
Ergodic Properties of Folding Maps on Spheres

Almut Burchard Greg Chambers Anne Dranovski

University of Toronto

OMC 2015



Radial Symmetry

I What does it mean for f : Rd → R to satisfy

f (x) = f (|x |)

...for f to be radial?

I How can a function be made radial?
I How fast can it be done?
I When is a function radial to begin with? When it is invariant

under rotations (representation theory & dynamics)
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Definitions and Notation

For a direction vector u ∈ Sd−1 define
I the reflection Ru : x 7→ x − 2(x · u)u

u



Definitions and Notation

I the positive half-space Hu = {x ∈ Sd−1|x · u > 0}

u

Hu

H-u



Definitions and Notation

I the folding map Fu : x 7→ Ru(x) if x 6∈ Hu and x 7→ x
otherwise

u



Definitions and Notation
It is a 2 : 1 non-expansive piecewise isometry. It folds Sd−1 onto
Hu.

u

Hu

H-u

u

Hu

Fu

Two such maps do not in general commute.



Definitions and Notation

For a sequence of direction vectors (un) ⊂ Sd−1 define

I the trajectory of x under the sequence of maps (Fun ) to be
the set

{Fun · · ·Fu1x |n ≥ 1} .

We may refer to this set as the trajectory of x under the
sequence of directions (un).

For a subset G ⊂ Sd−1 define

I the orbit of x under G to be the set

G∗x = {Fun · · ·Fu1x |n ≥ 1, ui ∈ G} .
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What partial information ensures full radial symmetry?

Let G ⊂ Sd−1 be a set of directions. Let φ be a continuous
function on Rd .

I φ ◦ Ru = φ for all u ∈ G ⇒ φ is radial

⇐⇒

I For every x ∈ Sd−1 there is a sequence (un) in G such that
the trajectory is dense in Sd−1

⇐⇒

I The subgroup 〈G〉 generated by {Ru|u ∈ G} is dense in O(d).
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Necessary conditions are

I (cover) Half-spaces got from
G cover Sd−1

Sd−1 ⊂
⋃

u∈G
Hu

I (generate) The subgroup generated by G is dense in O(d)

〈G〉 = O(d)
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Main Results

Theorem
If G ⊂ Sd−1 a subset of directions satisfies

(cover) the hyperplanes Hu cover Sd−1, and
(generate) the subgroup (of reflections!) generated by G is

dense in O(d)
then there exists a sequence (un)n≥1 in G such that for all initial
x ∈ S, the trajectory

xn = Fun xn−1 x0 = x

is dense.



Main Results

Theorem
Let µ be a probability measure on Sd−1 with

(cover) 0 < µ(Hu) < 1 for all u ∈ Sd−1

(generate) 〈Suppµ〉 is dense in O(d).
Define a random walk by

Xn = FUn Xn−1 X0 = x

with (Un) i.i.d. ∼ µ.

There is a unique invariant measure (wrt F ) on Sd−1 and the
random walk starting at x is (a.s.) dense.



Probability Recall

I The support of a measure Suppµ is the smallest open subset
of full measure

I The measure ρ is invariant wrt FU if

ρ(A) = E [ρ(F−1
U (A))]

...in other words, Xn+1 = FUXn are equidistributed ∼ ρ and
the random walk is stationary

I almost surely = with probability 1 = almost everywhere
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The covering condition

Proposition
Let G ⊂ Sd−1. TFAE

1. Hu cover

2. G not in any closed hemisphere
3. interior of convex hull of G contains origin

I In particular, G must contain at least d + 1 directions that
span Rd

4. For the G a subset of the support of a measure µ,
0 < µ(Hx ) < 1 for all x ∈ Sd−1
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The generating condition

I remember, it precludes the existence of non-trivial invariant
sets

I it can fail for example if 〈G〉

1. lies in a lower-dimensional subgroup of O(d)
2. splits into two subgroups which act on mutually orthogonal

subspaces (is reducible)
3. defines a finite Coxeter subgroup of O(d)
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A sufficient generating condition

Suppose
1. G spans Rd

2. not all angles between elements of G are commensurable with
π, and

3. G is not the union of two non-empty orthogonal subsets
then 〈G〉 is dense in O(d).



A sufficient algebraic condition

Proof.
Induct on d .

I If G satisfies conditions 1-3, then it contains a subset G ′ that
spans a hyperplane v⊥ ∼= Rd and also satisfies 1-3

I Let Sv ∼= O(d) be the orthogonal group in v⊥

I (IH) G ′ is dense in Sv

which has exactly 2 fixed points ±v in
Sd and acts transitively on Sd−1

I Choose u ∈ G linearly independent, but not orthogonal to v
I Let w = Ruv and conjugate Sw := RuSv R−1

u 6= Sv since fixed
points of Sw are points which under Ru go to v

I Intersecting Sv , Sw gives distinct subgroups isomorphic to
SO(d) in v⊥

I Since SO(d + 1) contains no proper compact subgroup which
contains a copy of SO(d), 〈Sv , Sw 〉 is dense
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A sufficient algebraic condition

Proof.

Sd

Sd-1

v

vperp
u

Ruv



Some more definitions
A subset A ⊂ Sd−1 is

I positively invariant if Fu(A) ⊂ A for all u ∈ G

I almost positively invariant if σ(A\Fu(A)) = 0 for all u ∈ G
I invariant if Ru(A) = A for all u ∈ G , and
I almost invariant if σ(A∆RuA) = 0 for all u ∈ G .



Proof of Theorem 1

Lemma
If (cover) holds for G then almost positive invariance (i.e. almost
invariance under Fu) implies almost invariance (i.e. under Ru).

Lemma
If (generate) holds for G then a set which is almost invariant has
measure 0 or 1.

Lemma
If (cover) and (generate) hold for G then the only positively
invariant sets are ∅ and Sd−1.
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Proof of Theorem 1

A is almost positively invariant ⇒ A is almost invariant ⇒ A is
measure 0 or 1 ⇒ A = ∅ or Sd−1



Conclusion

For each point x ∈ Sd−1 the orbit G∗x is positively invariant,

FuG∗x = Fu{Fun · · ·Fu1x |n ≥ 1, ui ∈ G}

hence dense. Density of trajectories follows by concatenating
sequences gauranteed by density of the orbit.

I cover the sphere by finitely many balls B1, ...,BK of centers
c1, .., cK and radius ε

I let R1 be the sequence connecting c1 to every ball
I let R2 be the sequence connecting R1c2 to every ball
I let R3 be the sequence connecting R2R1c2 to every ball
I and so on up to RK the sequence connecting RK−1 · · ·R1cK

to every ball
I the the sequence RK · · ·R1 connects any two points x , y
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Thank you
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