B)) · H0(m;D(B)) .

Now let us consider the case when p splits in k. In this case ordp(det(k×p )) = Z, but H ′
x(Q)1

does not act with finite stabilizer groups on H ′
x(Ap

f )/(K ′p
i ∩H ′

x(Ap
f )). Let ε(x) ∈ H ′

x(Q) = k× be an
element whose localization in kp = Qp ⊕ Qp has valuation (1,−1). Let H ′

x(Q)1,1 be the subgroup
of elements of H ′

x(Q) which are units at p. Then H ′
x(Q)1 = H ′

x(Q)1,1 × 〈ε(x)Z〉, and H ′
x(Q)1,1 acts

with finite stabilizer groups on H ′
x(Ap

f )/(K ′p
i ∩ H ′

x(Ap
f )), whereas ε(x) acts freely on Ω̂x̃

W (F̄p)
by

translations by 2 on the ‘apartment of central components’ ([32]). We obtain therefore the following
expression for (11.3) in this case

(
r∐

i=1

[
H ′

x(Q)1,1 \
(

H ′
x(Ap

f )/(K ′,p
i ∩ H ′

x(Ap
f ))

)]
)

×
(
〈ε(x)Z〉 \ Ω̂x̃

W (F̄p)

)
. (11.19)

The same analysis as before yields

deg(
r∐

i=1

[
H ′

x(Q)1,1 \
(

H ′
x(Ap

f )/(K ′,p
i ∩ H ′

x(Ap
f ))

)]
) (11.20)

=
∏

�|D(B)
��=p

(1 − χd(�)) ·
∑

c|n
(c,D(B))=1

h(c2d)/w(c2d)

= δ(d;D(B)/p) · H0(m;D(B)) .

Using Proposition 11.1 we have

deg(ω |
(
〈ε(x)Z〉 \ Ω̂x̃

W (F̄p)

)
) = 2 (p − 1)

∑

[Λ]

mult[Λ](x). (11.21)

The right hand side is explained as follows. The action of ε(x) on the apartment corresponding to
k×p has a fundamental domain consisting of two vertices. Fix a vertex [Λ0] in the apartment. Then
the sum in (11.21) ranges over all vertices [Λ] for which [Λ0] is the closest vertex in the apartment.
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This sum can again be evaluated using [32], 3.9, for p odd (resp. the appendix to this section for
p = 2).

We summarize our findings in the following theorem.

Theorem 11.5. Let k = ordp(n), where, as usual, 4m = n2d.
(i) If p splits in k, then

deg( ω | Z(m)vert
p ) = 2H0(m;D(B)) δ(d;D(B)/p) · (pk − 1).

(ii)

deg( ω | Z(m)vert
p ) = 2H0(m;D(B)) δ(d;D(B)) ·






−k + (p+1)(pk−1)
2(p−1) if χd(p) = −1,

−1 − k + pk+1−1
p−1 if χd(p) = 0.

Proof of Theorem 7.2 (continued). In the case χd(p) = 1, the quantity

deg(ω | Z(m)vert
p ) log(p) · qm

coincides exactly with the term (ii) of Theorem 8.8. On the other hand, in the cases χd(p) = −1
and χd(p) = 0, we find that

deg( ω | Z(m)vert
p ) log(p) · qm = 2 δ(d;D)H0(m;D)Kp log(p) · qm,

where Kp is as in Theorem 8.8. Thus, summing on p | D, we obtain (8.42).

A. Appendix to section 11: The case p = 2

In [32] we made the blanket assumption p �= 2. In this appendix we indicate the modifications
needed to arrive at the formulas given in Theorem 11.5 in the case p = 2.

We will use the same notation as in [32]. We fix a special endomorphism j ∈ V with q(j) =
j2 ∈ Z2 \ {0}. We denote by Z(j) the associated closed formal subscheme of the Drinfeld moduli
space M � Ω̂ ×Spf Z2 Spf W (F̄2). We will content ourselves with giving the structure of the divisor
Z(j)pure associated to Z(j), loc.cit., section 4. Our discussion will proceed by distinguishing cases.
Let k = Q2(j) (hence in the global case k is the localization at 2 of the imaginary quadratic field).
Let O = Ok be the ring of integers in k. We write as usual

q(j) = ε · 2α , ε ∈ Z×
2 , α � 0 . (A.1)

We define k � 0 by

α + 2 = 2k + ord2(d) , (A.2)

where d denotes the discriminant of O/Z2. Note that in the global context, when Z(m) is p-adically
uniformized by Z(j) (cf. (11.3) above), then α = ordp(m). If we write as usual 4m = n2d, then
k = ordp(n).

We have then the following cases:
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Case q(j) 2 in k value of k BO×

1 2|α, ε ≡ 1(8) split k = α
2 + 1 A

2 2|α, ε ≡ 5(8) unramified k = α
2 + 1 {[Λ0]}

3 2|α, ε ≡ −1(4) ramified k = α
2 {[Λ0], [Λ1]}

4 2 � α ramified k = α−1
2 {[Λ0], [Λ1]}

We explain the last column in this table. In cases 1 and 2, writing j = 2α/2 · j̄, the index of Z2[j̄]
in O and the index of Z2[j]× in O× is 2. Here in case 1, O is defined to be Z2 ⊕ Z2 · 1+j̄

2 . In this
case, the fixed point set of O× is the apartment A in B corresponding to the split Cartan subgroup
k× of GL2(Q2), and the fixed point set of j is

Bj = {[Λ]; d([Λ], A) � 1} . (A.3)

In case 2, the fixed point set of O× is the vertex corresponding to the lattice Λ0 = O in Q2
2. Let

j̃ = (1 + j)/2, and denote by [Λ1] the vertex corresponding to the lattice Λ1 = Z2[j̄]. Then

Bj = {[Λ0], [Λ1], [j̃(Λ1)], [j̃2(Λ1)]} = {[Λ]; d([Λ], [Λ0]) � 1}. (A.4)

In cases 3 and 4 we write j = 2[α/2]j̄. Then we have O = Z2[j̄]. The fixed point set of O× consists
of the vertices corresponding to the lattices Λ0 = O and Λ1 = πO, where π denotes a uniformizer
in O. In case 3 this coincides with the fixed point set of j, whereas, in case 4, j permutes the two
vertices [Λ0] and [Λ1] so that Bj consists of the midpoint of the edge formed by [Λ0] and [Λ1].

To formulate the theorem we write the divisor as usual as a sum of a vertical part and a horizontal
part,

Z(j)pure = Z(j)vert + Z(j)horiz .

Proposition A.1. (i) Let

Z(j)vert =
∑

[Λ]∈B
mult[Λ](j) · P[Λ] .

Then the multiplicity mult[Λ](j) is given by

mult[Λ](j) = max(k − d([Λ],BO×
), 0) .

(ii) In case 1, Z(j)horiz = 0. In case 2, Z(j)horiz is isomorphic to the disjoint union of two copies
of Spf W (F̄2) and meets the special fiber in two ordinary special points of P[Λ0]. In cases 3 and 4,

Z(j)horiz is isomorphic to Spf W ′, where W ′ is the ring of integers in a ramified quadratic extension
of W (F̄2), and meets the special fiber in the superspecial point corresponding to the midpoint of
the edge formed by [Λ0] and [Λ1].

Proof. We first determine Z(j)∩ (Ω̂[Λ] ×Spf Z2 Spf W (F̄2)) for a vertex [Λ] where the intersection is
non-empty. Let m = max{r; j(Λ) ⊂ 2rΛ}. Then

m = α/2 − d([Λ], Bj) , (A.5)

cf. loc.cit., Lemma 2.8. After choosing a basis of Λ we may write

j = 2m ·
(

ā b̄
c̄ −ā

)
= 2m · j̄ , (A.6)

where ā, b̄, c̄ are not simultaneously divisible by p. The equation of Z(j) on Ω̂[Λ]×Spf Z2 Spf W (F̄2) =
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Spf W (F̄2)[T, (T 2 − T )−1]̂ is given by

2m · (b̄T 2 − 2āT − c̄) = 0 , (A.7)

cf. loc.cit., (3.5). We now distinguish 2 cases.

Case a: 2|b̄ and 2|c̄. Then 2� | ā and we may write (A.7) in the form

2m+1 · (b̄0T
2 − āT − c̄0) = 0 , (A.8)

where b̄ = 2b̄0 and c̄ = 2c̄0.
Hence in this case the multiplicity mult[Λ](j) equals m + 1. However, in this case j̄ ∈ GL2(Z2)

and hence [Λ] is fixed by j. We check now case by case when alternative a) can occur. Case 4 can
be excluded right away since in this case no vertex is fixed by j. In case 3 let [Λ] = [Λ0] with the
notation introduced in this case, i.e. Λ0 = O = Z2[j̄]. Choosing as basis 1, j̄ we see that j is given
by the matrix

j = 2α/2 ·
(

0 ε
1 0

)
= 2m j̄ , (A.9)

hence alternative a) does not occur for [Λ0]. The case when [Λ] = [Λ1] with Λ1 = πO is identical
and hence alternative a) does not occur in case 3.

In case 2, the vertex [Λ1] with Λ1 = Z2[j̄] is excluded for the same reason, and hence so are
[j̃(Λ1)] and [j̃2(Λ1)]. Now let us consider the vertex [Λ0], with Λ0 = O. We may choose the basis
1, 1+j̄

2 of Λ0 and then j is given by the matrix

j = 2
α
2 ·

(
−1 2λ
2 1

)
, where ε − 1 = 4λ . (A.10)

Hence alternative a) applies here. Furthermore, in this case, the second factor in (A.8) is equal to

λT 2 + T − 1 . (A.11)

Since, in case 2, we have λ ∈ Z×
2 , the ring

Z2[T ]/(λT 2 + T − 1)

is the ring of integers in an unramified quadratic extension of Q2 and the zero’s of the polynomial
T 2 + T − 1 ∈ F2[T ] lie in F4 \ F2 and define 2 ordinary special points of P[Λ0].

In case 1 the analysis is similar to case 2. First one checks that if [Λ] �∈ BO×
, then alternative

a) does not occur. If [Λ] ∈ BO×
, then after replacing [Λ] by [gΛ] for some g ∈ k× we may assume

that either [Λ] = [Λ0] with Λ0 = O = 〈1, 1+j
2 〉 or [Λ] = [Λ′

0] with Λ′
0 = 〈2, 1+j̄

2 〉. In the first case
the matrix of j is given by (A.10) and hence we are in alternative a). The second factor in (A.8) is
equal to

λT 2 + T − 1 ≡ T − 1 mod 2 ,

since 2|λ in case 1. It follows that Z(j)horiz ∩ (Ω̂[Λ0] ×Spf Z2 Spf W (F̄2)) = ∅. In the second case the
matrix of j is given by

j = 2
α
2 ·

(
−1 λ
4 1

)
. (A.12)

Again we are in alternative a), since 2|λ. The second factor in (A.8) is equal to

λ0T
2 + T − 2 ≡ λ0T

2 + T mod 2 ,

where we have set λ = 2λ0. Since T 2−T is invertible on Ω̂[Λ′
0], we again have Z(j)horiz∩(Ω̂[Λ′

0]×Spf Z2

Spf W (F̄2)) = ∅. This concludes our analysis of the alternative a).
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Case b: 2 � | b̄ or 2 � | c̄. In this case the second factor of (A.7) is not divisible by 2, and hence
mult[Λ](j) = m. At this point we have shown that for any [Λ] ∈ B the multiplicity mult[Λ](j) is
given by the formula in (i). Indeed, this follows by listing case by case the fixed point sets of j, and
the expressions for k and for m, cf. (A.5), and comparing them with the multiplicities calculated
above.

Now let us analyze the second factor in (A.7) in the alternative b). Its image in F2[T ] is

b̄ T 2 − c̄ ,

hence is equal to either T 2 − 1, 1, or T 2. In all cases Z(j)horiz ∩ (Ω̂[Λ] ×Spf Z2 Spf W (F̄2)) = ∅.
Now we determine Z(j)horiz ∩ (Ω̂∆ ×Spf Z2 Spf W (F̄2)) for an edge ∆ = {[Λ], [Λ′]}, where the

intersection is non-empty. As in the proof of Proposition 3.3 in [32] we see that this intersection is
non-empty only when d([Λ],Bj) = d([Λ′],Bj). In cases 3 and 4, we therefore must have

[Λ] = [Λ0] , [Λ′] = [Λ1] . (A.13)

In case 3, we take as basis in standard form for Λ0,Λ1, and, noting that 1 + j̄ is a uniformizer of O,

Λ0 = 〈1, 1 + j̄〉 , Λ1 = 〈2, 1 + j̄〉 . (A.14)

In terms of the basis 1, 1 + j̄ of Λ0 the matrix of j is

j = p
α
2 ·

(
−1 −2 · (1 − 2λ)
1 1

)
, where ε = 4λ − 1 . (A.15)

By loc. cit. the equations for Z(j) ∩ (Ω̂∆ ×Spf Z2 Spf W (F̄2)) in

Ω̂∆ ×Spf Z2 Spf W (F̄2) = Spf W (F̄2)[T0, T1, (1 − T0)−1, (1 − T1)−1]̂/(T0T1 − 2)

are given by

pα/2 · T0

(
− (1 − 2λ)T0 + 2 − T1

)
= 0

pα/2 · T1

(
− (1 − 2λ)T0 + 2 − T1

)
= 0 .

Hence, Z(j)horiz is defined by the second factor in these equations. Now putting
µ = (−(1 − 2λ))−1 ∈ Z×

2 , we obtain

Z(j)horiz = Spf W (F̄2)[T0]/(T 2
0 + 2µT0 − 2µ) . (A.16)

Since T 2
0 + 2µT0 − 2µ is an Eisenstein polynomial, we see that Z(j)horiz is the formal spectrum of

the ring of integers in a ramified quadratic extension of W (F̄2) and it meets the special fiber of
Ω̂{[Λ0],[Λ1]} ×Spf Z2 Spf W (F̄2) in pt∆, which finishes the proof in this case.

The case 4 is similar to the case of loc. cit., p. 180.5 In this case we have

j(Λ0) = 2
α−1

2 · Λ1 , j(Λ1) = 2
α+1

2 · Λ0 . (A.17)

Hence, as in loc. cit., we can write j in terms of standard coordinates for Λ0,Λ1

j = 2
α−1

2 ·
(

ā b̄
c̄ −ā

)
with b̄ = 2 · b̄0

5We note that at this point in loc. cit. there is a slight error. The equations (3.23) of loc. cit. do not define the same
closed subscheme as equations (3.22). The correct expression for Z(j)h, replacing (3.24) is

Z(j)h = Spf W [T0, T1 ]̂ /(b̄0T0 − 2ā − c̄T1, T0T1 − p)

= Spf W [T0]/(T 2
0 + αT0 + β) ,

where α ∈ pZp and β ∈ pZ×
p . The conclusions drawn from these corrected equations (pp. 181, 182/183 loc. cit.) are

unchanged.
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and where 2 | ā and b̄0 and c̄ are units. Hence Z(j)horiz is isomorphic to

Spf W (F̄2)[T0, T1, (1 − T0)−1, (1 − T1)−1]̂/(T0T1 − 2, b̄0T0 − 2ā − c̄T1) .

Putting µ =
(

b0
c̄

)−1
∈ Z×

2 and ν = ā
c̄ , we see that

Z(j)horiz = Spf W (F̄2)[T0]/(T 2
0 − 2µνT0 − 2µ) (A.18)

which yields the assertion as in case 3.
In case 2, we must have ∆ = {[Λ0], [j̃i(Λ1)]}, where Λ0 = O and Λ1 = Z2[j̄] and for some

i = 0, 1, 2. Let us consider the case i = 0, the other cases being similar. In this case we take as
standard bases

Λ0 =
〈

1 + j

2
, 1

〉
, Λ1 =

〈
2 · 1 + j

2
, 1

〉
.

But then, by (A.10), the equation for Z(j)horiz is given by

T0 − 1 − λT1 = 0 , where ε − 1 = 4λ .

It follows that pt∆ �∈ Z(j)horiz, which finishes the proof in this case.
Finally there is case 1. In this case either ∆ ⊂ A or, after replacing ∆ by g∆ where g ∈ k×,

we may assume that ∆ = {[Λ0], [Λ1]} where Λ0 and Λ1 are as in case 3. The second alternative is
treated as the case 3 above. If ∆ ⊂ A, we may assume that

Λ =
〈

1,
1 + j̄

2

〉
, Λ′ =

〈
2,

1 + j̄

2

〉
.

In this case j is given by the matrix (A.10) which yields the following equations for Z(j),

pα/2 · T0

(
λT0 + 2 − 2T1

)
= 0 ,

pα/2 · T1

(
λT0 + 2 − 2T1

)
= 0 .

Since we are in case 1, we may write λ = 2λ0 in the defining equation ε − 1 = 4λ. It follows that,
after pulling a 2 out of the last factor in both equations, Z(j)horiz is defined by the equation

λ0T0 + 1 − T1 = 0 ,

and again pt∆ �∈ Z(j)horiz.

12. Archimedean contributions

In this section, we compute the additional contribution

κ(m, v) =
1
2

∫

[Γ\D]
Ξ(m, v) c1(ω̂) (12.1)

to the height pairing coming from the fact that we are using nonstandard Green functions defined
in [25] for the cycles Z(m). Recall that, by (5.8), for z ∈ D, we have

Ξ(m, v)(z) =
∑

x∈L(m)

ξ(v
1
2 x, z), (12.2)

where
ξ(x, z) = −Ei(−2πR(x, z)).

Note that the quantity
R(x, z) = −(prz(x),prz(x)),

and hence ξ(x, z), is independent of the orientation of the plane z. Also recall that c1(ω̂) = µ.
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Proposition 12.1. (i) If m > 0, then

κ(m, v) = 2 δ(d, D)H0(m;D) · 1
2

J(4πmv),

where

J(t) =
∫ ∞

0
e−tw

[
(w + 1)

1
2 − 1

]
w−1 dw,

is as in Theorem 8.8, and H0(m;D) is given by (8.17).
(ii) If m < 0, then

κ(m, v) = 2 δ(d;D) H0(m;D)
1
4π

|m|− 1
2 v−

1
2

∫ ∞

1
e−4π|m|vw w− 3

2 dw,

where H0(m;D) is given by (8.29).

Proof. We have

κ(m, v) =
1
4

∫

Γ\D
Ξ(m, v) · µ

=
1
4

∫

Γ\D

∑

x∈L(m)

ξ(v
1
2 x, z) dµ(z)

=
1
4

∑

x∈L(m)

mod Γ

∫

Γx\D
ξ(v

1
2 x, z) dµ(z).

First suppose that m = Q(x) > 0, so that Γx is finite. Then
∫

Γx\D
ξ(x, z) dµ(z) = 2 |Γx|−1 ·

∫

D
ξ(x, z) dµ(z) = 4 |Γx|−1 ·

∫

D+

ξ(x, z) dµ(z). (12.3)

Here the factor of 2 occurs since Γx contains ±1, but these elements act trivially on D, while in the
second step, we use the fact that ξ(x, z) does not depend on the orientation of z. Since

ξ(gx, gz) = ξ(x, z), (12.4)

for g ∈ GL2(R), we may assume that

x = m
1
2 · x0 = m

1
2 ·

(
1

−1

)
. (12.5)

Then, writing z = kθ(eti) ∈ H � D+, [25], p.601 , we have

R(x, z) = 2m sinh2(t). (12.6)

Now, noting that t runs from 0 to ∞ and θ runs from 0 to π,

I : =
∫

D+

−Ei(−2πR(v
1
2 x, z)) dµ(z)

=
1
2π

∫ π

0

∫ ∞

0
−Ei(−4πmv sinh2(t)) 2 sinh(t) dt dθ

=
1
2

∫ ∞

0

(∫ ∞

1
e−4πmv sinh2(t)rr−1 dr

)
2 sinh(t) dt

=
1
2

∫ ∞

0

(∫ ∞

1
e−4πmvwrr−1 dr

)
(w + 1)−

1
2 dw.
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But
∫ ∞

0
e−4πmvwr (w + 1)−

1
2 dw

= e−4πmvwr 2(w + 1)
1
2

∣
∣
∣
∣

∞

0

+ 4πmvr

∫ ∞

0
e−4πmvwr 2(w + 1)

1
2 dw

= −2 + 4πmvr

∫ ∞

0
e−4πmvwr 2(w + 1)

1
2 dw

= 8πmvr

∫ ∞

0
e−4πmvwr

[
(w + 1)

1
2 − 1

]
dw,

so that

I =
1
2

∫ ∞

1
8πmv

∫ ∞

0
e−4πmvwr

[
(w + 1)

1
2 − 1

]
dw dr

=
∫ ∞

0
e−4πmvw

[
(w + 1)

1
2 − 1

]
w−1 dw

= J(4πmv).

By Lemma 9.2, we have
∑

x∈L(m)

mod Γ

|Γx|−1 = δ(d;D) · H0(m;D). (12.7)

Collecting terms, we obtain (i).

Next suppose that m < 0. Let Γ+ = Γ ∩GL2(R)+, and let δx = |Γx : Γ+
x |, where Γ+

x = Γx ∩ Γ+.
Then

∫

Γx\D
ξ(x, z) dµ(z) = δ−1

x

∫

Γ+
x \D

ξ(x, z) dµ(z) = 2δ−1
x

∫

Γ+
x \D+

ξ(x, z) dµ(z). (12.8)

By conjugating by a suitable g ∈ GL2(R), we can take

g · x = |m| 12 · x0 = |m| 12 ·
(

1
−1

)
. (12.9)

Let Γ′ be the corresponding conjugate of Γ+ in SL2(R), and note that Γ′
gx will then be generated

by ±12 and a unique element
(

ε(x)
ε(x)−1

)
(12.10)

for ε(x) > 1 the fundamental unit of norm 1 in the order i−1
x (OB). If we write z = reiθ ∈ H � D+,

then Γ′
gx acts by multiplication by powers of ε(x)2. Note that

R(gx, z) =
2|m|

sin2(θ)
. (12.11)
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Then
∫

Γ+
x \D+

ξ(v
1
2 x, z) dµ(z) =

1
2π

∫ ε(x)2

1

∫ π

0
−Ei

(
−4π|m|v

sin(θ)2

)
r−1(sin(θ))−2 dθ dr

=
2
π

log |ε(x)| ·
∫ π/2

0
−Ei

(
−4π|m|v

sin(θ)2

)
(sin(θ))−2 dθ

=
1
π

log |ε(x)| ·
∫ ∞

1

( ∫ ∞

1
e−4π|m|vtw w−1 dw

)
(t − 1)−

1
2 dt

=
1
π

log |ε(x)| ·
∫ ∞

1
e−4π|m|vw

( ∫ ∞

0
e−4π|m|vtw t−

1
2 dt

)
w−1 dw

=
1
π

log |ε(x)| · Γ(
1
2
) (4π|m|v)−

1
2

∫ ∞

1
e−4π|m|vw w− 3

2 dw

=
1
2π

log |ε(x)| · (|m|v)−
1
2

∫ ∞

1
e−4π|m|vw w− 3

2 dw.

The analogue of Lemma 9.2 for m < 0 is the following.

Lemma 12.2. If m < 0, then
( ∑

x∈L(m)

mod Γ

2δ−1
x log |ε(x)|

)
= 4 δ(d;D)H0(m;D),

where H0(m;D) is as in (8.29).

Proof. We proceed as in the proof of Lemma 9.2. Note that for x of type c, Γx � O×
c2d

and Γ+
x � O1

c2d,
the subgroup of norm 1 elements, so that δx = δc = |O×

c2d
: O1

c2d|. Let ε(c2d) be a fundamental unit
in Oc2d with ε(c2d) > 1. Note that ε+(c2d) = ε(c2d)δc is a generator of O1

c2d/±1. Then we have
( ∑

x∈L(m)

mod Γ

2δ−1
x log |ε(x)|

)

=
∑

c|n
(c,D)=1

2δ−1
c |Opt(Oc2d, OB)| · log |ε+(c2d)|

= 2
∑

c|n
(c,D)=1

|Opt(Oc2d, OB)| · log |ε(c2d)|

= 2 δ(d;D)
∑

c|n
(c,D)=1

h(d) · log |ε(d)|
log |ε(c2d)| ·

(
c
∏

	|c
(1 − χd(�)�−1)

)
log |ε(c2d)|

= 4 δ(d;D)
h(d) log |ε(d)|

w(d)

∑

c|n
(c,D)=1

c
∏

	|c
(1 − χd(�)�−1)

= 4 δ(d;D) H0(m;D).
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Proof of Theorem 7.2 (concluded). We observe that the expression in Proposition 12.1 when m > 0
coincides with the term (8.41) in the Fourier coefficient E ′

m(τ, 1
2 ;D) = A′

m(1
2 , v) qm. On the other

hand, when m < 0, the expression in Proposition 12.1 coincides with that in (iii) of Theorem 8.8.

Part IV. Computations: analytic

13. Local Whittaker functions: the non-archimedean case

The main purpose of this section is to prove Proposition 8.1. We fix a prime p and frequently drop
the subscript p to lighten the notation. Recall that B = Bp is a quaternion algebra which is a matrix
algebra or a division algebra depending on whether p � D or p | D. Here D is a fixed square-free
positive integer. Let OB be a maximal order of B and let

V = { x ∈ B | tr0x = 0}
with the quadratic form Q(x) = κ x2, where κ = ±1. Actually, only the case κ = −1 is needed in
section 8, but we treat the slightly more general case for future reference. Let L = V ∩OB, and let
S ∈ Sym2(Qp) be the matrix associated to L in the following sense. With respect to a basis of L
over Zp, identify L with Z3

p. Then, for any x ∈ L = Z3
p,

Q(x) =
1
2
(x, x) = txSx. (13.1)

Let Sr = S ⊥ 1
2

(
0 Ir

Ir 0

)
, and let Lr = Z2r+3

p be the associated quadratic lattice, viewed as the

direct sum of L and r hyperbolic planes. Let dx =
∏

dxi be the standard Haar measure on Lr,
where ∫

Zp

dxi = 1.

Let

W (m, Sr) =
∫

Qp

∫

Lr

ψ(btxSrx) ψ(−mb) dx db (13.2)

be the integral defined in [47], (1.2). It is the same as the local quadratic density polynomial
αp(X, m, S) with X = p−r defined in [47], page 312. Here ψ = ψp is the local component of our
standard additive character of A/Q.

Lemma 13.1. With the notation as above, for any r � 0 and any m ∈ Qp,

Wm,p(1, r +
1
2
,Φp) = β(V ) |det 2S |

1
2
p W (m, Sr).

Here

β(V ) =
(

ε(S) γ(ψ)3 γ(detS, ψ)
)−1

is the local splitting index defined in [23], Theorem 3.1. Here ε(S) is the Hasse invariant6 of S and
γ(ψ) and γ(a, ψ) are the local Weil indices as in [40].

6If S ∈ Symm(Qp) is GLm(Qp) equivalent to the diagonal form diag(a1, . . . , am), then

ε(S) =
∏

i<j

(ai, aj).
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Proof. We remark that this Lemma is true in general for any 3-dimensional quadratic space V over
Qp. Let φ = char(L) and φr = char(Lr). Then [25], Appendix, asserts that

ω(g)φr(0) = Φp(g, r +
1
2
)

where ω = ωψ is the Weil representation of G′
p (the metaplectic cover of SL2(Qp)) on the space

S(V ) of Schwartz functions on V . Thus

Wm,p(1, r +
1
2
,Φp)

=
∫

Qp

ω(wn(b))φr(0)ψ(−bm) db (13.3)

= β(V )
∫

Qp

∫

V
φr(x) drx ψ(−bm) db,

where drx is the self-dual Haar measure with respect to the bi-character (x, y) 
→ ψp((x, y)r) with
(x, y)r the bilinear from on Vr = Lr ⊗ Qp associated to Sr. It is easy to check

drx = |det 2Sr|
1
2
p dx = |det 2S |

1
2
p dx (13.4)

under the identification Lr = Z2r+3
p as above. This proves the Lemma.

The following lemma is standard.

Lemma 13.2. Let V and L be as above.
(i) When p � D, one has L ∼= Z3

p with the quadratic form and symmetric matrix as follows:

Q(x) = κ (x2
1 + x2x3), S = κ




1

1
2

1
2



 .

(ii) When 2 �= p | D , one has L ∼= Z3
p with the quadratic form and symmetric matrix as follows:

Q(x) = κ (βx2
1 + px2

2 − βpx2
3), S = κ diag(β, p,−βp).

Here β ∈ Z×
p with (β, p)p = −1.

(iii) When p = 2 | D(B), one has L ∼= Z3
p with the quadratic form and symmetric matrix as follows:

Q(x) = κ (x2
1 + x2

2 + x2
3), S = −κ diag(1, 1, 1).

(iv) Finally,

|det 2S |p = |2κ|p ·
{

1 if p � D,

p−2 if p | D.

Notice that β(V ) in Lemma 13.1 depends only on V and is well-defined even when p = ∞.

Lemma 13.3. Let V be as above. Let ζ8 = e
2πi
8 . Then

β(V ) = inv(B) ·






1 if p � 2∞,

ζ−κ
8 if p = ∞,

ζκ
8 if p = 2.

Here ε(B) = ±1 depending on whether B = Bp is split or not.

58



Derivatives of Eisenstein series and Faltings heights

Proof. First, it is easy to check that the quantity

ε(αS) γ(ψα)3 γ(det(αS), ψα) (13.5)

is independent of α ∈ Q×
p , so that we may write

β(V ) =
(
ε(V )γ(

1
2
ψ)3γ(detV,

1
2
ψ)

)−1
, (13.6)

where det(V ) = det(2S), as in [40]. By Lemma 13.2, detV ∈ −2κ Q
×,2
p in all cases, and so, by [40],

γ(detV,
1
2
ψ) = γ(−2κ,

1
2
ψ) =

γ(−κψ)
γ(1

2ψ)
. (13.7)

Now we take p = 2 and leave the other cases to the reader. Following [40], p.370, we have

γ(
1
2
ψ) =

1
2

∑

x∈Z/4Z

ψ(
1
8
x2) = ζ−1

8 , (13.8)

and, [40], Proposition A.12,

γ(−κψ) = ζκ
8 . (13.9)

Thus

γ(det(V ),
1
2
ψ) =

{
i if κ = 1,

1 if κ = −1.
(13.10)

As for the Hasse invariant ε(V ) = ε(2S), in the split case,

ε(V ) = (2κ,−1)2 (2κ,−2κ)2 =

{
1 if κ = 1,

−1 if κ = −1.
(13.11)

In the ramified case,

ε(V ) = (−2κ,−2κ)2 =

{
−1 if κ = 1,

1 if κ = −1.
(13.12)

Combining these formulas, we obtain the claimed value.

Proof of Proposition 8.1. By Lemmas 13.1 and 13.3, Proposition 8.1 is equivalent to the following
proposition for κ = −1.

Proposition 13.4. For a nonzero integer m, write 4m = n2d such that κd is a fundamental dis-
criminant of a quadratic field.
(i) If p � D,

Wp(m, Sr) =
Lp(r + 1, χ−κd) bp(n, r + 1;D)

ζp(2r + 2)
.

(ii) If p | D,

Wp(m, Sr) = Lp(r + 1, χ−κd) bp(n, r + 1;D).
(iii) If m = 0,

Wp(0, Sr) =






ζp(2r+1)
ζp(2r+2) if p � D,

ζp(2r+1)
ζp(2r) if p | D,

Proof. Part (i) is a better reformulation of [47], Propositions 8.3. Part (ii) follows from (i) and [47],
Proposition 8.2. Part (iii) follows from (i) and (ii) when we let a = ordpm tends to infinity. We
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verify the case p = 2 � D and leave the other (easier) cases to the reader. We recall again that
Wp(m, Sr) is just the local density polynomial αp(X, m, S) in [47] with X = p−r. Write m = αpa

with a = ordpm = 2k+ordp
d
4 and α ∈ Z×

p where k = kp(n) = ordpn as before. In the notation of [47],
Proposition 8.3, one has (ακ

p ) = χ−κd(p) if p � d. In our case p = 2 � D, a = ord2m = 2k − 2 + ord2d
with k = ord2n as before.

Subcase 1. First we assume 8 | d. Then a = 2k + 1 is odd, and [47], Proposition 8.3(1), implies

W2(m, Sr) = (1 − 2−2X2)
k∑

l=0

(2−1X2)l

=
(1 − 2−2X2)(1 − (2−1X2)k+1)

1 − 2−1X2
(13.13)

=
L2(r + 1, χ−κd) b2(n, r + 1;D)

ζ2(2s + 2)

as desired.

Subcase 2. Now assume that ord2d = 2. Then a = 2k, ακ = κd
4 (n2−k)2 ≡ −1 mod 4, and thus

(−1
ακ ) = −1 and δ8(α − κ) = 0. So [47], Proposition 8.3(3), (a−1

2 in the summation there should be
a
2 ) implies

W2(m, Sr) = 1 + 2−1
k∑

l=1

(2−1X2)l − 2−k−2X2k+2

=
(1 − 2−2X2)(1 − (2−1X2)k+1)

1 − 2−1X2
(13.14)

=
L2(r + 1, χ−κd)

ζ2(2r + 2)
b2(n, r + 1;D).

Subcase 3. Finally if 2 � d, i.e., κd ≡ 1 mod 4, then a = 2k − 2 and α = d(n2−k+1)2 ≡ d
mod 8. In this case, (−1

ακ ) = 1 and

δ8(α − κ) = δ8(d − κ) = χ−κd(2). (13.15)

Set v2 = χ−κd(2). Then [47], Proposition 8.3(3), gives

W2(m, Sr) = 1 + 2−1
k−1∑

l=1

(2−1X2)l + 2−k−1X2k + v22−k−1X2k+1 (13.16)

=
1 − 2−2X2 − 2−k−1X2k+1(−v2 + 2−1X + v22−1X2)

1 − 2−1X2
.

On the other hand,

L2(r + 1, χ−κd)b2(n, r + 1;D)
ζ2(2r + 2)

=
(1 + v22−1X)(1 − v2X + v22−k−2X2k+1 − 2−k−1X2k+2)

1 − 2−1X2
(13.17)

=
1 − 2−2X2 − 2−k−1X2k+1(1 + v22−1X)(−v2 + X)

1 − 2−1X2

=
1 − 2−2X2 − 2−k−1X2k+1(−v2 + 2−1X + v22−1X2)

1 − 2−1X2
.
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Therefore

W2(m, Sr) =
L2(r + 1, χ−κd)

ζ2(2r + 2)
b2(n, r + 1;D). (13.18)

14. Local Whittaker functions: the archimedean case

In this section, we compute the local Whittaker function

Wm,∞(τ, s,Φ	
∞) = v−	/2

∫

R

Φ	
∞(wn(b)g′τ , s)ψ∞(−mb) db (14.1)

and prove Lemmas 8.9, and 8.11. Here � ∈ 1
2Z is such that � ≡ 3

2 mod 2Z. In this paper, we only
need � = 3

2 .
Let

Ψ(a, b; z) =
1

Γ(a)

∫ ∞

0
e−zr(r + 1)b−a−1ra−1dr (14.2)

be the standard confluent hypergeometric function of the second kind, [38], where a > 0, z > 0 and
b is any real number. It satisfies the functional equation, [38], p. 265

Ψ(a, b; z) = z1−bΨ(1 + a − b, 2 − b; z). (14.3)

For convenience, we also define

Ψ(0, b; z) = lim
a→0+

Ψ(a, b; z) = 1. (14.4)

So Ψ(a, b; z) is well-defined for z > 0, a � min{0, b − 1}. Finally, for any number n, we define

Ψn(s, z) = Ψ(
1
2
(1 + n + s), s + 1; z). (14.5)

Then (14.3) implies

Ψn(s, z) = z−sΨn(−s, z). (14.6)

Proposition 14.1. Let q = e(mτ), (−i)	 = e(−�/4), and

α =
s + 1 + �

2
, β =

s + 1 − �

2
.

(i) For m > 0,

Wm,∞(τ, s,Φ	
∞) = 2π (−i)	 vβ (2πm)s Ψ−	(s, 4πmv)

Γ(α)
· qm.

(ii) For m < 0,

Wm,∞(τ, s,Φ	
∞) = 2π (−i)	 vβ (2π|m|)s Ψ	(s, 4π|m|v)

Γ(β)
e−4π|m|v · qm.

(iii) For m = 0,

W0,∞(τ, s,Φ	
∞) = 2π (−i)	 v

1
2
(1−	−s) 2−sΓ(s)

Γ(α)Γ(β)
.

(iv) The special value at s = � − 1 is

Wm,∞(τ, � − 1,Φ	
∞) =






0 if m � 0,

(−2πi)�

Γ(	) m	−1 qm if m > 0.
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Proof. A standard calculation, [43], (see also [25] pages 585–586, for this special case) gives

Wm,∞(τ, s,Φ	
∞) = (−i)	vβe(mτ̄)

(2π)s+1

Γ(α)Γ(β)

∫

r>0
r>m

e−4πvr(r − m)β−1rα−1 dr (14.7)

When m = 0, this gives (iii) immediately.
When m > 0, the integral equals

∫

r>m
e−4πvr(r − m)β−1rα−1 dr = mse−4πmv

∫ ∞

0
e−4πmvrrβ−1(r + 1)α−1 dr

= mse−4πmvΓ(β)Ψ−	(s, 4πmv).

This proves (i). The special value at s = � − 1 is

Wm,∞(τ, � − 1,Φ	
∞) = 2π(−i)	(2πm)	−1qm Ψ−	(� − 1, 4πmv)

Γ(�)

=
(−2πim)	

mΓ(�)
qm,

as claimed in (iv).
When m < 0, the integral is

∫

r>0
e−4πvr(r − m)β−1rα−1 dr = |m|s

∫ ∞

0
e−4πmvrrα−1(r + 1)β−1dr

= |m|sΓ(α)Ψ	(s, 4πmv).

This proves (ii). The special value at s = �− 1 is 0 since 1
Γ(β) = 0 at s = �− 1 and Ψ	(�− 1, 4π|m|v)

is finite.

Proof of Lemma 8.9. Since m > 0, (i) of Proposition 14.1 implies

W ′
m,∞(τ, � − 1,Φ	

∞)
Wm,∞(τ, � − 1,Φ	∞)

=
1
2

log v + log(2πm) − 1
2

Γ′(�)
Γ(�)

+
Ψ′

−	(� − 1, 4πmv)
Ψ−	(� − 1, 4πmv)

.

Notice that, for any z > 0,
Ψ−	(� − 1, z) = Ψ(0, �; z) = 1,

by (14.4). Observe that

Ψ−	(s, z) = z−β +
1

Γ(β)

∫ ∞

0
e−zr((r + 1)s−β − 1)rβ−1dr.

The integral here is well-defined at s = � − 1 and is equal to

J(� − 1, z) :=
∫ ∞

0
e−zr (r + 1)	−1 − 1

r
dr. (14.8)

Notice also that the function 1
Γ(β) vanishes at s = � − 1 and has the first derivative 1

2 at s = � − 1.
Thus,

Ψ′
−	(� − 1, z) = −1

2
log z +

1
2

J(� − 1, z), (14.9)

and we have
W ′

m,∞(τ, � − 1,Φ	
∞)

Wm,∞(τ, � − 1,Φ	∞)
=

1
2

[
log(πm) − Γ′(�)

Γ(�)
+ J(� − 1, 4πmv)

]
. (14.10)

When � = 3
2 , J(1

2 , 4πmv) = J(4πmv) is the quantity defined in Theorem 8.8, so this gives
Lemma 8.9.
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Proof of Lemma 8.11. (The case m < 0, with derivative). We now assume m < 0. Since the function
1

Γ(β) vanishes at s = � − 1 and has the first derivative 1
2 there, one has, by (ii) of Proposition 14.1,

W ′
m,∞(τ, � − 1,Φ	

∞) = 2π(−i)	 (2π|m|)	−1 1
2

Ψ	(� − 1, 4π|m|v) · e−4π|m|v · qm.

By (14.6), one has

Ψ	(� − 1, 4π|m|v) = (4π|m|v)1−	 Ψ	(1 − �, 4π|m|v)

= (4π|m|v)1−	 Ψ(1, 2 − �; 4π|m|v)

= (4π|m|v)1−	

∫ ∞

0
e−4π|m|vr(1 + r)−	 dr

= (4π|m|v)1−	 e4π|m|v
∫ ∞

1
e−4π|m|vrr−	 dr.

Therefore,

W ′
m,∞(τ, � − 1,Φ	

∞) = 2π (−i)	 2−	 v1−	 qm

∫ ∞

1
e−4π|m|vrr−	 dr. (14.11)

When � = 3
2 , this gives Lemma 8.11.

15. The functional equation

Let D be a square-free positive integer, not necessarily the discriminant of an indefinite quaternion
algebra, and let

E(τ, s,Φ
3
2
,D) = c(D) (s +

1
2
) ΛD(2s + 1)E(τ, s,Φ

3
2
,D) (15.1)

be the renormalized Eisenstein series of (6.23). In this section, we prove that it is invariant when s
goes to −s, i.e., that

E(τ, s,Φ
3
2
,D) = E(τ,−s,Φ

3
2
,D). (15.2)

First we need

Proposition 15.1. Set

Λ(s, χm;D) =
(

4|m|D2

π

) 1
2
s

Γ(
s + a

2
)L(s, χd)

∏

p

bp(n, s, D)

with a = (1 + sgn(m))/2. Then Λ(s, χm, D) has a meromorphic continuation to the whole complex
s-plane with possible poles at s = 0 and 1, which occurs precisely when D = −d = 1. Furthermore,
it satisfies the following functional equation

Λ(s, χm;D) = Λ(1 − s, χm;D),

and

ords=0 Λ(s, χm;D) = ords=1 Λ(s, χm;D) = ords=1 L(s, χd) + #{p|D : χd(p) = 1}.

Proof. The functional equation follows from that of L(s, χd) and (8.10). The vanishing order at
s = 0 follows from (8.13). We remark that bp(n, s;D) is a polynomial of p−s even though it was
written as a rational function and thus is regular at s = 1/2.

Theorem 15.2. Let

E(τ, s,Φ
3
2
,D) =

∑

m

Am(v, s) qm
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be the Fourier expansion of E(τ, s,Φ
3
2
,D).

(i) For m > 0, one has

Am(v, s) =
Λ(1

2 + s, χm;D) (4πmv)
s
2
− 1

4 Ψ− 3
2
(s, 4πmv)

√
π

∏
p|D(1 + p)

.

(ii) For m < 0, one has

Am(v, s) =
(s2 − 1

4)Λ(1
2 + s, χm;D) (4π|m|v)

s
2
− 1

4 Ψ 3
2
(s, 4π|m|v)

4
√

π
∏

p|D(1 + p)
· e−4π|m|v.

(iii) The constant term is

A0(v, s) = − D

2π
∏

p|D(p + 1)
(GD(s) + GD(−s)),

where

GD(s) = v−
1
4
+ s

2 Λ(1 + 2s) (s +
1
2
)

∏

p|D
(p−

1
2
−s − p

1
2
+s).

Proof. When m > 0, one has, by Propositions 8.1 and 14.1 and formula (8.16),

Am(v, s) = c(D)(
D

π
)s− 1

2 Γ(s +
3
2
)ζD(2s + 1)

C∞√
2

v
s
2
− 1

4 (2πm)s
Ψ− 3

2
(s, 4πmv)

Γ( s
2 + 5

4)

× Cf (D)
L(s + 1

2 , χd)
∏

bp(n, s + 1
2 ;D)

ζD(2s + 1)

=
Λ(s + 1

2 , χm;D)
∏

p|D(p + 1)
Γ(s + 3

2)2−s− 1
2

Γ( s
2 + 3

4)Γ( s
2 + 5

4)
(4πmv)

s
2
− 1

4 Ψ− 3
2
(s, 4πmv)

Now the doubling formula of the gamma function gives

Γ(s + 3
2)

Γ( s
2 + 3

4)Γ( s
2 + 5

4)
= 2s+ 3

2
−1π− 1

2 = 2s+ 1
2 π− 1

2 .

This proves (i). The case m < 0 is the same and is left to the reader. When m = 0, one has by
Corollary 8.2, Lemma 8.3, and (8.11)

A0(v, s) = c(D)(
D

π
)s− 1

2 Γ(s +
3
2
)ζD(2s + 1)

×



 v−
1
4
+ s

2 +
C∞√

2
2−sv−

1
4
− s

2 Γ(s)
Γ( s

2 − 1
4)Γ( s

2 + 5
4)

Cf (D)ζ(2s)
ζD(2s + 1)

∏

p|D
(1 − p1−2s)





= −v−
1
4
+ s

2 Λ(1 + 2s)(1
2 + s)

2π
∏

p|D(p + 1)
(−1)ord(D)Ds+ 3

2

∏

p|D
(1 − p−1−2s)

− v−
1
4
− s

2 Λ(2s)(1
2 − s)√

π
∏

p|D(p + 1)
Γ(s − 1

2)2
1
2
−s

Γ( s
2 − 1

4)Γ( s
2 + 1

4)
D

1
2
+s

∏

p|D
(1 − p1−2s)

= − D

2π
∏

p|D(p + 1)
(GD(s) + GD(−s)).

Here we have used the doubling formula for the gamma functions again.
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Proof of the functional equation (15.2). Now the functional equation (15.2) follows immediately
from Theorem 15.2, Proposition 15.1, and (14.6).
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2 J.-B. Bost, Théorie de l’intersection et théorème de Riemann-Roch arithmétiques, Sém. Bourbaki no
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