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CURVATURE

SPYROS ALEXAKIS AND ARICK SHAO

ABSTRACT. We consider smooth null cones in a vacuum spacetime that extend
to future null infinity. For such cones that are perturbations of shear-free out-
going null cones in Schwarzschild spacetimes, we prove bounds for the Bondi
energy, momentum, and rate of energy loss. The bounds depend on the close-
ness between the given cone and a corresponding cone in a Schwarzschild space-
time, measured purely in terms of the differences between certain weighted
L?-norms of the space-time curvature on the cones, and of the geometries of
the spheres from which they emanate. This paper relies on the results in [I],
which uniformly control the geometry of the given null cone up to infinity, as
well as those of [I7], which establish machinery for dealing with low regulari-
ties. A key step in this paper is the construction of a family of asymptotically
round cuts of our cone, relative to which the Bondi energy is measured.
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1. INTRODUCTION

This paper deals with smooth null hypersurfaces extending to null infinity in
a four-dimensional vacuum spacetime, (M, g). Our primary aim is to control the
Bondi mass associated with such a hypersurface A by the L?-norms of certain suit-
ably weighted spacetime curvature components over A/. Furthermore, we control
the rate of energy loss through N, as well as the linear and angular momenta asso-
ciated with NV, whenever these quantities are well-defined. Our result applies when
N is sufficiently close, at the above L2-curvature level, to a standard shear-free
outgoing null cone in a Schwarzschild exterior.

Our result has two essential features. The first is the low regularity of our setting:
we operate purely at the level of the (weighted) spacetime curvature lying in L?
over N, that is, at the same regularity as in [I0, ITI]. Thus, we inherit some of
the same difficulties present in these works. The other feature is that our result
depends only on the geometries of the null cone A and the sphere from which N
emanates. In other words, we make no assumptions on the global structure of the
ambient spacetime (M, g), besides that it is vacuum. In particular, we impose no
conditions on the existence or the structure of a null infinity on the spacetime.

This paper relies heavily on [I], which proved, in the aforementioned setting, that
the instrinsic and extrinsic geometry of A is controlled uniformly up to infinity.
Moreover, several techniques and estimates in this paper depend on [I7], which
developed many of the tools needed for working with A/ at the L2-curvature level.

The main new ingredient that we introduce here is the construction of an ap-
propriate 1-parameter family of spherical cuts of A" which become asymptotically
round near infinity. We show that the Bondi energy, momenta, and rate of energy
loss, defined relative to these spherical cuts, can be controlled by this weighted cur-
vature flux through N. More specifically, to control the Bondi energy associated
with A, we show that the Hawking masses of these spherical cuts converge to a
limit at infinity that remains close to the corresponding Schwarzschild mass.

1.1. Main Quantities. For the reader’s convenience, we first briefly present the
definitions and the physical significance of the quantities under consideration.

1.1.1. Curvature Flux. Recall the Bel-Robinson tensor, a symmetric divergence-free
4-tensor which is quadratic in the Weyl curvature W of (M, g): E|

Qabcd = Waebchedf + *Waebf*chdf-

Note since (M, g) is vacuum, W coincides with the Riemann curvature tensor. A
well-known application of the Bel-Robinson tensor is toward energy estimates: by

n fact one can form the Bel-Robinson tensor out of any Weyl field.
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contracting Qupeq against three future-directed causal vector fields A, B, C, one
obtains a current, Jy = QupcdA*B*C®, to which one can apply the divergence
theorem on any bounded domain 2 C M with a partially smooth boundary. If 92
contains a portion of a null hypersurface A whose affine tangent null vector field is
L, then the corresponding boundary term, i.e., the curvature flur through N, is

F= / JaLdVg,
N

where dVj is the canonical volume form on N associated to L. One can then see
that, for any choice of A, B, and C, the curvature flux F will be comparable to the
L?-norm on N of some, but not all, of the independent components of W. E|

Here, we wish to consider not the curvature flux of N itself, but rather a measure
of how much N deviates from a standard shear-free null cone, Mg, in a Schwarzschild
spacetime (Mg, gs) of mass mg > 0. Therefore, the relevant curvature fluz deviation
will be a weighted L?-norm on N of the difference between the flux components of
W and the corresponding components for Ns. E| In fact, our main assumption will
be that this curvature flux deviation is sufficiently small. Under such assumptions,
we will show that the Bondi energy of N is close to mg, with the closeness being
controlled by this curvature flux deviation.

We also mention that in the case mg = 0 (that is, when A is close to the standard
affine-parametrized null cones in Minkowski spacetime), our weighted curvature flux
deviation arises naturally in asymptotically Minkowskian spacetimes, in the case
A=K, B=K, and C = T. Here, K and T are suitable adaptations of the
Morawetz and the time-translation (9;) vector fields in the Minkowksi spacetime
(Mo, go). These weighted curvature fluxes appear in [2, [5 [7]. Moreover, this is the
main motivation for our choice of weights in [I] and in this paper.

1.1.2. Bondi Mass and Energy. The Bondi mass measures the amount of gravita-
tional mass remaining in an isolated system as measured at null infinity, at a given
retarded time. To be more specific, in the context of a spacetime (M,g) with a
smooth enough and complete future null infinity ZT, with the topology of R x S2,
we consider an infinite outgoing null cone N which intersects Z* along a spherical
cut, Soc C ZT. The Bondi mass mp = mp (N) then measures the amount of mass
remaining in the system after radiation emitted through ZT up to this cut S...

This quantity was originally defined in [3] by stipulating the existence of a system
of Bondi coordinates near So.. An alternative definition of the Bondi momentum
4-vector, using a conformal compactification of spacetime, can be found in [14]; the
reader may also refer to [16], where the notation adopted here is presented.

The Bondi momentum 4-vector (E}°, PJ*), where v refers to the round metric
induced on Sy, by the above conformal compactification, is conformally covariant.
(See the discussion below by equation for a more precise description of v.)
This reflects the action of the conformal group on v~,. Moreover, the 3-vector ﬁg*
corresponds to the linear momentum at S, (relative to 7. ), while the number
EJ>= corresponds to the Bondi energy. Nonetheless, the Minkowski norm of this

21n particular, these components include all those listed in (1.10)), except for a.
3In terms of the curvature decomposition of (L.10), all these components for the shear-free
Schwarzschild null cone Ng vanish, except for pg, which is precisely —2mgr—3. Here, 7 is the

usual radial coordinate in (Mg, gs); note r is also an affine parameter for Ng.
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4-vector is invariantly defined and corresponds to the Bondi mass of Sy: E|

(1.1) mie = (Bp)? - |BY=[2.

In fact, the choice of round metric v, corresponds to a choice of a family of
asymptotically round 2-spheres for which the area-normalized induced metrics con-
verge t0 Yoo. This can be thought of as a frame of reference relative to which the
Bondi energy E;° and the Bondi linear momentum ﬁg,w are measured.

Thus, to properly extract the Bondi energy, we consider a family %Y, y € [1, 00),
of spherical cuts in A. Let #sv denote the metric on X¥ induced by the spacetime
metric g, and let rsy denote the area radius of (3Y, 4sw),

Area(XV, fsv)
rsy = B —
4

Suppose the corresponding Gauss curvatures K(XY, 75y ) satisfy
(1.2) lim K(2Y, racfse) = lim 13, K(ZY, 4sv) = 1,
y /o0 y oo

so that the area-normalized metrics rgffygy converge to a round metric 7. Then,
according to [I4, [16], the Bondi energy E* associated with (Seo,Veo) corresponds
to the limit of the Hawking masses of the X¥’s,

(1.3) El* = lim myg(¥Y),
y /oo
where the Hawking mass of ¥ is defined as
(1.4) ma() = = (16— [ ey gy av;
’ H o 2 167 Sy X X Hev '

The functions t x,t x are the expansions of X¥ relative to two future-directed
orthogonal null vector fields over X¥—see (1.8)) below.

Remark. In view of (1.3)), a bound on the limit of the Hawking masses for a family
of spherical cuts satisfying (1.2)) would yield a bound on the Bondi mass (which is
invariantly defined) and Bondi linear momentum (defined relative to the foliation).

1.1.3. Angular Momentum. Assume for the moment the same setting as in the
preceding discussion for the Bondi energy, in particular, the existence of a future
null infinity Z+ (obtained, say, via conformal compactification) with the topology
of R x §2. E| A notion of angular momentum has been proposed on appropriate
sections (Sx,7Vs0) of Zt by Rizzi in [15]; see also the discussion in [14].

The acceptable sections S, of ZT are those for which, if we consider the null
cone A ending at So, and the limit of the shears ¥ on the Zy’s,lﬂ

S = lim ¥(X2Y),
y/wx( )

4n other words, it is invariant under the action of the conformal group.

5Nontrivial examples include the asymptotically Minkowskian spacetimes of [5].

6The null expansions x are defined in (1.8). The limit below refers to components of their
traceless parts x, measured with respect to a transported coordinate system introduced in Section
2.1.3—see also Deﬁnition
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with the X¥’s satisfying (1.2)), then the even part of the divergence of ¥ vanishes.
More precisely, considering the connection V of 7o, on S, it follows from [5L 15]
that the 1-form V@X,;, must be divergence-free and hence can be decomposed as

V“iab = Vb¢odd + *VbQSevena

where ¢oqd, Peven are scalar-valued functions over S, that are uniquely determined
(up to constants) by solving an elliptic system on S,. Rizzi ([I5]) then proposed
that the sections S, for which angular momentum can be defined are precisely
those for which @eyen is constant, i.e., *V@eyen vanishes.

For an acceptable cut (Seo, Yoo ), the angular momentum with respect to one of
the rotational Killing vector fields X on (Sx,Voo) corresponds to the integral

(1.5) Ao (X) = / Z, X% dV,,
Soo
where Z corresponds to the limit
(1.6) Z = lim rgv - ((2Y),
y /oo

and where ( is the torsion of the X¥’s; see for the precise definition. In
our main result, we will show that the right-hand side of can be controlled,
regardless of whether (Soo,700) is “acceptable”. In particular, this will control the
angular momentum whenever it is well-defined.

1.1.4. Rate of Energy Loss. In the specific settings discussed thus far, in partic-
ular that of [5], the Bondi energy is in fact a non-increasing function along Z+.
More specifically, consider a foliation of ZT by a l-parameter family of 2-spheres,
(Soo,us Yoo,u), With w increasing in the future direction. These correspond to a local
foliation of M near ZT by a family of outgoing null cones N,. Then, the Bondi
energies of the sections (Sso,u, Voo,u) €volve according to the energy loss formula:

d 1

Yoo . < (1) = =|2
(1.7) e A= N N

oo, u

= is the (Yoo, u-)traceless part of the symmetric 2-tensor Z over (Seo,u, Yoo,u); and
E is defined, for a family of asymptotically round spherical cuts 3% of N, byE|

Z= lim g, - x(ZY).
Jim vy X(3)

Here, x denotes the second fundamental forms of the ¥¥’s in the incoming null

direction. |§| In our main theorem, we will control on a null cone N the right-hand
side of , which describes the rate of energy loss across N.

1.2. The Results. The next task is to describe more precisely the results that
we wish to prove. Throughout this discussion, we assume (M,g) to be an arbi-
trary Einstein-vacuum spacetime, and N' C M an infinite smooth null hypersurface
beginning from a Riemannian 2-sphere S C M.

7Again7 the limit refers to components of x with respect to transported systems of coordinates;

see Section and Definition

8& is defined more precisely in (1.8) and in [IJ.
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1.2.1. Geodesic Foliations. While there are many natural foliations of null cones
of N by 2-spheres, in this paper, we will only be considering geodesic foliations.
These correspond to arc-length parametrizations of the null geodesics that rule N.

Consider any null vector field L which is both tangent to A and parallel (i.e.,
DL = 0, where D is the spacetime Levi-Civita connection). ﬂ We let s be the
arc-length parameter along the the null geodesics that are the integral curves of L,
normalized such that s = 1 on §. Our foliation is then by the level sets S, of s.
Furthermore, we let L denote the null vector field on NV that is conjugate to L, that
is, satisfying the conditions L 1 S, and g(L,L) = —2.

Remark. Note that different choices of L (and hence s) yield different affine pa-
rameters and hence different foliations. We will be making use of this freedom in
choosing geodesic foliations extensively in later sections.

Next, we recall the quantities that define the intrinsic and extrinsic geometry of
N, in terms of the above foliation Ss, s > 1:

e Let 75 be the induced metric on S, i.e., the restriction of g to Ss.
e Let YV be the Levi-Civita connection for 4.
e The null second fundamental forms x and x are defined

(1.8) X(X,Y)=g(DxL,Y), x(X,Y)=g(DxL,Y),

where X and Y are arbitrary vector fields tangent to the Sg’s.
e The torsion ( is defined, for X as before, by

(1.9 ((X) = 39(DxL, L)

We will be decomposing the 2-tensors y and y into their trace (t#x, thx) and
traceless (X, X) parts. Here, # refers the trace operator with respect to the metrics

#s. Thus, th x represents the expansions of the Sy’s, and y their shears.

We also recall the independent components of the Riemann/Weyl curvature.
Letting R denote the Riemann curvature tensor associated with g, we recall that
R is fully determined by the following components:

(1.10) a(X,)Y)=R(L,X,LY), a(X,Y)=R(L,X,L,Y),
1 1
B(X)ziR(LaX7L7L)a ﬁ(X):iR(L7X7L7L)a
p= iR(L,L,L,L), o= %*R(L,L, L,L),

where X and Y are as before, and where *R denotes the left Hodge dual of R.
Finally, we recall the mass aspect function, p, on the Sy’s, cf. [0]. This is a
scalar-valued function on the S;’s, defined by

a 1 ac > Y
(1.11) = —1"Yalo =+ 1 RabX

This quantity is closely related to the Hawking masses of the Sy’s, via the formula

8
[ weav, =
S, sy

s

9Note that L on N is uniquely determined by its values on the initial sphere S.
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1.2.2. Analysis of Infinite Null Cones. To properly state our main result, we must
quantitatively capture the deviation of our null cone N from a corresponding
Schwarzschild cone, Ng. The first measure of this deviation translates to a weighted
L?-norm over N of suitably weighted differences between the components in
(excluding «) and their corresponding Schwarzschild values. With this intuition in
mind, we define the weighted curvature flur deviation of N from Ng by

2m 2
S (p-i— 3>
57704

where |...|; denotes the pointwise tensor norm with respect to the metrics 7s.

The other meausre of the deviation between N and Ny involves the geometries of
their initial spheres, S and Sg; this is captured in the differences between the con-
nection coefficients , on S and their corresponding Schwarzschild values.
Assuming for convenience that S has unit area radius, then the above translates to
measuring the following quantities on S = S1:

x—%, ¢ x+@-2ms)fh, p—2ms.

Moreover, the norms with respect to which we measure these quantities must be
compatible with the L2-curvature regularity level. The specific norms we use are
listed in Theorem below and justified in detail in [11 [§].

The main result of this paper states that, if the deviation between N and N,
as described above, is sufficiently small, then the Bondi energy of N, expressed via
with respect to a family of spherical cuts 3¥ satisfying ([1.2]), will be compara-
bly close to the Schwarzschild mass mg associated with AMg. Similar estimates hold
for the angular momentum and the rate of energy loss; see Theorem below.

To obtain these conclusions, we rely crucially on the main results of our previous
article [I], which can roughly summarized as follows. Assume that the deviation
between N, with a given geodesic foliation, and Ns are small, in the sense that:

e The curvature flux deviation F defined in is sufficiently small.

e The deviation quantities x — #1, ¢, x + (1 — 2mg)#1, and pu — 2mg, corre-
sponding to the connection coefficients and the mass aspect function, are
sufficiently small on the initial sphere S of A in the appropriate norms. E|

Vg,

(1.12) F= /N [|52a|;5 +s*815, + +|sal3, + 1813,

Then, the geometry of N remains uniformly close to that of Ns:

e The deviations of the connection coeflicients x, x, and  from their values
on Ng remain uniformly small (in suitable weighted norms) on all of AV.

e Similarly, the deviation of the mass aspect function p from its value 2mgs™
on Ns also remains uniformly small on all of A

3

The above comprise the contents of [I, Thm. 1.1, Thm. 5.3]. A precise statement
of these results is introduced later in Theorem 2.4

For our present paper, the most important conclusion from [I] is that the uniform
estimates for x, x, ¢, and u imply that suitable renormalizations of these quantities
have limits at infinity. To be more precise, in [I, Thm. 1.2, Cor. 5.2] we derived:

e The renormalized metrics s~27, converge to a limiting metric y., as s 7 co.

10See [1} Sect. 4.3]; in particular, we assume rg = rsg = 1.
Hgee ([.15) below for the precise norms that are required to be small.
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e There exist limits for x, x, ¢, and p, in the appropriate spaces and with
the appropriate weights, as s * co. In particular, the limits as s oo of

a) [ aeay. [scn-av. g v

s

where X is a rotational Killing field on S?, exist and are uniformly small.

The specific limits of ([1.13) are directly related to the limits (|1.3)), (1.6, and (1.7)

for the physical quantities of interest.

These results in particular imply that under the above assumptions, the limit of
the Hawking masses mpu(Ss) as s * oo exists and is close to mg. However, this
limit does not yield a bound on the Bondi energy of A/ (nor for the other quantities
of interest), since the spheres (Ss,7s) need not become asymptotically round, in
the sense of . The main novel challenge of this paper, then, is to extract the
Bondi energy and the other physical quantities in a manner such that they can be
controlled using the results of [I] described above.

To accomplish this, we note an additional degree of freedom in our setup: the
results from [1] outlined above hold for any geodesic foliation of N for which the
deviation from Ns is sufficiently small. In particular, any other geodesic foliation
of N that is “sufficiently close” to the current one would satisfy the small deviation
condition. The idea, then, is to find a new geodesic foliation that is “nearby” the
original one and moreover fulfils the asymptotic roundness property . We will
then be able to apply the main result of [I] to this new geodesic foliation to control
the physical quantities of interest. E|

1.2.3. The Main Theorem. The main theorem of this paper is the following:

Theorem 1.1. Let 0 < mg < 1/2, and let N C M be an infinite smooth null
hypersurface emanating from S, with Area(S) = 4. E| Also, fix a geodesic foliation
of N, with associated affine parameter s. Assume the following hold on N :

e Curvature flux deviation bound on N :

Qms 2
(1.14) /N [3204;5 + \326@5 + s (p + 33> ) + |SO’|;S + |ﬁ|; dVg < 2.
o Initial value bounds on S: EI
(1.15) I = 2gz= s o) + 11X~ Fallgarogs g + Igaros ) < T

x4+ (1 =2ms)#1llpocs.g) + IVWEX) Ipocs. ) + 1 — 2msllpos,gu) < T

Then, if T is sufficiently small, there is a family of spherical cuts ¥V, y € [1,00),
of N going to infinity, with corresponding induced metrics fsv and areas

Area(XY, fsv) = 4nrd,,
such that:

121y practice, we obtain the asymptotically round family of spheres using not a single change
of foliation, but rather a one-parameter family of new foliations; see the discussion in Section

3 particular, if M is the Schwarzschild spacetime with mass mg, and if N is a canonical
shear-free null cone in M, then the initial sphere S would lie in the outer region.

The L9, H*-, and B%-norms refer to Lebesgue, Sobolev, and Besov norms on (S,71). For
more precise definitions of these norms, see Section as well as [T}, [17].
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o The (XY, rifﬁgy) ’s, that s, the XY ’s with the area-normalized induced met-
rics, become round in a weak sense. More specifically,

(1.16) yh/xgo & (=Y, ) = Ulpgr-1/r2(s0 22 4y = O-

e The Bondi energy, defined in in terms of the XY ’s, exists, and
(1.17) |Eg™| = yh}go Imp(3Y) —ms| ST

e The angular momentum, defined in for the ¥Y’s, exists, andlﬂ
(1.18) |20~ (X)| <T.

e The rate of energy loss, defined in in terms of the XY’s, exists, and
(1.19) |Eg=| <T.

Remark. We note that the requirement of Theorem [I.1] with ms = 0 will hold for
truncated null cones in the perturbations of the Minkowski spacetime in [B]. This
follows from the decay of the curvature components stated in the last chapter of
[B]. For mg > 0, Theorem is designed to apply to truncated null surfaces in
perturbations of Schwarzschild spacetimes. In all settings, these perturbations are
required to be small at the L?-curvature level.

Remark. Although Theorem deals only with the specific case mg < 1/2 and
Area(S) = 4, it can be extended to general cases of arbitrary mass and initial area
due to the dilation invariance of the Einstein-vacuum equations. To see how the
assumptions and norms transform under such rescalings, see [I, Thm. 5.1].

Remark. That the convergence of the Gauss curvatures in to 1 is in weak
H‘1/2-n0rms is a consequence of the low regqularity of our setting. One cannot
expect a stronger norm of convergence without additional assumptions, in view of
the Sobolev trace theorem. If one were to assume extra regqularity for N (for ex-
ample, analogous control for derivatives of R), then the convergence for the Gauss
curvatures would be in correspondingly smooth norms.

Remark. In Theorem and in [1], we elected to work with shear-free null hyper-
surfaces in Schwarzschild spacetimes primarily because the values of the connection
and curvature quantities on these hypersurfaces are explicitly given and well-known.
It is possible that analogous results can be proved for null cones near Kerr space-
times, or for some other null hypersurfaces near Schwarzschild spacetimes.

On the other hand, Theorem includes null hypersurfaces in Kerr space-
times with small angular momentum, which admit a smooth conformal compact-
ification up to I and (in this compactified setting) can be continuously deformed
to Schwarzschild solutions in the C*>-norm. Since the weights in Theorem are
weaker than required by the Sachs peeling (which holds for the Kerr solutions), it
follows that Theorem [1.1] applies to these slowly rotating Kerr spacetimes as well
as to their perturbations (in the weak norms of Theorem|1.1)).

Remark. In view of recent works by Luk and Rodnianski, [12,[13], on gravitational
waves, one may ask whether a version of Theorem can be established without
assumptions on the curvature component o in . To our knowledge, this con-
dition on o seem to be necessary, since the lack of regularity in our setting forces
us to utilize all of the structure equations available for N.

15[ 18) holds regardless of whether the cut at infinity is “acceptable”, in the sense of [15].
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1.3. Ideas of the Proof. We conclude the introduction with a brief and informal
discussion of the main ideas of the proof of Theorem (1.1

1.3.1. The Renormalized Setting. The following intuitions regarding N arise from
the assumed closeness of N to the Schwarzschild null cone Ns:

e The chosen affine parameter s, from the assumptions of Theorem[I.1] should
approximate the area radii r(s) of the level spheres S;.
e The rescaled metrics s~2%, should be close to the round metric.

These heuristics suggest it may be more natural to work with the metrics s=2s,
rather than 7, itself. This was an essential idea in the analysis throughout [I] and
will play the same fundamental role in this paper. Furthermore, these intuitions
were rigorously justified within the main results of [1J.

For even more convenience, we make an additional change of parameter: from
the affine parameter s € [1,00) to a finite parameter t = 1—s~! € [0,1). Combined,
the above two transformations result in the so-called renormalized system, on which
all of our serious analysis will take place. Because of the near-uniform geometries
of the level spheres in this setting, it is much easier to consider limits in terms of
the renormalized picture. In particular, we will generate the limiting metric v, at
infinity as limits of these rescaled metrics s~27;.

1.3.2. Changes of Foliations. As noted before, different choices of the affine vector
field L lead to different affine parameters and geodesic foliations. Given our original
geodesic foliation, we can rescale our null tangent vector field L by

L' =¢"L,
where v is a smooth function on N that is constant on the null geodesics that
generate A/. Notice in particular that L’ is once again parallel. Thus, we can
consider an affine parameter s’ associated with L’ (again with the normalization
s =1 on S). One can proceed from here to compute how the metrics, Ricci
coefficients, and curvature components transform under this change of geodesic
foliation. The results are discussed in detail in Section 2.2 and Appendix [A]

Since our goal is to construct asymptotically round spherical cuts of A/, our

greatest interest lies in how the limiting metric

= lim s72

Yoo = lim Ts

transforms. Without delving into details (these are presented in Section [2.2)), we
can guess the result via a heuristic argument. From the results in [I], we know A
is asymptotic at infinity to the cone NV, ~ [1,00) x S?, with the degenerate metric

g =0- ds® + sz’yoo.
Furthermore, we observe that for a spherical cut of N, given by
we S = \w),w),

the metric induced by geo on this cut is precisely A2voo.

This suggests that a change of geodesic foliation results in a corresponding con-
formal transformation of the limiting metric at infinity. E Consequently, the
problem of genmerating asymptotically round spherical cuts should be closely related

161y fact, this equivalence between conformal transformations and cuts of conical pseudo-
Riemannian metrics has been used in many contexts; see, for instance, [6].
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to the uniformization problem for the limiting sphere S at infinity. The rigorous
implementation of this idea will be presented in Section

In practice, the asymptotically round cuts will be obtained by constructing a
special 1-parameter family of changes of foliations, characterized by the functions
vY, y € [0,1). The v¥’s will be uniformly small, in particular so that the new
foliations will also be controlled via the results of [I]. Moreover, the v¥’s can
be chosen to converge in the appropriate norms to a limiting function v' that
satisfies a uniformization-type equation at infinity. Finally, we construct the cuts
¥ = {s¥ = (1 —y)~'} C N from these v¥-foliations and prove that they are
asymptotically round. This construction of the cuts XY is the crux of this paper.

We remark that certain extra layers of complexity required by our proof are due
to the low regularity of our setting. If one assumed a priori the limiting function
v! is smooth, then one could bypass entirely the approximating v¥’s. Indeed, in
this case, the v'-foliation of A/ would be the desired asymptotically round spheres.
However, since v' is only in H? in our setting and the convergence of the Gauss
curvatures is in H /2, this approach would lead to undesirable technical difficulties.

1.3.3. Limits at Infinity. With the family ¥ in hand, it remains to show that the
limits from — exist and are sufficiently controlled. While the results of
[1] suggest that this is indeed the case, they unfortunately do not directly apply
here, since we are now working with an infinite family of foliations of A'. Thus,
in order to generate the desired limits, we have the additional task of comparing
quantities on different foliations with each other.

While this adds its share of technical baggage to the process (for example, it is a
priori unclear how to compare tensor fields living in different foliations), the issues
are not fundamental. The problem of comparing objects in separate foliations can
be resolved by a natural identification of frames in these foliations; see Section
Once this convention is clear, the ensuing analysis resembles that found in [I]
(although the estimates are messier due to the changes of foliations). The bulk of
this argument will be carried out in Section

Remark. We note that this family XY is not the unique one with the asymptotic
roundness property. Indeed, any other construction obtained from functions vY
solving the appropriate uniformization problem at infinity would also suffice and
would yield another bound on the Bondi mass. While it is not clear which refoliation
results in the best bound, we do note that, up to the universal constant implied by
the “<”, the bound is in fact optimal in terms of the powers of ', in view of
nearly Schwarzschild solutions with mass m # msg.

Acknowledgments. The first author was supported by NSERC grants 488916
and 489103, as well as a Sloan Fellowship. The authors also wish to thank Mihalis
Dafermos, Sergiu Klainerman, and Lydia Bieri for helpful discussions and insights.

2. PRELIMINARIES

We discuss various preliminary notions needed to prove Theorem

e A brief discussion of our basic setting of analysis.

e Changes of (geodesic) foliations of null cones.

e The main theorem of [I], which uniformly controls the geometry of an
infinite null cone by its curvature flux (with respect to a geodesic foliation).
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As before, we assume (M, g) to be a vacuum spacetime and ' C M to be an infinite
null cone emanating from a Riemannian 2-sphere S C M.

2.1. Spherical Foliations. We briefly summarize the basic formalism, developed
n [I, [I7], that we will use in this paper; see [1I Sect. 3] and [17] for more detailed
discussions. The abstract setting is a one-parameter spherical foliation of N,

N= |J =, =z =8

To<7<T4

with ¥, = §. The basic objects of analysis are horizontal tensor fields, i.e., tensor
fields on A which are everywhere tangent to the X, ’s.

On each sphere X, we impose a Riemannian metric 7, so that the 7,’s vary
smoothly with respect to 7. Let 1 denote the resulting horizontal metric on N,
representing the aggregation of all the n,’s on N. E| Similarly, the volume forms
v, associated with the 7,’s can be combined into the horizontal volume form v for
7. Combined, these objects form what we refer to as a horizontal covariant system,

(an) = U (Zrﬂlr)-

T_<7<T4

In addition, let V denote the usual Levi-Civita connections for the n,’s, which
represent covariant derivatives of horizontal tensor fields in directions tangent to
the X,’s. We can also define an analogous covariant derivative operator V. in the
remaining 7-direction. First, given a horizontal tensor field field ¥, we let £, ¥
denote the Lie derivative of ¥ in the direction d/dr, along the null generators of
N. |E| Of particular interest is the second fundamental form,

1

k=— 1y
5=

which indicates how the geometries of the X,’s evolve. We then define
7‘ — 77‘ 1 d -
v \IJUI Up \IIUI K Znu ku o du +chvjk \I]’Ul Z,’

where the notation uldAiul means uj ...u;, but with u; replaced by d.

In particular, one can show that both V and V., annihilate the metric 7, its
dual 7!, and the associated volume form v. Moreover, we note the following
commutation formula, which played a crucial role in many of the estimates in [I7]:

l
(21) Ve, Val % = —0kaeVa¥in =t = D0 (Vagkae = Vekau, ) 1005

uid;u;
i=1

+ 30 (Vakae — Vekaa) W52
j=1

B o particular, n is a horizontal tensor field.
183ee [17, Sect. 4.1] for a more detailed characterization of £, ¥
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2.1.1. The Physical Setting. We now formulate the geometry of N, as a null hy-
persurface of (M, g), in terms of the above general framework. Assume a geodesic
foliation of N, via an affine parameter s : N — R, that is, s acts as an affine pa-
rameter of every null geodesic generator of /. In addition, we normalize s so that
the initial sphere S is precisely the level set s = 1. Using the symbol S¢ to denote
the level sphere s = ¢, we can describe our geodesic foliation as N = J,~; Ss.

On each Sy, we have the (Riemannian) metric 4, induced by the spacetime metric
g, as well as the Levi-Civita connection Y associated with #,. The aggregation 7 of
all the 7,’s defines the horizontal metric for this system. To maintain consistency
with [T], we will use the symbol ¢ to denote the horizontal volume form associated
with 7. We will refer to the resulting horizontal covariant system,

W) = [ (S,

s>1

as the physical system. For further details regarding this setting, see [I, Sect. 4].

As in the introduction, we let L be the tangent null vector field on N satisfying
Ls =1, that is, L is the normalized tangent field for the s-parametrized null gener-
ators of . One can show that the associated s-covariant derivative on horizontal
fields, Y, is precisely the projection of the spacetime covariant derivative Dy, to
the Sy’s. In fact, this was the definition used for null covariant derivatives in [§].

The objects of analysis in the physical setting—the connection coefficients y,
¢, x and the curvature components «, 3, p, o, p defined in the introduction—can
now be treated as horizontal tensor fields in the physical system. Moreover, these
quantities are related to each other via the null structure equations, which, in this
foliation, can be found in [I Prop. 4.1]. Finally, we note that in the physical
setting, the second fundamental form § is precisely x.

2.1.2. The Renormalized Setting. Both in this paper and in [1], it is easier to work
with a different horizontal covariant system in which:

e The metrics on the level spheres S; are nearly identical.
e The null parameter ranges over a finite, rather than infinite, interval.

As a result, we transform our physical system into one which achieves the above.

First, one rescales the 74’s by defining v|S; = s7245. Since heuristically, s
corresponds roughly to the area radii of the Sy’s, this has the effect of transforming
the infinite near-cone (N, %) to an infinite near-cylinder. Next, we apply the change
of parameter t = 1 —s~!, which transforms the infinite interval s € [1,00) to a finite
interval ¢ € [0,1). In particular, the initial sphere s = 1 corresponds now to ¢t = 0,
while the limit s  co at infinity corresponds to t 1.

We will use the symbol S, to denote the level set ¢t = 7. |§| Moreover, we let v,
denote the rescaled metric v on S¢, and we let €; denote the volume form associated
with 4. We will refer to resulting horizontal covariant system,

(N,7) = U (St 1),
0<t<1

as the renormalized system. For analytical purposes, this renormalized setting is
often the more natural structure to work with. For example, the general estimates

Note in particular that S, = Sa—py-1-
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developed in [I7] apply to the renormalized, but not the physical, system. H For a
more detailed construction of this renormalized setting, see [II, Sect. 4.4].
Remaining with the conventions from [I], we define the following:

e Renormalized Ricci coefficients:
(2.2) H=x—-s5, Z = s¢, H=s5'y+s2 (1—) 7.

e Renormalized curvature components:
(2.3) A= s%a, B =53, R =s3(p+io) + 2mg, B = sp.

o Renormalized mass aspect function:
1 a4
(2.4) M = s*u—2mg = -V, Zy — R+ §’y“vdeabﬁcd.

Here, H and H represent the (v-)traceless parts of H and H.

These quantities will be treated as horizontal fields in the renormalized system.

Let V, A, and K denote the Levi-Civita connections, the (Bochner) Laplacians,
and the Gauss curvatures, respectively, for the (S, v¢)’s. Following earlier conven-
tions, we let V; denote the corresponding t-covariant derivative. Note that since
£; = s2£, by our defined relation between s and ¢, then a direct computation shows
that the second fundamental form k for the renormalized system is given by

1
k=- =H.
2£t’Y

As a result, we can write

l r
VeI = SO = D0 Hue WG+ D " Hea W
i=1 j=1
Remark. In contrast to the physical system, V, is not characterized as a projection
of a spacetime covariant derivative to the Si’s. But, in both [1] and this paper, V;
is a more natural evolution operator to consider than the projection V.

From a series of rather tedious computations, one can convert the null structure
equations in the physical setting to corresponding equations in the renormalized
settings (in terms of H, A, vy, V, V4, etc.). For the full list of renormalized structure
equations, the reader is referred to [I, Prop. 4.2].

Finally, as we will be working exclusively with renormalized settings in our anal-
ysis, we make the following assumptions regarding notations:

e From now on, objects will be stated in terms of the renormalized rather
than the physical setting. The lone exception is that we may sometimes
refer to the affine parameter s when convenient.

e By “tr”, we mean the trace with respect to v, e.g., tr H = y**Hy.

e For a horizontal tensor field ¥ on A, we will generally use the symbol ¥,
to refer to the restriction of ¥ to the level set S.

20However, estimates in the renormalized system (in particular, the main renormalized esti-
mates in [I]) can be directly translated to corresponding estimates in the physical system.
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2.1.3. Spherical Cuts. In addition to the above foliations of A/, we will occasion-
ally deal with more general spherical hypersurfaces of A/. Here, we introduce the
relevant terminology that will prove to be useful throughout the paper.

First, we will use the term spherical cut of N to refer to any codimension-1
submanifold ¥ of N that intersects each null generator of A exactly once; note
that any such ¥ is necessarily spacelike. Basic examples of cuts include the level
sets of ¢t and s. Moreover, for each spherical cut ¥, we define the transport map
dy ¢ ¥ — ), which sends each P € X to the corresponding point on Sy = S
along the same null generator as P. Since ®yx is a diffeomorphism, it also induces
a push-forward @5, which identifies tensor fields on ¥ with tensor fields on Sp.

A basic construction that will be useful on occasion is transported coordinates.
Given a coordinate system z', 22 on the initial sphere Sy, we define corresponding
coordinates on a spherical cut ¥ of AV by transport along the null generators of
N. In other words, we define these transported coordinates on ¥ by z% o ®x. In
particular, this construction can be done with ¥ being any level sphere S;.

Finally, as we will deal with “limits at infinity” in future sections, it will be
convenient to treat this more concretely. For this purpose, we formally introduce a
limiting sphere S; “at infinity”, that is, we attach an upper spherical boundary Sy
to \V, which we can think of as the level set ¢ = 1. Like for finite cuts, we can once
again define a transport map ®g, : S; — Sp. At a heuristic level, S} represents the
spherical cut of future null infinity created by N.

2.2. Changes of Foliation. In order to obtain the relevant physical limits for
Theorem we will need to consider transformations from our system in Section
2] to other geodesic foliations of N. Such a change of foliation is generally de-
scribed by a constant rescaling of the tangent vector field of each null generator
of N (though different null generators may be scaled by different factors). These
rescalings can be represented by a distortion function v : S — R, with e¥ as the
rescaling factor for the null generators. v is then extended to all of A/ so that it is
constant on each null generator of A/ (i.e., Vv = 0). In particular, whenever v is
small, one obtains a new foliation that is very close to the original.

Here, we will adopt the following convention: objects defined with respect to the
new geodesic foliation will be denoted with a /; objects without this 7 are presumed
to be with respect to the original foliation. By definition, the tangent vector field
L' for the new foliation is related to the original vector field L via the relation

(2.5) L' =¢e"L.

Furthermore, because of our normalization, S (i.e., the set s’ = 1) should coincide
with the initial sphere & = &; of A/. Consequently, we have that

(2.6) §—1=e"(s—1).

2.2.1. Identification of Horizontal Fields. If X and Y are vector fields on A tangent
to the Sy’s (i.e., horizontal in the s-foliation), then we define

(2.7) X' =X+ (s—1)Vxv-L,
and analogously for Y" and Y. If 4’ denotes the induced metrics on the level sets

!, of ', then X’ and Y’ are everywhere tangent to the S,’s, and

(2.8) FXLY) = H(XY),  g(X.L)=0,
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To be more precise, given any P € N, then X’'|p and Y'|p are the (metric-
preserving) natural projections of X|p and Y|p, which are tangent to the level
set of s through P, to the corresponding level set of s’ through P.

The correspondence provides a natural method for identifying and compar-
ing horizontal tensors from different foliations of N'. Suppose ¥’ is an s’-horizontal
covariant tensor field, i.e., ¥’ is tangent to the S.,’s. Then, ¥’ naturally induces
an s-horizontal field ¥ in the following manner: given t-horizontal vector fields
Xi,..., X}, with k the rank of ¥/, we define

vi(X,,..., X)) =V(X],...,X)).

In other words, at each P € A/, one projects via (2.7 from the s-tangent space at
P to the corresponding s’-tangent space at P. To reduce notational baggage, when
the context is clear, the induced t-horizontal field ¥t will also be denoted by ¥’

Remark. The above also allows us to make sense of the difference of two horizontal
fields living in different foliations. This point will become important in Section [3.

It will be convenient to adjust our index notations to reflect the above corre-
spondence. Henceforth, given an equation with quantities in both foliations, identi-
cal indices for primed and unprimed quantities will always refer to frame elements
related via . With this convention, the first identity in can be restated

fap = favs — #'*" =4
More generally, with ¥’ as before, the induced t-horizontal field U is defined
vl =T

1..-U 1---Up "

Remark. This indexing convention is also compatible with the transported coordi-
nate systems described in Section [2.1, Consider a coordinate system on Sp, which
yields transported coordinates on both the Ss’s and the S.,’s. In this case, the as-
sociated coordinate vector fields on the S;’s and S.’s are related to each other via
. Thus, we can equivalently define UT by requiring that Ut and W' act the same
way on corresponding transported coordinate vector fields.

2.2.2. Changes of Physical Systems. We now have two physical systems,
N: U(Ssaﬁs): U(S;’vﬁ;/)v
s>1 s'>1

in the sense of Section In the transformed s’-foliation, we again have the usual
Ricci coefficients x’, ¢/, x’ and the curvature components o/, ', p/, o', ' on N.
Moreover, we can derive change of foliation formulas relating these quantities to
the corresponding quantities y, «, etc., in the original s-foliation.

These transformation laws are listed in the following proposition. Throughout,
we always use the indexing conventions described above.

Proposition 2.1. Consider the geodesic s- and s'-foliations of N, related via the
distortion function v, as described above. Then:

o The following relations hold for the Ricci coefficients:
(2.9) Xab = €"Xab;
(2.10) Co = Ca+ (5 = DF*Vyv - Xac = Yav,
(211) X, =X, + 25— De " Wapo — 2(s — Ve (Fav - Gy + Yo - Ca)
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+ (s = 1)*4 YV 0(Vav - Xab — 2V a0 - Xod — 2Y50 * Xaa)
+2(s — e 'Y, 0Y,v.
o The following relations hold for the curvature coefficients: E|
( ) aly, = ePag,
(2.13) By =e"Ba+ (s = D" Vv - age,
(2.14) P =p+2(s = D)F*Vav- By + (s = )*J* 4" Va0 Vpv - aca,
( ) o' =0—2(5s—1)¢Y, v By — (s — 1)2¢*4*V 0V ,v - eq,
(2.16) g; =c¢ "B, +3(s— De "V -p+(s—1)e V-0
+ (s =12 V(4" Vv - Be = 4"Vev - Ba + 20" Vv - Be)
+ (s — 1)2e 4%V, 0V 02V 40 - ge — Yo¥ - Qag)-
e Suppose V' is a horizontal tensor field in the s'-foliation. Then,

(2.17) VoWl = VaPlya + (s = DVar- Y, o,
l

- (S - 1)7§/Cd Z(Wuzv * Xda — de : Xaui)\p;léiul7

=1

where in the right-hand side, U’ refers to the induced s-horizontal field.
Proof. See Appendix O

2.2.3. Changes of Renormalized Systems. Next, we apply the renormalization from
Section to both physical systems to produce two renormalized systems,

N: U (Sta’yt): U ( 2’7’%’)3
0<t<1 0<t’'<1

with respect to the finite parameters t =1 — sl and ¢/ =1 — s~ L.
For convenience, we define, for any integer k, the coefficients E|

(2.18) B =[1+s" (e’ — 1), Cr =s(Br — 1),

which will be present in several upcoming computations. For example, by ,
(2.19) s* =e7FvB, - sF, By = (14+s71Cp).

Recalling the definitions of ¢ and ', we also have the identity

(2.20) t'=t—s1(e" —1) -5 2%"C_;.

Moreover, since 7/ = s'~24/ and v = 524, then implies

(2.21) V= e By, yap = € P By,

where we use the same indexing conventions mentioned earlier.
Next, the quantities H, Z, H, A, B, R, B, M also have counterparts in the
t’-foliation. Using Proposition we can derive identities comparing them.

Proposition 2.2. Consider the renormalized t- and t'-foliations of N, related via
the distortion function v, as described above. Then:

21The symbol *, in (2.16)), refers to the Hodge dual, i.e., *¥, v = Facth V0.
22Intuitively, the Bg’s will remain uniformly close to 1, while the Cg’s will remain uniformly
small; for specifics, see the remark after Proposition
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o The following relations hold for the renormalized Ricci coefficients:
(2.22) Hy, = €"(Hap — C_17ab),
(2.23) Z! = e "By (Za + t7*°Vyv - Hoe — Vav),
(2.24)  H'y=B_1[H, +2tVav + (e* — 14 5 1€2°C_1)Vab)
+2mgs 1P B[ — 1) — s 'C 1 (1 + B_1)]Yab
+ 871[t2’yCdVCdev Aap — 2t(1 = 357 H)V,0 V0]
+ B_1s 2V (Vv - Hap — 2V v - Hyg — 2Vv - Hyg)
—2B_15 (Vv Zy + Vv - Zy).
e The following relations hold for the renormalized curvature coefficients:
(2.25) AL, =ByAaw,
(2.26) B, = e 2B3(B, + t7"°Vyv - Aue),
(227) R =e 3B3R+2me 3 (e’ — 1 —571C3)
+ e 3 Bss (4 — i)V, 0(2By + 7V v - Apg),
(2.28) B, =e BB, +e ?"Bis 't[3V,v- (Re R — 2m) + *V,v - Im R]
+ 672”Bls*2t2vbv[’ybc(4vav -B.—V-B,)+ 2eP*V v - B.]
+ 672”81s*2t37bdvcevbvvcv(2vav cAge — Vv Aga).

e Suppose V' is a t'-horizontal tensor field. Then,

+ s Vv VU

... ug
l

— s Myl Z(Vuiv “Hgyo —Vav- Hyy,)V!

U1 éi wuy
i=1

+tVav - V!

UL... UL

(2.29) AR 4 =V,

Up... Uy Up... Uy

l
+1 Z(vmv : \I/;ldiul - VCdvde . 7auiqj;1éiul)’
=1

where W' on the right-hand side refers to the induced t-horizontal field.
Proof. See Appendix [A-2] O

In particular, we examine these formulas on the initial sphere Sy = Sj.

Corollary 2.3. Consider the renormalized t- and t'-foliations of N, related via the
distortion function v, as described above. Then, on Sy = S|:

(2.30) Hyy = €"Hap + (€” — 1)7ap,

(2.31) Z! = Zy + Vv,

(232) ﬂébb = eivﬂab + (1 - 2ms)(1 - eiv)fyab;
(2.33) Vi (tr' H') = e’Vu(tr H) + e"V,v - tr H + 2eV v,
(2.34) M' =M — Aw.

Proof. See Appendix O
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2.3. Norms. We now describe the norms we will use throughout the paper. Fix
first a spherical cut ¥ C N and a Riemannian metric » on 3. Given a tensor field
F on ¥, we define the following geometric norms for (3, h):

e Given any 1 < g < oo, we let ||F|pa(s ) denote the usual Lebesgue LI-
norm of F' over ¥, with respect to h.

e In a few instances, we will need to refer to the geometric (fractional) Sobolev
and Besov norms used in [I}, 17]. In particular, we let

”FH%I;(ZJL) = ZZZSICHPkFH%g(z,h) + HP<0F||%g(z,h)7
k>0

||FHB;‘(E7h) = Z2Sk||PkF||Lg(2,h) + ||P<0F|‘L§(E,h)7
k>0

where the Py’s and P.o are geometric Littlewood-Paley operators on S,
based on spectral decompositions of the Laplacian. For precise definitions
and discussions on these operators, see [I Sect. 2.2] or [I7, Sect. 2.3]. H

Remark. For various technical reasons, the above geometric Sobolev and Besov
norms were essential to the results of [1,[I7]. Here, though, we will only require, in
a few instances, some isolated facts regarding these norms. These primarily include
certain product and elliptic estimates found in [17].

Remark. When ¥ = S, then unless otherwise stated, the norms will by default

be with respect to the renormalized metric i, that is, | F||1a(s,) = [[FllLacs, )
Similarly, given a change of foliations as in Section then whenever ¥ = S},,
our conventions dictate that \|F||Lg(5;/) = ”FHL%(S;”V;,)'

Next, we consider analogous iterated norms over all of A/

e Given a horizontal tensor field ¥ on N, along with 1 < p, ¢ < oo, we let

Wl = 1Wllrpacyy,  [¥lpae = [[¥llpare)

[A99e))

be the iterated Lebesgue norms over . In general, the subscript “x

indicates integrals with respect to the spheres (S, ), while “t” refers to

integration over the parameter t, relative to the measure dt. In an L}’J-
norm, one takes first the LI-norms on the S;’s and then the LP-norm in ¢.
For an L{%-norm, one integrates first in ¢ and then over the spheres. ﬁ

e In a few instances, we will need to consider iterated integrals over only a

part of A/. Given spherical cuts ¥ and ¥’ of A/, we let
I llrowsy = lzrams s 1 lzezmey =1 leees )

denote the aforementioned L{’]- and L} 7-norms, but only over the region
of N that lies between ¥ and ¥’. Similarly, we define

[-lzeassy =1 lrassiy: I lleess) =1 lzers.s )
representing norms over the region of N that lies above X.
23Alternative1y, one could also utilize the geometric Littlewood-Paley operators of [9], based

instead on the geometric tensorial heat flow.
24For more explicit formulas, see [T, Sect. 3.3], as well as [I7].
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e We will also require the iterated Besov norms

¥l = ¥lagz) = 3 IPWlp + 1Peo¥ gz
>0

where 1 < p < oo, and where the Py’s and P-g are the Littlewood-Paley
operators on the S;’s. In particular, we have for any ¢ that

Wliacs.) < ¥l peee-
Again, this norm was used more extensively in [T}, [I7].

Remark. Given a change of foliations as in Section[2.3, then by our conventions,
the iterated Lebesgue norms with respect to the new foliation are denoted

Wl = 1llzee 3y (WlLer, = 1W]Los, (-

Finally, we recall that given two norms on vector spaces X and Y, we can define
a corresponding “intersection” norm on X NY by

[Allxay = [|Allx + [Ally-
For example, we will consider norms of the form L;f’gz N Li’jo in this paper.

2.4. Control of the Null Geometry. It is useful to recall at this point the parts
of the main theorem in [I] which are relevant to this work. For this purpose, we
state here the following abridged version of [I, Thm. 5.1]:

Theorem 2.4. Fiz 0 < mg < 1/2, and assume the following on N' = o<, S

e The area of (So,7o) is 4m.
e The following curvature flux bounds hold on N :

(2.35) Al 22 + 1Bl 22 + IRl 22 + 1Bl 22 < T
e The following initial value bounds hold on Sy:
(2.36) | tr H|| Lo (50) + ||HHH;/2(SO) + HZHH;M(SO) <T,
I H| Bo(sy) + IV (tr H)|[Bo(sy) + [M||Bos,) < T
Then, for sufficiently small T < 1, depending on the geometry of (So, 7o),
(2.37) | trH”Lff’f" + HH”L“;‘fmei:? + HZHL;‘?’meiff ST,
IVeHl[ 22 + [VH| 22 + [ViZ] 22 + [VZ] 22 ST,
VeV (er H)[ 20 + IVeM |20 + IViH][ 22 ST,
IV (tr H)HLi:i"me;O + HMHLime;”zO + ||ﬂ||Lil§°mego ST,
where the constants of the inequalities depend on the geometry of (So, o). E| Also,
(2.38) 1K = Ul g1r2(g,y S lltr Hllzz(s,y + (1 = )T

One important consequence of Theorem [24] is that, under these assumptions,
certain regularity properties of the geometry of the initial sphere (Sp, o) are prop-
agated to all the (S, v:)’s. m Here, we briefly describe some of these properties,
and we summarize their most important consequences.

2586 [T, Thm. 5.1] for the precise dependence on the geometry of (So, o).
261 [1L [17], this phenomenon was made precise via the (r0), (r1), and (r2) conditions.
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Fix now a coordinate system on .Sy, and consider the induced transported coor-
dinates on the S;’s. In these coordinates, we can make the following observations:

e For a component ~,, of v in these coordinates, its rate of change with
respect to t is precisely Oyyap = 2H,p (see Section or [I, Sect. 4.4]).
Since H remains small by (2.37), the metrics 7, vary little with respect to
t, and hence the v,;’s are uniformly bounded.

e Similarly, letting 0.7, denote a coordinate derivative of 74, one can show
that 0;0.74p is controlled by VH, along with less dangerous lower-order
terms. Since V H is controlled in L?f , it follows that the Christoffel symbols
associated with transported coordinates are uniformly controlled in L2.

e A similar analysis (see, e.g., [I7, Proposition 4.5]) yields analogous control
for the volume forms ¢; associated with the ~,’s.

By standard methods, we can use the above estimates to derive the following:

Corollary 2.5. Let ®g, : Sy — So be the transport map defined in Section .
Under the assumptions of Theorem[2.]), if F is a tensor field on Sy, then

(2.39) 1Flzas,) = 1195, (F)llLe(so)» I<g<oo.
In particular, if |St| is the area of (St, ), then
(2.40) [S¢| ~ 4.

In other words, for Lebesgue norms, the choice of metric with respect to which
we take these norms is unimportant. For additional details, see [I1 [8] [17].

2.4.1. Limits at Infinity. In addition to uniform control of the connection coeffi-
cients on A, one can also show via Theorem that limits of these same quanti-
ties exist at infinity. First, we must make precise what such limits mean, as we are
comparing tensor fields on different spheres with different geometries. We say that
a family of smooth spherical cuts XY C N, y € [0,1), is going to infinity iff

lim inf t(w) =1.

y " lwedy
Definition 2.6. Consider a family AY, y € [0,1), of tensor fields over a corre-
sponding family of spherical cuts XY going to infinity, as well as a tensor field A
over Si. We say that the AY’s converge in L to A zﬁm

. * * 1
711/‘ml [@%, (AY) — S1 (A )HLZ(SOWO) =0.

We can now adapt the discussion following Theorem to show that ~; has a
limit as ¢t /* 1. Due to the L;f’t’Q—bound for H and the observation that H captures
the variation of v in the ¢-direction, it follows that the v;’s are Cauchy in LS° as
t /1. By a similar argument with VH, we can see that the first (coordinate)
derivatives of v are Cauchy in L2 ast /' 1. As a result, we conclude that the ;s
converge to a limiting metric 1, both “in L% and in Hl”.

By similar arguments, one obtains limits for H, Z, H, and M. These follow
from the integral bounds for V,H, V,Z, V,H, and V,M in (2.37).

Corollary 2.7. Under the assumptions of Theorem we have that tr Hy con-
verges in LS° to a function on Sy1. Furthermore, the quantities Hy, Zy, H,, V(tr Hy)
and My converge in L2 to tensor fields on Si.

27The choice of the initial metric 7o is extraneous, as one obtains an equivalent definition if
7o is replaced by another Riemannian metric on Sp.
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For further details and proofs regarding limits at infinity, see [I, Cor. 5.2].

2.5. Small Changes of Foliations. We now connect Theorem [2.4] to the notions
introduced in Section Assume, as usual, two (renormalized) foliations of A/,

N: U (Staf)/t): U ( é’aﬂyilt’)a
0<t<1 0<t’'<1

where the latter foliation is obtained from the former via the distortion function
v. Suppose we are in the setting of Theorem [2.4] so that the geometry of N in
the t-foliation is uniformly controlled. If v is similarly small, then the geometry in
the new t'-foliation should be similarly controlled. The goal here is to make this
statement precise through a number of estimates.

For instance, the following proposition states that for small enough v, Theorem
also applies directly to the t’-foliation of N.

Proposition 2.8. Assume the setting of Theorem and consider a change of
foliation corresponding to the distortion function v. Assume, moreover, that

(2.41) 190l sgzee + [Vell g + follgm ST

If T is sufficiently small, then all the conclusions of Theorem also hold with
respect to the t'-foliation, that is, in the v'-t'-covariant system. In particular,

(2.42) Fer" B peoce + I H Nl po2rptoe + 1271 2000 ST

IVeH 22 + IV'H 22 + Ve Zlllpze + V222 ST,

IVe v (o H) | 2, + IV M 20, + IV H |22 ST

[V’ (tx' H/)||L31?mef + ||M/HL3<:703:;°Y1;’ + Hﬂ/”Li?ﬁBﬁf ST
Furthermore, if K' denotes the Gauss curvatures of the (S}.,7,)’s, then

(2.43) 1K' = Uy ) < I H L1z gsy,) + (1= €T

Proof. See Appendix O

Remark. Let k be an integer satisfying |k| < 3, and suppose |v| is sufficiently small
everywhere on N'. Then, we have the trivial bounds

(2.44) 1, e =1 <l
In particular, this implies bounds for the coefficients By and Cy, defined in (2.18)):
(2.45) Bi~1, Ikl S Jol-

We will use these observations repeatedly in various upcoming estimates.

Next, recall any ¢'-horizontal field ¥’ induces a corresponding t-horizontal field,
also denoted W', via the projection . Thus, we can make sense of measuring
U’ with respect to the ¢-foliation by taking a v-t-norm of the t-horizontal induced
field. In particular, we can consider y-t-norms of H', Z', B', V'Z’, etc.

Assuming for the moment, we observe the following:

e By the identity , along with and , we see that correspond-

ing horizontal frames in the ¢- and t’-foliations are comparable.

28More specifically, a v’-orthonormal frame corresponds to a vy-orthogonal frame that is “al-
most” orthonormal. The same observation also holds in the reverse direction.
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e As aresult of the above, we conclude that L}’7- and L} -norms (i.e., with
respect to the ¢- and t'-foliations) of corresponding horizontal fields are
comparable. The same observation holds for L]} and L7¥,-norms.

These observations link Proposition to the subsequent proposition, which es-
timate the usual ¢'-horizontal quantities (H’, A’, etc.) in terms of the t-foliation.

Such estimates will be especially useful throughout Section

Proposition 2.9. Assume the hypotheses of Theorem and consider a change
of foliation corresponding to the distortion function v. Assume in addition that
holds, with T' sufficiently small. If we consider H', Z', A', B, V'H', V},Z’
as t-horizontal fields, then we have the following bounds:

(2.46) It H' | g + 1 H | o 2o + 1270 e 2 paoe + 1H 20 ST,
Vi H |22 + IV H | 22 + Vi Z' 22 + IV 2| 22 + IV H | 22 ST
1A N 22 + 1Bl 22 + 1Rl 22 + B[] 22 ST

Proof. See Appendix O
Propositions 2.8 and [2.9) will be proved simultaneously in Appendix [B.2]

2.6. Strategy of the Proof. We close this section with an outline of the proof
of the main result of this paper, Theorem In particular, we relate parts of
Theorem [I.1] to the renormalized settings discussed in this section.

The first observation is that the hypotheses of Theorem are equivalent to
those of Theorem[2.4] This is a consequence of the transformation from the physical
to the renormalized setting (see Section [2.1)), as well as its inverse. Thus, one can
replace the assumptions of Theorem[I.I]with those of Theorem For more details
on relating physical and renormalized versions of estimates, see [I, Sect. 5].

From here, the proof of Theorem consists of two main components.

2.6.1. Construction of Asymptotically Flat Spheres. The first component is that of
constructing a family of spheres XY C N, y € [0, 1), going to infinity as y 1, for
which the area-normalized induced metrics become asymptotically round. (Later,
we will control on these X¥’s the physically relevant quantities, i.e., those related
to the Bondi energy, angular momentum, and the rate of energy loss.) The X¥’s
are defined as level spheres of a corresponding family of geodesic foliations of A/,
as described in Section [2:2] In addition, we establish estimates for the distortion
functions v¥ associated with these refoliations, which will be essential later for
demonstrating the convergence of various physically relevant quantities.

As we will be dealing with objects in the v¥-foliation of N for various y € [0, 1),
we will adopt in the remainder of the paper the following convention. Objects
defined in the v¥-foliation of N, either in the physical or the renormalized setting,
will be denoted with a superscript y. Objects without such a superscript y will be
understood to be with respect to the original foliation of A/. For example, the finite
parameter corresponding to the change of foliation given by v¥ is denoted Y. ﬁ

The results of this first component of the proof of Theorem are summarized
in the subsequent lemma, which will be proved in Section [4

291y general, superscripts arguments in the notation will refer to a specific choice of a refoliation
of N (e.g., HY is a renormalized Ricci coefficient in the v¥-foliation), while subscript arguments
will refer to a restriction to a level sphere (e.g. HY is the restriction of HY to t¥ = 7).
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Lemma 2.10. Assume the hypotheses of Theorem hold, with T' sufficiently
small. There is a 1-parameter family of (smooth) distortion functions v¥, y € [0,1),
such that if sY is the new affine parameter defined via , then considering the
renormalized tY-foliation relative to sY, the following conclusions hold:
e For each y € [0,1), let 3Y = Sg, i.e., the level sphere tY = y, and let
hY = ~¥ denote the restriction of ¥ to X¥. Then, the spheres (XY, h")
become asymptotically round, in the sense that

4 i Y pY) =4 im [|KY — 1|, -
(2.47) ?}%Area(E ,hY) =4, 7}l/ml 1K 1||Hz 1/2 0,

(2v,hv)

where KCY denotes the Gauss curvature of (XY, hY).
e In the original t-foliation, the v¥’s satisfy the following uniform bounds:

(2.48) ||vtv2vyHLf,2 + VeV | o2 ST,
IIVQUyIIB;fmeg;o + [IVo¥llpge + [[v¥]|peey= ST

o Fiz arbitrary exponents 1 < p < 2 and 2 < g < co. Then, in the original
t-foliation, the v¥’s satisfy the following convergence properties:

(2.49) lim_ [V, V(0¥ —0¥)|| 2 + [ VeV (0¥ — 01| La2] =0,
Y1,y2.'1 @t zt
lim [[[VZ(0¥2 —v")||ppee + ||V (072 = 0")|| pace + [[v72 — 0¥ || o] = 0.
y1,92.1 @t @t to
e In addition, the following convergence property holds:
i 200¥2 _ Y -
(2.50) lim V0 = o) 2 n ) = O

Returning to the condition (|1.16]) in Theorem we must consider the physical
metric on 3¢, i.e., the level set s¥ = (1 — y)~!. Letting #sw be the induced metric
on XY, and ryy its area radius, then the first part of (2.47) implies that
. Area(X¥, 4sv) sy
m N IR

(2.51) lim o =dm, lim St =1

Moreover, since
ey ey = (8Nl b, rdy K2V, de) = 18 (sY) 72 K(SY, BY),
then it follows from ([2.47) and (2.51)) that

i 2 Yy _ —
;1/‘1% HTEHK:(Z 77@9) 1||H;1/2(2y,r£5.792y) =1
This proves the asymptotic roundness property of (|1.16)).

2.6.2. Convergence of Physical Quantities. It remains to show that the physically
relevant quantities—mnamely, MY, ZY, and HY on X¥—converge at infinity; this
is the second main component of the proof of Theorem [1.1} The basic ideas are
simple, as they are analogous to that of establishing limits at infinity in a single
foliation of N as a consequence of Theorem (see Section and [I, Cor. 5.2]
for details). In practice, though, the process is complicated by the fact that we are
now comparing objects from different foliations of A. m

The results of this part of the proof of Theorem are summarized in the
subsequent lemma, which will be proved in Section

30Again, much of the technical difficulty arises from the need to work with a 1-parameter
family of changes of foliations. See the discussion in Section for details.
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Lemma 2.11. Let the v¥’s and $Y’s, y € [0, 1), be from Lemmal2.10. E| As before,
consider the s¥- and tY-foliations of N with respect to the v¥’s. Then:

e The renormalized mass aspect functions MY, restricted to (XY, hY), converge
in LY to a limit M* asy /1, in the sense of Definition|2.60. Moreover, E|

(2.52) 125, (MYl 1(so) ST

~

e The renormalized torsions ZY and conjugate null second fundamental forms
HY, restricted to (XY, hY), converge in L2 to limits Z' and H*, respectively,
asy 1, in the sense of Definition[2.6. Furthermore,

(2.53) 95, (Z") | 22(s0) ST 1@%, (H")|Ir2(s0) ST

The conclusions (2.52)) and (2.53) can be connected to (1.17)-(1.19) by inverting

the renormalization process. First of all, by letting ¢sw and w¥ denote the volume
forms associated with #sv and hY, respectively, we obtain

sy
YY) — < v d
|mu(2Y) — ms| _/zy o 47Tr%yms ¢
2
:/ sy y sy s — (Sy)2 ms dw?
sy | 8msY 47sY 4armrs,

Recall that by and Proposition integrals with respect to hY and ~q differ

very little. Thus, combining the above with and results in .
Similarly, for the angular momentum and rate of energy loss, note that the second

limit in implies that the limits of the Z¥’s and HY’s along the ¥¥’s coincide

with the quantities Z and = at Sy from (1.5) and (1.7). Thus, (1.18) and (L.19)
follow immediately from (2.53]). This completes the proof of Theorem |1.1

3. CONVERGENCE ESTIMATES

This section is dedicated to the proof of Lemma[2.11] the second main component
in the proof of Theorem[I.1} We show that given a family v¥, y € [0, 1), of distortion
functions, corresponding to changes of foliations, satisfying the properties —
, the physically relevant quantities—MY, Z¥ and HY, restricted to XY = Sy—
converge in the appropriate norms as y * 1. As mentioned before, these limits are
related to the Bondi energy, the angular momentum, and the rate of mass loss.

3.1. Difference Estimates. Assume now the hypotheses of Lemma [2.11] The
main analytical tools we will need in proving Lemma are the following:

e Estimates for connection and curvature quantities in the t¥-foliations, uni-
form in y and in terms of the original foliation.

e Cauchy estimates for the differences between corresponding connection and
curvature quantities in two different refoliations of V.

Note the first class of estimates are consequences of Proposition 2.9 The upcoming
development hence focuses on the remaining difference estimates. The techniques
involved are analogous to those in the proof of Proposition [2.9] with the main
difference being that we must compare two refoliations of A/ simultaneously.

3l fact, we only require a family of v¥’s satisfying (2.48))-(2.50)); the asymptotic roundness

property (2.47) plays no role in the proof of Lemma
32Recall &g, , defined in Section is the transport map along the null generators of N.
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Before stating and proving the main estimates, let us first clarify the meaning of
these aforementioned differences. Fix y1,y2 € [0,1), and consider two tensor fields
¥t and WY2, horizontal with respect to the t¥*- and t¥2-foliations, respectively.
From the development in Section we can, using 7 consider both U¥ and
W¥2 as t-horizontal tensor fields. With this identification, we can now make sense
of the difference W¥2 — W¥ | as a t-horizontal field. One important example will be
the difference HY?> — HY* between corresponding H'’s in two refoliations.

With the above conventions in mind, we state our main Cauchy estimates:

Lemma 3.1. The following Cauchy properties hold: |§|

3.1 li 92 — 91| o0 = ()
(3.1) i [ (% ;
i Y2 _ AY1 00,00 4 Y2 _ Y1 00,00 | = 0;
yh;n/l[llv VI pgee + (€% — €| poo,]
Hm [[[(v71)% = (v )" oo + [[(e71)¥2 = (€)Y | pge,] = 0.
y1,¥2.'1 ) ,

In the above, (y~1)¥ and (e=1)Y refer to the contravariant metric duals of v¥ and
€Y, respectively. Furthermore, given any 1 < p < 2 and 2 < q < oo, we have that

(3:2) g = P [ 2npzee #1127 = 29 azanze] = 0,
lim [[H" ~ H"[| e =0,
y1,92.71 ik
lim [||AY> — A% p2 + || B — B || o2 + [[R** — RV || 102] = 0,
y1,y2 1 @t @t @t
lim [||Vy2Hy2 — V¥ g% ||Lp,2 + ||vy22y2 — VvV zun ”prz] =0.
y1,y2.'1 @t Tt

Also, recalling that ¥¥ = S¥, we have the refined limit

o yl,llilzn/‘l | — 2™ ”LZ',:O(EM,Sl) = 0.

Remark. All the estimates in Lemma|3.1] are in terms of the t-foliation.

Remark. Note that if y1 and y2 are sufficiently close to 1, so that |v¥2 — v¥1| is
small, then for any integer k satisfying |k| < 3, we have

(3.4) |eFv"? — kv < ¥ — ¥,
Moreover, if B] and C}! denote the coefficients in , with v replaced by vY, then
(3.5) B —BU|S o — o, [ — Ol S o — v,
We will use these observations repeatedly throughout the proof of Lemma|3.1].
For convenience, we will also adopt in the proof of Lemma [3.] the abbreviations
WU = Y2 — g, WU = V¥2gyz — gt
For example, by these conventions,

0H = HY —HY',  Vov=Vo> —Vo¥', 0VZ=V¥Z¥ _Vhgy,

33Recall ef represents the volume form associated with 'yf.
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3.1.1. Proof of Lemma [3.d] Throughout, we can assume both y; and y2 to be
sufficiently close to 1. The key is to use the change of foliation formulas of Appendix
along with (2.37) and the limits (2.48))-(2.50).

Recalling d applying (2.48)), (2.49)), (3.4), and , we estimate

lim |[ot]|;e00 < lim  ||ow||;o0.c = 0.
yl,yg/‘lH [P Nyhyzﬂﬂ (%

Similarly, for the metric, we can use (2.21)) in order to write

(V)ab — (V¥ )ab = f1 - Yar, (7)) = () = fo1 9™,

where f; and f_; are scalar functions on N satisfying |f1]| < [ov] and [f_1] < [ov].
As a result, the limits for 9y and 9y~ ' follow. As the estimates for the volume
forms are analogous, this completes the proof of .

The proof for is similar. First, we expand Z¥ and Z¥’s using (2.23), and
we note that the only difference between these expansions is the presence of v¥* and
v¥2. Thus, each term in the expansion of 9Z must be a product of the following:

e A difference of v: either dv or Vow.
e A quantity in the original foliation, i.e., either Z or H.
e Instances of v¥* and v¥2, not appearing as a difference.

These isolated instances of v¥i’s can be controlled using (2.48). To be more specific,
a more careful look at ([2.23)), along with Holder’s inequality, yields

1971 50z2 S 100l 121 2egsce + (1900 + [0l 15,)

(1900l g+ 00l ] e

where 2 < ¢’ < oo is sufficiently large. Recalling (2.37) and (2.49) results in the
limit for 97 in (3.2). The limit for 9H is proved similarly using (2.22)), but is easier.

For 0H, we apply and to obtain, with ¢’ as before,
PH | rree < ovllpse= I H 2o + (IV200] e + Vol 7 oo + [100]] 152,
+ (1900] e+ 00l =) (12 e + 1] 2. ):
The curvature coefficients can be similarly bounded. For example, by ,
0Bl 22 S [ovll = 1Bl 22 + (1900] Ly + 00l | Al 22

T

Analogous bounds can be derived for A and R. Applying and in the
same manner as before, we obtain the desired limits for H, A, B, and R.

It remains to establish the limits for OV H and 0V Z; we prove the latter here,
as the former is similar but easier. By , for sufficiently large 2 < ¢’ < oo,

[0V 2l o S IV0Z 5 + V0 | oe V007 iz + V00 [ 9027 2
IV e (14 [ 202
900 e (1 [ x2) 1222
From , , and , we see that the last two terms on the right-hand
side tend to zero as y1,y2 ' 1. As a result, we need only prove that

(3.6) lim [HVDZHLp,z + ||VtDZ||Lp,2] =0, ||VtZy2||L2,2 <T.
y1,92.1 z,t @t tx
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For this, we again expand 07 using ([2.23)), and we apply V and V; to the result.
Applying Hoélder’s inequality and (2.48]) to eliminate isolated v¥:’s, we have

1902112 S 00l sy IV Zl 22 + (IV00] e + 00l ) 121

+ Vvl py e + [00] gz ) [VH | 22
(IIV%vIILw VU]l o o+ [100]] g ) H | 2
+ V200 Lo + IVovl] g7 oo + [[00]] 52>
IVedZl 2 S Hovll ooy IVeZl 22 + (IVOUll Ly oo + [[00l] oo ) [ VeH | 2.2
+(IVeVoul Ly + [lov]lgs; m)IIHIIL4 >
+ ”VNDUHLZ',;? + ||av|\moo.

Applying (2.37) and (2.49) to the above proves the limit in (3.6). The remaining

bound for V;Z¥2 follows from a similar estimate as the above for V;0Z. This

completes the proof of (3.6)), and hence (3.2)).
Finally, for (3.3), we proceed like the estimate for 0H in (3.2):

||°EHL§1<>° sy S [0l (1+ | HI| 2. =) + (\|V20v||L2m(Ey1 oy T ||Vav||LZ,%m)
(HVDUIILq  +[[0vll g ) (121 e + [1H | 150)-

The only difference is we restricted the norms to the region above X¥%'. Although
the second term on the right-hand side can no longer be controlled using (2.49)),
because of the restriction to the shrinking region, this term will still go to zero as

y1,%2 1 due to (2.50). Thus, we have established (3.3)), and hence Lemma

3.2. The Bondi Energy. We are now ready to establish the limit involving
the Hawking masses. This is the most difficult limit, since we lack a tidy formula
for how M transforms under changes of foliations. |§| To work around this, we
observe that a tidy transformation formula for M does exist at Sp; see .

As usual, let MY denote the restriction of MY to ¥¥ = S¥. Recalling Definition
to show that the M}’s converge in LL, it suffices to prove

(3.7) im Ly =0, Lay= [ | (M) — @k, (MP)|deo.
y1,y2,'1 So

To convert into estimates that we have, we resort to the following lemma:
Lemma 3.2. The following estimate holds:
(38)  Lar SIVEMY = V5 M| + VEM 00 s s
+[[MY> — MY || L1 (s4)-
Proof. See Appendix [B23] O
Since the 3¥’s are going to infinity, then by Proposition [2.8]

yl}zi/rzn/ ||Vty2 y2||L21‘/127m(Ey1’Ey2) =0.

34Although such a formula can be derived, it is easier to avoid doing so.
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Moreover, using (2.34)) and (2.49)),

li MY2 — MY = 1l A — =0.
yl,glfznm” 21 (50) yl’;fznﬂll (Vy, — vy )1 (s0)

Suppose in addition that
(3.9) lim . VY%, MY — VY, MY ”Li'i =0.

Y1,Y2,”

From this, we obtain (3.7), hence the M’s have a limit in Ll asy /1. Since
Theorem applies to every vY-foliation of A, courtesy of Proposition then

(2.52)) follows. E| As a result, it remains only to establish (3.9)).

3.2.1. Proof of (3.9). The strategy is to work with the evolution equation below
for MY, given in [Il Proposition 4.2] and valid for any t¥-foliation:

3
(3.10) VMY = —i(try HY) (MY + 2mg) — 2(1 — t¥)(4¥)** ZY B}
+2(7) (V) HYL VY ZY - 2(1 = #0) (3) (V) H Y. 2 7
oY) ZIVA(Y HY) 4 S ()1~ ) Y HY 9] 287

1 2mS ~ A~
- e g — 2 (1 208

Recalling the definition and suppressing constant factors and all instances of
~vY, s¥, and t¥, we can rewrite (3.10]) schematically as
(311) V4MY=HY-RY+ZY-BY+HY-VYZY+2ZY.VYHY+ HY.-ZY.2Y
+HY-HY -HY+ZY-ZY+ HY -HY + HY.
For convenience, as in Section we adopt the abbreviation |§|
OV M = Vi, MY? — VY, MY

As before, similar conventions will hold for other quantities, e.g., 9H and 2V Z.
We expand 0V, M as the difference between the right-hand sides of , with
y = y2 and y = y;. Each term of this expansion will contain a factor that is a
difference, e.g., 0t, 0H, 0V Z. These differences can be controlled using Lemma 3.1
The remaining factors can be controlled using Proposition [2.9}
For brevity, we adopt the following additional schematic notations:
e The symbol ¥’ will refer to any one of ¥¥ or ¥¥2, For example, we will
apply this with ¥ being Z, B, VH, etc.
e We use the symbol A to denote any one of H or Z.
e We use the symbol R to denote any one of B and R.

With this in mind, the expansion of 9V, M using (3.11]) yields the following bound:
(3.12) [OViM|| s S IAOR) 11 + [QAR 11 + A OVA) 1
+IEAVA) [ + | QE)A Al s + [|(QA)H A 10
QAN A 11+ IOAVA 1+ [0 1 + £,
35Recall that norms with respect to different (renormalized) metrics and different foliations of

N remain comparable due to the discussions in Sections and
36Recall the conventions from Section for identifying fields from different foliations of A.
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where £ arises from terms involving either 9t or 9y~! (and hence no differences

involving the Ricci or the curvature coefficients). More specifically,
= (Rt + 07 =) - £
L= HA/R,”L;*; + ||A/(V~A)/||Lt1:; + HEIA/A/HL}_’;
+[AA A o+ A A+ A
Using Holder’s inequality, Proposition and , we obtain
lim L£=0.

y1,y2,1

As the estimates for these terms are straightforward and are easier than the re-
maining terms, we leave the details to the reader.

The other terms in (3.12]) are controlled similarly, using Proposition and
Lemma For instance, for the first two terms on the right-hand side of (3.12)

tim AR S tim [ e [0R ysa] = 0.
y1,92,'1 tw
lim ||(OA)R’HL1,1§ hm [RAY 2 < IR 2:2] = 0.
y1,y2.'1 tx

The third and fourth terms are bounded analogously. For the next two terms:

lim JQEL)AA 1 S lim A o [ A 2] = 0,
Y 2

Y1,Y2

lim, |QAE A 31 S hm IRAN 2 [H 2 LA 2] = 0.

Y1,y

The remaining three terms are easier than the above and can be controlled in a
similar manner. This completes the proof of (3.9)).

3.3. Angular Momentum and Rate of Mass Loss. Here, we complete the
proof of Lemma [2.11| by establishing (2.53). As usual, let Z}: and H}' refer to the
restrictions of ZY: and HY?, respectively, to Y. By Deﬁnltlon 2.6 We must show

3.13 lim Lz= lim OL,, (Z292) — DLy, (Z91)2dey = 0,
( ) y1,92.1 z y1,y2.'1 So| = 2( yQ) > 1( y1)| 0
; — ; HY 2 _
Y1 }?IJIQH/‘l L Y1 }?IJIzn/‘l |(I)Ey2 (H ) (I)Eyl ( - )‘ deo = 0.

This is similar to the process in Section though it is easier due to and

(2.24). Because of these formulas, we can simplify the work by comparing Z¥' and

ZY2 on YY1t rather than on Sp. A similar argument holds as well for the HY’s.
For this, we use the following analogue of Lemma

Lemma 3.3. The following estimate holds:

(14) Lz 127 = 2 g s,y + IV 27 e,

o (271, 502)
+ ||Hy HLOC2 (gy1,gy2)||Zy2||i2»1 (2v1,3v2)’

Ly S ||H” — Hyl”ﬁ > (2v1,8)) + ”vt”Hy HL2 Ly (B1,3192)
+ ||Hy2||L°° 2, (2, vy (1L HL2 wz (T¥1,202)7

Proof. See Appendix O
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By () and (3.

ylliglﬂ[llzw -z HLi’,?o(Eylel) +|HY — H” HLivf(gm,sl)] =0.

Furthermore, since the ¥¥’s are going to infinity, the remaining terms on the right-
hand side of will also converge to zero as yi,y2 " 1, by Proposition
Combining these observations results in (3.13]). Finally, since Theorem applies
to every v¥-foliation of A/ by Proposition then follows.

4. CONSTRUCTION OF THE DISTORTION FUNCTIONS

In this section, we prove Lemma that is, we construct the family of dis-
tortion functions v¥ used to generate the family of asymptotically round spheres.
This is the first main component of the proof of Theorem [1.1

4.1. Main Ideas. The construction of these v¥’s is a delicate exercise due to the
low regularity of the metrics v;. While it is not too difficult to obtain solutions v¥
satisfying (we shall see this amounts essentially to solving the uniformization
equation, albeit with a rough background metric), it is far more delicate to solve
it in a way that guarantees the properties —. These estimates are indis-
pensable in guaranteeing that the curvature fluxes on A with respect to the new
sY-foliations are still bounded and small, and that the relevant physical quantities
on the resulting asymptotically round spheres (XY, hY) converge as y 1.
Heuristically, the requirement associated with is an elliptic equation over
the limiting sphere (S7,71). To see this, let us suppose we are given a distortion
function v, and with it the corresponding t'-foliation of N. The key observation
is one of the (renormalized) structure equations found in [I, Prop. 4.2]. More
specifically, the renormalized Gauss equation, applied to the t’-foliation, gives
(41) K -1= —% t' H + '~/ Z) — s M’ + %s’*l (1 - Qms) tr’ H'

5
— is'*l tr' H' tv' H'.
By collecting the terms that are asymptotically vanishing, we can write as
K'=1- %tr’ﬂ' + (1=t

where the “error terms” &’ are uniformly small in the appropriate norms due to
Theorem In particular, in the (weak) limit ¢’ 1, we have on S that
1

Note the obstacle preventing K’ from converging to 1 at infinity is the presence
of tr’ H'; if this can be eliminated, then the Sj,’s will become asymptotically round.
We will see that, using (2.24)), we can write

tr' H' = tr H + 2Av +2(e®" — 1) + (1 — )&,

where &, is uniformly small in the appropriate norms. Since we wish for the left-
hand side to vanish, then, in the limit ¢ /* 1, the equation we must solve is

1
(4.2) Ay v+e?=1- 5 tr iy,

where A, is the Laplacian with respect to the limiting metric v (in the t-foliation).
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Remark. Note that (4.2)) is analogous to the differential equation arising in the
uniformization theorem, where one seeks a conformal transformation v, — €*'y
to obtain a round metric on the limiting sphere Sy. That the change of foliation

induces a conformal transformation of the (renormalized) metric at infinity can be
seen directly from (2.21)); see also the discussion in the introduction.

Nonetheless, the metric v; at infinity is not regular enough to attack di-
rectly. Also, one may prefer families of smooth spheres converging to infinity. For
these reasons, we instead obtain this v in indirectly as a limit of smooth
distortion functions v¥, for y € [0, 1), by solving approximations of on N.

4.1.1. Proof Outline. It is important to emphasize that for each v¥, the distortion
function v¥ is constructed by solving an approximating elliptic equation on the
sphere (Sy,vy), in the t-foliation. The precise result is stated below:

Lemma 4.1. There is a family of distortion functions v¥, y € [0,1), such that:
e For a fized y, this v¥ satisfies on (Sy,7,) the equation

(4.3) AvY + e?e?’ =1 — %trﬂ—i— (1-t)E,
where u and E are smooth functions on N satisfymglﬁ
(4.4) [ulloe(sy S A =0T, [[Elgeo ST
o The vY’s satisfy the properties -.
Proof. See Section O

We now show that the conclusions of Lemma[f.1]imply the conclusions of Lemma
2.10l For each vY, we consider the change of geodesic foliation associated with v¥,
in particular the renormalized t¥-foliation of N. Letting (XY, h¥) be the level sphere

(SY,7y), then Proposition and the bounds ([2.48)) for v¥ imply
||’Cy - IHH;1/2(2y7hy) S || try ﬂyHLi(Ey’hy) + (1 - y)F
Thus, to prove the second limit in (2.47), we need only show that
4. 1 t Y HU vy hy) — U.
(4.5) y1/m1 | tr¥ HY|| 2 (v, hvy =0
Now, we look at the transformation law (2.24)) for HY and H, and we separate

all the terms on the right-hand side which vanish ast 1. Since B_; = 1+s71C_;
and t = 1 — s~ !, then (2.24)) can be expressed in the form

HY, = H,y + 2Vav? + (2" — 1)yap + 74V 0V V0¥ - yap
— OV 0YVv¥ + s 1.
Moreover, from and ([2:48), we can estimate ||g||Li,§o ST
Taking a trace of the above identity and recalling yields
(4.6) try HY = e 2"Botr HY = A + s 1€,
where 21 and £ satisfy
A= tr H+280% +2(e*" — 1), [|€] 20 ST

37The role of u here is to absorb the low regularity of the metrics 7; see Section
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As a result,

0" H 2 so oy S 120 2 sy + i 57 (P) - T
Since the 3¥’s go to infinity, the last term on the right-hand side vanishes as y 1.
Consequently, to prove (4.5)), it remains to show

(4.7) ;lfml 2] 2 (2o, hwy = 0.

The key observation behind proving (4.7) is the equation (4.3]) satisfied by v¥ on
Sy. To take advantage of this, we first move our estimate to Sy:

12 vy S (€2 s,y + IVeltr H)ll 25, sy + VeV [ 1215, 50)-

By and , the last two terms vanish as y 1. Furthermore, by ,
A=2(1—-t)E + 2> (1 - e*)
on Sy. Since u converges uniformly to 0 as ¢t ,* 1 by ,
1 r2(s,) S @ = IENL2cs,) + 11— €| Ls,) — O,

as y ' 1. Thus, we have established (4.5)), and the second limit in (2.47)) follows.
Finally, letting w¥ denote the volume form associated with h¥, we have

Area(X¥, hY) = KYdwY — / (KY — 1)dw¥ = 47 — / (KY — 1)dw¥.
Y Yy >y

The second limit in (2.47)) implies that the last term on the right-hand side vanishes
as y ' 1. This yields the first limit in (2.47)) and proves Lemma

4.2. Proof of Lemma [4.1] The proof of Lemma[4.1] i.e., the formal construction
of the v¥’s, can be divided into a three-step process. The first two steps essentially
amount to preliminary smoothings of the metrics 7, while the last step involves
carefully chosen uniformizations of the smoothed metrics.

The goal of the first two steps is to reduce matters to solving over a metric
with L°°-bounds on its Gauss curvature. This is accomplished by two conformal
transformations which absorb the lower regularity terms in . The first con-
formal transformation, which comes from [I7], smoothes the Gauss curvature from
H~'? to BO. The second step adapts an idea from [2] to further smooth the
curvature to L°°. Finally, at the third step, we proceed with a uniformization,
adapting an argument of Christodoulou and Klainerman in [5].

In the end, the v¥’s are obtained via a composition of only the last two steps.
In particular, the impact of the first (and also least regular) smoothing vanishes at
infinity and can be discarded. m The remainder of the proof of Lemma is ded-
icated to deriving estimates and convergence properties for the v¥’s. In particular,
we obtain L°°-bounds for the Vuv¥’s, which are essential for the main result.

38Here7 we implicitly used that integral norms in the ¢- and t¥-foliations are comparable.
39Having BO instead of L? is important, as it ultimately results in L°°-bounds for Vuv¥.
40This is due to the factor s—! in front of div Z in (&.1)).
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4.2.1. Step 1: The Initial Smoothing. The first technical issue that one faces is the
irregularity of the ~4’s; in particular, the Gauss curvatures of the +;’s lie only in
H1/2, Thus, in this first step, we apply a conformal smoothing of the ;s in
order to obtain a new family 5;, whose Gauss curvatures KC; are uniformly bounded
in L2. This was the same process that was employed in [17, Sect. 6] in order to
derive elliptic estimates for various symmetric Hodge operators in Besov norms.
That this is possible rests on the observation that the least smooth term in the
right-hand side of is an exact divergence: (1 — )Y’V ,Z,,.

As in [I7], Sect. 6.4], we define the function u on N satisfying, for every 7 € [0, 1),

(4.8) Au, = s 19N (2 ), / urde, =0,
s,

where e, denotes the volume form associated with ~,. In other words, u, is the
unique mean-free function solving the above Poisson equation on (S;,~;). Define
next a new family of metrics 4, = e*“77, on the S,’s. Then, from standard
formulas, the Gauss curvatures K, of the (S,,7,)’s are given by

(4.9) K=e K- Au)=e " [1 - %trﬂ—k (1- t)E} ,
1 1
E=-M-+ 5[1 —2mg(1 —t)]tr H — ZtrHtrﬂ.

To control u, we apply elliptic estimates on the Poisson equation (4.8, along
with existing bounds for Z. ﬁ Using a variant of [I7, Prop. 6.10], we obtain

(4.10) lullzee (s + Vullzacs,) S (1 =T
Moreover, [17, Prop. 6.10] implies
1K = 1lz2s,) < 1K — e ll2s,) + e = 1l2s,) ST

We also note that by (2.37) and the definition of E in (4.9)), @

(4.11) 1Bl o + 1Bl 2o ST

In particular, the above choices of v and F satisfy (4.4)).

Remark. We note that the conformal factors u; do not have the smoothness re-
quired of the desired v¥’s and hence will not be built into the v¥’s. Their purpose is
to absorb the term of least regqularity in IC, thus producing a more regular metric,
from which we can construct the desired v¥’s. Note in particular that ast /1, the
K.’s converge to K1 =K1 =1— %trﬂl at S in L_?ﬁ.

41This causes a substantial number of issues, e.g., for elliptic estimates; see [8] [17, [I8] [19].

42%hile such estimates are immediate for regular background metrics, they are very delicate
for the rough metrics under consideration here. In particular, we resort to estimates in [I7].

43More specifically, we apply the proof of [I7} Eq. (6.18)] individually to each S; and take
advantage of the factor s™! =1 — ¢ in front of the divergence of Z.

4475 control the term tr H - tr H in Besov norms, we use [I7, Thm. 3.6], along with (2.37).



BOUNDS ON THE BONDI ENERGY BY A FLUX OF CURVATURE 35

4.2.2. Step 2: Further Smoothing. In the next step, we generate the first part of
the v¥’s. To accomplish this task, we apply yet another conformal transformation,
directly inspired by Bieri, [2]. Its purpose is to reduce matters to solving an analogue
of 7 but with the right-hand side lying in LS° rather than in L2. Throughout,
we let V and A be the Levi-Civita connection and Laplacian relative to 7, and
we let |Sy| be the area of Sy, relative to the metric 7y,. Moreover, given a smooth
function f on Sy, we let A, (f) denote its ~y,-average:

Ay(f) = |sy|*1/s fde,
Next, we solve (uniquely) on (Sy,y) the Poisson equation

(4.12) Avy ="K, — A, (e*"K,), / vYde, = 0.

Sy

Recalling the value of K, we can expand the equation as

Aot = —LfeH, — Ay H)] + (1 - 9)[E, — A (E,)].

2
Applying (2.37) and (4.11) yields

(4.13) ||AUZ1/||Bg(sy) S trﬁHBg(sy) +(1— y)||E||Bg(sy) ST

Note in particular that the second derivative of v{ is bounded in the Besov norm.
This is a crucial point, as it will allow us to control Vo{ in LS°.

The above argument defined v{ only on S,. Next, we extend each v{ to all
of NV by requiring it to be constant along every null generator of A; in other
words, we require V;v{ = 0. In order to derive the full complement of estimates
for the v{’s from , we resort to standard elliptic, Sobolev embedding, and
transport estimates. The only caveat here is the low regularity of our setting,
which forces us to apply the tools developed in [17]. To avoid distracting from our
main construction, we defer the details of these estimates to the appendices.

Lemma 4.2. For any y € [0,1), the following estimates hold:
(4.14) 9920022 + 9,90l ST2,
1920 songze + 1908 3o + ¥l ST

Moreover, for any q € (2,00) and p = % € (1,2),

(4.15) ylgfznfl[HVtV?(U%Z - Uijl)HL;{;f + VeV (of® - ”%I)HLgf] =0,
ylgglﬂ[IIVQ(vi” —v{")zpee + [V(0f* — o))l o + [lof* — o) || pge] = 0,
ylginfl IV (v}” — Uill)HLi:?(s;jlhsl) =0.
Proof. See Appendix [B:5] O
Finally, defining the metric
¥y = ey,

on S, we find that its curvature K, satisfies

(4.16) K, = e 21(K, — AvY) = e~ 2T e 20 4, (e2K,).
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Ky is uniformly bounded, independently of y, since by (4.10) and (4.14),
- —2(v¥+u
(4.17) 1Ky = Ulpee(s,) S e+ — 1l pees,) + [ Ay (tr H) [ pee(s,)

+ Ay (B)llLges,)
<T.

4.2.3. Step 3: Uniformization of the Smoothed Metrics. Now that the metrics have
been smoothed as to have LS°-curvature, we can proceed to the third and final step
of the proof of Lemma we construct functions vy solving

(4.18) A vl + €208 = 72010 g (2K, = K,

on Sy, where Ay denotes the Laplacian with respect to the metric 4, on S,. In
other words, we solve the uniformization problem on (S,,¥,).

While the uniformization problem itself is classical, in our current situation,
we must also ensure that these v3’s are uniformly small (that is, controlled by T')
and converge appropriately as y ' 1. The difficulties behind these additional con-
straints arise from the lack of uniqueness of solutions of due to the conformal
group on the sphere. For this task, we resort to the subsequent abstract lemma:

Lemma 4.3. Let h be a Riemannian metric on S%, whose Gauss curvature satisfies
(4.19) IKn = 1|pees2y ST
IfT is sufficiently small, then there exists a smooth function v : S? — R, with

(4.20) lvllees2y ST

such that h = e*°h is the round metric, with Gauss curvature identically equal to
1. Furthermore, v can be chosen to depend continuously on the pair (h,KCp).

Proof. See Appendix [C} O

Applying Lemma 4.3 to each (Sy,%,), y € [0,1), we obtain functions v on S,
satisfying (4.18)) as well as the following estimate:

(4.21) [03llLe(s,) ST, y€0,1).

Like for the v{’s, we extend the v§’s to A/ by the condition V;v§ = 0.
Since the 7;’s converge as t /1 (see Section , since the v{’s converge as

y 1 by (4.15)), and since u converges to zero at infinity by (4.10]), it follows
that 4,, restricted to S, also converges (uniformly) as y * 1. Furthermore, from

, along with Corollary , and , we see that léy, again restricted
to Sy, converges uniformly as y ,* 1. Consequently, by the continuous dependence
statement in Lemma the vy’s must also converge as y 1. In other words, as
functions defined on all of N, the v3’s satisfy the Cauchy property

(4.22) " BQH}OO 087 — 03! [| Lo = 0.
Finally, rewriting (4.18]) as
(4.23) AvY = 2D ApY = 2wtV (K — 203,

and applying (4.21)), (4.22), and the usual elliptic, embedding, and transport esti-
mates (at low regularities, via [I7]), we derive the full set of bounds for the v3’s.

The proof, given in Appendix is analogous to that for the v{’s.
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Lemma 4.4. For any y € [0, 1), the following estimates hold:
(4.24) IVeV203]l 2.2 + |V VU3 || o2 S T2,

19208 | oz + V08l + o8z ST

Moreover, for any q € (2,00) and p = 112% € (1,2),

(4.25) lim [V, V(0§ = 03")|| o2 + [IVeV (05> = 08| fa2] = O,
y1,y2 1 @t zt
i (92— o) + IV — o+ e — o ] =0,

1 2
lim V08— o) sy ) = O

Proof. See Appendix [B.6] O
4.2.4. The Distortion Functions vY. Finally, we complete the proof of Lemma [4.1

by combining the three steps described above. Defining our desired distortion
functions by v¥ = v} + v§, we see on (Sy,7,) that

AvY + 2" = Av{ + 2Vt (Avé’ + 62”3)
Ky~ 672“-’41/(62“’621) + e [672(”f+u)-’4y(62ul€y)]

1
= 2 (1 — itrﬂJr le) ,
where we also noted that A = e~2*A. Consequently,
y . v 1
AvY + 2t — €2u(Avy+e2v )=1- §trﬁ+(1 —t)E,

which proves (4.3). Furthermore, combining Lemmas}4.2|and [4.4{immediately yields
(2.48), (2.49)), and ([2.50)), completing the proof of Lemma

APPENDIX A. CHANGES OF FOLIATIONS

In this Appendix, we prove the change of foliations formulas from Section [2.2]

A.1. Proof of Proposition First of all, we observe that the conjugate null
vector fields L' and L, for the s’- and s-foliations, respectively, satisfy

(A1) L' =e "L+ (s—1)%4% Y, 0¥, - L+ 2(s — 1)e Vgrado,

where gradv is the #-gradient of v, i.e., grad®v = #*V,v. To see this, one can
directly compute that right-hand side L' of (A.1)) satisfies

g(L'.L'y=0, gL L')=-2, gL X")=0.
Furthermore, for convenience, we define the coefficients
‘CU« = (S - 1)W¢1U7 M = (8 - 1)27?abvaUVb’Ua

which show up in the formulas (2.7) and (A.1]). Also, we let e, and e/, denote the
frame elements in the s and s’-foliations corresponding to the index a.
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A.1.1. Ricci Coefficients. For (2.9), we have, by the definitions of x and y/,
Xap = 9(De, L' €y) = g(De,tr,1(e"L), ep + LoL) = g(De, (€"L), e5) = €”Xab;
where we used that L is normal to N. For (2.10)), we do similar computations:

1
Ch = 59(Deyrz,n(€"L),e™ Lt "ML +2(s — 1)e™"gradv)

%g(DeaL,L) + %Wav ~g(L,L)+ (s —1) - g(D,, L, grhAdv)
= C(L + (S - 1)ﬁbcvbv * Xac — Vav'

The process for x" and x is similar, but longer:

Xy = 9(De,+z,0le” L), ey + LoL) + g(De,tr,(e” " ML), e + Ly L)
+29(De,+2,5[(s — 1)e”"gradv], ep + LpL)
=1+ 1+ I5.

The simplest term to handle is I5:
Iy = g(De, (e " ML), &) = e (5 — 1)*4°V 0V 4 - Xap-
Next, for I, we expand:
Iy = g(De,(e7"L),ep) + Lo - g(Dr(e™ L), e) + Lo - g(De, (€7 L), L)
+LoLy-g(Dr(e” L), L)
= e_vxab —2e7Ly o+ 27V LY v — 2e U LGy
=e "X, T2s = 1)e "V, uVp = 2(s = De (Vo G + Vv - Ca)-
Finally, for I5:
Is =2(s—1)-g(D,, (e "gradv), ep) + 2 "L, - g(Dr[(s — 1)gradv], ep)
+2(s = 1)Ly g(De, (e ?gradv), L) +2(s — 1)e” "L Ly - g(Drgradv, L)
=—2(s = 1)e "V, oV +2(s —1)e” " - g(D,, grhdv, ep) + 2 L, Vv
+2(s—1)e "Ly - g(Drgradv,ep) +2(s — 1)e™ "Ly - g(D., gradv, L)
= 2(s = 1)e "V, oVv +2(5s — 1)e Vv + 2 VL, Vv
+2(s—1)e "Ly -V Vv —2(s — De 4Ly Y v - Xad,

where we used that ¥, and YV, are the projections of the corresponding spacetime
covariant derivatives onto the Sy’s. Since v is s-independent, (2.1]) yields

stbv = _WCdeCWdU,
and it follows that
Iy =2(s — 1)e " Vapv — 2(s — 1)%e "4V 0(Yav - Xbd + V50 * Xad)-

Combining I, I, and I3 yields (2.11]).
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A.1.2. Curvature Coefficients. Next, we establish (2.12))-(2.16)), which involve the
curvature components. For (2.12)), we have

oy =€ R(L,eq + LoL, Ley + LyL) = €* - R(L, eq, L, ey) = €* atgp.

Similarly, for 8’ and 8, we compute
Bl = %e” “R(L,L+ ML+ 2(s— 1)gradv, L,e, + L,L)
= %e” “R(L,L,L,e,)+ (s —1)e’ - R(L,gradv, L, e,),

from which follows. Moreover, is a consequence of the identities
p = iR(L,L +2(s — 1)gradv, L, L + 2(s — 1)gradv)

= ER(L,L, L,L)+ (s —1)-R(L,L, L,grAdv) + (s — 1)* - R(L, grAdv, L, gradv).

Next, let {e1,e2} be a positively oriented orthonormal frame on the S;’s. Then,

o= {*RLLLL)= 3Rl L)

by the definition of the Hodge dual; an analogous identity holds for o’. Therefore,

1
o' = _§R(61 +LiL,ea+ LoL, L, L+ ML+ 2(s — 1)gradv)

= —%R(61,€2, L,L)- %R(L, Lieo — Loey, L, L) — (s — 1) - R(ey, ea, L, gradv)
—(s=1): R(L, L1e2 — Loe1, L, gradv)
=L+ L+ 15+ 14
First, I is simply o. Recalling the definition of £,, then
Iy = —(s = 1)§""Vav - B, Iy = —(s = 1)*¢*4"V 0V - aca
For I3, we expand and use that Ric = 0:

I3 = (s —1)V,v- R(ea,e1,L,e1) — (s — 1)Vyv - R(ey, e, L, es)

= %(s —~1)Yyv- R(ea, L, L, L) — %(s —~1)Yyv- R(ey, L, L, L)

=—(s = 1)¢""V,v - By.

Combining all the above results in (2.15)).
Finally, for ﬁ’ and 3, we once again expand:

ﬁ; = %e*” “R(L,L,L+ ML+ 2(s — 1)gradv, e,)

+ %e_”ﬁa “R(L,L,L+ ML+ 2(s — 1)gradv, L)

+(s—1)e™ - R(gradv, L, L + ML + 2(s — 1)gradv, e,)

+(s—1)e "L, - R(gtAdv, L, L + ML + 2(s — 1)gradv, L)
=J1+ Jo+ J3+ Js.

We can then expand J; as

1 1
Ji= 5" R(L L L ea) + 5¢ "M R(L, L, L,ea)
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+(s—=1)e7 " R(L, L, gradv, e,)
=e "B, —(s— 1D)2e YV v - B +2(s — 1)e "V v - 0.

Similar computations yield

Jo=2(s—1)e Vv -p+2(s — 1) 2 4V, 0¥ ,v - B,

Jy=2(s— I)Qe_vﬁbcvavvbv “Be+2(s— 1)36_“7917‘17?“?7&@?;)1)?76@ - Olde.
Finally, for the remaining term J3, we decompose

Js=(s—1)e Y- R(gradv, L, L,e,) + (s — 1)e "M - R(gradv, L, L, e,)
+2(s —1)%e7" - R(grAdv, L, gradv, e,)
= J31 + J32 + J33.
The simplest term is Jss:
J3o = —(s — 1)36_”7§bdﬁcevbvvcvvev CQlgd-

Let €44 denote the frame element which is not e, (i.e., eqx = €2 if e, = €1, and vice
versa). With this notation, we can expand J3; and Js3 as

Jz1=—(s—1)e "Vov- R(L,eq,L,eq) — (s —1)e "V o,v - R(L, €ax, L, q)
= fi(s —1)e "V,v-R(L,L,L,L) — %(5 —1)e Vv - R(L, L, eqy, €q)
=(s—1)e"Vov-p—(s=1e " V,v-0,

33 =2(s — 1)V, 0V o0 - R(ea, L, €ax, €a)

+2(s = 1)%e 7"V 0u 0V asv - R(€ax, L, €ax, €a)
=2(s = 1)’ Va0V o0 - fax — 2(s = 1)’ Vor 0V a0 - B
=2(s — 1)2e @Y 0V, - Be.
Finally, combining all the above, we obtain .

A.1.3. Covariant Derivatives. It remains to prove the formula (2.17) for changes
of covariant derivatives. For this, we work in terms of corresponding coordinates
transported from the initial sphere S = 81, as described in Sections and
Let J¢, and J'5 denote the Christoffel symbols for 4 and 4, with respect to
these coordinates. Since the coordinate vector fields are related via (2.7)), then
1
ab = 57?“(3;%5 + O fda — Oaflas)
1
=T+ 50— DAV av - Las + Yo - Lifda — Y av - Lfas)
=T+ (s = DA (Vav - Xab + Yo - Xda — V¥ - Xab);

since £, = 2x. As a result, we see that

l
! 1, a1y Ic /
Wa\:[lul...ul - aa\:[jul,..ul - E :rau,;\:[luléiul
i=1

l
= aa\:[j;l,..ul + (S - 1)Wav : SS\IjiLl...ul - ZrZui\:[liLléiul
=1

- (5 - 1)7§/Cd(y7av " Xdu; + Vuiv * Xda — de . Xaui)\II;“éiul?
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where the notation w;¢;u; is defined in the same manner as in (2.1]). Recalling the
definitions of ¥ and V, results in (2.17)), as desired.

A.2. Proofs of Proposition [2.2] and Corollary [2.3] First of all, since
H=x-s4, H=x- S"W,
follows from , , and . Similarly, for , we use : ﬁ
Zl =3¢ =e"sBy [5712(1 +(s— 1)572,chva -H,. — sflvav].
This immediately implies . Next, since
H=s"'x+s?1-s"mg)f, H =s"'x+521-5""mg)f,

then ([2.24)) follows from (2.8]), (2.11), and (2.19).

Continuing on to the curvature components, by (2.12]) and (2.19), we have
Al =87, = e 2 s?Bae* agp,

from which (2.25)) follows. Similarly, by (2.13)) and (2.19)),
B! = 53¢ 73" B3[e"Ba + s 2(s — 1)7"€ Vv - Qe

and follows. Finally, the identities (2.27) and (2.28)) are consequences of
analogous computations using (2.14)), (2.15)), and (2.16]).

For 7 we again consider Christoffel symbols with respect to corresponding
transported coordinates. Let I'¢, and I'S denote these Christoffel symbols, with
respect to v and 7/, respectively. Since 7 is a rescaling of 4 by a constant factor on
each Sy, then I'}, is equal to the correspondmg Christoffel symbol J'¢, with respect
to 4. By similar reasoning, I’ = J'5 as well, hence

T8 =T + 5 2(s — 1)y*“YVov - Hay + Vv - Hygy — Vv - Hyp)
+5 s = 1)(Vav- 0y + Vv - 05 — VAR Yab),
where we used the relation between J’5 and J'¢, within the proof of (2.17)). Thus,

AN ol
va\I}ul...ul aq]ul “up § Fu ulc,ul

= aaql;l...ul + 87 ( )v v - 'St\I];J,l ug ZFCLU1 u1c7ul
1
— 57 2(s = )Y (Vv Hau, + Vv Hia — Vav - How, )W), 4,0,
i=1
1
S - 1 Z V iU \Il;ua w; VCdvdU : ’Ya%\:[/;lc ul)
+1s7 (s — 1)Vav o SO
where we also applied (2.7)). Recalling the definitions of V and V,; yields (2.29).

45Note that Y and V act identically on scalar functions.
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A.2.1. Initial Values. Finally, to prove Corollary 2.3] we assume now that ¢ = 0.
Then, the identities — follow immediately from —. Moreover,
follows from (2.30]), since 7o = (), and hence V' and V behave identically
on Sy = S}. Since Proposition also implies that when ¢t = 0,

A/

R'=R,  Hy=cHuy,  Hy=e"Hy,  7*"Vi2=7"VaZy+Av,
combining this with the definition (2.4) yields (2.34).

APPENDIX B. SOME PROOFS OF ESTIMATES

In this appendix, we prove some estimates needed in the proof of Theorem [I.]]
which are more technical, in the sense that they require more machinery from [1} [17].

B.1. Additional Definitions and Results. For a few estimates, we will require
one more addition to the general formalism described in Section for simplicitly,
we deal exclusively with the renormalized setting. As in [IL[17], for a fixed ¢y € [0, 1),
we define [ W to be the definite covariant (t-)integral from Sy, i.e., the (unique)
horizontal tensor field ¥ which vanishes on Sy, and satisfies V, [ ¥ = V.

We will also require some additional norms, used throughout [I]. All definitions
will be with respect to a renormalized system (N, 7).

e Define the N} -norm on horizontal tensor fields to be the first-order Sobolev
norm on N, along with a measure of “initial data”:
120z = VW] g2z + IV 2z + (222 + 1] e,

o The Ng;—norm is defined

H‘I’HNQ; = inf{H‘I’HNg;

V,® =0},

and measures the smallest N}¢-norm of any covariant t-antiderivative of .

s T
. 2,0
e Finally, the “sum” norm, Ng;—f—Bt”I,

. . . 2,0
a horizontal tensor field can be decomposed into a sum in N} and B

measures the “smallest” way in which

1] o 4 2o = mE{[Wal[nor + [ W] gzo | U1 4 Uy = T

For detailed discussions behind these norms, see [I Sect. 3.3].

These decomposition norms enter our analysis via the main theorem of [I]. In-
deed, there are some additional estimates in [I, Thm. 5.1] featuring these decom-
position norms, which were omitted from Theorem [2.4

Proposition B.1. Assume the hypotheses of Theorem [2.4. Then, in addition to
(2.37) and (2.38)), we have the following estimates:

(B.1) IVH | yo-  g2o + IV 2l yor 1 p2o + Vel [l yo. 4 2o ST

~

Proof. See [Il, Thm. 5.1]. O

The inequality (B.1]), in particular that for VH, will be useful in the context of
the following integrated product estimate from [I, Cor. 3.10]; see [I7] for details.

Proposition B.2. Assume the hypotheses of Theorem|[2.4} Then,
(B.2) 175(@ & 0o < 12 won 20 10 s
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B.2. Proof of Propositions and We begin with the last inequality in

(2.46). Considering A’, B’, R', B’ as t-horizontal tensor fields (see Section ,

then we must bound the right-hand sides of (2.25)-(2.28)) in the Lfﬁ—norm. This is

a direct application of (2.37)), , and Hélder’s inequality. For example,
1822 < 1Bl 22 + Al 22 ST,

where we applied . Note that we used and the smallness of I" in order
to uniformly bound various instances of v and Vv within (2.26). The remaining
coefficients A’, R', B’ can be similarly controlled.

Recalling (2.41) and taking into account the discussions in Section following
Proposition we see that iterated Lebesgue norms with respect to the ¢- and t'-
foliations of A (applied to corresponding horizontal fields) are comparable. Thus,
from the ¢-foliation estimates on A’, B’, R’, and B’, we conclude

”A/HLf;?I(“/’) + ||B/||Lf;?z(7’) + ”R/”Lf;fz(w’) + ”EI“Lfii(V') <T.

In other words, also holds in the t'-foliation.

Next, we show that also remains true in the #'-foliation. The keys are to
note that v} and ~o are identical, and to use the formulas in Proposition to
express H', Z', H', and M’ on S}, = Sy in terms of the t-foliation. First, by (2.30)),

along with (2.36) and (2.41)), we can estimate
| tr’ HI”/L;O(S(’,,%) S tanLg"(Soﬁo) +[le” — 1||L§°(507’Yo) ST
Furthermore, by (2.41), along with the product estimates of [I7, Cor. 3.7],

”H/”Hi,/z(sé,fy(’,) 5 HevH”H;/?( ) + Hev - 1||H;/2(

So,70 S0,70)

S/ HH||H;/2(SO7%) + Hev - 1||H;(So7’m)'
Since the Hl-norm, defined in Section is equivalent to the standard norm, E
1E N s22(50) = IVFllz2(50) + 1] L2 (50)
then (2.36)) and (2.41]) imply that
!/
M 225y, S T
By similar estimates using (2.31))-(2.34)), we derive
”Z/”H;;/z(s(’)) S HZHHi/Z(SO) + HVUHH;(SO) ST
IH |ocsy) S le™ " Hllposy) + lle™ = Ulai(sy) ST
V' (tr" H') | Bo(syy S IV (tr H)|[Bo(sey + |l tr Hl| Bo(se) + V[l (s0) ST
M| Bocsyy S NIM I Bocso) + [1Av]| Bogsy) ST

where we used (2.36), (2.41)), [I7, Cor. 3.7], and the observation that the B-norm
is bounded by the Hl-norm (see [I7, Prop. 2.2]). The preceding estimates imply
that indeed holds true with respect to the t’-foliation.

Thus, with I' sufficiently small, we that the hypotheses, and hence the conclu-
sions, of Theorem hold with respect to the ¢’-foliation. This completes the proof
of Proposition Appealing once again to the comparability of Lebesgue norms
in the t- and ¢'-foliations yields (2.46)), which proves Proposition

46See [17, Sect. 2.3].
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B.3. Proof of Lemmas and We proceed like in [I, Sect. 5.2]. While
the basic ideas are simple, some extra care must be taken to state them correctly.
Fix an arbitrary bounded vector field X on Sy, and define the following:

e Extend X to a t-horizontal vector field X on N by equivariant transport,
that is, by the condition £, X = 0. IE

e Similarly, for each y € [0,1), we extend X as a tY-horizontal vector field
XY on N by the analogous condition £y XY = 0.

Observe in addition that, for the same reasons as for corresponding transported
coordinate vector fields, X¥ and X are related via (2.7).

B.3.1. Proof of (3.14]). For the first inequality in (3.14]), it suffices to show
s = [ @5 (202) ~ 95 (23] Py
0
= [ 185 25 00)) — B 2 (X P,
So

is controlled by the right-hand side of this inequality (with constant also depending
on X). As we are comparing the Z¥%’s on different spheres X¥i’s, the first step is
to pull Z¥2 from ¥¥2 to X¥'. Consider points P; € XY which lie on a common null
generator of A. Since 41, X¥2 = 0, it follows that [7

Z92(X%)|p, = 29 (X2) |y — [[fa () (S0 22) (X)) .
Moreover, since the X¥’s and X are related via ([2.7)), it follows that
Zy2(Xy2)|P1 — ZyQ(Xy1)|P17

where on the right-hand side, we treated Z¥2 as a t¥'-horizontal field.
Thus, combining the above and keeping in mind the comparability of all the
renormalized metrics involved (see the discussion in Section , we obtain that

L, S /g (B (28, — Z0) (XU Pdeo + |10 2% 20 s sy = Ty + I,
0 ,

Y2

where Z¥, denotes the restricted of Z¥> to X%, treated as a t¥'-horizontal vector
field. Again, due to the comparability of all the renormalized metrics,

LS 2% = 2y oy S 127 = 27

2
Vi) Ly (3v1,51)"
Furthermore, from the definition of V;v» and by Holder’s inequality, we can estimate
I SV 21320 + [ HY 7 .2 1Z¥2][7 2.
~ ty2 L:{:’,t'yQ (zv1 j]yz) Lf;HZ (Eyl ,Tv2) Ln:7,ty2 (Eyl Sv2)

This proves the first inequality in (3.14]). The remaining bound in (3.14)) is similarly
proved by contracting the HY’s with two equivariantly transported vector fields.

47In particular, note that %, (Xe) = X for any t.
48Although the integral on the right-hand side is, technically, a covariant integral as defined in
Appendix since we are dealing with scalar quantities, this coincides with the usual integral.
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B.3.2. Proof of (3.8). In this case, one has an additional convenience: since the
M?Y’s are scalar, we need not involve contractions with other vector fields. First,
by an analogous argument as for Lz, we obtain

Ly S /S |5, (Mgﬁu - Mé’f”dﬁo + [| Spve MY2 ||Liyl2 (v1,5v2) — Ji+ Js.
o , T
Since V. and £44, act identically on scalar fields,
Jo = ”Vgt;l?? MY ||Lt1yl2 L (Tvi,mv2)
To handle J;, we pull M¥2 — MY from XY to Sp. If Py € S and P, € XY lie
on the same null generator of A, then as before,

My1|P1 = My1|Po - [ gylvi/?}lMyIHPlv
V2

My2|P1 = My2|P0 _[ 0 V?yQZMyz]'Pl'

Therefore, we can bound
TS [ 1M = M deo + [V M~ VEL A
0

Combining the above completes the proof of (3.8].

B.4. Transport Estimates. In Section 4.2 a common step is to solve for a func-
tion, say v, on a level sphere (Sy,v,) and to then extend v to N/ by the condition
Vv = 0. If v is bounded on S, then v is trivially bounded on all of N'. However,
this becomes less trivial for covariant derivatives of v, since the connections V now
depend on the metrics v;. Here, we prove some properties stating that, in the
appropriate norms, this change of metric will not affect the estimates.

Lemma B.3. Assume that the hypotheses of Theorem[2.]] hold. Let v be a smooth
function on N satisfying Vv = 0, i.e., v is constant on the null generators of N.
In addition, fir q € (2,00], p= 2L € (1,2], and y € [0,1), and assume

q+2
(B.3) V2|12 s,y + IVOllacs,) + vllpecs,) < D,
for some constant D. Then, the following estimates hold for v on all of N:
(B.4) 19920l 2 + VeVl a2 S TD,

V20| Lpoe + IVl oo 4 [v]| Lo, S D.
Proof. The L;3;™-bound for v is trivial, while the L7 7°-bound for Vv follows im-
mediately from [I7, Prop. 4.12], since v is scalar. Furthermore, since

ViV = f’yCdHachv

by (), then
1990l a2 < 1] 2 [Vl 2o S TD.

The estimates for V2v are derived analogously, although we must perform the
steps manually rather than rely on [I7]. First, applying (2.1]) twice yields ﬁ

Vtvabvr = _’yCdva(Hbcvdvr) - fYCdHacvdbUT - ’YCd(vaac - vcI—Iab)vd’Ur
= _,YCd(HacvdbUT + Hbcvdavr) - ’VCd(vaHbc + VI)I{ac - vcHab)vdvr-

49Recall the second fundamental form k in the renormalized setting is precisely H.
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As a result, for each 7 € [0,1) and = € S?, we can bound

IV20ll(r) S IV0ly,2) + 1 (H © V20)|l(r,2) + [, (VH @ V)|l 7,2

/ H[V20]|(yr0ydr” / VH|Voll i ydr|.
Y Yy

1920l + +

Taking a supremum over 7 and then an LP-norm over x (and applying ) yields
19200 20 < IV llcas,) + 1H Lz V%0l g+ [V E 2 [ V0] e
S D+T|V20||gpe +TD.
Since I is small, we obtain the desired estimate for V2v. Finally, we can bound
1992l 2 < I1H] =2 19201z + IV H ]| 22| Vo] o S TD.
This completes the proof of . O

Remark. One also can prove variants of Lemma[B-3, applying over only a portion
of N. In particular, given any spherical cut ¥ of N, by following through most of
the proof of Lemma[B.3, one obtains the estimate

(B.5) V20l o= (s, S IV0lzes,) + 1H g (s, s IV20l 22 s,
FIVH 215, 2y VUl s, 3)-
Note one can also take X = S1 in .
We also require the following variant of Lemma

Lemma B.4. Assume that the hypotheses of Theorem[2.]] hold. Let v be a smooth
function on N satisfying Viv = 0. Fiz y € [0,1), and assume

(B.6) IV20llocs,) + IVOllee(s,) + Ivllzees,) S Ds
for some constant D. Then, the following estimates hold for v on all of N:
(B.7) HVQU”BfflrUmLij‘” + ||VU||Lt°fg;°° + HUHL‘t’f’fc S D.
Proof. By Lemma the only estimate left to prove is the Bzox’o—bound for V2v.
The first step is to obtain a Besov estimate for V2v at Sp: m
V20l Bo(se) S IVl Bos,) + 116VeV20]l o
S D+ [6(H & V20)ll g0 + 1 [6(VH & V)| ge o
Applying the integrated product estimate from [I, Thm. 5.2] with yields H
||f6(H ® VQ”)HBfff S (HVHHLf:j + ‘|H||L;f’t’2)||v2”HBf;£ S F”VQUHB;’;;O'
Next, applying and , we obtain
1/6(VH & Vo)l geeo S IV yps 4 p20lIVoll g poee

STUIVeT0] 22 + 192022 + [Voll 22 + V0l 172, )

500ne hidden step in the estimate below is the equivalence of the B2-norms on the various
S¢’s. This can be shown using special ¢t-parallel frames; see [I7, Prop. 5.2] and [17) Sect. 3.5].
51Al‘cernatively, one can use (B.2)) to arrive at the same result.
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Applying Lemma [B3] yields

15(VH © Vo)l g S DUIV:T0] 2 + V2] 2 + [ V0] p2e,) S TD.
Combining the above, it follows that

V2] gosy) S D + F||V2U||J_r;;>j;;°-
We can now go from Sy to any S;. By a similar process as above,
1920l gm0 S 1920l a5y + 175 © V20) e + 15V H © Vo) e
<D+ r|\v2v||3n,o +TD.

Recalling that T" is very small completes the proof of . O

B.5. Proof of Lemma To control the full second derivative of v}, we appeal
to the Hodge estimates of [I7]. More specifically, consider the Hodge operator

D€ ="V, & — i€V &,

defined on horizontal 1-forms. E| In particular, since D1 Vv = Av{, applying the
Hodge estimates of [I7, Sect. 6.2] results in the bound

<T.

y) ~

V0¥l 2(s,) + VoY lle2(s,) S 1AW [[e2(s
Furthermore, by Poincaré’s inequality, E|
lvillz2(s,) SIVUYllzz(s,) ST
Similar elliptic estimates hold for Besov norms; by [I7, Thm. 6.11], we have E|
V20l gocs,) S 1AW || pogs,) ST
Combining this with the L*°-embeddings in [I7, Prop. 2.7, Thm. 6.11] yields
(B.8) IV*0{ [ Bo(s,) + IVVY ]l Loecs,) + 0} lLee(s,) ST

To extend (B.8) to all of A/, we must deal with the changing geometries of the 7;’s.
For this, we take advantage of the transport equation V,v{ = 0 and apply Lemmas

and to vY. This yields all the estimates in (4.14)).
B.5.1. Proof of ([4.15). For any = € S?, we have

A = vf) s 2) = A0 a.0) = A0 |0y = S, VoAV dT] .0
1 1
= —i[trﬂkyz,x) —tr Hl(y, )] + i[AyQ (trH) — Ay, (tr H)]
+ (1= 92)[El(ya.0) = Ava (B)]

Y2
(1= 3Bl ~ A (B) = [ Vibol]dr
Yy

1

=L+ L+ Is+ Iy + I5) s,

where we recalled (4.12). The next step is to take the L2-norm over z (while
recalling that all such norms over the (S¢,:)’s are equivalent).

52Gce [1} Sect. 2.1] or [I7, Sect. 2.1] for details; see also [5} [].

53This is, in fact, a special case of the Hodge estimates in [I7, Prop. 6.5], with operator Dj.
See the remark following [I7, Prop. 6.5] for further details.

54By the usual manipulations described in [I7] (i.e., considering a foliation with an equivari-
antly transported horizontal metric), [I7, Thm. 6.11] is also applicable to single spheres.
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For Iy, since tr H has an L2-limit at Sy, it follows that

lim |I1]? =
y1,y2 1 Jg2
The same holds for I, for similar reasons, along with the fact that the areas of the
S¢’s converge to a limit as ¢ /1. The terms I3 and I, are easier, since by (4.11]),

lim ) ([Is" 4+ |L*) £ lim (1 —min(ys, y2))*[| E]|72. = 0.

y1,92.1 Jg2 y1,y2,'1
Finally, for I5, we apply (4.14)):
lim L*S lim ||V, V0?2 =0.
y1,y2,'1 /§2 5175 y1,y2,'1 Ve ! ”Lil%(SyI’Sy?)

As a result, we have shown that

hm ||A( 2 —of )||L2(Sy1) =0.

y1,y2./
Furthermore, by elliptic estimates (see [I7, Sect. 6.2]),

lim, MIVEE = vi)llras,,) + IVOF = vi")llras,,)) = 0.

y1,y2.
Since v{" and v{* are mean-free on (Sy,,7y,) and (Sy,, 7y, ), respectively, then
’Uzl!2 - Ul + 'Ayz (Ul ) 'Ayl (U21/2)

has zero mean on (S, ,7y, ). Thus, it follows from the Poincaré inequality (see the
remark immediately after [I7, Prop. 6.5]) that

i [vi® — v lL2(s,,) S i V1" = o)z s,

+ hm ||Ayz(v1 )_Ayl(U?)HLi'

y1,y2.”

The last term on the right-hand side vanishes, since the areas of the S;’s converge
as t /1. By standard Sobolev estimates (see [I7, Prop. 2.7]), we obtain

lim, V2@ = of)llzs,,) + IV = o) ls,,) + 107 = 01 e s,,)) = 0

y1,y2,”

Applying (B.4)), with p = % < 2, yields the first two limits in (4.15)).

For the final limit, we first expand:
V2 (0> = of )||L2 (S¥1,51) ~ SV (0 —of )||L2§°(sy1,s“1
+ V2 (o? — o} )HLZ}EO(Syl,Sl)
=J; + Jo.
Applying , with ¢ = oo, yields
T2 SV = v¥)zzs,,) + 1H s, s IV @8 = 0f) 2 s, s
+ HVHHL2 1(sy1,sl)(”v”12HL°‘° =+ ||VUZ1}1||L°° =)
=Jo1+Joa+ Jo3.

By (2.37)), J2,2 can be absorbed into the left-hand side, while the preceding argu-
ments show that Jy1 — 0 as y1,y2 1. For Js 3, we apply (2.37) and (4.14)):

lim  Jos < lim (1 —y)2||VH], 22T = 0.
pim, o35 yl’wm( y1)2IVH]| 22

The remaining term J; is controlled analogously, completing the proof of (4.15).



BOUNDS ON THE BONDI ENERGY BY A FLUX OF CURVATURE 49

B.6. Proof of Lemma Applying the L2-estimates for the Hodge operators
from [I7, Prop. 6.4] to (4.23]) and recalling (4.10)) and (4.14)), we obtain

V208l L2 s,y + VO3 lracs,) S IK = 1ras,) + €2 = 1| 2(s,) ST
Next, applying [I7, Cor. 3.7], [4.10)), (£.14), and the above to yields
AV Bocs,) = IV (uw+v¥)lz2cs,) + u+ 0¥ Lo (s, ] IK — €272 || gocs,)
SIK - UBocs,) + ||62yg — 1 Bos,)-
Recalling the explicit formula for K, then
1A% socs,) S IK = Ulmxs,) + 16 = 1lms,)
SV +v)lras,) + 1K = Ul pes,)]

+ (IVe3lzz s,y + 1103 L (s,))
<T.

Thus, by [I7, Thm. 6.11],
||V2Ug||Bg(sy) + ||VU§/||L;°(Sy) S ||AU§’||Bg(sy) ST
Combining this with (4.21]) yields the full set of estimates for v§ on (S, v, ):
(B.9) V208l Bo(s,) + IVOS Il L (s,) + 103l e (s,) ST
Applying Lemmas and to yields (4.24).
B.6.1. Proof of (4.25). This is similar to the proof of (4.15)). First, for x € S,
A =) gy = AV (o) = D08 [(yy.0) = [, VAV AT (3,)

vy o Y1y e
= [2TIK () — TRy 0] = [, VA0S ATy 1)

. [62(vf2+v32)| 2(vt ot

(y2,7) — € o)
— (€2 — D)W (e — 1)1
=L+ L+ I3+ Iy + I5)]4,

where we recalled the equation (4.23). For I, we apply (4.24)),

i 2 < g 2, Y22 _
i /82 |I2| Nyl}:}jlznfl ||Vtv 2 HLi’,i(SypSyz) 0,

1
o)

y1,y2.1
while for I3, we apply (4.15)) and (4.22)),
lim L2 < lim (o2 — 0¥ poerce 4 [[082 — 08| poese) = 0.
i [ BES T, (ot = o s + o = of )
14 and Iy can be controlled using (4.10)), (4.14)), and (4.24):
lim LI>+ %) < lim [||ul|pee + ||ul| Lo =0.
i L LE 1) £t (lasgs,,) + olegs, )

For I, we expand the definitions of K and K using (4.9) and (4.16):
Ly = Ay, (€*K) — Ay, (K)

= 5[ (0 H) — Ay, (0 H)] 4 (1~ 92) Ay, (B) — (1= 1) Ay, ().
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As discussed within Appendix [B-5] each term on the right-hand side converges to
0 as y1,y2 " 1. Therefore, combining the above, we obtain

lim ||A(0¥? — o8t =0.
1117112/‘00” (v2 2 )||L§(sy1)

Combining (4.22)), L?>-Hodge estimates (see [17, Prop. 6.4]), and Sobolev em-
bedding estimates (see [I7, Prop. 2.7]), we have for any 2 < ¢ < oo that

yllliénﬂ[ﬂw(vé” —v8)lLz(s,,) + IV(©3® —v8)llLas,,) + 108> — v3°[|Les(s,,)] = 0

Using (B.4)), we derive the first two limits in (4.25)). The final estimate in (4.25) is
proved in precisely the same manner as the analogous estimate for the v{’s.

APPENDIX C. PROOF OF LEMMA [4.3]

Here, we sketch one proof for the uniformization result in Lemma [4.3] For this,
we adopt a modification of the argument found in [5, Sect. 2.4]; in particular,
we break the conformal invariance for the 2-sphere by explicitly constructing our
conformal factor v. E| As in [5], the key will be to first transform h into the flat
metric via a conformal factor that is close to that for the stereographic projection.

Normal Coordinates. Since Ky, is uniformly near 1 by (4.19), standard estimates
(see []) imply the diameter D and injectivity radius R of (S?,h) satisfy
T—e<D<m+e, T—e<R<7+e, e <T.

Thus, given a point P € S?, we can consider normal polar coordinates (Ap, pp) in
an open geodesic ball Bp of radius m — € about P, so that h takes the form

h=d)\% + R*(\p,pp) - dp.
Remark. In the case that h is the round metric, with Kp = 1:

e If P corresponds to the north pole of the sphere, then (Ap,p) corresponds
precisely to the spherical coordinates (6, ).
e If P is the south pole of the sphere, then (Ap,@p) corresponds to (m—0,¢).

The mean curvatures of the level circles of Ap are given by
HP frng R;l . a)\PRP.
Recall (see, e.g. [0, Sect. 2.4]) that Hp satisfies the Riccati equations

(C.1) OpHp = —H% — Kn, lim (Hp — Ap') =0.
Ap N0
In particular, if /C, is a positive constant k > 0, then
Ap
Hp =Hpr = \/%~C0t—.
) \/E
Moreover, since 1 — ¢’ < K < 1+ ¢’ for some ¢ < T, then standard comparison
arguments using ((C.1)) result in the bounds
Hpite SHp < Hpi—e-
From this, it follows that

(C.2) Ap'Hp —Hpal ST

55In [5} Sect. 2.4], the authors constructed uniformizing factors that were shown to be bounded.

However, a more refined construction is better suited for observing smaliness.
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In addition, we define the functions
A A
Wpn = —2logsin TP’ Wp,s = —2logcos 71).

Note that whenever h is the round metric: if P is the north/south pole on S?, then
Wpn/Wps (resp.) is precisely the conformal factor

0
(0, 9) — —2logsin B

associated with the stereographic projection from S? onto R2. E Moreover, letting
A}, denote the Laplacian associated with h, then Wp,, and Wp , satisfy

A A
Ath,n =1- cot—P . (Hp —'Hpﬁl), Athys =1 +tan—P . ('Hp - /HPJ),

2 2
and hence by (4.17) and (C.2)), we can estimate
2
(C.3) |Kn — A Wp,| ST, K — ApWp | ST, Ap < %

Construction of the Uniformizing Factor. We are now prepared to construct the
desired factor v. Fix first a pair of points N, S € S? such that
7—e<d(N,S)<7m+e.
The idea is to treat N and S as the eventual north and south poles, and to ap-
proximate the conformal factor for the stereographic projection using the functions
Wn,n and Wy 5. Fixing a smooth cutoff function
1 on the geodesic ball B= (N),
0:87 50,1, 6= seoct P ()
0 on the geodesic ball Bx(S),

we make the following initial guess for the approximate stereographic factor: E|
wo = ¢ . WN,n + (1 - ¢) : W&s-

Note that when h is round, wy is precisely the stereographic conformal factor.
The actual conformal factor to transform h to the flat metric will differ from wg
by an error term. To determine this error, we consider the function

f=Kn—Apwo = fo+ f1 + fo,
fo=0¢-(Kn—AWnNa) + (1 —=9) - (Kn — ApWs.s),
)\i

2 b

fo =200 {logsinzN — log cos )\25} .

A
fi= 8>\N¢-cot7N + Oxg ¢ - tan

In particular, f is bounded on all of S2. Furthermore, the Gauss-Bonnet theorem
and a divergence theorem argument as in [5 Sect. 2.4] imply that f is mean-free.
As a result, we can solve the Poisson equation

Apwg = f, /wE:O.
SQ

56\ [ore precisely, the specific stereographic projection we use here is that from the unit sphere
about the origin in R? onto the plane z = —1 in R3.

57 particular, we require two normal coordinate systems in our construction, since normal
coordinates degenerate as one approaches the injectivity radius.
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Defining now w = wg + wp, which satisfies on S? \ {N} the equation Ayw = K,
we see that h := e?*h defines a flat metric on $? \ {N}.

Now that we are on the plane, we can return to the round sphere by inverting
the (standard) stereographic projection. Letting ds denote the h-distance from S,
the conformal factor associated with this inverse stereographic projection is

d’2
i=—log |1+ -2
w 0g<+4>,

where we treated S as the origin in R2. Therefore, if we define
v =w + W,

then the metric h = ¢2*h will be round, i.e., its curvature satisfies K; = 1. In
particular, v satisfies the following nonlinear equations on S? \ {N}:

(C.4) Apv = Kp, —e?, —Ajv= eI, — 1.

Bounds on the Uniformization Factors. Finally, we briefly sketch the proof of the
bounds for v. Note first that (C.3|) immediately implies

(C.5) [ foll oo (s2) S T-
For f; and f5, we require the following observations:

e Both f; and f; are supported away from both N and S. |f|

e Since N and S almost achieve the diameter of (S2,h), it follows that g
will be (uniformly) close to m — Ay in the supports of f; and fs.

e Moreover, when radial geodesics from N and S intersect in this region, they
will point in almost opposite directions. |f|

Combined, these observations imply that f; and fy are uniformly small. A more
careful quantitative analysis of this yields the estimates

[ fillzees2) + I f2llpee(s2) ST
This controls f by I', and standard elliptic estimates now imply
|wellpe @y ST

An analogue of the argument found in [B] Sect. 2.4] immediately yields that
wo + w is uniformly bounded. To show smallness, however, we observe that wy,
as constructed, approximates the conformal factor for the stereographic projection,
while @ is the (exact) conformal factor for the inverse stereographic projection. A
more careful accounting, using arguments similar to [5], Sect. 2.4] comparing h- and
h-geodesics, yields the more precise estimate

l[wo + W Lo s2\(n}) ST

Collecting all the preceding estimates results in (4.20)); in particular, v extends
to a bounded function on S2. Furthermore, using the nonlinear equation (C.4)) and
the smoothness of K, we can improve the regularity of v and derive smoothness.

To show that v depends continuously on h and Kj, we return to each step of its

construction, and we observe that each of the components wg and wy + W depends
continuously on h and . To better sketch the main points of this argument, we

5810 particular, sin(Ay/2), cos(An/2), and the corresponding quantities for Ag are uniformly
bounded from above and below in the supports of f1 and fa.
59This can be observed, e.g., using Toponogov’s comparison theorem; see [4].
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let A’ be another metric on S? such that h’ and its curvature K, are uniformly very
close to h and I, respectively. Moreover, let w’;, w(,, @', and v" denote the various
components obtained in the above process, but in terms of h'. m

The first point is that since A’ is close to h, the normal coordinates Ay, and Ny

with respect to b’ are similarly close to those for h, up to first derivatives. E| From
this, we can conclude that w(+ @', f1, and f} lie uniformly close to wy+w, f1, and
fa, respectively. To similarly compare f} and fy, we also require the closeness of
curvatures. Note that since Ky, and Kj are close, the Riccati equation and
its counterpart for 2’ imply that both Hy —H'y and Hg — H's remain small. Thus,
by definition, f} must lie uniformly close to fo.

Finally, to compare w% with wg, we consider the linear elliptic equation

Ah(le — wE) = Ah/wjg — Apwg + (Ah — Ah/)le
= (fo—fo) + (f1 = f1) + (f2 = fo) + (Bn — An)ulp.

The first three terms on the right-hand side will be small by the preceding dis-
cussion; since (b, KCp/) is close to (h, Kp), the difference of Laplacians will also be
small. Consequently, standard elliptic estimates imply that w, lies close to wg.
Combining all the above, we conclude that v — v is uniformly small.

10.

11.

12.

13.

14.

15.
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