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Radial Symmetry

v

What does it mean for f : RY — R to satisfy

F(x) = F(Ix])

...for f to be radial?

How can a function be made radial?

v

How fast can it be done?

v

v

When is a function radial to begin with? When it is invariant
under rotations (representation theory & dynamics)



Definitions and Notation

For a direction vector u € S9! define

> the reflection R, : x — x — 2(x - u)u
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> the positive half-space H, = {x € S !|x - u > 0}
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Definitions and Notation

» the folding map F, : x — R,(x) if x ¢ H, and x — x
otherwise
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Definitions and Notation

H,.

It is a 2 : 1 non-expansive piecewise isometry. It folds S~ onto

Two such maps do not in general commute.

m]
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Definitions and Notation

For a sequence of direction vectors (u,) C S?~1 define

» the trajectory of x under the sequence of maps (F,,) to be
the set
{Fu, - Fux|n>1}.

We may refer to this set as the trajectory of x under the
sequence of directions (up).

For a subset G C S9! define
» the orbit of x under G to be the set

G*X:{Fun"'FU1X|n217ui€G}'
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Let G C S9! be a set of directions. Let ¢ be a continuous
function on RY.

» poR, = ¢ forall ue G = ¢ is radial
=

» For every x € S9! there is a sequence (u,) in G such that
the trajectory is dense in S971
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» The subgroup (G) generated by {R,|u € G} is dense in O(d).
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Under what conditions on G can the same be said of folding maps?

» poF,=¢forall ue G= ¢is radial?

» Can we generate dense trajectories?
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What partial information ensures full symmetry?

Necessary conditions are

» (cover) Half-spaces got from
G cover S9!

(“

st c | Hu
" S @
» (generate) The subgroup generated by G is dense in O(d

(G) = 0(d)



Main Results

Theorem
If G © S91 a subset of directions satisfies

(cover) the hyperplanes H, cover S?~1, and

(generate) the subgroup (of reflections!) generated by G is
dense in O(d)

then there exists a sequence (up)n>1 in G such that for all initial
x € S, the trajectory

Xp = Fu,Xn—1 X0 = X

is dense.



Main Results

Theorem
Let ;1 be a probability measure on St with

(cover) 0 < pu(Hy) <1 for all u € S9-1
(generate) (Suppu) is dense in O(d).

Define a random walk by
X,, = FU,,Xn—l XO =X
with (Uy,) iid. ~ p.

There is a unique invariant measure (wrt F) on S?~1 and the
random walk starting at x is (a.s.) dense.
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Probability Recall

» The support of a measure Suppy is the smallest open subset
of full measure

» The measure p is invariant wrt Fy if

p(A) = E[p(F;*(A))]

...in other words, X1 = FyX, are equidistributed ~ p and
the random walk is stationary

> almost surely = with probability 1 = almost everywhere
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The covering condition

Proposition
Let G C S91. TFAE
1. H, cover

2. G not in any closed hemisphere
3. interior of convex hull of G contains origin
> In particular, G must contain at least d 4+ 1 directions that
span R?
4. For the G a subset of the support of a measure y,
0 < pu(Hy) < 1 for all x € S971
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The generating condition

» remember, it precludes the existence of non-trivial invariant

sets

» it can fail for example if (G)

1.
2.

lies in a lower-dimensional subgroup of O(d)

splits into two subgroups which act on mutually orthogonal
subspaces (is reducible)

defines a finite Coxeter subgroup of O(d)



A sufficient generating condition

Suppose

1. G spans R
2. not all angles between elements of G are commensurable with

T, and
3. G is not the union of two non-empty orthogonal subsets

then (G) is dense in O(d).
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A sufficient algebraic condition

Proof.

Induct on d.

>

If G satisfies conditions 1-3, then it contains a subset G’ that
spans a hyperplane vt =2 R? and also satisfies 1-3

Let S, = O(d) be the orthogonal group in v+

(IH) G’ is dense in S, which has exactly 2 fixed points v in
S? and acts transitively on S971

Choose u € G linearly independent, but not orthogonal to v
Let w = R,v and conjugate S, := RUSVRu_l # S, since fixed
points of S, are points which under R, go to v
Intersecting S, S, gives distinct subgroups isomorphic to
SO(d) in v+
Since SO(d + 1) contains no proper compact subgroup which
contains a copy of SO(d), (S, Sw) is dense

L]



A sufficient algebraic condition

Proof.

O
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Some more definitions
A subset A C S91 s

» positively invariant if F,(A) C Aforallue G

» almost positively invariant if o(A\F,(A)) =0forallue G
» invariant if R,(A) = A for all u € G, and

> almost invariant if 7(AAR,A) = 0 for all u €G.

DA
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Proof of Theorem 1

A is almost positively invariant = A is almost invariant = A is
measure 0 or 1 = A = () or S9!
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Conclusion

For each point x € S971 the orbit G,x is positively invariant,

Fu,Gix = Fy{Fy, - Fux|n>1,u; € G}

hence dense. Density of trajectories follows by concatenating
sequences gauranteed by density of the orbit.

>

cover the sphere by finitely many balls By, ..., Bk of centers
1, .., Ck and radius €

let Ry be the sequence connecting ¢ to every ball
let R> be the sequence connecting Rjcp to every ball
let R3 be the sequence connecting Ry Ricp to every ball

and so on up to Rk the sequence connecting Rx_1--- Rick
to every ball

the the sequence Rk - - - R connects any two points x, y
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