Ergodic Properties of Folding Maps on Spheres

Almut Burchard Greg Chambers Anne Dranovski

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

University of Toronto

OMC 2015

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

f(x) = f(|x|)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

f(x) = f(|x|)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

$$f(x) = f(|x|)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

...for f to be **radial**?

How can a function be made radial?

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

$$f(x) = f(|x|)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

...for f to be radial?

- How can a function be made radial?
- How fast can it be done?

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

$$f(x) = f(|x|)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

...for f to be radial?

- How can a function be made radial?
- How fast can it be done?
- When is a function radial to begin with?

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

$$f(x) = f(|x|)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

...for f to be radial?

- How can a function be made radial?
- How fast can it be done?
- When is a function radial to begin with?

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

$$f(x) = f(|x|)$$

...for f to be radial?

- How can a function be made radial?
- How fast can it be done?
- When is a function radial to begin with? When it is invariant under rotations

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• What does it mean for $f : \mathbb{R}^d \to \mathbb{R}$ to satisfy

$$f(x) = f(|x|)$$

...for f to be radial?

- How can a function be made radial?
- How fast can it be done?
- When is a function radial to begin with? When it is invariant under rotations (representation theory & dynamics)

For a direction vector $u \in \mathbb{S}^{d-1}$ define

• the *reflection* $R_u : x \mapsto x - 2(x \cdot u)u$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• the *positive half-space* $H_u = \{x \in \mathbb{S}^{d-1} | x \cdot u > 0\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶ the *folding map* $F_u : x \mapsto R_u(x)$ if $x \notin H_u$ and $x \mapsto x$ otherwise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

It is a 2 : 1 non-expansive piecewise isometry. It folds \mathbb{S}^{d-1} onto $H_u.$

Two such maps do not in general commute.

For a sequence of direction vectors $(u_n) \subset \mathbb{S}^{d-1}$ define

For a sequence of direction vectors $(u_n) \subset \mathbb{S}^{d-1}$ define

► the *trajectory* of x under the sequence of maps (F_{u_n}) to be the set

$$\{F_{u_n}\cdots F_{u_1}x|n\geq 1\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We may refer to this set as the trajectory of x under the sequence of directions (u_n) .

For a sequence of direction vectors $(u_n) \subset \mathbb{S}^{d-1}$ define

► the *trajectory* of x under the sequence of maps (F_{u_n}) to be the set

$$\{F_{u_n}\cdots F_{u_1}x|n\geq 1\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We may refer to this set as the trajectory of x under the sequence of directions (u_n) .

For a sequence of direction vectors $(u_n) \subset \mathbb{S}^{d-1}$ define

► the *trajectory* of x under the sequence of maps (F_{u_n}) to be the set

$$\{F_{u_n}\cdots F_{u_1}x|n\geq 1\}.$$

We may refer to this set as the trajectory of x under the sequence of directions (u_n) .

For a subset $G \subset \mathbb{S}^{d-1}$ define

the orbit of x under G to be the set

$$G_*x = \{F_{u_n}\cdots F_{u_1}x | n \geq 1, u_i \in G\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $G \subset \mathbb{S}^{d-1}$ be a set of directions. Let ϕ be a continuous function on \mathbb{R}^d .

• $\phi \circ R_u = \phi$ for all $u \in G \Rightarrow \phi$ is radial

 \Leftrightarrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $G \subset \mathbb{S}^{d-1}$ be a set of directions. Let ϕ be a continuous function on \mathbb{R}^d .

• $\phi \circ R_u = \phi$ for all $u \in G \Rightarrow \phi$ is radial

 \Leftrightarrow

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For every x ∈ S^{d-1} there is a sequence (u_n) in G such that the trajectory is dense in S^{d-1}

Let $G \subset \mathbb{S}^{d-1}$ be a set of directions. Let ϕ be a continuous function on \mathbb{R}^d .

•
$$\phi \circ R_u = \phi$$
 for all $u \in G \Rightarrow \phi$ is radial

For every x ∈ S^{d-1} there is a sequence (u_n) in G such that the trajectory is dense in S^{d-1}

▶ The subgroup $\langle G \rangle$ generated by $\{R_u | u \in G\}$ is dense in O(d).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Under what conditions on G can the same be said of folding maps?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$\phi \circ F_u = \phi$$
 for all $u \in G \Rightarrow \phi$ is radial?

Under what conditions on G can the same be said of folding maps?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\phi \circ F_u = \phi$$
 for all $u \in G \Rightarrow \phi$ is radial?

Can we generate dense trajectories?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Necessary conditions are

► (cover) Half-spaces got from G cover S^{d-1}

$$\mathbb{S}^{d-1} \subset \bigcup_{u \in G} H_u$$

• (generate) The subgroup generated by G is dense in O(d)

 $\overline{\langle G \rangle} = O(d)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main Results

Theorem If $G \subset \mathbb{S}^{d-1}$ a subset of directions satisfies (cover) the hyperplanes H_u cover \mathbb{S}^{d-1} , and (generate) the subgroup (of reflections!) generated by G is dense in O(d)then there exists a sequence $(u_n)_{n\geq 1}$ in G such that for all initial $x \in \mathbb{S}$, the trajectory

$$x_n = F_{u_n} x_{n-1} \qquad x_0 = x$$

is dense.

Main Results

Theorem Let μ be a probability measure on \mathbb{S}^{d-1} with (cover) $0 < \mu(H_u) < 1$ for all $u \in \mathbb{S}^{d-1}$ (generate) $\langle \text{Supp} \mu \rangle$ is dense in O(d). Define a random walk by

$$X_n = F_{U_n} X_{n-1} \qquad X_0 = x$$

with (U_n) i.i.d. $\sim \mu$.

There is a unique invariant measure (wrt F) on \mathbb{S}^{d-1} and the random walk starting at x is (a.s.) dense.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Probability Recall

The *support* of a measure Suppµ is the smallest open subset of full measure

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Probability Recall

- The support of a measure Suppµ is the smallest open subset of full measure
- The measure ρ is *invariant* wrt F_U if

$$\rho(A) = E[\rho(F_U^{-1}(A))]$$

...in other words, $X_{n+1} = F_U X_n$ are equidistributed $\sim \rho$ and the random walk is stationary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Probability Recall

- The support of a measure Suppµ is the smallest open subset of full measure
- The measure ρ is *invariant* wrt F_U if

$$\rho(A) = E[\rho(F_U^{-1}(A))]$$

...in other words, $X_{n+1} = F_U X_n$ are equidistributed $\sim \rho$ and the random walk is stationary

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ almost surely = with probability 1 = almost everywhere

Proposition Let $G \subset \mathbb{S}^{d-1}$. TFAE 1. H_u cover

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proposition

- Let $G \subset \mathbb{S}^{d-1}$. TFAE
 - 1. H_u cover
 - 2. G not in any closed hemisphere

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proposition

- Let $G \subset \mathbb{S}^{d-1}$. TFAE
 - 1. H_u cover
 - 2. G not in any closed hemisphere
 - 3. interior of convex hull of G contains origin

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Proposition

- Let $G \subset \mathbb{S}^{d-1}$. TFAE
 - 1. H_u cover
 - 2. G not in any closed hemisphere
 - 3. interior of convex hull of G contains origin
 - In particular, G must contain at least d + 1 directions that span \mathbb{R}^d

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

- Let $G \subset \mathbb{S}^{d-1}$. TFAE
 - 1. H_u cover
 - 2. G not in any closed hemisphere
 - 3. interior of convex hull of G contains origin
 - In particular, G must contain at least d + 1 directions that span \mathbb{R}^d

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4. For the G a subset of the support of a measure μ , $0 < \mu(H_x) < 1$ for all $x \in \mathbb{S}^{d-1}$

 remember, it precludes the existence of non-trivial invariant sets

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 remember, it precludes the existence of non-trivial invariant sets

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• it can fail for example if $\langle G \rangle$

 remember, it precludes the existence of non-trivial invariant sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- it can fail for example if $\langle G \rangle$
 - 1. lies in a lower-dimensional subgroup of O(d)

- remember, it precludes the existence of non-trivial invariant sets
- it can fail for example if $\langle G \rangle$
 - 1. lies in a lower-dimensional subgroup of O(d)
 - 2. splits into two subgroups which act on mutually orthogonal subspaces (is reducible)

- remember, it precludes the existence of non-trivial invariant sets
- it can fail for example if $\langle G \rangle$
 - 1. lies in a lower-dimensional subgroup of O(d)
 - 2. splits into two subgroups which act on mutually orthogonal subspaces (is reducible)

3. defines a finite Coxeter subgroup of O(d)

A sufficient generating condition

Suppose

- 1. G spans \mathbb{R}^d
- 2. not all angles between elements of ${\it G}$ are commensurable with $\pi,$ and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3. *G* is not the union of two non-empty orthogonal subsets then $\langle G \rangle$ is dense in O(d).

Proof.

Induct on d.

If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

Induct on d.

If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3

• Let $S_v \cong O(d)$ be the orthogonal group in v^\perp

Proof.

Induct on d.

If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let $S_v \cong O(d)$ be the orthogonal group in v^\perp
- (IH) G' is dense in S_v

Proof.

Induct on d.

If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let $S_v \cong O(d)$ be the orthogonal group in v^\perp
- (IH) G' is dense in S_v

Proof.

Induct on d.

- If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3
- Let $S_{v}\cong O(d)$ be the orthogonal group in v^{\perp}
- (IH) G' is dense in S_v which has exactly 2 fixed points $\pm v$ in \mathbb{S}^d

Proof.

Induct on d.

- If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3
- Let $S_v \cong O(d)$ be the orthogonal group in v^\perp
- ▶ (IH) G' is dense in S_v which has exactly 2 fixed points $\pm v$ in \mathbb{S}^d and acts transitively on \mathbb{S}^{d-1}
- Choose $u \in G$ linearly independent, but not orthogonal to v

Proof.

Induct on d.

- If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3
- Let $S_v \cong O(d)$ be the orthogonal group in v^\perp
- ▶ (IH) G' is dense in S_v which has exactly 2 fixed points $\pm v$ in \mathbb{S}^d and acts transitively on \mathbb{S}^{d-1}
- Choose $u \in G$ linearly independent, but not orthogonal to v

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Let $w = R_u v$ and conjugate $S_w := R_u S_v R_u^{-1} \neq S_v$

Proof.

Induct on d.

- If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3
- Let $S_v \cong O(d)$ be the orthogonal group in v^\perp
- ▶ (IH) G' is dense in S_v which has exactly 2 fixed points $\pm v$ in \mathbb{S}^d and acts transitively on \mathbb{S}^{d-1}
- Choose $u \in G$ linearly independent, but not orthogonal to v

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Let $w = R_u v$ and conjugate $S_w := R_u S_v R_u^{-1} \neq S_v$

Proof.

Induct on d.

- If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3
- Let $S_v \cong O(d)$ be the orthogonal group in v^\perp
- ▶ (IH) G' is dense in S_v which has exactly 2 fixed points $\pm v$ in \mathbb{S}^d and acts transitively on \mathbb{S}^{d-1}
- Choose $u \in G$ linearly independent, but not orthogonal to v
- Let w = R_uv and conjugate S_w := R_uS_vR_u⁻¹ ≠ S_v since fixed points of S_w are points which under R_u go to v

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Intersecting S_v , S_w gives distinct subgroups isomorphic to SO(d) in v^{\perp}

Proof.

Induct on d.

- If G satisfies conditions 1-3, then it contains a subset G' that spans a hyperplane v[⊥] ≅ ℝ^d and also satisfies 1-3
- Let $S_{v}\cong O(d)$ be the orthogonal group in v^{\perp}
- ▶ (IH) G' is dense in S_v which has exactly 2 fixed points $\pm v$ in \mathbb{S}^d and acts transitively on \mathbb{S}^{d-1}
- Choose $u \in G$ linearly independent, but not orthogonal to v
- Let w = R_uv and conjugate S_w := R_uS_vR_u⁻¹ ≠ S_v since fixed points of S_w are points which under R_u go to v
- Intersecting S_v , S_w gives distinct subgroups isomorphic to SO(d) in v^{\perp}
- Since SO(d + 1) contains no proper compact subgroup which contains a copy of SO(d), ⟨S_v, S_w⟩ is dense

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof.

Some more definitions

A subset $A \subset \mathbb{S}^{d-1}$ is

• **positively invariant** if $F_u(A) \subset A$ for all $u \in G$

- almost positively invariant if $\sigma(A \setminus F_u(A)) = 0$ for all $u \in G$
- *invariant* if $R_u(A) = A$ for all $u \in G$, and
- almost invariant if $\sigma(A\Delta R_u A) = 0$ for all $u \in G$.

Lemma

If (cover) holds for G then almost positive invariance (i.e. almost invariance under F_u) implies almost invariance (i.e. under R_u).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

If (cover) holds for G then almost positive invariance (i.e. almost invariance under F_u) implies almost invariance (i.e. under R_u).

Lemma

If (generate) holds for G then a set which is almost invariant has measure 0 or 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

If (cover) holds for G then almost positive invariance (i.e. almost invariance under F_u) implies almost invariance (i.e. under R_u).

Lemma

If (generate) holds for G then a set which is almost invariant has measure 0 or 1.

Lemma

If (cover) and (generate) hold for G then the only positively invariant sets are \emptyset and \mathbb{S}^{d-1} .

Lemma

If (cover) holds for G then almost positive invariance (i.e. almost invariance under F_u) implies almost invariance (i.e. under R_u).

Lemma

If (generate) holds for G then a set which is almost invariant has measure 0 or 1.

Lemma

If (cover) and (generate) hold for G then the only positively invariant sets are \emptyset and \mathbb{S}^{d-1} .

A is *almost positively invariant* \Rightarrow A is *almost invariant* \Rightarrow A is measure 0 or $1 \Rightarrow A = \emptyset$ or \mathbb{S}^{d-1}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For each point $x \in \mathbb{S}^{d-1}$ the orbit G_*x is positively invariant,

$$F_u G_* x = F_u \{ F_{u_n} \cdots F_{u_1} x | n \ge 1, u_i \in G \}$$

hence dense. Density of trajectories follows by concatenating sequences gauranteed by density of the orbit.

► cover the sphere by finitely many balls B₁, ..., B_K of centers c₁, ..., c_K and radius e

For each point $x \in \mathbb{S}^{d-1}$ the orbit G_*x is positively invariant,

$$F_u G_* x = F_u \{ F_{u_n} \cdots F_{u_1} x | n \ge 1, u_i \in G \}$$

hence dense. Density of trajectories follows by concatenating sequences gauranteed by density of the orbit.

► cover the sphere by finitely many balls B₁, ..., B_K of centers c₁, ..., c_K and radius e

• let R_1 be the sequence connecting c_1 to every ball

For each point $x \in \mathbb{S}^{d-1}$ the orbit G_*x is positively invariant,

$$F_u G_* x = F_u \{ F_{u_n} \cdots F_{u_1} x | n \ge 1, u_i \in G \}$$

hence dense. Density of trajectories follows by concatenating sequences gauranteed by density of the orbit.

► cover the sphere by finitely many balls B₁, ..., B_K of centers c₁, ..., c_K and radius e

- let R_1 be the sequence connecting c_1 to every ball
- let R_2 be the sequence connecting R_1c_2 to every ball

For each point $x \in \mathbb{S}^{d-1}$ the orbit G_*x is positively invariant,

$$F_u G_* x = F_u \{ F_{u_n} \cdots F_{u_1} x | n \ge 1, u_i \in G \}$$

hence dense. Density of trajectories follows by concatenating sequences gauranteed by density of the orbit.

- ► cover the sphere by finitely many balls B₁, ..., B_K of centers c₁, ..., c_K and radius e
- let R_1 be the sequence connecting c_1 to every ball
- let R_2 be the sequence connecting R_1c_2 to every ball
- let R_3 be the sequence connecting $R_2R_1c_2$ to every ball

For each point $x \in \mathbb{S}^{d-1}$ the orbit G_*x is positively invariant,

$$F_u G_* x = F_u \{ F_{u_n} \cdots F_{u_1} x | n \ge 1, u_i \in G \}$$

hence dense. Density of trajectories follows by concatenating sequences gauranteed by density of the orbit.

- ► cover the sphere by finitely many balls B₁, ..., B_K of centers c₁, ..., c_K and radius e
- let R_1 be the sequence connecting c_1 to every ball
- let R_2 be the sequence connecting R_1c_2 to every ball
- let R_3 be the sequence connecting $R_2R_1c_2$ to every ball
- ▶ and so on up to R_K the sequence connecting R_{K-1} · · · R₁c_K to every ball

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For each point $x \in \mathbb{S}^{d-1}$ the orbit G_*x is positively invariant,

$$F_u G_* x = F_u \{ F_{u_n} \cdots F_{u_1} x | n \ge 1, u_i \in G \}$$

hence dense. Density of trajectories follows by concatenating sequences gauranteed by density of the orbit.

- ► cover the sphere by finitely many balls B₁, ..., B_K of centers c₁, ..., c_K and radius e
- let R_1 be the sequence connecting c_1 to every ball
- let R_2 be the sequence connecting R_1c_2 to every ball
- let R_3 be the sequence connecting $R_2R_1c_2$ to every ball
- ▶ and so on up to R_K the sequence connecting $R_{K-1} \cdots R_1 c_K$ to every ball
- the the sequence $R_K \cdots R_1$ connects any two points x, y

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thank you