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ON THE GEOMETRY OF NULL CONES TO INFINITY UNDER

CURVATURE FLUX BOUNDS

SPYROS ALEXAKIS, ARICK SHAO

Abstract. The main objective of this paper is to control the geometry of
a future outgoing truncated null cone extending smoothly toward infinity in
an Einstein-vacuum spacetime. In particular, we wish to do this under mini-
mal regularity assumptions, namely, at the (weighted) L2-curvature level. We
show that if the curvature flux and the data on an initial sphere of the cone
are sufficiently close to the corresponding values in a standard Minkowski or
Schwarzschild null cone, then we can obtain quantitative bounds on the geom-
etry of the entire infinite cone. The same bounds also imply the existence of
limits at infinity of the natural geometric quantities. Furthermore, we make
no global assumptions on the spacetime, as all assumptions are applied only to
this single truncated cone. In [1], we will apply these results in order to control
the Bondi energy and the angular momentum associated with this cone.

1. Introduction

Let (M, g) be a 4-dimensional Einstein-vacuum spacetime, and let N denote
a future-directed smooth truncated null cone in M , emanating from a 2-sphere
S. We assume N extends “toward infinity”, meaning that the future-directed null
generators of N extend indefinitely with respect to an affine parameter. The main
problem we address is to quantitatively control the intrinsic and extrinsic geometry
of N by a weighted curvature flux of N , and to establish the existence of limits “at
infinity” of certain geometric quantities on N . In this paper, we accomplish this
task in the case of near-Minkowski and near-Schwarzschild null cones.

In the companion paper [1], we will apply these estimates to control the Bondi
energy and angular momentum associated withN . In particular, we will accomplish
this while avoiding global asymptotic assumptions on (M, g).

1.1. Motivations. The term curvature flux generally refers to L2-norms of certain
components of the spacetime curvature on a null hypersurface. It is a fundamental
quantity in mathematical relativity for dealing with local energy estimates involving
the curvature. Algebraically, this is a direct analogue of flux quantities for an
electromagnetic field satisfying Maxwell’s equations.

The interpretation of such quantities as fluxes can be motivated using the Bel-
Robinson tensor, i.e., the tensor field on (M, g) given, in index notation, by

Qαβγδ = gµνgστ (RαµγσRβνδτ + ⋆Rαµγσ
⋆Rβνδτ ).

Here, R is the Riemann curvature tensor for (M, g), and ⋆ denotes the spacetime
Hodge dual. In particular, Q serves the same purpose for R as the stress-energy
tensor for Maxwell’s equations does for the electromagnetic field. As Q is symmetric
and divergence-free, one can define currents from Q by contracting it with three
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2 SPYROS ALEXAKIS, ARICK SHAO

future-directed causal vector fields. One can then hope to systematically generate
energy identites and estimates for R by integrating the divergence of such a current
over a spacetime region D and applying the divergence theorem.

Remark. For non-vacuum spacetimes, R is replaced by the Weyl curvature tensor.

In particular, consider the case in which the boundary of D contains a smooth
null hypersurface N . Then, one term generated by the aforementioned process is
an L2-norm over N of some, but not all, components R. Such a quantity can be
intrepreted as a flux of curvature through N . Therefore, in practice, it is sensible
to refer to this quantity as the curvature flux of N .

A number of results in mathematical general relativity have relied heavily on the
curvature flux or its variations. 1 Well-known examples include the following:

• Stability of Minkowski spacetimes ([2, 4, 7]).
• Breakdown criteria for the Einstein equations ([12, 15, 17, 18, 27]).
• Formation of trapped surfaces ([3, 11]).
• L2-curvature conjecture ([13, 20, 21, 22, 23]).

In certain cases, the curvature flux of a null hypersurface N can in fact be used to
control the geometry of N itself. For the breakdown criteria, a major component
of the proofs of these results is precisely that of controlling the geometry of null
cones by the curvature flux. For the L2-curvature conjecture, an important part of
the argument is to establish similar control for the geometry of null hyperplanes.

The analytical techniques for controlling the geometry of null hypersurfaces by
the curvature flux were first developed in [8], which dealt with the specific case of
geodesically foliated truncated null cones beginning from a 2-sphere in a vacuum
spacetime. Because one assumed only curvature flux bounds, this required a signif-
icant amount of technical developments, detailed in [9, 10]. These techniques were
extended to null cones beginning from a point in [24, 25]. Other variations include
[15, 17, 27], which dealt with time-foliated null cones. In particular, [17] extended
the result to Einstein-scalar and Einstein-Maxwell spacetimes.

Here, we wish to apply similar techniques to a different but related setting—that
of an infinite outgoing truncated null cone N . Here, N could be thought of as ter-
minating at future null infinity, though we make no global asymptotic assumptions
on our spacetime regarding the existence of such an infinity. Analogous to previ-
ous works (e.g., [8, 25]), we derive quantitative estimates for various connection
coefficients on N by both the curvature flux of N and by certain data on the ini-
tial 2-sphere S. We also simplify and, in some cases, generalize many of the more
technically intense methods developed in [8, 9, 10, 24].

For brevity, from here on, we will refer to these truncated null cones simply as
null cones. Now, one can consider the null cone N as a one-parameter family of
spheres. Such a viewpoint can be constructed in many different ways. In this paper,
like in [8, 25], we define these spheres using a geodesic foliation, that is, we define
these spheres to be the level sets of affine parameters of a family of null geodesics
that generate N . This is in a sense a minimalistic approach, as it requires no
additional structures on our spacetime (M, g). 2 In particular, both the spacetime

1One common variation is to take L2-norms for derivatives of the spacetime curvature.
2For instance, in order to foliate N using a time function, one would also need to impose some

global measure of time on (M, g) that satisfies additional assumptions.
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curvature decomposition, which is present in the curvature flux, and the connection
coefficients of N will be defined with respect to this foliation.

We assume that this null cone N is sufficiently close to a standard Schwarzschild
null cone at the curvature flux level. 3 More specifically, we assume:

• A weighted curvature flux on N (with respect to a geodesic foliation) is
sufficiently close to the expected values in a Schwarzschild spacetime.

• The connection coefficients for N (also with respect to this geodesic folia-
tion) are likewise sufficiently close, in certain norms, to the expected values
in the same Schwarzschild spacetime on the initial sphere S.

The objective will be to prove the following results:

• The connection coefficients can be controlled on all of N in the appropriate
norms by the weighted curvature flux and initial data.

• The connection coefficients, with the correct weights, have limits at infinity
(in the appropriate spaces), which can also be controlled.

In near-Minkowski settings, the above weighted curvature flux arises naturally
from the Bel-Robinson tensor. More specifically, this flux can be obtained by con-
tracting Q with the vector fields T , T , and K, where T and K are suitable adapta-
tions of the time translation vector field and the Morawetz vector field, respectively,
in Minkowski spacetime. These weighted fluxes were used extensively in [2, 4, 7].

In this process, we control in particular the Hawking masses of these spheres
that foliate N . We can once again relate this to the settings of [4, 7]. For instance,
in [4, Ch. 17], for spacetimes that were sufficiently near-Minkowski, and for certain
(time-foliated) null cones extending to infinity, it was shown that:

• The Hawking masses of the level spheres of such a null cone converge to
some finite nonnegative limit at null infinity.

• Moreover, this limit is the Bondi mass associated with this cone.

In the minimal setting of this paper, we can also show that the corresponding
Hawking masses of N are bounded and have a controlled limit at infinity.

In our case, it is not clear a priori that this limit of the Hawking masses corre-
sponds to any notion of Bondi energy or mass. As discussed in [16], for instance,
this connection between Hawking and Bondi masses depends closely on the spheres
foliating N becoming asymptotically round at infinity. In the companion paper [1],
however, we will construct, under the same assumptions, such an asymptotically
round family of spheres in N , in order to control the Bondi energy.

1.2. The Main Results. For our analysis, we will think of the geodesically foliated
null cone N as a smoothly parametrized foliation, N ≃ [s0,∞) × S2. The first
parameter in this product refers to the chosen affine parameter for the null geodesic
generators of N , while the copies of S2 are the level sets of the affine parameter. As
each level sphere of N is spacelike, we can consider the Riemannian metric /γ on the
spheres induced from the spacetime metric g. Furthermore, we choose our affine
parameter so that the initial sphere S, corresponding to s = s0, has area 4πs20.

The next step is to describe the objects of our analysis:

• Connection coefficients : These are, as usual, quantities that correspond to
one derivative of the metric. More accurately, these are spacetime covariant
derivatives of certain adapted null frames on N .

3Note this includes standard Minkowski null cones as a special case.
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• Curvature components : These refer to the spacetime curvature of (M, g),
decomposed in terms of the same null frames on N as above.

The main idea is, as in [3, 4, 8], to reinterpret the aforementioned connection and
curvature quantities as “horizontal” tensorial quantities, i.e., tensor fields on N
which are everywhere tangent to the level spheres of N . Consequently, we can treat
each of these connection and curvature quantities as a smoothly varying family of
tensor fields on S2, parametrized by the affine parameter s.

One main feature of this system is that the geometries of the of level spheres
of N also evolve. In other words, the horizontal tensor field /γ on N constructed
from the metrics induced from g also evolves as a function of s. A consequence of
this is that the norms, the elliptic operators, and the evolutionary operators that
we will consider will also evolve depending on the affine parameter. Throughout
this paper, we will analyze such horizontal tensorial quantities on this evolving
geometric setting using the formalisms developed by the second author in [19].

1.2.1. Connection and Curvature Decompositions. We now discuss in further detail
the horizontal decompositions for the connection and curvature quantities. We
begin with the connection coefficients, defined with respect to our geodesic foliation.

The most important connection quantity is the intrinsic null second fundamental
form, χ, which is defined as the second fundamental form of the level spheres of
N , in the future null direction tangent to N . Intuitively, χ determines how /γ, and
hence the geometry of N , evolves as one moves along N in this future null direction.
χ can be further decomposed into its trace and traceless parts, i.e., the expansion
/trχ and the shear χ̂. In particular, trχ describes how the area element of the level
spheres of N evolve, and is related to the formation of null conjugate points.

Similarly, the extrinsic null second fundamental form, χ, represents the second
fundamental forms of the level spheres of N in the transverse future null direction
orthogonal to these level spheres. Like for χ, one can also decompose χ into its
trace and traceless parts. As our analysis is concerned only with N itself, χ lacks
the same intrinsic significance as χ in our setting. However, χ will be shown to
decay less than the other connection coefficients. In fact, that the level spheres of
N fail to be asymptotically round as one approaches infinity is due to this lack of
decay for /trχ. This will play a central role in [1].

The final connection coefficient in the geodesic foliation is the torsion, ζ. In
the geodesic foliation, this quantity can be roughly interpreted as the failure of the
transverse null direction orthogonal to the level spheres of N to evolve in a parallel
fashion along the null direction that is tangent to N .

Next are the curvature quantities, which represent the various components of the
spacetime curvature R on N . To define these, one first takes two future null vector
fields, L and L, with the former representing the future tangent null direction in
N , and with the latter representing the future transverse null direction normal to
the level spheres of N . The curvature components are then defined by contracting
R with one or more instances of L and L, and by requiring that the remaining
components are horizontal, i.e., tangent to the level spheres. In keeping with nota-
tional traditions, we denote the resulting components by α, β, ρ, σ, β, and α. Since
Einstein-vacuum spacetimes are by definition Ricci-flat, these curvature quantities
comprise all the independent components of R.

Finally, in our analysis, we will also require an additional scalar quantity µ on N ,
called the mass aspect function. µ is defined directly from the connection coeffients
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and the curvature component ρ. In particular, this quantity is closely related to
the Hawking masses of the level spheres; see [4, 8].

For precise definitions of all the above quantities, see Section 4.2.

1.2.2. A Rough Theorem Statement. Recall the main result of this paper roughly
states that if the weighted curvature flux of N and initial data on S are sufficiently
close to their corresponding values in a Schwarzschild spacetime, then the connec-
tion coefficients on N remain close to their Schwarzschild values. Below, we further
clarify the meanings of “weighted curvature flux” and “initial data”.

With respect to the geodesic foliation, the weighted curvature flux of N is

F = s
− 3

2

0 ‖s2α‖L2(N ) + s
− 3

2

0 ‖s2β‖L2(N ) + s
− 1

2

0 ‖sρ‖L2(N )

+ s
− 1

2

0 ‖sσ‖L2(N ) + s
1

2

0 ‖β‖L2(N ),

Note this formula includes all the spacetime curvature quantities except for α. In
particular, the excluded component α is the only component of R which does not
contain any L-components. In [4, 7], for example, such quantities were intimately
tied to energy estimates involving the spacetime curvature.

Remark. The main heuristic for the weights within F is that the affine parameter
s will remain comparable to the radii of the level spheres of N . In contrast with
similar developments in [2, 4, 7], we use s here rather than the actual radius, as it
is an easier quantity to manipulate algebraically.

In our setting, however, we are interested not in the curvature flux itself, but
rather in its deviation from the Schwarzschild values, i.e., the quantity

δF = s
− 3

2

0 ‖s2(α− αS)‖L2(N ) + s
− 3

2

0 ‖s2(β − βS)‖L2(N ) + s
− 1

2

0 ‖s(ρ− ρS)‖L2(N )

+ s
− 1

2

0 ‖s(σ − σS)‖L2(N ) + s
1

2

0 ‖β − βS‖L2(N ),

where αS , βS , ρS , σS , and βS denote the values of the curvature components in
a Schwarzschild spacetime, with mass 0 ≤ m ≤ s0/2 (the latter bound ensures S
represents a sphere in the outer region). Standard computations show that the only
nonvanishing Schwarzschild component here is ρS ; see Section 4.3 for details.

Finally, the initial data for S reflects the deviation of χ, χ, ζ, and µ from their
Schwarzschild values (see Section 4.3), in the appropriate norms. More specifically,

δI = s0‖/trχ− (/trχ)S‖L∞(S) + s
1

2

0 ‖χ− χS‖H(S) + s
1

2

0 ‖ζ − ζS‖H(S)

+ ‖χ− χS‖B(S) + s0‖/∇(/trχ)− [/∇(/trχ)]S‖B(S) + s0‖µ− µS‖B(S).

In the above, H is a (geometric tensorial) H1/2-type norm on S, while B is a similar
zero-derivative Besov-type norm. An unfortunate by-product of working at the
curvature flux level is that such Besov norms are required in the analysis.

We now give a very rough statement of the main theorem.

Theorem 1.1. Assume that

δF + δI ≤ Γ.

Suppose Γ is sufficiently small with respect to the geometry of S, that is, the weighted
curvature and initial data of N remain close to their Schwarzschild values. Then,
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the geometry of N remains close to that of the corresponding Schwarzschild null
cone. To be more specific, the connection deviations

χ− χS, χ− χS, ζ − ζS, µ− µS

will also be bounded by Γ, in the appropriate norms. Furthermore, up to a rescaling,
the geometries of the level spheres of N remain close to that of S.

For the precise version of the theorem, see Theorem 5.3, in Section 5.3. Next,
one can use the above estimates to generate asymptotic limits at infinity, of both
the geometries of the level spheres of N and the connection coefficients. A rough
statement of this result is stated in the subsequent theorem.

Theorem 1.2. Assume the hypotheses, and hence the conclusions, of Theorem
1.1. Then, as s ր ∞, the geometries of the level spheres of N converge, after an
appropriate rescaling, to a rough limiting geometry on S2. Furthermore, certain
appropriate rescalings of χ − χS, χ − χS , ζ − ζS, and µ − µS will have limits as
s ր ∞, with respect to the appropriate normed spaces. In particular, the Hawking
masses of the level spheres of N have a limit as s ր ∞.

For the precise statements, see Corollary 5.2, in Section 5.1.

1.2.3. The Renormalization Procedure. We now give a brief outline of how the proof
of Theorem 1.1 proceeds. Primarily, we wish to convert our setting to one which can
be treated by methods analogous to [8, 9, 10]. Moreover, we want the general results
developed in [19] to be applicable to our new setting. Both of these objectives are
accomplished by adopting certain renormalizations to our system.

This first step is to convert N from an infinite cone into a finite cylinder. To do
this, we rescale the metrics /γ on the level spheres of N , so that they have almost
constant area. In practice, this allows us to analyze all the level spheres of N in a
uniform manner. Next, we adopt a change of the evolutionary variable to convert
the infinite interval [s0,∞) to a finite interval [0, 1). We also make corresponding
renormalizations for both the curvature and the connection coefficients on N . For
details behind the specific rescalings and transformations, see Section 4.4.

Remark. Note we have the freedom to choose weights for each curvature and con-
nection quantity. Though the chosen weights correspond to [7], some do not reflect
those one would obtain from the usual conformal compactification of spacetime.

Another key component of this process is the construction of a covariant system
(in the sense of [19]) with respect to our finite null cylinder. For this, we introduce
connections on N , compatible with the rescaled metrics and adapted to the finite
evolutionary variable t ∈ [0, 1). This defines a notion of covariant differentiation on
N that is adapted to our renormalized system.

Combining all these steps results in a new equivalent system in terms of the
renormalized geometry, connection coefficients, and curvature components. More-
over, this new system is formally similar to the original physical system for a finite
null cone. Thus, the analysis we perform can in large part reduce to the ideas
developed in [8], along with some modifications and simplifications from [19].

As in [8], we establish our desired estimates through an elaborate bootstrap ar-
gument. We take as bootstrap assumptions some of the estimates on the connection
coefficients that we wish to prove. This is an important step, as these assumptions
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are required in order to validate many of the tools of analysis that are used. 4

From these assumptions, we can eventually derive all the desired estimates on the
connection coefficients. To close the bootstrap argument, we also obtain strictly
improved versions of the bootstrap assumptions. This implies that the estimates
we have obtained in fact hold without our bootstrap assumptions.

Remark. For further discussions on the intricacies of the bootstrap argument itself,
the reader is referred to the introductions of [8, 24].

From this analysis, we obtain unweighted estimates for the renormalized connec-
tion coefficients on N , in terms of the renormalized geometry. The precise results
of this procedure is stated as Theorem 5.1, i.e., the “renormalized main theorem”.
By inverting our renormalization procedure, we can restate these results in terms
of the physical geometry and connection coefficients. This results precisely in the
desired weighted estimates, thereby proving Theorems 1.1 and 5.3.

We also remark that the limits obtained at infinity are most easily stated in
terms of the renormalized system, since the geometries of the renormalized level
spheres remain close to that of the initial sphere. In particular, Corollary 5.2 (the
precise version of Theorem 1.2) is expressed entirely in the renormalized picture.
Furthermore, in the sequel [1], in which we control the Bondi energy, much of the
analysis is once again performed in this renormalized setting.

Aside from the immediate problem, we propose that this renormalization process
also provides a template for analyzing other geometric situations. In general, this
process transforms a foliation so that the evolutionary parameter has finite length
and the geometries of the leaves of the foliation change very little. In this paper,
the upshot is that the renormalized system satisfies abstract assumptions which
validate a wide range of estimates established in [19]. Similar renormalizations in
other settings could result in similar analytical consequences.

Finally, while the analysis here applies to only a single null cone, it is hoped
that adaptations of this renormalization argument could also be used for studying
regions of spacetimes (for example, the double-null foliations used in [3, 7]). In
particular, because of these considerations, this procedure perhaps may also be
applied toward analyzing existence theorems, again possibly at the L2-curvature
level, for the Einstein equations extending up to (a part of) null infinity.

1.3. Technical Improvements. Although we use the same template in our argu-
ment as in previous works ([8, 15, 17, 24, 25, 26]), we also improve upon many of
the techniques used in the aforementioned works. Below, we shall briefly discuss
the technical innovations employed in this paper.

1.3.1. Bilinear Product Estimates. In [10], various bilinear product estimates, es-
sential for the main argument in [8], were established. Due to the lack of geometric
regularity, the proofs required the construction and application of a geometric ten-
sorial Littlewood-Paley theory based on the heat flow; see [9] for this development.
This made the proofs in [10] both lengthy and highly technical. Furthermore, the
proofs of these estimates relied heavily upon the specific setting (geodesic foliation,

4These assumptions imply that the geometries of the renormalized level spheres of N change
very little. As a result of this, various Sobolev, product, and elliptic estimates from [19] can be
applied in a uniform manner to all the level spheres of N . In particular, the aforementioned
uniformity implies that s remains comparable to the radii of the unrenormalized level spheres.
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finite null cones, vacuum spacetimes, etc.). As a result, although these techniques
can be adapted to other related settings, one must in principle redo these arguments
for each separate setting. For example, this was the case in [24, 25], which dealt
instead with null cones beginning from a point.

In [19], a simpler and more systematic method for deriving these bilinear product
and sharp trace estimates was presented. In constrast to [10], which resorted to the
geometric Littlewood-Paley theory of [9], these estimates were obtained in [19] by
reducing them to their (much simpler) Euclidean analogues. That this reduction is
possible is a consequence of two new observations:

• From the Codazzi equations, applied to the level spheres of N , the curl of
χ has slightly better properties than other derivatives of χ.

• This improved regularity for the curl of χ yields strictly better regularity
for certain parallel-transported frames.

That these special frames are more regular than the usual coordinate frames allows
us to reduce these geometric and tensorial product estimates to their Euclidean and
scalar counterparts, which can be proved using classical Littlewood-Paley theory.

Furthermore, in [19], the estimates are stated in terms of abstract foliations
satisfying certain regularity assumptions. The main advantage of this presentation
is that these assumptions apply not only to the setting of this paper, but also to
the settings of [8, 15, 17, 24, 25, 26]. Consequently, for any reasonable variation
of the “null cone with bounded curvature flux” problem, one can very quickly and
easily validate a whole family of tensorial product estimates using [19].

1.3.2. Elliptic Estimates. In [8, 15, 17, 24, 25, 26], a major difficulty arose from the
fact that the Gauss curvatures of the level spheres of N were highly irregular. In-
deed, one derived only an H−1/2-type bound on these Gauss curvatures; moreover,
this was achieved only after a highly nontrivial argument containing, in particular,
a technical commutator estimate involving heat flows. Thus, many elliptic esti-
mates that were straightforward in more regular settings became both technical
and lengthy. The most difficult examples were Besov-type elliptic estimates for the
symmetric Hodge operators, which now required a much more delicate analysis.
Moreover, [24] showed these estimates yielded even more error terms, which added
considerable length and complexity to the overall argument.

In [19], it was shown that these additional error terms were in fact unnecessary.
Furthermore, these estimates, without the error terms, could be proved using a far
shorter argument than before. The main new observation in the null cone setting is
that the only part of the Gauss curvature that is not L2-controlled can be expressed
as a divergence of ζ. This allowed for a conformal transformation into a different
metric for which the Gauss curvature is entirely L2-controlled. In effect, one absorbs
the low-regularity term into the chosen conformal factor. 5

The advantage gained from this transformation is that all the desired Besov-
elliptic estimates can be derived far more easily with respect to this regularized
metric. Furthermore, the Hodge operators under consideration are conformally
invariant, and a brief but careful analysis shows that these estimates can in fact be
transferred back to the original metric. Moreover, similar to the bilinear product
estimates, the elliptic estimates in [19] were stated in an abstract setting that applies
not only to this paper, but also to the settings of previous works.

5This technique will also be used in [1].
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1.3.3. Infinite Decompositions. In previous arguments, an elaborate infinite decom-
position of tensor fields was required within the main bootstrap argument in order
to apply the necessary bilinear and sharp trace estimates. In this process, such ten-
sor fields (e.g., the gradients of χ̂ and ζ) were decomposed into “good” and “bad”
parts. While the “good” parts can be properly controlled, the “bad” parts must
again be decomposed into “good” and “bad” parts. This led to infinite iterations,
which converged in suitable norms to the final desired decompositions.

In this paper, we demonstrate that this cumbersome process can be avoided.
This simplification revolves around the following basic ideas:

• The exact (infinite) decompositions of these tensor fields were in fact ir-
relevant to the main argument. The only important point was that some
decomposition with the necessary estimates exists.

• One can construct norms to quantify the existence of the necessary decom-
positions, without needing to explicitly specify the decompositions.

The natural norm to capture such decompositions is the so-called sum norm, de-
scribed in Section 3.3, which is a general construction for arbitrary normed spaces.
By using these sums norms in the main bootstrap assumptions and argument, one
can avoid this process of obtaining explicit infinite decompositions.

To be more specific, for this part of the argument, we must decompose various
tensor fields into two parts for our estimates:

• The first part contains terms which can be controlled in an L2-norm along
all of N , with the additional caveat that one can trade a null derivative
for a spherical derivative. A quantitative version of this property can be
captured using a special norm (the N0⋆

t,x-norm in Section 3.3).
• The remaining terms will lack this derivative trading property. These terms
will be controlled by an infinitesimally stronger Besov-type norm on N .

The main idea is to impose an additional bootstrap assumption in the main argu-
ment (via the sum norm) stating that such a decomposition exists, with sufficient
bounds by the above two norms. From explicit decompositions, one obtains as
before the “good” terms, which can be controlled in these norms. However, one no
longer needs to decompose again the remaining “bad” terms, as these can now be
handled using the bootstrap assumptions. From this process, we can immediately
recover a strictly improved version of this new bootstrap assumption.

1.4. Notations. Here, we list basic notational conventions we will use, many of
them borrowed from [19]. First, given nonnegative real numbers X,Y, c1, . . . , cm:

• X .c1,...,cm Y means that X ≤ cY for some constant c > 0 depending on
c1, . . . , cm. If no ci’s are given, then the constant c is universal.

• Similarly, we write X ≃c1,...,cm Y to mean that both of the following state-
ments hold: X .c1,...,cm Y and Y .c1,...,cm X .

To shorten notations, we will generally omit the dependence of constants (i.e., the
ci’s in the above) in inequalities within proofs of statements.

Next, we will use the following symbols to denote various constants. These
constants will be used throughout the paper to represent ranks of tensor fields as
well as parameters in various regularity conditions.

• Let r, r1, r2 and l, l1, l2 denote non-negative integers.
• Let C > 1 and B > 0 denote real constants.
• Let N > 0 denote an integer constant.
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Finally, for a general manifold M :

• Let C∞M denote the space of all smooth real-valued functions on M .
• For a vector bundle V over M and z ∈ M , we let Vz denote the fiber of V
at z. Moreover, we let C∞V be the space of all smooth sections of V .

• Let T r
l M denote the tensor bundle over M of rank (r, l), for which the fiber

(T r
l M)z at any z ∈ M is the space of tensors of rank (r, l) at z. 6 Thus,

C∞T r
l M is the space of smooth tensor fields of rank (r, l) on M .

We will often use standard index notation to describe tensor and tensor fields on
M . Indices, denoted using lowercase Latin letters, will be with respect to fixed
frames and coframes. In accordance with Einstein summation notation, repeated
indices indicate summations over all allowable index values.

Acknowledgments. The first author was supported by NSERC grants 488916
and 489103, as well as a Sloan Fellowship. The authors also wish to thank Sergiu
Klainerman for interesting and helpful conversations that contributed to this report.

2. Geometric Preliminaries

In this section, we review some background involving the analysis of tensor fields
on a 2-dimensional Riemannian manifold. The contents here briefly summarize
many of the basic developments detailed in [19]. Throughout, we let S be a surface
diffeomorphic to S

2, with h a Riemannian metric on S.

2.1. Riemannian Structures. By the conventions in Section 1.4, we can think
of h as an element of C∞T 0

2S. Let h−1 ∈ C∞T 2
0S denote the metric dual of h.

As usual, within index notation, h−1 is written as simply h, but with superscript
indices. Since S is compact, we can fix an orientation for S. As a result, h and this
orientation induce a volume form ω ∈ C∞T 0

2S on S.
Recall h and h−1 define pointwise tensorial inner products and norms on S.

More specifically, for any F,G ∈ C∞T r
l S, we define

〈F,G〉 = ha1b1 . . . harbrh
c1d1 . . . hcldlF a1...ar

c1...clG
b1...br

d1...dl
∈ C∞S,

i.e., the bundle metric on T r
l S induced by h. We also define the pointwise norm: 7

|F | = 〈F, F 〉
1

2 .

We can now use h and ω to define standard integral norms:

‖F‖q
Lq

x
=

∫

S

|F |qdω, ‖F‖L∞

x
= sup

x∈S
|F ||x, q ∈ [1,∞).

Following standard conventions, we let ∇ and ∆ denote the Levi-Civita con-
nection and the Bochner Laplacian with respect to h, respectively. Higher-order
differentials are defined iteratively: ∇k+1 = ∇∇k for any positive integer k. Fur-
thermore, we let K ∈ C∞S denote the Gauss curvature of (S, h).

Next, we recall the symmetric Hodge operators on spherical surfaces, as defined
in [4, 8]. We begin by defining the vector bundles on which these operators act.
The rank-0 and rank-1 bundles are defined as

H0S = C∞S ⊗ C, H1S = C∞T 0
1 S.

6Here, r is the contravariant rank, and l is the covariant rank.
7In the scalar case r = l = 0, the inner product 〈·, ·〉 is simply multiplication of functions, and

the norm | · | is the absolute value. In particular, these are independent of h.
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Note the sections of H0S are precisely the complex-valued smooth scalar functions
on S. In addition, we define H2S to be the vector bundle over S of all covariant
symmetric h-traceless horizontal 2-tensors on S. 8

Remark. Note that H0S and H1S are independent of h, while H2S is not.

The symmetric Hodge operators are defined as follows:

D1 : C∞H1S → C∞H0S, D1X = hab∇aXb − i · ωab∇aXb,

D2 : C∞H2S → C∞H1S, (D2X)a = hbc∇bXac,

D∗
1 : C∞H0S → C∞H1S, (D∗

1X)a = −∇a(ReX)− ωa
c∇c(ImX),

D∗
2 : C∞H1S → C∞H2S, −2(D∗

2X)ab = ∇aXb +∇bXa − habh
cd∇cXd.

Direct computations show that theD∗
i ’s are the L

2-adjoints of theDi’s (with respect
to h). In addition, we can compute the following identities:

D1D
∗
1 = −∆, D∗

1D1 = −∆+K,(2.1)

D2D
∗
2 = −

1

2
∆−

1

2
K, D∗

2D2 = −
1

2
∆ +K.

Finally, we review some basic formulas for rescaling h. Fix λ ∈ R, and consider
the Riemannian metric h̄ = e2λh ∈ C∞T 0

2S. We will use the following notational
conventions: geometric objects and norms defined with respect to h̄ will be denoted
with a “bar” over the symbol. For example, ω̄ = e2λω denotes the volume form
associated with h̄ (with the same orientation). In terms of index notations,

h̄ab = e2λhab, ω̄ab = e2λωab, h̄ab = e−2λhab, ω̄ab = e−2λωab.

Moreover, such rescalings leave the Levi-Civita connection unchanged,

∇̄F = ∇F , F ∈ C∞T r
l S,

while it rescales the curvature by a constant factor,

K̄ = e−2λK.

The Hodge operators for h and h̄ also obey similar formulas:

D̄1 = e−2λD1, D̄2 = e−2λD2, D̄∗
1 = D∗

1 .

2.2. Geometric Littlewood-Paley Theory. We next review the geometric in-
variant Littlewood-Paley (abbreviated L-P) theory, based on spectral decomposi-
tions of the (Bochner) Laplacian. For additional discussions, see [19].

Remark. An alternative approach is to use the geometric L-P theory of [9], based
on the heat flow. This was done in previous works involving null cones with bounded
curvature flux, cf. [8, 15, 17, 24, 25]. However, the spectral version, whenever
applicable, is much easier to rigorously construct and utilize.

For technical purposes, we consider the Hilbert space L2T r
l S, defined as the com-

pletion of C∞T r
l S with respect to the L2-norm on (S, h). Consider −∆ as a positive

self-adjoint unbounded operator on L2T r
l S, which has a spectral decomposition

−∆ =

∫ ∞

0

λ · dEλ.

As in [19], the spectral L-P operators can be constructed as follows:

8In index notation, A ∈ C∞T 0
2 S is in C∞H2S iff Aba = Aab and habAab ≡ 0.
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• Fix a function ς ∈ C∞R, supported in the region 1/2 ≤ |ξ| ≤ 2, satisfying
∑

k∈Z

ς(2−2kξ) = 1, ξ ∈ R \ {0}.

• For each k ∈ Z, we define the L-P operators on L2T r
l S by

Pk = ς(−2−2k∆), P− = χ{0}(−∆).

In particular, P− is precisely the L2-projection onto the kernel of ∆.
• Given any k ∈ Z, we can define (in the strong operator topology)

P<k = P− +
∑

l<k

Pl.

In addition, letting I denote the identity operator on L2T r
l S, we have

I = P<0 +
∑

k≥0

Pk.

These L-P operators are fully invariant and tensorial, and they satisfy many of the
same properties as the classical L-P operators on Euclidean spaces (as least with
respect to the L2-norm). For details, see [19, Sect. 2.2].

In this paper, we will not need to deal directly with these L-P operators. Instead,
we need them in order to define geometric, tensorial Besov norms. Given a ∈ [1,∞)
and s ∈ R, we define for each F ∈ C∞T r

l S the norms

‖F‖aBa,s
ℓ,x

=
∑

k≥0

2ask‖PkF‖aL2
x
+ ‖P<0F‖aL2

x
,

‖F‖B∞,s
ℓ,x

= max

(

sup
k≥0

2sk‖PkF‖L2
x
, ‖P<0F‖L2

x

)

.

These are the direct analogues of the standard Bs
2,a-norms in Euclidean space. As

we are mainly interested in the case a = 1, we define the shorthand

‖F‖Bs
x
= ‖F‖B1,s

ℓ,x
.

Next, given s ∈ R, we can define the standard fractional Sobolev norms

‖F‖Hs
x
= ‖ΛsF‖L2

x
, F ∈ C∞T r

l S,

where Λs = (I −∆)
s
2 . We can relate these to the aforementioned Besov norms.

Proposition 2.1. If s ∈ R and F ∈ C∞T r
l N , then

(2.2) ‖F‖Hs
x
≃s ‖F‖B2,s

ℓ,x
.

Proof. This follows from the spectral properties of Λs. �

2.3. Regularity Conditions. We now discuss the regularity conditions that we
will impose on (S, h). The point is that all such (S, h) satisfying these properties
can be controlled in a uniform way. One example is Sobolev-type estimates, which
can be applied with a common Sobolev constant for all such (S, h).

We will use the same conditions that were defined in [19, Sect. 2.4].

Definition 2.2. (S, h) satisfies (r0)C,N , with data {Ui, ϕi, ηi}Ni=1, iff:

• The area |S| of (S, h) satisfies

C−1 ≤ |S| ≤ C.
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• The (Ui, ϕi)’s, where 1 ≤ i ≤ N , are local coordinate systems on S that
cover S. Moreover, each ϕi(Ui) is a bounded neighborhood in R2.

• The ηi’s form a partition of unity of S, subordinate to the Ui’s, such that

0 ≤ ηi ≤ 1, |∂i
aηi| ≤ C, a, b ∈ {1, 2},

for each 1 ≤ i ≤ N , where ∂i
1, ∂

i
2 denote the ϕi-coordinate vector fields.

• For each 1 ≤ i ≤ N , we have on Ui the uniform positivity property

C−1|ξ|2 ≤
2
∑

a,b=1

habξ
aξb ≤ C|ξ|2, ξ ∈ R

2,

where we have indexed with respect to the ϕi-coordinate system on Ui.

Definition 2.3. (S, h) satisfies (r1)C,N , with data {Ui, ϕi, ηi, η̃i, e
i}Ni=1, iff:

• (S, h) satisfies (r0)C,N , with data {Ui, ϕi, ηi}Ni=1.
• For any 1 ≤ i ≤ N , we have that ei = (ei1, e

i
2) ∈ C∞T 1

0S × C∞T 1
0 S forms

an orthonormal frame on Ui and satisfies the estimates

‖∇eia‖L4
x
≤ C, a ∈ {1, 2}.

• For any 1 ≤ i ≤ N , we have that η̃i ∈ C∞S is supported within Ui, is
identically 1 on the support of ηi, and satisfies the estimates

0 ≤ η̃i ≤ 1, |∂i
aη̃i| ≤ C, a ∈ {1, 2}.

• For each 1 ≤ i ≤ N , the area density

ϑi =
√

h11h22 − h2
12 ∈ C∞Ui,

where we have indexed with respect to the ϕi-coordinates, satisfies

‖∇ϑi‖L2
x
≤ C.

Definition 2.4. (S, h) satisfies (r2)C,N , with data {Ui, ϕi, ηi, η̃i, e
i}Ni=1, iff:

• (S, h) satisfies (r1)C,N , with data {Ui, ϕi, ηi, η̃i, e
i}Ni=1.

• For each 1 ≤ i ≤ N , the ϕi-coordinate vector fields ∂i
1, ∂

i
2 satisfy

‖∇∂i
a‖L2

x
≤ C, a ∈ {1, 2}.

• For each 1 ≤ i ≤ N , the second coordinate derivatives of ηi satisfy

|∂i
a∂

i
bηi| ≤ C, a, b ∈ {1, 2}.

The conditions in the (r0), (r1), and (r2) assumptions were required explicitly
in [19] for various estimates that we will need here. On the other hand, here we will
not encounter most of these conditions directly. We include their precise statements
in order to provide a similarly precise statement of the main results of this paper.

Remark. Since S is compact, (S, h) trivially satisfies (r2)C,N for some C, N .

We now list some estimates resulting from these conditions. The first batch
involves tensorial Sobolev-type estimates, which were proved in [19, Sect. 2.5]. 9

Proposition 2.5. Suppose (S, h) satisfies (r0)C,N , and let F ∈ C∞T r
l S.

9See also [9, Cor. 2.4], on which the proofs in [19] were based.
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• If q ∈ (2,∞), then

‖F‖Lq
x
.C,N,q ‖∇F‖

1− 2

q

L2
x

‖F‖
2

q

L2
x
+ ‖F‖L2

x
,(2.3)

‖F‖L∞

x
.C,N,q ‖∇F‖

2

q

Lq
x
‖F‖

1− 2

q

Lq
x

+ ‖F‖Lq
x
.(2.4)

• Moreover, the following estimate holds:

(2.5) ‖F‖L∞

x
.C,N ‖∇2F‖

1

2

L2
x
‖F‖

1

2

L2
x
+ ‖F‖L2

x
.

With the (r1) condition, we can also establish certain sharp Sobolev embeddings
involving fractional derivatives. For details, see [19, Sect. 3.5].

Proposition 2.6. Assume (S, h) satisfies (r1)C,N . If F ∈ C∞T r
l S, then

(2.6) ‖F‖L4
x
.C,N,r,l ‖F‖

H
1/2
x

.

2.4. Curvature Regularity. Besides (r0), (r1), and (r2), we require one more
regularity assumption, introduced in [19, Sect. 6.1], related to the curvature of S.

Definition 2.7. (S, h) satisfies (k)C,D, with data (f,W, V ), iff:

• f ∈ C∞S satisfies, for any x ∈ S, the bounds

C−1 ≤ f |x ≤ C.

• V ∈ C∞T 0
1S and W ∈ C∞S satisfy

‖V ‖
H

1/2
x

≤ D, ‖W‖L2
x
≤ D.

• K can be decomposed in the form

K − f = hab∇aVb +W .

Moreover, we will only consider the case in which D is very small.

Remark. In other words, K is comparable to 1, except for a “good” error term W
that is L2-bounded, and a “bad” error term, which is not L2-bounded but can be
expressed as a divergence of an H1/2-controlled 1-form V .

Although the (k) condition places only very weak restrictions on the curvature,
it is sufficient to establish several elliptic estimates.

Proposition 2.8. Assume (S, h) satisfies (r1)C,N and (k)C,D, with D ≪ 1 suffi-
ciently small. Then, for any F ∈ C∞T r

l+1S,
10

(2.7) ‖∇F‖L2
x
.C,N,r,l ‖h

ab∇aFb‖L2
x
+ ‖ωab∇aFb‖L2

x
+ ‖F‖L2

x
,

Proof. See [19, Sect. 6.1]. �

Next, we derive similar elliptic estimates for the symmetric Hodge operators.

Proposition 2.9. Assume (S, h) satisfies (r1)C,N and (k)C,D, with D ≪ 1 suffi-
ciently small. Then, the following Hodge-elliptic estimates hold:

• If X ∈ C∞H1S, then

(2.8) ‖∇X‖L2
x
+ ‖X‖L2

x
.C,N ‖D1X‖L2

x
.

10Here, hab∇aFb ∈ C∞T r

l
S refers to the metric contraction of ∇F in the derivative component

and a fixed covariant component of F . The expression ωab∇aFb is defined similarly.
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• If X ∈ C∞H2S, then

(2.9) ‖∇X‖L2
x
+ ‖X‖L2

x
.C,N ‖D2X‖L2

x
.

• If X ∈ C∞H0S, then

(2.10) ‖∇X‖L2
x
≃ ‖D∗

1X‖L2
x
.

• If X ∈ C∞H1S, then

(2.11) ‖∇X‖L2
x
.C,N ‖D∗

2X‖L2
x
+ ‖X‖L2

x
.

Proof. See [19, Sect. 6.2]. �

Assuming for the moment the setting of Proposition 2.9, then (2.8) and (2.9)
imply that D1 and D2 are one-to-one, and that both operators have L2-bounded
inverses. Furthermore, we can extend these inverses to L2-bounded operators

D−1
i : C∞Hi−1S → C∞HiS, i ∈ {1, 2},

by defining D−1
i X to be the (actual) inverse of Di acting on the L2-orthogonal

projection of X onto the (closed) range of Di. If we let Pi denote this L
2-projection

onto the range of Di, then by the above definitions,

D−1
i Di = I, DiD

−1
i = Pi.

One can also use the above to partially invert the D∗
i ’s. Since Di is injective,

then D∗
i is surjective, and its inverse image of any element of C∞HiS is a coset of

the nullspace of D∗
i .

11 Since the nullspace of D∗
i is the orthogonal complement

of the range of Di, then we can define D∗−1
i X to be the unique element of the

corresponding inverse image that is in the range of Di. In summary, we have

D∗−1
i D∗

i = Pi, D∗
iD

∗−1
i = I.

For further details on the inverse Hodge operators, see [19, Sect. 6.2]. For our
purposes, we will need the following estimates, which follow from Proposition 2.9.

Proposition 2.10. Assume (S, h) satisfies (r1)C,N and (k)C,D, with D ≪ 1 suf-
ficiently small. If D denotes any one of the operators D1, D2, D∗

1, D
∗
2, and if X is

a smooth section of the appropriate Hodge bundle on S, then

(2.12) ‖∇D−1X‖L2
x
+ ‖D−1X‖L2

x
.C,N ‖X‖L2

x
.

Proof. See [19, Sect. 6.2]. �

3. Spherical Foliations

In Section 2, our discussions were restricted to a single manifold S that was
diffeomorphic to S2. Here, we will discuss one-parameter foliations of such 2-
spheres. More specifically, our background setting will be the product

N = [0, δ]× S, δ > 0.

Let t be the natural projection onto the first component:

t : N → [0, δ], t(τ, x) = τ .

Throughout this section, we will let τ denote an arbitrary element of [0, δ]. Given
such a τ , we let Sτ denote the level set Sτ = {τ} × S of t:

11To be fully rigorous, we must invoke some functional analytic technicalities and consider the
Di’s and D∗

i
’s as densely defined unbounded operators on the appropriate L2-spaces.
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Although we will work only on the 3-manifold with boundary N , we will al-
ways implicitly assume that all our objects can be smoothly extended beyond the
boundaries S0 and Sδ. Thus, our full setting, on which all our objects of analysis
are defined, is the extended foliation N ′ = (−ε, δ + ε)× S, for some ε > 0.

Remark. We consider only intervals of the form [0, δ] here in order to make some
estimates easier to state. However, the formalisms throughout this section can be
easily adapted if [0, δ] is replaced by any other closed, open, or half-open interval.
We will consider such adaptations throughout Section 4.

We note that most of the upcoming formalisms of this section will be special
cases of those discussed in [19]. For further details on this formalism, see the more
detailed development of the material in [19].

3.1. Horizontal Structures. Given our foliation N , the first task is to construct
objects on N which represent smoothly varying aggregations of objects on the Sτ ’s.
For this, we begin by defining the diffeomorphisms

Ξτ : Sτ ↔ S, Ξτ (τ, x) = x,

which identify Sτ with S. From Ξτ , we can construct natural identifications

Ξ∗
τ : C∞T r

l Sτ ↔ C∞T r
l S.

We will use these identifications repeatedly in our basic constructions.
As in [19], we let T r

lN denote the horizontal tensor bundle of rank (r, l), i.e., the
vector bundle over N for which the fiber at each (τ, x) ∈ N is

(T r
lN )(τ,x) = (T r

l Sτ )(τ,x).

Note in particular that T 0
0N can be identified with C∞N . A section A ∈ C∞T r

lN
is called a horizontal tensor field. Given τ , we will let

A[τ ] = Ξ∗
τ (A|Sτ ) ∈ C∞T r

l S

denote the tensor field on S corresponding to the restriction of A to Sτ .
We impose on N a horizontal metric γ ∈ C∞T 0

2N , such that each γ[τ ] defines
a Riemannian metric on S. We also define γ−1 ∈ C∞T 2

0N so that each γ−1[τ ] is
the dual (γ[τ ])−1 to γ[τ ]. A fixed orientation on S induces an orientation on each
Sτ . From this, we can generate a horizontal volume form ǫ ∈ C∞T 0

2N , defined such
that each ǫ[τ ] represents the volume form on S associated with γ[τ ].

Families of objects and operators on S parametrized by τ can be aggregated into
corresponding horizontal objects on N . Relevant examples include the following:

• The fields γ, γ−1, and ǫ above are the most basic examples.
• Tensor products can be similarly aggregated into an analogous product of
horizontal fields. Given Ψi ∈ C∞T ri

li
N , where i ∈ {1, 2}, we define

Ψ1 ⊗Ψ2 ∈ C∞T r1+r2
l1+l2

N , (Ψ1 ⊗Ψ2)[τ ] = Ψ1[τ ] ⊗Ψ2[τ ].

• The pointwise tensor norms | · | with respect to the γ[τ ]’s lift to a corre-
sponding pointwise norm for horizontal tensors with respect to γ:

| · | : C∞T r
lN → C∞N , |Ψ|[τ ] = |Ψ[τ ]|.

The pointwise inner products also lift analogously.
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• The Levi-Civita connections ∇ with respect to the γ[τ ]’s can be similarly
aggregated into a single horizontal covariant differential operator

∇ : C∞T r
lN → C∞T r

l+1N .

The operators ∇k, k > 1, are defined similarly, as is the Laplacian:

∆ : C∞T r
lN → C∞T r

lN .

• The horizontal Gauss curvature is the function K ∈ C∞N such that each
K[τ ] is precisely the Gauss curvature associated with γ[τ ].

• We can also aggregate the geometric L-P operators Pk, P<k, P−, so that
they act on C∞T r

lN , with respect to γ[τ ] on each Sτ .

Relations involving horizontal tensors are sometimes more easily described using
index notation. We will use the same indexing conventions as one would use for
tensors on S or the Sτ ’s. We will use lowercase Latin indices to denote components
of a horizontal tensor field, with repeated indices indicating summations.

Finally, the Hodge bundles defined in Section 2.1 can be lifted to horizontal
objects on N . Let HiN , where i ∈ {0, 1, 2}, denote the natural vector bundle over
N , for which the fiber at each (τ, x) ∈ N is (HiN )(τ,x) = (HiSτ )x. Furthermore,
for j ∈ {1, 2}, we define the aggregated Hodge operators

Dj : C
∞HjN → C∞Hj−1N , D∗

j : C∞Hj−1N → C∞HjN ,

to behave like the corresponding Hodge operators on each (S, γ[τ ]).

3.2. Evolution. Given A ∈ C∞T r
lN , we define its vertical Lie derivative as 12

LtA ∈ C∞T r
lN , LtA[τ ] = lim

τ ′→τ

A[τ ′]−A[τ ]

τ ′ − τ
.

In particular, we define the second fundamental form

k =
1

2
Ltγ ∈ C∞T 0

2N ,

which describes the evolution of the geometries of the Sτ ’s. Of particular impor-
tance is the mean curvature, or expansion, of k:

tr k = γabkab ∈ C∞N .

Remark. Lt can alternately be defined as the (standard) Lie derivative with respect
to the lift of the vector field d/dt on [0, δ] to N .

Using Lt and k, we define a corresponding γ-covariant derivative along the t-
direction. Given Ψ ∈ C∞T r

lN , we define ∇tΨ ∈ C∞T r
lN by

(3.1) ∇tΨ
v1...vr
u1...ul

= LtΨ
v1...vr
u1...ul

−
l
∑

i=1

γcdkuicΨ
v1...vr
u1d̂iul

+

r
∑

j=1

γcvjkcdΨ
v1d̂jvr
u1...ul

.

The notation u1d̂iul means u1 . . . ul, but with ui replaced by d; similar conventions

apply for v1d̂jvr. Note ∇t and Lt coincide for scalar fields, and ∇tγ, ∇tγ
−1, and

∇tǫ vanish identically. In addition, we define the following curl of k:

C ∈ C∞T 0
3N , Cabc = ∇bkac −∇ckab,

Next, for Ψ ∈ C∞T r
lN , we define its covariant integral ∫ tτΨ from τ to be the

unique element of C∞T r
lN satisfying both ∇t∫

t
τΨ = Ψ and (∫ tτΨ)[τ ] ≡ 0. In the

12Note that the operator Lt is independent of γ and ǫ.
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scalar case r = l = 0, this is simply the standard integral with respect to t from
t = τ . These operators ∫ tτ can also be defined more explicitly using frames and
coframes which are “t-parallel”; see [19] for details.

Remark. The above is a slight generalization of concepts found in [19, Sect. 4.2], in
which only the case τ = 0 was considered. In this paper, we require the cases τ = 0
and τ = δ. The case of general τ reduces to the case τ = 0 by a transformation of
the t-variable (translation and a possible reflection). Thus, properties that hold in
the case τ = 0 generally still hold for other τ .

Later, we will need the following construction. Consider smooth functions

η+, η− : [0, δ] → [0, 1], η+(τ) =

{

0 0 ≤ τ ≤ δ
3 ,

1 2δ
3 ≤ τ ≤ δ,

η− = 1− η+.

In particular, we can define η+, η− as rescalings of the case δ = 1, so that

|η′+(τ)| . δ−1, |η′−(τ)| . δ−1.

Now, given Ψ ∈ C∞T r
lN , we define the integral operator

(3.2) ∫ t⋆Ψ = ∫ t0(η+Ψ)− ∫ tδ(η−Ψ).

Note that we have the identities

(3.3) ∇t∫
t
⋆Ψ = Ψ, ∫ t⋆∇tΨ = Ψ− ∫ t0(η

′
+Ψ) + ∫ tδ(η

′
−Ψ).

This above construction defines a particular covariant t-antiderivative of Ψ which
we will need much later, in the proof of our main result. More specifically, these
integral operators cut off the end-times τ = 0 and τ = δ without introducing a
factor that blows up as one approaches either end-time.

Finally, given F ∈ C∞T r
l S, we define the t-parallel transport pF ∈ C∞T r

lN of
F (from 0) to be the unique element of C∞T r

l N satisfying

∇t(pF ) ≡ 0, pF [0] = F .

Note in particular that |pF ||(τ,x) = |F ||x for any x ∈ S.
Of particular importance are the following commutation formulas.

Proposition 3.1. If Ψ ∈ C∞T r
lN and F ∈ C∞T r

l S, then

[Lt,∇a]Ψ
v1...vr
u1...ul

= −
l
∑

i=1

γcd(∇akuic +∇uikac −∇ckaui)Ψ
v1...vr
u1d̂iul

(3.4)

+

r
∑

j=1

γcvj (∇akdc +∇dkac −∇ckad)Ψ
v1d̂jvr
u1...ul

,

[∇t,∇a]Ψ
v1...vr
u1...ul

= −γcdkac∇dΨ
v1...vr
u1...ul

−
l
∑

i=1

γcdCauicΨ
v1...vr
u1d̂iul

+
r
∑

j=1

γcvjCadcΨ
v1d̂jvr
u1...ul

,

[∫ t0,∇a]Ψ
v1...vr
u1...ul

= γcd∫ t0(kac∇d∫
t
0Ψ

v1...vr
u1...ul

) +

l
∑

i=1

γcd∫ t0(Cauic∫
t
0Ψ

v1...vr
u1d̂iul

)
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−
r
∑

j=1

γcvj ∫ t0(Cadc∫
t
0Ψ

v1d̂jvr
u1...ul

).

Proof. See [19, Sect. 4.1-4.2]. �

Finally, we define the Jacobian (of ǫ with respect to ǫ[0]) as

J = exp ∫ t0(tr k) ∈ C∞N .

Note J acts as a change of measure quantity, as it satisfies (see [19, Sect. 4.2])

(3.5) ǫ[τ ] = J [τ ] · ǫ[0], ∇tJ = tr k · J .

3.3. Integral Norms. Given Ψ ∈ C∞T r
lN , we assume any norm over Ψ[τ ] to be

with respect to γ[τ ]. Define now the following iterated integral norms:

• If p ∈ [1,∞) and q ∈ [1,∞], then we define

‖Ψ‖Lp,q
t,x

=

(

∫ δ

0

‖Ψ[τ ]‖p
Lq

x
dτ

)
1

p

, ‖Ψ‖L∞,q
t,x

= sup
0≤τ≤δ

‖Ψ[τ ]‖Lq
x
.

• We can also reverse the order of integration. Given p, q ∈ [1,∞), we define

‖Ψ‖Lq,p
x,t

=





∫

S

(

∫ δ

0

|Ψ|pJ
p
q

∣

∣

∣

(τ,x)
dτ

)
q
p

dǫ[0]x





1

q

,

‖Ψ‖Lq,∞
x,t

=

[

∫

S

(

sup
0≤τ≤δ

|Ψ|J
1

q

∣

∣

∣

∣

(τ,x)

)q

dǫ[0]x

]
1

q

.

Furthermore, when q = ∞, we define

‖Ψ‖L∞,p
x,t

= sup
x∈S

(

∫ δ

0

|Ψ|p|(τ,x) dτ

)
1

p

, ‖Ψ‖L∞,∞
x,t

= sup
x∈S

sup
0≤τ≤δ

|Ψ||(τ,x).

• Given any a ∈ [1,∞), s ∈ R, and p ∈ [1,∞], we define 13

‖Ψ‖aBa,p,s
ℓ,t,x

=
∑

k≥0

2ask‖PkΨ‖a
Lp,2

t,x
+ ‖P<0Ψ‖a

Lp,2
t,x

,

‖Ψ‖B∞,p,s
ℓ,t,x

= max

(

sup
k≥0

2sk‖PkΨ‖Lp,2
t,x

, ‖P<0Ψ‖Lp,2
t,x

)

.

We also define for convenience the shorthands

‖Ψ‖Bp,s
t,x

= ‖Ψ‖B1,p,s
k,t,x

, ‖Ψ‖Hp,s
t,x

= ‖Ψ‖B2,p,s
k,t,x

.

Note that all the above norms were used in [19].
Next, we consider first-order Sobolev norms on N containing both horizontal

and t-derivatives. We define the following, the first of which was used in [19]:

‖Ψ‖N1

t,x
= ‖∇tΨ‖L2,2

t,x
+ ‖∇Ψ‖L2,2

t,x
+ ‖Ψ‖L2,2

t,x
,

‖Ψ‖N1i
t,x

= ‖Ψ‖N1

t,x
+ ‖Ψ[0]‖

H
1/2
x

.

13In this notation, the parameters a, p, s refer to the summability of the L-P components, the
integrability of the t-component, and the differentiability of the spatial components, respectively.
The order “ℓ, t, x” refers to the relative order of integration and summation.
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In addition, we define the norm

‖Ψ‖N0⋆
t,x

= inf{‖Φ‖N1i
t,x

| ∇tΦ = Ψ}.

This measures the smallestN1i
t,x-norm of any t-antiderivative of Ψ. More specifically,

we take a t-antiderivative and then a spatial derivative of Ψ; note we have an
additional degree of freedom, in that we can choose the optimal t-antiderivative. In
other words, we are essentially trading a t-derivative for a spatial derivative. This
norm is, in particular, well suited for taking advantage of the underlying structure
behind the null Bianchi identities; see Propositions 4.1 and 4.2.

Finally, we review some methods for combining existing norms to produce new
useful norms. First, let X and Y denote vector spaces, with norms ‖ ·‖X and ‖ ·‖Y .

• A natural norm on X ∩ Y is the following:

‖v‖X∩Y = ‖v‖X + ‖v‖Y .

• Suppose X and Y are subspaces of a larger vector space Z. Then, one
defines a natural norm on X + Y by the formula

‖v‖X+Y = inf{‖vX‖X + ‖vY ‖Y | v = vX + vY , vX ∈ X , vY ∈ Y }.

In other words, this norm indicates the smallest way one can decompose v
as a sum of two vectors, one in X and one in Y .

For example, for a norm controlling both the N1i
t,x- and L∞,2

x,t -norms, we take

‖Ψ‖N1i
t,x∩L∞,2

x,t
= ‖Ψ‖N1i

t,x
+ ‖Ψ‖L∞,2

x,t
.

As for sum norms, we will often refer to the quantities

‖Ψ‖N0⋆
t,x+B2,0

t,x
.

This norm will serve an important purpose in the proof of our main results. Like
in [8, 15, 17, 24, 25], the proof revolves around an elaborate bootstrap argument.
However, we can take advantage of this specific sum norm in order to simplify some
technical portions of the argument, as this norm is well-adapted to the decompo-
sitions required for various Besov estimates. In particular, by inserting additional
bootstrap assumptions in terms of this norm, we can avoid the infinite decomposi-
tion process that was required in [8, 15, 17, 24, 25]; see Section 6.1.

3.4. Conformal Transformations. We turn briefly to the topic of conformal
transformations of γ. Consider another horizontal metric γ̄ ∈ C∞T 0

2N , defined

γ̄ = e2uγ, u ∈ C∞N .

We can view this as a family of conformal transformations for the γ[τ ]’s, such that
the conformal factors e2u[τ ] also vary smoothly with respect to τ . If we let ǭ denote
the volume form associated with γ̄, then we have

γ̄ab = e2uγab, ǭab = e2uǫab, γ̄ab = e−2uγab, ǭab = e−2uǫab.

As before, we denote objects with respect to γ̄ with a “bar” over the symbol.

Remark. In this paper, we are interested only in the special case in which u is con-
stant on each Sτ . Thus, on every (S, γ[τ ]), we are simply performing the rescaling
described in Section 2.1, except that the scale depends on the t-variable.
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Since γ and γ̄ are horizontal metrics, each has its own associated second funda-
mental form. A direct computation yields the following relation between them:

k̄ = e2uk +∇tu · γ̄, t̄rk̄ = tr k + 2∇tu.(3.6)

Remark. On the other hand, the traceless part of the second fundamental form is
conformally invariant. More specifically, the following formula holds:

k̄ −
1

2
(t̄rk̄)γ̄ = e2u

[

k −
1

2
(tr k)γ

]

.

The following proposition compares the t-covariant derivatives with respect to γ
and γ̄, as well as the corresponding t-covariant integrals.

Proposition 3.2. If Ψ ∈ C∞T r
lN , then the following relations hold:

(3.7) ∇̄t[e
(l−r)uΨ] = e(l−r)u∇tΨ, ∫̄

t
0[e

(l−r)uΨ] = e(l−r)u∫ t0Ψ.

Proof. We have from definition and (3.6) that

∇̄tΨ
d1...dr
c1...cl

= ∇tΨ
d1...dr
c1...cl

−
l
∑

i=1

(γ̄abk̄cia − γabkcia)Ψ
d1...dr

c1b̂icl

+

r
∑

j=1

(γ̄adj k̄ab − γadjkab)Ψ
d1b̂jdr
c1...cl

= ∇tΨ
d1...dr
c1...cl

+ (r − l) · ∇tu ·Ψd1...dr
c1...cl

.

The first identity in (3.7) now follows immediately from the above.
For the second equality, we begin by applying the first equality to ∫ t0Ψ:

∇̄t[e
(l−r)u∫ t0Ψ] = e(l−r)u∇t∫

t
0Ψ = e(l−r)uΨ.

Applying ∫̄
t
0· to this yields the identity, since e(l−r)u∫̄

t
0Ψ[0] vanishes. �

3.5. Evolutionary Assumptions. In Section 2.3, we defined various regularity
conditions on a single Riemannian surface in order to derive estimates. The main
point is not the estimates themselves, as much as the fact that we uniformly con-
trolled the constants of these estimates by various parameters. Here, we define
conditions on the evolution of γ so that such regularity properties on S0 can be
propagated to all the Sτ ’s. As a result of these, the estimates of Section 2 hold
on each (S, γ[τ ]), with the same constants. This will play an important role in the
bootstrap argument that forms the foundation of the proof of our main theorem.

Our evolutionary assumptions will be given as integral bounds on k and its
derivative. The specific bounds we will reference are the following:

‖k‖L∞,1
x,t

≤ B,(3.8)

‖∇(tr k)‖L2,1
x,t

≤ B,(3.9)

‖∇k‖L2,1
x,t

≤ B,(3.10)

inf{‖Φ‖L4,∞
x,t

| Φ ∈ C∞T 0
3N , ∇tΦ = C} ≤ B.(3.11)

These are mostly the same bounds that were used in [19]. Recall that C, in (3.11),
is the curl of k, which was defined in Section 3.2 and in [19].

We begin with some simple consequences of (3.8).
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Proposition 3.3. Assume (3.8). If q, p1, p2 ∈ [1,∞] and q1, q2 ∈ [q,∞] satisfy

q−1
1 + q−1

2 = q−1, p−1
1 + p−1

2 = 1,

then the following integral estimates hold for any Ψ,Φ ∈ C∞T r
lN .

‖∫ t0Ψ‖Lq,∞
x,t

.B ‖Ψ‖Lq,1
x,t
,(3.12)

‖∫ t0(Ψ⊗ Φ)‖Lq,∞
x,t

.B ‖Ψ‖Lq1,p1
x,t

‖Ψ‖Lq2,p2
x,t

.

Proof. See [19, Sect. 4.3]. �

As in [19, Sect. 4.5], we introduce evolutionary regularity assumptions for (N , γ),
which combine the (r0), (r1), and (r2) conditions in Section 2.3 with (3.8)-(3.11).

Definition 3.4. For convenience, we define the following conditions:

• (N , γ) satisfies (F0)C,N,B, with data {Ui, ϕi, ηi}Ni=1, iff (S, γ[0]) satisfies
(r0)C,N , with the same data, and (3.8) holds.

• (N , γ) satisfies (F1)C,N,B, with data {Ui, ϕi, ηi, η̃i, e
i}Ni=1, iff (S, γ[0]) sat-

isfies (r1)C,N with the same data, and (3.8), (3.9), and (3.11) hold.
• (N , γ) satisfies (F2)C,N,B, with data {Ui, ϕi, ηi, η̃i, e

i}Ni=1, iff (S, γ[0]) sat-
isfies (r2)C,N with the same data, and (3.8), (3.10), and (3.11) hold.

In this paper, we will not need to further mention the data (Ui, ηi, etc.) asso-
ciated with these regularity conditions. The precise data was required in [19] for
various technical constructions. The important parameters for this paper are the
constants C, N , B, associated with some existing data. We list the full definitions
here in order to maintain consistency with the development in [19].

Remark. In the proof of our main theorem, the above conditions will be derived
as consequences of the bootstrap assumptions.

The above conditions imply that the (r0), (r1), and (r2) conditions can be
propagated from (S, γ[0]) to all the (S, γ[τ ])’s. To be more specific, we state an
abridged version of the result proved in [19, Sect. 4.5].

Proposition 3.5. The following statements hold:

• If (N , γ) satisfies (F0)C,N,B, then every (S, γ[τ ]), where τ ∈ [0, δ], satisfies
(r0)C′,N , for some constant C′ depending on C, N , and B.

• If (N , γ) satisfies (F1)C,N,B, then every (S, γ[τ ]), where τ ∈ [0, δ], satisfies
(r1)C′,N , for some constant C′ depending on C, N , and B.

• If (N , γ) satisfies (F2)C,N,B, then every (S, γ[τ ]), where τ ∈ [0, δ], satisfies
(r2)C′,N , for some constant C′ depending on C, N , and B.

Proof. See [19, Sect. 4.5]. �

That the regularity properties of Section 2.3 can be propagated to all the Sτ ’s
implies that various integral norms on the Sτ ’s are in fact comparable to each other.
Here, we state these results in a form that we will use later.

Proposition 3.6. Let Ψ ∈ C∞T r
lN be t-parallel, i.e., that ∇tΨ ≡ 0.

• If (3.8) holds, then for any q ∈ [1,∞],

(3.13) ‖Ψ‖Lq,∞
x,t

.B ‖Ψ[0]‖Lq
x
.
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• If (N , γ) satisfies (F1)C,N,B, then for any a ∈ [1,∞] and s ∈ (−1, 1),

‖Ψ‖Ba,∞,s
ℓ,t,x

.C,N,B,s,r,l ‖Ψ[0]‖Ba,s
ℓ,x

.(3.14)

Proof. (3.13) is immediate, since |Ψ| is independent of t and J ≃ 1 on N due to
(3.8). 14 The proof of (3.14) can be found in [19, Sect. 5.1]. �

We now consider Sobolev-type estimates involving all of N .

Proposition 3.7. Assume (N , γ) satisfies (F0)C,N,B. If Ψ ∈ C∞T r
lN , then

‖Ψ‖L2,∞
x,t

.B ‖Ψ[0]‖L2
x
+ ‖∇tΨ‖

1

2

L2,2
t,x

‖Ψ‖
1

2

L2,2
t,x

,(3.15)

‖Ψ‖L4,∞
x,t

.C,N,B ‖Ψ[0]‖L4
x
+ ‖∇tΨ‖

1

2

L2,2
t,x

(‖∇Ψ‖L2,2
t,x

+ ‖Ψ‖L2,2
t,x
)

1

2 .

Proof. See [19, Sect. 4.6]. �

Proposition 3.8. Assume (N , γ) satisfies (F1)C,N,B. If Ψ ∈ C∞T r
lN , then

(3.16) ‖Ψ‖
H

∞,1/2
t,x

.C,N,B,r,l ‖Ψ[0]‖
H

1/2
x

+ ‖∇tΨ‖
1

2

L2,2
t,x

(‖∇Ψ‖L2,2
t,x

+ ‖Ψ‖L2,2
t,x
)

1

2 .

Proof. See [19, Sect. 5.1]. �

3.6. Bilinear Product Estimates. The following bilinear product estimates, all
proved in [19], will be essential to the proof of our main results.

Theorem 3.9. Assume that (N , γ) satisfies (F1)C,N,B. Furthermore, fix horizon-
tal tensor fields Ψ ∈ C∞T r1

l1
N and Φ ∈ C∞T r2

l2
N .

• If a ∈ [1,∞], s ∈ (−1, 1), and Ψ is t-parallel (i.e., ∇tΨ ≡ 0), then

‖Φ⊗Ψ‖Ba,2,s
ℓ,t,x

.C,N,B,s,r1,l1,r2,l2 (‖∇Φ‖L2,2
t,x

+ ‖Φ‖L∞,2
x,t

)‖Ψ[0]‖Ba,s
ℓ,x

.(3.17)

• If a ∈ [1,∞] and s ∈ (−1, 1), then

‖∫ t0(Φ⊗Ψ)‖Ba,∞,s
ℓ,t,x

.C,N,B,s,r1,l1,r2,l2 (‖∇Φ‖L2,2
t,x

+ ‖Φ‖L∞,2
x,t

)‖Ψ‖Ba,2,s
ℓ,t,x

,(3.18)

‖Φ⊗ ∫ t0Ψ‖Ba,2,s
ℓ,t,x

.C,N,B,s,r1,l1,r2,l2 (‖∇Φ‖L2,2
t,x

+ ‖Φ‖L∞,2
x,t

)‖Ψ‖Ba,1,s
ℓ,t,x

.(3.19)

• The following estimates hold:

‖Φ⊗Ψ‖B∞,0
t,x

.C,N,B,r1,l1,r2,l2 ‖Φ‖N1i
t,x
‖Ψ‖N1i

t,x
,(3.20)

‖∫ t0(∇tΦ⊗Ψ)‖B∞,0
t,x

.C,N,B,r1,l1,r2,l2 ‖Φ‖N1i
t,x
‖Ψ‖N1i

t,x
.(3.21)

Proof. See [19, Sect. 5.2-5.3]. �

By aggregating norms, we can combine some of the above estimates:

Corollary 3.10. Assume that (N , γ) satisfies (F1)C,N,B. Furthermore, fix hori-
zontal tensor fields Ψ ∈ C∞T r1

l1
N and Φ ∈ C∞T r2

l2
N .

‖∫ t0(Φ⊗Ψ)‖B∞,0
t,x

.C,N,B,r1,r2,l1,l2 ‖Φ‖N0⋆
t,x+B2,0

t,x
‖Ψ‖N1i

t,x∩L∞,2
x,t

,(3.22)

‖Φ⊗ ∫ t0Ψ‖B2,0
t,x

.C,N,B,r1,r2,l1,l2 (1 + δ
1

2 )‖Φ‖N1i
t,x∩L∞,2

x,t
‖Ψ‖N0⋆

t,x+B2,0
t,x

.(3.23)

14On the last point, see [19, Sect. 4.3].
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Proof. We begin with (3.22). Given a decomposition Φ = Φ1 +Φ2,

‖∫ t0(Φ⊗Ψ)‖B∞,0
t,x

. ‖∫ t0(Φ1 ⊗Ψ)‖B∞,0
t,x

+ ‖∫ t0(Φ2 ⊗Ψ)‖B∞,0
t,x

. ‖∫ t0(Φ1 ⊗Ψ)‖B∞,0
t,x

+ ‖Φ2‖B2,0
t,x

‖Ψ‖N1i
t,x∩L∞,2

t,x
,

where we applied (3.18). If Φ0 ∈ C∞T r2
l2
N satisfies ∇tΦ0 = Φ1, then by (3.21),

‖∫ t0(Φ1 ⊗Ψ)‖B∞,0
t,x

= ‖∫ t0(∇tΦ0 ⊗Ψ)‖B∞,0
t,x

. ‖Φ0‖N1i
t,x
‖Ψ‖N1i

t,x
.

Varying over all possible Φ0’s, the above implies

‖∫ t0(Φ1 ⊗Ψ)‖B∞,0
t,x

. ‖Φ1‖N0⋆
t,x
‖Ψ‖N1i

t,x∩L∞,2
x,t

,

‖∫ t0(Φ⊗Ψ)‖B∞,0
t,x

. (‖Φ1‖N0⋆
t,x

+ ‖Φ2‖B2,0
t,x

)‖Ψ‖N1i
t,x∩L∞,2

x,t
.

Varying over all decompositions Φ = Φ1 +Φ2 yields (3.22).
For (3.23), we begin by assuming a similar decomposition Ψ = Ψ1 +Ψ2, so

‖Φ⊗ ∫ t0Ψ‖B2,0
t,x

. ‖Φ⊗ ∫ t0Ψ1‖B2,0
t,x

+ ‖Φ⊗ ∫ t0Ψ2‖B2,0
t,x

. ‖Φ⊗ ∫ t0Ψ1‖B2,0
t,x

+ δ
1

2 ‖Φ‖N1i
t,x∩L∞,2

x,t
‖Ψ2‖B2,0

t,x
,

where we also applied (3.19). For any t-parallel Θ ∈ C∞T r
lN , we can bound

‖Φ⊗ ∫ t0Ψ1‖B2,0
t,x

. ‖Φ⊗ (∫ t0Ψ1 +Θ)‖B2,0
t,x

+ ‖Φ⊗Θ‖B2,0
t,x

.

Applying (3.17) and (3.20) to the terms on the right-hand side yields

‖Φ⊗ ∫ t0Ψ1‖B2,0
t,x

. ‖Φ‖N1i
t,x∩L∞,2

x,t
(δ

1

2 ‖∫ t0Ψ1 +Θ‖N1i
t,x

+ ‖Θ[0]‖B0
x
)

Moreover, since Θ[0] = (∫ t0Ψ+Θ)[0], then

‖Θ[0]‖B0
x
. ‖Θ[0]‖

H
1/2
x

. ‖∫ t0Ψ1 +Θ‖N1i
t,x
.

Note any (covariant) t-antiderivative of Ψ1 can be written as ∫ t0Ψ1 + Θ for some
t-parallel Θ ∈ C∞T r

lN . Thus, combining the above developments, we have

‖Φ⊗ ∫ t0Ψ1‖B2,0
t,x

. (1 + δ
1

2 )‖Φ‖N1i
t,x∩L∞,2

x,t
‖Ψ1‖N0⋆

t,x
,

‖Φ⊗ ∫ t0Ψ‖B2,0
t,x

. (1 + δ
1

2 )‖Φ‖N1i
t,x∩L∞,2

x,t
‖Ψ‖N0⋆

t,x+B1,0
t,x

,

which completes the proof of (3.23). �

The following sharp trace estimate is also established in [19] (and is a variation
and simplification of similar estimates found in [8, 24]).

Theorem 3.11. Assume that (N , γ) satisfies (F2)C,N,B. Let Ψ ∈ C∞T r
lN , and

suppose Ψ1,Ψ2 ∈ C∞T r
l+1N are such that the decomposition

∇Ψ = ∇tΨ1 +Ψ2

holds. Then, we have the following estimate:

‖Ψ‖L∞,2
x,t

.C,N,B,r,l (1 + ‖k‖L2,∞
x,t

)(‖Ψ‖N1i
t,x

+ ‖Ψ1‖N1i
t,x

+ ‖Ψ2‖B2,0
t,x

).(3.24)

Proof. See [19, Sect. 5.4]. �

Combining Theorem 3.11 with our aggregated norms yields the following.

Corollary 3.12. If (N , γ) satisfies (F2)C,N,B, and if Ψ ∈ C∞T r
lN , then

‖Ψ‖L∞,2
x,t

.C,N,B,r,l (1 + ‖k‖L2,∞
x,t

)(‖Ψ‖N1i
t,x

+ ‖∇Ψ‖N0⋆
t,x+B2,0

t,x
).(3.25)
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3.7. Besov-Elliptic Estimates. In Section 2.4, we cited L2-elliptic estimates on a
surface (S, h), given a weak regularity condition for the associated Gauss curvature.
Here, we state analogous estimates in geometric Besov spaces.

First, we port the (k) condition in Section 2.4 to the foliation setting.

Definition 3.13. (N , γ) satisfies (K)C,D, with data (f,W, V ), iff:

• f ∈ C∞N satisfies the uniform estimate

C−1 ≤ f |(τ,x) ≤ C, (τ, x) ∈ N .

• V ∈ C∞T 0
1N and W ∈ C∞N satisfy

‖V ‖
H

∞,1/2
t,x

≤ D, ‖W‖L∞,2
t,x

≤ D.

• K can be decomposed in the form

K − f = γab∇aVb +W .

Note that (K)C,D implies that every (S, γ[τ ]) satisfies (k)C,D′ , for some constant
D′ depending on C and D. Moreover, if D is very small, then so is D′.

Given the (K) condition, we can prove integrated Besov-elliptic estimates in-
volving operators of the form ∇D−1, where D is any of the Hodge operators.

Theorem 3.14. Assume (N , γ) satisfies (F1)C,N and (K)C,D, with D ≪ 1 suffi-
ciently small. In addition, suppose p ∈ [1,∞].

• If Ψ ∈ C∞T r
lN , then

(3.26) ‖Ψ‖Lp,∞
t,x

.C,N,r,l ‖∇Ψ‖Bp,0
t,x

+ ‖Ψ‖Lp,2
t,x

.

• If a ∈ [1,∞], if D is any one of the operators D1, D2, D∗
1, and if ξ is a

smooth section of the appropriate Hodge bundle on N , then

(3.27) ‖∇D−1ξ‖Ba,p,0
ℓ,t,x

.C,N ‖ξ‖Ba,p,0
ℓ,t,x

.

Proof. See [19, Sect. 6.5]. �

Finally, the (K) condition implies weak control for the Gauss curvatures.

Proposition 3.15. Assume (N , γ) satisfies (R1)C,N and (K)C,D, the latter with
data (f,W, V ), and with D ≪ 1 sufficiently small. Then,

(3.28) ‖K − f‖
H

∞,−1/2
t,x

. D.

Proof. See [19, Sect. 6.5]. �

4. Null Cones to Infinity

In this section, we describe in detail the setting that we will consider: a geodesi-
cally foliated smooth null cone extending “toward infinity”. In particular, we define
the associated connection and curvature quantities, and we list the null structure
equations which relate these quantities. Finally, we apply a renormalization in order
to transform our physical system into another which is more sensible to analyze.

Throughout, we will let (M, g) denote a four-dimensional orientable Lorentzian
manifold which satisfies the Einstein-vacuum equations,

Ricg ≡ 0.
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4.1. Geodesically Foliated Null Cones. Although one can foliate a (truncated)
null cone in many different ways—for example, foliations using a time or an optical
function have been used in some applications, cf. [3, 4, 7, 12, 15, 17]—the geo-
desic foliation is the simplest algebraically. Indeed, the geodesically foliated setting
contains the least number of connection coefficients to work with, and it does not
depend on quantities external to the geometry of the spacetime (M, g).

First, let S be a compact 2-dimensional spacelike (i.e., Riemannian) submanifold
of M that is diffeomorphic to S2. This will serve as the initial sphere, or base, of
our null cone. To construct our cone, we define the following:

• Let s0 ∈ (0,∞), and suppose S has area 4πs20.
15

• For each point p ∈ S, we let ℓp denote a future-directed null tangent vector
at p that is orthogonal to S. Furthermore, we choose these vectors such
that these ℓp’s vary smoothly with respect to p.

• For each p ∈ S, we let λp denote the future-directed null geodesic

λp : [s0,∞) → M , λp(s0) = p, λ′
p(s0) = ℓp.

Suppose every λp, p ∈ S, is well-defined on the entire half-line [s0,∞). Then,
we can define the future null cone N beginning from S as the set

{λp(v) | p ∈ S, v ∈ [s0,∞)}

traced out by the λp’s. In addition, we assume the following for N :

• No two distinct λp’s intersect.
• This family {λp | p ∈ S} of null geodesics has no null conjugate points.

Under these assumptions, N forms a smooth null hypersurface of M ; see [5]. In
other words, N is a regular outgoing future null cone extending to infinity.

Let s : N → R denote the affine parameter, satisfying

s(λp(v)) = v, p ∈ S, v ∈ [s0,∞).

In particular, s is a smooth function, and its level sets

Sv = {q ∈ N | s(q) = v}

are diffeomorphic to S. As a result, we can reformulate N as

(4.1) N =
⋃

s0≤v<∞

Sv ≃ [s0,∞)× S ≃ [s0,∞)× S
2,

known as a geodesic foliation of N . We will consider N both as a smooth null
hypersurface of M and as a spherical foliation, depending on context. In the latter
characterization, we retrieve a special case of the abstract setting of Section 3.

We also define the following vector fields on N :

• We define the tangent null vector field L on N as

L|λp(v) = λ′
p(v), p ∈ S, v ∈ [s0,∞).

By definition, L is geodesic, and Ls ≡ 1 everywhere. In particular, L is
transverse to the Sv’s, so the Sv’s are Riemannian submanifolds of N .

• Let L denote the conjugate null vector field on N , which is orthogonal to
every Sv and satisfies g(L,L) ≡ −2. Note that L is transverse to N—for
any q ∈ N , the vector L|q is a tangent vector for M , but not N .

15In other words, s0 is the “radius” of the initial sphere S.
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By combining the null vector fields L and L with local (g-)orthonormal frames
tangent to the Sv’s, one obtains the usual local null frames on N .

Considering N now as the foliation (4.1), we can define the horizontal metric
/γ ∈ C∞T 0

2N to correspond to the metrics on the Sv’s induced by g. Furthermore,
by fixing an orientation for S, we define a natural orientation for each Sv. These
orientations define the volume form /ǫ ∈ C∞T 0

2N associated with /γ.
From now on, objects defined with respect to /γ and /ǫ will be denoted with a

“slash”. For example, the covariant derivative with respect to /γ is denoted /∇.

Remark. In this setting, the evolutionary derivative operator is /∇s, with respect
to /γ and the s-foliation of N . From definition, one can show that /∇s, as defined
in Section 3.2, coincides with the operator /∇L, defined as the projection of the
spacetime covariant derivative DL to the Sv’s. This derivative /∇L is the operator
that was utilized in previous works, e.g., [8, 10, 15, 17, 24, 25].

4.2. Connection and Curvature. Next, we define the Ricci coefficients on N .
These are connection quantities, expressed as horizontal tensor fields, that describe
the derivatives of L and L in directions tangent to N . Throughout, we let D denote
the restriction of the spacetime (g-)Levi-Civita connection to N .

In the geodesic foliation, the Ricci coefficients are the following:

• Define the null second fundamental forms χ, χ ∈ C∞T 0
2N by

χ(X,Y ) = g(DXL, Y ), χ(X,Y ) = g(DXL, Y ), X,Y ∈ C∞T 1
0N .

Since L and L are orthogonal to the Sv’s, both χ and χ are symmetric. In

particular, the trace and traceless parts of χ (with respect to /γ),

/trχ = /γabχab, χ̂ = χ−
1

2
(/trχ)/γ,

are often called the expansion and shear of N , respectively. The same
trace-traceless decomposition can also be done for χ.

• Define the torsion ζ ∈ C∞T 0
1N by

ζ(X) =
1

2
g(DXL,L), X ∈ C∞T 1

0N .

Furthermore, one can explicitly compute the associated /γ-second fundamental form:

/k = χ.

For details, see, e.g., the proof of [8, Lemma 2.26].
Now, let R denote the spacetime Riemann curvature tensor associated with g.

We can then define the following null curvature components,

α, α ∈ C∞T 0
2N , α(X,Y ) = R(L,X,L, Y ), α(X,Y ) = R(L,X,L, Y ),

β, β ∈ C∞T 0
1N , β(X) =

1

2
R(L,X,L, L), β(X) =

1

2
R(L,X,L, L),

ρ, σ ∈ C∞N , ρ =
1

4
R(L,L, L, L), σ =

1

4
⋆R(L,L, L, L),

where ⋆R denotes the left (spacetime) Hodge dual of R (with respect to a fixed
orientation of M). In the Einstein-vacuum setting, these curvature components
comprise all the independent components of R.
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Finally, we define the mass aspect function on N by

µ ∈ C∞N , µ = −/γab/∇aζb − ρ+
1

2
/γac/γbdχ̂abχ̂cd

.

This quantity plays a essential role in the proof of our main theorem. On the
physical side, it is also related to the Hawking masses of the Sv’s; see [4].

The Ricci and curvature coefficients are related to each other via a family of
geometric differential equations, known as the null structure equations. We now
state these identites in terms of the induced metrics /γ and volume forms /ǫ. For
details and derivations, see, for example, [4, 8].

Proposition 4.1. Assume that all geometric quantities are defined with respect to
/γ, /ǫ, and s. Then, the following structure equations hold on N .

• Evolution equations:

/∇sχab = −/γcdχacχbd − αab,(4.2)

/∇sζa = −2/γbcχabζc − βa,

/∇sχab
= −(/∇aζb + /∇bζa)−

1

2
/γcd(χacχbd

+ χbcχad
) + 2ζaζb + ρ/γab.

• Elliptic equations:

/D2χ̂a = −βa +
1

2
/∇a(/trχ) +

1

2
(/trχ)ζa − /γbcχ̂abζc,(4.3)

/D1ζ = −(ρ+ iσ)− µ+
1

2
(/γac + i/ǫac)/γbdχ̂abχ̂cd

.

• Gauss-Codazzi equations:

/∇bχac − /∇cχab = −/ǫbc/ǫa
dβd + χabζc − χacζb,(4.4)

/K = −ρ+
1

2
(/γac/γbd − /γab/γcd)χabχcd

.

• Derivative evolution equations:

/∇s/∇a(/trχ) = −/γbcχab/∇c(/trχ)− 2/γbc/γdeχbd/∇aχce,(4.5)

/∇sµ = −
3

2
(/trχ)µ− 2/γabζaβb + 2/γab/∇a(/trχ)ζb

+ 2/γab/γcdχ̂ac/∇bζd − 2/γab/γcdχ̂acζbζd

+
3

2
/γab(/trχ)ζaζb −

1

4
/γab/γcd(/trχ)χ̂acχ̂bd.

• Null Bianchi equations:

/∇sβa = /D2αa − 2(/trχ)βa + /γbcζbαac,(4.6)

/∇s(ρ+ iσ) = /D1β −
3

2
(/trχ)(ρ+ iσ)− (/γab − i/ǫab)(ζaβb +

1

2
/γcdχ

ac
αbd),

/∇sβa
= /D∗

1(ρ− iσ)− (/trχ)β
a
+ 3ζaρ− 3/ǫa

bζbσ + 2/γbcχ̂
ab
βc.

4.3. Minkowski and Schwarzschild Null Cones. Recall that the Minkowski
spacetime can be represented as (M, g) = (R1+3, η), where η is the Minkowski
metric, which in polar coordinates can be written as

η = −dt2 + dr2 + r2dΩ,
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where dΩ is the standard Euclidean metric on S2. The standard future outgoing
(truncated) null cones in Minkowski spacetime are given by

N = {t− r = c, r ≥ r0}, c ∈ R, r0 > 0.

An affine parameter for N that is compatible with the general setting of Section
4.1 is s = r, i.e., the radial function. The associated null vector fields L and L are

L = ∂t + ∂r, L = ∂t − ∂r.

On N , the induced horizontal metric is given by /γ[v] = v2dΩ. The values of the
Ricci coefficients for this foliation of N are well-known:

χ = r−1/γ, χ = −r−1/γ, ζ ≡ 0.

Moreover, since Minkowski spacetime has zero curvature, all the curvature compo-
nents α, β, ρ, σ, α (with respect to this foliation) vanish.

These constructions can be generalized to Schwarzschild spacetimes. We sum-
marize the relevant computations for this case below; for further details, see [6].
Fix a mass value m ≥ 0 (the case m = 0 reduces to the above Minkowski setting).
The outer region, in which our null cone will lie, can be expressed as

M = R× (2m,∞)× S
2,

with the Schwarzschild metric g, given in standard coordinates by

g = −

(

1−
2m

r

)

dt2 +

(

1−
2m

r

)−1

dr2 + r2dΩ.

To describe the canonical null cones, we first recall the “tortoise” coordinate

r∗ = r + 2m log
( r

2m
− 1
)

.

Then, the standard null cones can be expressed as

N = {t− r∗ = c, r ≥ r0}, c ∈ R, r0 > 2m.

Like in the Minkowski setting, one can take the radial function s = r (not r∗) as an
affine parameter for N , which is compatible with the development in Section 4.1.
Moreover, the associated null vector fields are

L =

(

1−
2m

r

)−1

∂t + ∂r, L = ∂t −

(

1−
2m

r

)

∂r.

The induced metric is once again /γ[v] = v2dΩ2. Next, one can compute the Ricci
and curvature coefficients corresponding to the above affine foliation of N . For the
Ricci coefficients, one obtains the following values:

χ = r−1/γ, χ = −r−1

(

1−
2m

r

)

/γ, ζ ≡ 0.

The only nonvanishing curvature coefficient is ρ, whose value is

ρ ≡ −
2m

r3
.

Combining the above with the definition of µ, we see that

µ ≡
2m

r3
.

In the remainder of this section, we will focus exclusively on near-Minkowski
and near-Schwarzschild null cones. More specifically, we will consider geodesically
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foliated null cones whose associated Ricci and curvature coefficients deviate very
little, in some sense, from the above known Minkowski and Schwarzschild values.
The main theorems will state, roughly, that if the curvature components of an
infinite truncated null cone N are close to their Schwarzschild values (for some
fixed mass m ≥ 0), and if the Ricci coefficients are also initially close to their
Schwarzschild values (with the same m), then the Ricci coefficients will remain
close to the corresponding Schwarzschild values on all of N . 16

4.4. The Renormalized System. We return now to the abstract setting of Sec-
tions 4.1 and 4.2. To develop our main results, we must accomplish the following:

• Quantify the deviation of N from a Schwarzschild null cone.
• Perform analysis on these deviations, which are expected to be small.

For this purpose, we wish to renormalize our system onN into an equivalent system.
In particular, we would like for our renormalized system to satisfy the following:

• The level spheres of the foliation have nearly identical area.
• The interval of the foliation is finite rather than infinite.

Throughout, we fix a mass value m ≥ 0, and we suppose that s0 > 2m.
We will accomplish this renormalization in two steps. For the first step, we define

γ = s−2/γ ∈ C∞T l
rN ,

i.e., the rescaled horizontal metric. In particular, this leads to the identities

γab = s−2/γab, γab = s2/γab, ǫab = s−2/ǫab, ǫab = s2/ǫab.

Remark. Note that the above is a special case of an s-dependent rescaling of /γ.
Thus, other geometric quantities, such as ∇, ∆, K, ∇s, etc., transform according
to the general formulas presented in Sections 2.1 and 3.4.

In the second step, we apply a change of variables to s by defining

t : N → R, t = 1−
s0
s
.

Note the level set s = s0 corresponds to t = 0, while the limit s ր ∞ corresponds
to t ր 1. We can now consider N as a foliation in terms of t:

N ≃ [0, 1)× S ≃ [0, 1)× S
2.

In particular, this reduces the problem of infinite null cones to a finite cylinder.
Note that s and t are related to each other as follows:

s =
s0

1− t
,

dt

ds
=

s0
s2

=
(1− t)2

s0
,

ds

dt
=

s0
(1− t)2

=
s2

s0
.

To simplify matters, we let Sτ denote the corresponding level set of t:

Sτ = {z ∈ N | t(z) = τ} = S s0
1−τ

.

Note that this change from s to t leaves γ, ǫ, ∇, and K (with respect to γ)
unchanged. On the other hand, the vertical Lie and covariant derivatives with
respect to t differ from those with respect to s:

Lt =
ds

dt
Ls =

s2

s0
Ls, ∇t =

ds

dt
∇s =

s2

s0
∇s.

Here, the covariant operators ∇t and ∇s are with respect to γ.

16This closeness will, of course, be at the level of curvature flux.
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Finally, we renormalize the remaining givens and unknowns of our system. In
other words, we make corresponding renormalizations for the Ricci and curvature
coefficients by defining the following quantities:

• Renormalized Ricci coefficients:

H = s−1
0 (χ− s−1/γ), Z = s−1

0 sζ, H = s−1χ+ s−2

(

1−
2m

s

)

/γ.

• Renormalized curvature coefficients:

A = s−2
0 s2α, B = s−2

0 s3β, R = s−1
0 [s3(ρ+ iσ) + 2m], B = sβ.

• Renormalized mass aspect function:

M = s−1
0 (s3µ− 2m).

Note these quantities measure the deviation from Schwarzschildean values.
From the above definitions, we can compute how norms change when we switch

from the physical (/γ, s)-system to the renormalized (γ, t)-system. In particular,
given p, q ∈ [1,∞] and Ψ ∈ C∞T r

lN , we have

(4.7) ‖Ψ‖Lp,q
t,x

= s
1

p

0 ‖s
l−r− 2

q−
2

pΨ‖/Lp,q
s,x

, ‖Ψ‖Lq,p
x,s

= s
1

p

0 ‖s
l−r− 2

q−
2

pΨ‖/Lq,p
x,s

.

Other norm relations can be similarly computed.
We can also compute the second fundamental form k associated with our folia-

tion, with respect to the metric γ and with respect to t. This yields

(4.8) k =
1

2
Ltγ =

1

2

s2

s0
Ls(s

−2/γ) =
1

s0
(χ− s−1/γ) = H .

4.5. The Renormalized Structure Equations. We can now reformulate the
structure equations in terms of γ, t, and our renormalized quantities.

Proposition 4.2. Assume all geometric quantities are defined with respect to γ, ǫ,
and t. Then, the following structure equations hold on N .

• Evolution equations:

∇tHab = −γcdHacHbd −Aab,(4.9)

∇tZa = −2γbcHabZc −Ba,

∇tHab = −(∇aZb +∇bZa)−
1

2
γcd(HacHbd +HbcHad)

+

(

1−
2m

s

)

Hab + 2(1− t)ZaZb + (ReR)γab.

• Elliptic equations:

D2Ĥa = −(1− t)Ba + Za +
1

2
∇a(trH) +

1

2
(1− t)(trH)Za(4.10)

− (1− t)γbcĤabZc,

D1Z = −R−M +
1

2
(γac + iǫac)γbdĤabĤcd.

• Gauss-Codazzi equations:

∇bHac −∇cHab = −ǫbcǫa
d[(1 − t)Bd − Zd] + (1− t)(HabZc −HacZb),(4.11)

K − 1 = −(1− t)(ReR) +
1− t

2

(

1−
2m

s

)

trH −
1

2
trH
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+
1− t

2
(γacγbd − γabγcd)HabHcd.

• Derivative evolution equations:

∇t∇a(trH) = −γbcHab∇c(trH)− 2γbcγdeHbd∇aHce,(4.12)

∇tM = −
3

2
(trH)

(

M +
2m

s0

)

− 2(1− t)γabZaBb

+ 2γabγcdĤac∇bZd − 2(1− t)γabγcdĤacZbZd

+ 2γabZb∇a(trH) +
3

2
γab[(1− t) trH + 2]ZaZb

−
1

4
γabγcd

[

trH − 2

(

1−
2m

s

)]

ĤacĤbd.

• Null Bianchi equations:

∇tBa = (1− t)−1D2Aa − 2(trH)Ba + γbcZbAac,(4.13)

∇tR = D1B −
3

2
(trH)

(

R−
2m

s0

)

− (γab − iǫab)

[

(1 − t)ZaBb +
1

2
γcdHacAbd

]

,

∇tBa = D∗
1R̄− (trH)Ba + 3(1− t)Za

(

ReR−
2m

s0

)

− 3(1− t)ǫa
bZb(ImR) + 2(1− t)γbcĤabBc.

Proof. We show the first equation in (4.9); the remaining equations are derived
similarly. Letting J = χ− s−1/γ, the first equation in (4.2) implies

/∇sJab = −/γcdχacχbd − αab + s−2/γ = −/γcdJacJbd − 2s−1Jab − αab.

The above can be rewritten as

/∇s(s
2J)ab = −s2/γcdJacJbd − s2αab = −γcdJacJbd − s2αab.

From the relation (3.7) between /∇s and ∇s, we obtain

∇sJab = s−2/∇s(s
2J)ab = s−2γcdJacJbd − αab.

Since H = s−1
0 J and ∇t = s−1

0 s2∇s, we obtain, as desired,

∇tHab = s−2
0 γcdJacJbd − s−2

0 s2αab = γcdHacHbd −Aab. �

Remark. Note in particular that the quantities

2m

s0
, 1−

2m

s
,

which are constant on any Sτ , always lie between 0 and 1.

Remark. We also remark that the trace and traceless parts of H and H are always
taken with respect to the renormalized metric γ.
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5. The Main Results

With the definitions and relations in place, we can now state the main results of
this paper. First, we state the main theorem in terms of the renormalized setting.
In fact, this renormalized result is the one we will directly deal with in the final
section of this paper. Finally, we reverse the renormalization procedure in order
to order the precise “physical” version of the main theorem of this paper, i.e., in
terms of the spacetime metric and geometry.

Again, we assume the definitions and constructions of Section 4. We also assume
m ≥ 0, and we suppose the initial radius s0 of S satisfies s0 > 2m.

5.1. The Renormalized Main Theorem. The first main theorem we state is in
the renormalized setting, where all the analysis will take place.

Theorem 5.1. Assume the constructions of Sections 4.1, 4.2, and 4.4, and assume
all quantities are defined with respect to γ and t. Assume also the following:

• m ≥ 0, and s0 > 2m.
• S = S0, along with the Riemannian metric γ[0], satisfies (r2)C,N .
• The following curvature flux bounds hold on N :

(5.1) ‖A‖L2,2
t,x

+ ‖B‖L2,2
t,x

+ ‖R‖L2,2
t,x

+ ‖B‖L2,2
t,x

≤ Γ,

• The following initial value bounds hold on S0:

‖(trH)[0]‖L∞

x
+ ‖H [0]‖

H
1/2
x

+ ‖Z[0]‖
H

1/2
x

≤ Γ,(5.2)

‖H[0]‖B0
x
+ ‖∇(trH)[0]‖B0

x
+ ‖M [0]‖B0

x
≤ Γ.

If Γ ≪ 1 is sufficiently small, with respect to C and N , then we have the following
bounds for the connection coefficients on N :

‖ trH‖L∞,∞
t,x

. Γ,(5.3)

‖H‖
N1

t,x∩L∞,2
x,t ∩H

∞,1/2
t,x

+ ‖Z‖
N1

t,x∩L∞,2
x,t ∩H

∞,1/2
t,x

. Γ,

‖∇t∇(trH)‖L2,1
x,t

+ ‖∇tM‖L2,1
x,t

. Γ,

‖∇(trH)‖L2,∞
x,t ∩B∞,0

t,x
+ ‖M‖L2,∞

x,t ∩B∞,0
t,x

+ ‖H‖L2,∞
x,t ∩B∞,0

t,x
. Γ,

‖∇H‖N0⋆
t,x+B2,0

t,x
+ ‖∇Z‖N0⋆

t,x+B2,0
t,x

+ ‖∇tH‖N0⋆
t,x+B2,0

t,x
. Γ,

‖K − 1‖
H

∞,−1/2
t,x

. Γ.

Moreover, N , with respect to the t-foliation and the renormalized metric γ, satisfies
the conditions (F2)C,N,D and (K)1,D, where D ≃ Γ ≪ 1. Furthermore, for each
0 ≤ τ < 1, we have the refined curvature estimate

(5.4) ‖K[τ ]− 1‖
H

−1/2
x

. ‖ trH [τ ]‖L2
x
+ (1 − τ)Γ.

Remark. In particular, the conclusions of Theorem 5.1 imply that each t-level set
(S2, γ[τ ]) satisfies the (r2) and (k) conditions uniformly.

Roughly speaking, Theorem 5.1 controls the geometry of N , in the renormalized
setting, all the way up to infinity, i.e., 0 ≤ t < 1. Furthermore, we can use the
results of Theorem 5.1 in order to obtain similar control at infinity, that is, at
t = 1. This is a fairly standard but technical process that involves generating the
appropriate limits of our renormalized quantities, though the argument here is a
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bit further inconvenienced by the fact that the geometries of the Sτ ’s, and hence
the spaces and norms under consideration, vary with respect to τ .

Corollary 5.2. Assume the same hypotheses as in Theorem 5.1.

• As τ ր 1, the metrics γ[τ ] on S converge uniformly to a continuous metric
γ[1] on S. Furthermore, the Jacobians J [τ ], and hence the volume forms
ǫ[τ ], also converge as τ ր 1 to continuous limits J [1] and ǫ[1].

• Let ∇τ denote the Levi-Civita connection associated with γ[τ ]. Given any
F ∈ C∞T r

l S, the differential ∇τF has an L2-limit as τ ր 1. 17 In other
words, the convergence of γ[τ ] to γ[1] as τ ր 1 is “in H1”.

In addition, we have the following limits for scalar quantities:

• trH [τ ] has a continuous uniform limit, trH [1], as τ ր 1.
• H, Z, H, ∇(trH), and M have L2-limits as τ ր 1.

The proof is given in Section 5.2. Below, we list a few related remarks:

• With more careful arguments, one can show more regularity for the limits in
Corollary 5.2. In general, the limit of a quantity at t = 1 can have the same
regularity as its initial value. For example, as one assumes B0-control for
H [0], then H [1] should also be a B0-type limit for the H[τ ]’s. 18 Similarly,
one expects H1/2-type limits for H [τ ] and Z[τ ] as τ ր 1.

• It is also possible to show that (S, γ[1]) satisfies (r2). This is the natural
continuation of the fact that the (S, γ[τ ])’s satisfy (r2) uniformly.

• From the second equation in (4.11), one sees that the Gauss curvatures
K[τ ] converge, as τ ր 1, weakly to 1− (trH)/2; see also (5.4).

Some of the limits from Corollary 5.2, in principle, have physical significance.
For instance, for certain asymptotically spherical foliations, the limits for M and
Z can be connected to the Bondi mass and the angular momentum associated with
N . This will be discussed in further detail in [1].

5.2. Proof of Corollary 5.2. Fix X,Y ∈ C∞T 1
0S. For convenience, we also

denote by X and Y their equivariant transports, i.e., the fields

X,Y ∈ C∞T 1
0N , X [τ ] = X .

In addition, fix 0 ≤ τ < τ ′ < 1 and x ∈ S. First, we estimate the difference

|γ[τ ′](X,Y )− γ[τ ](X,Y )||x .

∫ τ ′

τ

|(Ltγ)[w](X,Y )||xdw

.

∫ τ ′

τ

|H [w]||X ||Y ||xdw,

where the | · |’s in the integrand on the right-hand side is with respect to γ[w].
Moreover, by the (r0) condition uniformly satisfied by the (S, γ[w])’s,

‖X‖L∞,∞
t,x

+ ‖Y ‖L∞,∞
t,x

. 1,

independently of w. Thus,

|γ[τ ′](X,Y )− γ[τ ](X,Y )||x . (τ ′ − τ)
1

2 ‖H‖L∞,2
x,t

,

17As all the J [τ ]’s, where 0 ≤ τ ≤ 1, are comparable (see [19, Sect. 4.3]), then this convergence
is in fact independent of the volume form ǫ[τ ] chosen for the L2-norm.

18This can shown rigorously using the coordinate-based Besov-type norms from [19].



NULL CONES TO INFINITY 35

and it follows that γ[τ ](X,Y ) converges uniformly as τ ր 1 to a continuous limit.
Since this limit clearly depends C∞S-linearly on both X and Y , it follows that this
limit defines a continuous (Riemannian) metric γ[1] on S.

Next, since LtJ = trH · J by (3.5), and since ǫ[τ ] = J [τ ]ǫ[0], by an argument
similar to the above, we also obtain analogous continuous limits for J and ǫ.

For the limiting connection, we again use F to also denote the equivariant trans-
port of F as in the hypothesis. Applying the first identity in (3.4), we obtain

|Lt∇F | . |∇LtF |+ |∇k||F | . |∇k||F |.

As a result, for any G ∈ C∞T l+1
r S, we can estimate

‖∇τ ′

F (G) −∇τF (G)‖L2
x
.

∥

∥

∥

∥

∥

∫ τ ′

τ

|Lt∇F [w]||G|dw

∥

∥

∥

∥

∥

L2
x

.

∥

∥

∥

∥

∥

∫ τ ′

τ

|∇k[w]|dw

∥

∥

∥

∥

∥

L2
x

‖F‖L∞,∞
t,x

‖G‖L∞,∞
t,x

. (τ ′ − τ)
1

2 ‖∇H‖L2,2
t,x
.

Note that since the J [w]’s are all mutually comparable, the specific choice of γ[w]
with which to define the above L2-norms does not matter. From the estimate, it
follows that ∇τF (G) has an L2-limit as τ ր 1. As before, it is clear that this
limit is C∞S-linear with respect to G, hence we obtain an L2-tensor field ∇1F ,
which represents the (L2-)limit of ∇τF as τ ր 1. Furthermore, from distributional
considerations, one can show that this operator ∇1 corresponds to the (weak) Levi-
Civita connection associated with γ[1]; see, for instance, [14].

It remains only to derive limits for the renormalized Ricci coefficients. The
arguments for all the quantities are rather similar. For example,

‖M [τ ′]−M [τ ]‖L2
x
.

∥

∥

∥

∥

∥

∫ τ ′

τ

∇tM [w]dw

∥

∥

∥

∥

∥

L2
x

. ‖∇tM‖L2,1
x,t[τ,τ

′],

where the norm on the right-hand is over the segment of N corresponding to the
region τ ≤ t ≤ τ ′. By the estimate for ∇tM in (5.3), the right-hand side becomes
arbitrarily small as τ ′ − τ → 0. It follows that M [τ ] has an L2-limit as τ ր 1.

The remaining L2-estimates for H , Z, H , and ∇(trH) are obtained similarly.
The only complication is the tensorial nature of the limits, which can be handled
in a similar manner as in the arguments for γ[1] and ∇1. Finally, to see that trH
has a continuous limit, one needs only note that by (4.9),

‖∇t(trH)‖L∞,1
x,t

. ‖H‖2
L∞,2

x,t
< ∞.

5.3. The Physical Main Theorem. The final task, besides the proof of Theorem
5.1, is to translate the contents of Theorem 5.1 back into the physical setting. In
other words, we want to state its hypotheses and conclusions in terms of /γ, s, the
Ricci coefficients (χ, χ, ζ), and the curvature components (α, β, ρ, σ, β).

Since the level spheres Sv, with respect to /γ, do not generally have near-unit
area, we must, for technical reasons, define our Sobolev and Besov norms in the
physical setting slightly differently. To be more specific, we wish for our norms here
to be natural rescalings of the corresponding norms defined in Sections 2.2.
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First, given b ∈ R, Ψ ∈ C∞T r
lN , and v ≥ s0, we define the Sobolev norm

(5.5) ‖Ψ[v]‖/Hb
x
= ‖(v−2I − /∆)

b
2Ψ[v]‖/L2

x
,

Similarly, we define the Besov norm

(5.6) ‖Ψ[v]‖/Bb
x
= v−b

∑

k≥0

2bk‖PkΨ[v]‖/L2
x
+ v−b‖P<0Ψ[v]‖/L2

x
,

where the Pk’s and P<0 are the L-P operators, with respect to the renormalized
metric γ. 19 One can compute directly the following scaling relations:

(5.7) ‖Ψ[v]‖Hb
x
= vl−r−1+b‖Ψ[v]‖/Hb

x
, ‖Ψ[v]‖Bb

x
= vl−r−1+b‖Ψ[v]‖/Bb

x
.

The left hand sides in (5.7) are stated with respect to γ and s.
We can now state fully the physical version of our main theorem.

Theorem 5.3. Assume the constructions of Sections 4.1, 4.2, and 4.4, and assume
all quantities are defined with respect to /γ and s. Assume also the following:

• m ≥ 0, and s0 > 2m.
• S, with the normalized metric s−2

0 /γ[s0], satisfies (r2)C,N .
• The following curvature flux bounds hold:

s
− 3

2

0 ‖s2α‖/L2,2
s,x

+ s
− 3

2

0 ‖s2β‖/L2,2
s,x

+ s
1

2

0 ‖β‖/L2,2
s,x

≤ Γ,(5.8)

s
− 1

2

0

∥

∥

∥

∥

s

(

ρ+
2m

s3

)∥

∥

∥

∥

/L2,2
s,x

+ s
− 1

2

0 ‖sσ‖/L2,2
s,x

≤ Γ,

• The following initial value bounds hold on S = Ss0 :

s0

∥

∥

∥

∥

(

/trχ−
2

s0

)

[s0]

∥

∥

∥

∥

/L∞

x

+ s
1

2

0 ‖(χ− s−1
0 /γ)[s0]‖/H1/2

x
≤ Γ,(5.9)

s
1

2

0 ‖ζ[s0]‖/H1/2
x

+

∥

∥

∥

∥

[

χ+ s−1
0

(

1−
2m

s0

)

/γ

]

[s0]

∥

∥

∥

∥

/B0
x

≤ Γ,

s0‖/∇(/trχ)[s0]‖/B0
x
+ s0

∥

∥

∥

∥

(

µ−
2m

s30

)

[s0]

∥

∥

∥

∥

/B0
x

≤ Γ.

If Γ is sufficiently small, with respect to C and N , then

s−1
0

∥

∥

∥

∥

s2
(

/trχ−
2

s

)∥

∥

∥

∥

/L∞,∞
s,x

. Γ,(5.10)

s
− 1

2

0 ‖s(χ− s−1/γ)‖/L∞,2
x,s

+ s
− 1

2

0 ‖sζ‖/L∞,2
x,s

. Γ,

s−1
0 ‖s

3

2 (χ− s−1/γ)‖/L4,∞
x,s

+ s−1
0 ‖s

3

2 ζ‖/L4,∞
x,s

. Γ,

s
− 3

2

0 ‖/∇s[s
2(χ− s−1/γ)]‖/L2,2

s,x
+ s

− 1

2

0 ‖s/∇χ‖/L2,2
s,x

+ s
− 1

2

0 ‖χ− s−1/γ‖/L2,2
s,x

. Γ,

s
− 3

2

0 ‖/∇s(s
2ζ)‖/L2,2

s,x
+ s

− 1

2

0 ‖s/∇ζ‖/L2,2
s,x

+ s
− 1

2

0 ‖ζ‖/L2,2
s,x

. Γ,

s−1
0 ‖s2/∇(/trχ)‖/L2,∞

x,s
+ s−1

0

∥

∥

∥

∥

s2
(

µ−
2m

s3

)∥

∥

∥

∥

/L2,∞
x,s

. Γ,

∥

∥

∥

∥

χ+ s−1

(

1−
2m

s

)

/γ

∥

∥

∥

∥

/L2,∞
x,s

. Γ.

19More specifically, we consider the spectral decomposition of ∆, not /∆.
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Thanks to (4.7) and (5.7), Theorem 5.3 follows immediately from Theorem 5.1.
Indeed, all the assumptions from Theorem 5.1 are the same as those in Theorem
5.3, after applying the aforementioned renormalizations and changes of variables.
Moreover, the conclusions from Theorem 5.1 include those in Theorem 5.3.

Remark. One can also define variants of the /H- and /B-norms, involving integrals
over both s and the spheres. Then, the Sobolev and Besov estimates in (5.3) will
also translate directly to corresponding Sobolev and Besov estimates in (5.10).

5.4. Some Extensions and Consequences. Recall that throughout this section,
we have assumed that N remains a smooth null hypersurface of (M, g) extending
to infinity. With a carefully constructed setup, however, one can actually assume a
bit less. To demonstrate, we suppose only that the null geodesics λp, p ∈ S, which
generate N never intersect each other. In particular, we leave open the possibility
of null conjugate points forming along some λp.

From local considerations, we know that N is smooth on some sufficiently small
interval, say, 0 ≤ t < δ, where δ ∈ (0, 1]. Suppose in addition the initial value
assumptions (5.9) hold, and suppose the curvature flux assumptions (5.8) hold on
the null cone segment Nδ ≃ [0, δ)×S2. 20 In this case, one can still apply the same
analytical process as in the proof of Theorem 5.1 (see Section 6) in order to obtain
the bounds (5.3), and hence (5.10), on Nδ.

In particular, this restricted version of (5.10) implies /trχ is uniformly bounded
on Nδ. That /trχ does not blow up implies no null conjugate points can form on Nδ,
nor at its upper boundary t = δ; see [5]. As a result, N remains smooth on some
strictly larger interval 0 ≤ t < δ′, with δ < δ′ ≤ 1. Now, if the (weighted) curvature
flux remains small on Nδ′ = [0, δ′)× S, we can repeat the above argument. Thus,
(5.10) holds on Nδ′ , and no null conjugate points can form when 0 ≤ t ≤ δ′.

If this curvature flux (5.8) can be shown to remain sufficiently small on any Nδ,
independently of 0 ≤ δ < 1, one can show that no null conjugate points form on
all of N . Moreover, the estimates (5.3) and (5.10) hold on N , and hence we have
recovered entirely the conclusions of Theorems 5.1 and 5.3. This type of argument
has been used, e.g., in [12, 17] for finite null cones beginning from a point.

Throughout this section, we have used the affine parameter s as a substitute for
the radii r of the level spheres of s, where r is defined here as the function 21

r : [s0,∞) → R, r(v) =

(

1

4π

∫

Sv

d/ǫ

)
1

2

.

In other words, 4π[r(v)]2 is precisely the area of Sv, with respect to /γ. Although
s is simpler to handle, r is often more relevant for physical considerations (e.g., in
the definition of the Hawking mass below). Consequently, it is important to justify
this heuristic that s and r are nearly the same.

To see this, we express r/s in terms of γ and t:

r(v)

v
=





1

4π

∫

S
1−

s0
v

dǫ





1

2

=

(

1

4π

∫

S2

J [1− s0v
−1] · dǫ[0]

)
1

2

.

20In fact, since we have not eliminated the possibility of conjugate points beyond Nδ, the Ricci
and curvature coefficients need not be well-defined beyond Nδ.

21Recall that s and r coincide for the Schwarzschild null cones in Section 4.3.
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Recall J is the Jacobian factor from (3.5). Since J is uniformly close to 1 on N
(see [19, Prop. 4.5] or the proof of Corollary 5.2), it follows that r/s also remains
uniformly near 1. Furthermore, since J has a continuous limit at t ր 1 by Corollary
5.2, it follows that r/s has a limit, which is itself close to 1, as s ր ∞.

Finally, recall that the Hawking mass of the level sphere Sv is

m(v) =
r(v)

2

(

1 +
1

16π

∫

Sv

/trχ · /trχ · d/ǫ

)

=
r(v)

8π

∫

Sv

µd/ǫ,

where r is as before; see [4]. Since M has an L2-limit as t ր 1 by Corollary 5.2, it
follows that the Hawking masses m(v) also have a limit as v ր ∞.

In the case that the Sv’s become asymptotically round, in the sense that the
renormalized Gauss curvatures K converge to 1 as v ր ∞, the limit of the Hawking
masses should correspond to the Bondi energy associated with N . 22 In our setting,
however, there is no reason to expect that these Sv’s in general actually satisfy this
asymptotic roundness property. In the sequel [1] to this paper, we undertake the
challenge of constructing such an asymptotically round family along N , given the
same assumptions as in Theorem 5.3. Furthermore, we control the resulting Bondi
energy by the weighted flux of curvature and the initial data of N .

6. Proof of Theorem 5.1

This section is dedicated solely to the proof of Theorem 5.1 (and hence Theorem
5.3). From now on, we assume the hypotheses of Theorem 5.1. Unless otherwise
stated, all geometric objects are defined with respect to γ and t.

In addition, given any δ ∈ (0, 1), we define Nδ to be the initial subsegment
[0, δ]× S2 of N , i.e., the segment of N with 0 ≤ t ≤ δ.

6.1. Outline. As in previous works (e.g., [8, 24]), the foundation of the proof is
a grand bootstrap, or continuity, argument. In this process, we impose a set of
bootstrap assumptions, stated as estimates, on our system. We then use these
assumptions in order to prove strictly better versions of these estimates. Below, we
give a precise description of this bootstrap argument.

We say that (BA)δ,∆ holds iff the following estimate holds on Nδ:

‖H‖N1

t,x∩L∞,2
x,t

+ ‖Z‖N1

t,x∩L∞,2
x,t

+ ‖∇H‖N0⋆
t,x+B2,0

t,x
+ ‖∇Z‖N0⋆

t,x+B2,0
t,x

≤ ∆.

In the above inequality, all the norms are evaluated only over the sub-cone Nδ. The
proof of Theorem 5.1 can now be outlined as follows:

(1) First, note that (BA)δ,∆ holds trivially when δ ց 0.
(2) Fix an arbitrary δ ∈ (0, 1), and assume (BA)δ,∆ holds, with Γ ≪ ∆ ≪ 1.
(3) Using the structure equations, i.e., Proposition 4.2, we show that the quan-

tities on the left-hand side of the (BA)δ,∆ condition can in fact be bounded
by a constant (depending on C and N) times Γ +∆2.

(4) With sufficiently small Γ and ∆, the above implies that (BA)δ,∆/2 holds.
(5) The implication (BA)δ,∆ ⇒ (BA)δ,∆/2 established above for arbitrary

δ ∈ (0, 1), combined with a standard continuity argument, implies that
(BA)δ,∆/2 holds unconditionally for every δ ∈ (0, 1).

22In the case that a viable future null infinity I+ is defined, the Bondi energy represents the
energy remaining in the ambient spacetime at the cut where N intersects I+.
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The above will suffice to complete the proof of Theorem 5.1.
The points (1), (4), (5) are standard features of continuity arguments. Thus,

in the remainder of this section, we will focus entirely on the main steps (2) and
(3) of the bootstrap argument: establishing improved estimates from the bootstrap
assumptions. We fix throughout δ ∈ (0, 1), and we work entirely on the segment
Nδ—in particular, all integral norms over both t and x are assumed to be over Nδ.
Moreover, we assume that (BA)δ,∆ holds on Nδ. The objective, then, is to show
that (BA)δ,∆′ holds, with ∆′ .C,N Γ +∆2.

Next, we present a brief outline of the process behind establishing (2) and (3).
The first task is to establish the regularity conditions (F2) and (K), as defined
in Sections 3.5 and 3.7. This step is essential, as it validates all the technical
tools described throughout Sections 2 and 3. These regularity conditions are conse-
quences of the bootstrap assumptions, and are a main reason why these bootstrap
assumptions are fundamental to the overall argument.

The (F0) condition follows immediately from the (BA) assumption. For the full
(F2) condition, we have to work a bit harder; in particular, we need control for the
curl C of the second fundamental form k = H . Fortunately, C has special structure,
given by the Codazzi equations in (4.11), which, along with (BA), grants it the
required control. Finally, for the (K) condition, we combine the Gauss equation in
(4.11) along with the second equation in (4.10). This, along with (BA), suffices to
decompose the Gauss curvature K as in the (K) condition. In particular, the only
term in the equation for K which is not L2-controlled is the divergence of Z.

With the regularity conditions established, we next focus on obtaining the re-
quired improved estimates. Many of the quantities, e.g., trH , H, M , can be con-
trolled by exploiting the evolution equations that they satisfy; see (4.9) and (4.12).
For H and Z, however, one also requires the elliptic estimates of (4.10). These
estimates are handled in essentially the same manner as in [8, 24].

To control ∇H and ∇Z in the sum norm (see the (BA) condition), we resort
again to the elliptic equations (4.10). The main idea is similar to that in [8, 24],
except that we no longer require an infinite decomposition. Roughly, looking at
the right-hand sides in (4.10), the curvature quantities B and R must be controlled
in the N0⋆-norm using (4.13), while M and ∇(trH) must be controlled in Besov
norms using (4.12). Our use of a sum norm in the (BA) assumption allows us to
take only one iteration of this decomposition and then simply reapply the (BA)
assumption. 23 This significantly simplifies the decomposition process.

In the above, we have obtained improved estimates for

‖H‖N1
t,x
, ‖∇H‖N0⋆

t,x+B2,0
t,x

, ‖Z‖N1
t,x
, ‖∇Z‖N0⋆

t,x+B2,0
t,x

.

The remaining improved estimates for H and Z in the sharp trace norm can now
be obtained from Corollary 3.12. This completes the proof of steps (2) and (3),
and hence concludes the bootstrap argument. Moreover, all the desired estimates
in (5.3) will have been established within this bootstrap argument.

In the remainder of this section, we accomplish steps (2) and (3) in full detail.

6.2. Regularity Conditions. As mentioned before, the first goal is the (F2)
condition (see Section 3.5). We begin by establishing some trivial properties.

Lemma 6.1. Suppose (BA)δ,∆ holds. Then:

23In contrast, in [8, 17, 24], one must iterate this decomposition infinitely many times.
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• (Nδ, γ) satisfies (F0)C,N,∆.
• The following estimates hold:

(6.1) ‖H‖L4,∞
x,t

+ ‖Z‖L4,∞
x,t

.C,N ∆.

Proof. Since k = H , then (BA)δ,∆ combined with the fact that (S2, γ[0]) satisfies
(r0)C,N implies the (F0)C,N,∆ condition on (Nδ, γ). Using this (F0) condition,
along with (3.15) and (BA)δ,∆, we obtain the bounds

‖H‖L4,∞
x,t

. ‖H [0]‖L4
x
+∆, ‖Z‖L4,∞

x,t
. ‖Z[0]‖L4

x
+∆.

This implies (6.1), since by (2.6),

‖H [0]‖L4
x
. ‖H [0]‖

H
1/2
x

. Γ, ‖Z[0]‖L4
x
. ‖Z[0]‖

H
1/2
x

. Γ. �

The next goal is the full (F2) condition. For this, though, we require first some
commutator estimates between ∇ and the integral ∫ t0.

Lemma 6.2. Suppose (BA)δ,∆ holds.

• There exists D ∈ C∞T 0
3N such that

(6.2) ∇tD = C, ‖D‖N1

t,x∩L∞,2
x,t ∩L4,∞

x,t
.C,N ∆.

• If Ψ ∈ C∞T r
lN , then the following commutator estimates hold:

‖∇∫ t0Ψ‖L2,2
t,x

.C,N,r,l ‖∫
t
0∇Ψ‖L2,2

t,x
+∆‖Ψ‖L2,2

t,x
,(6.3)

‖∫ t0∇Ψ‖L2,2
t,x

.C,N,r,l ‖∇∫ t0Ψ‖L2,2
t,x

+∆‖Ψ‖L2,2
t,x
.

• (Nδ, γ) satisfies (F2)C,N,∆.

Proof. Recalling that k = H , the Codazzi equations in (4.11) imply

Cabc = −ǫbcǫa
d[(1 − t)Bd − Zd] + (1− t)(HabZc −HacZb).

Combining this with the evolution equation for Z in (4.9) yields

Cabc = ∇t[(1 − t)ǫbcǫa
dZd] + (1− t)(HabZc −HacZb + 2ǫbcǫa

dγefHdeZf)

+ 2ǫbcǫa
dZd

= ∇tI1 + I2.

If we define D = I1 + ∫ t0I2, then ∇tD = C, as desired. Moreover, by (BA)δ,∆,

(6.4) ‖∇tD‖L2,2
t,x

= ‖C‖L2,2
t,x

. ‖∇H‖L2,2
t,x

. ∆.

Similarly, for the L∞,2
x,t -bound for D, we first control

‖I1‖L∞,2
x,t

. ‖Z‖L∞,2
x,t

. ∆.

Next, each term in I2, except for the last term (∼ Z), can be written as a product
J1 · J2, where by (3.12) and (BA)δ,∆, the factors can be bounded

‖J1‖L∞,2
x,t

+ ‖J2‖L∞,2
x,t

. ∆, ‖∫ t0(J1 · J2)‖L∞,2
x,t

. ‖J1‖L∞,2
x,t

‖J2‖L∞,2
x,t

. ∆2.

It follows that
‖∫ t0I2‖L∞,2

x,t
. ‖∫ t0Z‖L∞,2

x,t
+∆2 . ∆.

As a result, recalling also the (F0)C,N,∆ condition, we obtain

(6.5) ‖D‖L2,2
t,x

. ‖D‖L∞,2
x,t

. ‖I1‖L∞,2
x,t

+ ‖∫ t0I2‖L∞,2
x,t

. ∆.
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To control ∇D, though, we must first prove the commutator estimate (6.3).
Recalling the commutation identity (3.4) along with (3.12), we obtain

‖∇∫ t0Ψ− ∫ t0∇Ψ‖L2,2
t,x

. ‖∫ t0(k ⊗∇∫ t0Ψ)‖L2,2
t,x

+ ‖∫ t0(C⊗ ∫ t0Ψ)‖L2,2
t,x

. ‖H‖L∞,2
x,t

‖∇∫ t0Ψ‖L2,2
t,x

+ ‖∫ t0(∇tD⊗ ∫ t0Ψ)‖L2,2
t,x
.

Applying (F0)C,N,∆, integrating by parts, and recalling (3.12), then

‖∇∫ t0Ψ− ∫ t0∇Ψ‖L2,2
t,x

. ∆‖∇∫ t0Ψ‖L2,2
t,x

+ ‖D⊗ ∫ t0Ψ‖L2,2
t,x

+ ‖∫ t0(D⊗Ψ)‖L2,2
t,x

. ∆‖∇∫ t0Ψ‖L2,2
t,x

+ ‖D‖L∞,2
x,t

‖Ψ‖L2,2
t,x

. ∆‖∇∫ t0Ψ‖L2,2
t,x

+∆‖Ψ‖L2,2
t,x
.

The estimates in (6.3) follow immediately from this and the assumption ∆ ≪ 1.
We can now control ∇D. First of all, from (BA)δ,∆,

‖∇I1‖L2,2
t,x

. ‖∇Z‖L2,2
t,x

. ∆.

For ∇I2, note that J1 and J2, defined as before, satisfy

‖J1‖L∞,2
x,t ∩L4,∞

x,t
+ ‖∇J1‖L2,2

t,x
+ ‖J2‖L∞,2

x,t ∩L4,∞
x,t

+ ‖∇J2‖L2,2
t,x

. ∆,

where we used (BA)δ,∆ and (6.1). Thus, applying (6.3) and (3.12), we obtain

‖∇∫ t0(J1 · J2)‖L2,2
t,x

. ‖∫ t0∇(J1 · J2)‖L2,2
t,x

+ ‖J1 · J2‖L2,2
t,x

. ‖∇J1‖L2,2
t,x
‖J2‖L∞,2

x,t
+ ‖J1‖L∞,2

x,t
‖∇J2‖L2,2

t,x
+ ‖J1‖L∞,2

x,t
‖J2‖L2,∞

x,t

. ∆2.

Therefore, applying (6.3) again,

‖∇∫ t0I2‖L2,2
t,x

. ‖∇Z‖L2,2
t,x

+ ‖Z‖L2,2
t,x

+∆2 . ∆.

Combining the above, we obtain

(6.6) ‖∇D‖L2,2
t,x

. ∆.

From the above estimates (6.4)-(6.6), along with (3.15), we obtain (6.2). The
(F2)C,N,∆ condition now follows from (6.2) and (BA)δ,∆. �

6.3. The Curvature Condition. For the necessary elliptic estimates, we will also
need the (K) condition. The first step is a number of transport equation estimates.

Lemma 6.3. If (BA)δ,∆ holds, then the following estimates hold:

‖ trH‖L∞,∞
t,x

.C,N Γ +∆2,(6.7)

‖H‖
H

∞,1/2
t,x

+ ‖Z‖
H

∞,1/2
t,x

.C,N ∆,

‖∇tH‖L2,2
t,x

+ ‖H‖L2,∞
x,t

.C,N ∆,

‖∇t∇(trH)‖L2,1
x,t

+ ‖∇(trH)‖L2,∞
x,t

.C,N Γ +∆2,

‖∇tM‖L2,1
x,t

+ ‖M‖L2,∞
x,t

.C,N Γ +∆2.
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Proof. First, taking the trace of the first equation in (4.9) yields

∇t(trH) = −γabγcdHacHbd.

Applying ∫ t0 to the above and recalling (3.13) and (BA)δ,∆, we obtain

‖ trH‖L∞,∞
t,x

. ‖ trH [0]‖L∞

x
+ ‖H‖2

L∞,2
x,t

. Γ +∆2.

This proves the first estimate in (6.7). Moreover, from the (F2)C,N,∆ condition
(see Lemma 6.2) and (3.16), we obtain the second estimate in (6.7):

‖H‖
H

∞,1/2
t,x

+ ‖Z‖
H

∞,1/2
t,x

. ‖H [0]‖
H

1/2
x

+ ‖Z[0]‖
H

1/2
x

+∆ . ∆.

Applying (5.1), (BA)δ,∆, and (6.1) to the last equation in (4.9) yields

‖∇tH‖L2,2
t,x

. ‖R‖L2,2
t,x

+ ‖∇Z‖L2,2
t,x

+ ‖H‖L∞,2
x,t

(1 + ‖H‖L2,∞
x,t

) + ‖Z‖L∞,2
x,t

‖Z‖L2,∞
x,t

. ∆(1 + ‖H‖L2,∞
x,t

).

Moreover, recalling (3.13) and the fact that δ ≤ 1, we have

‖H‖L2,∞
x,t

. ‖H[0]‖L2
x
+ ‖∇tH‖L2,2

t,x
. Γ + ‖∇tH‖L2,2

t,x
.

Combining the above and recalling that ∆ ≪ 1 yields the third estimate in (6.7).

Next, we take an L2,1
x,t-norm of the first equation in (4.12):

‖∇t∇(trH)‖L2,1
x,t

. ‖H ⊗∇H‖L2,1
x,t

. ‖H‖L∞,2
x,t

‖∇H‖L2,2
t,x

. ∆2.

In particular, we applied (BA)δ,∆. Keeping in mind (3.13), then

‖∇(trH)‖L2,∞
x,t

. ‖∇(trH)[0]‖L2
x
+ ‖∫ t0∇t∇(trH)‖L2,∞

x,t

. ‖∇(trH)[0]‖L2
x
+ ‖∇t∇(trH)‖L2,1

x,t

. Γ +∆2.

This proves the fourth part of (6.7).
The remaining estimates for M are analogous. From the second equation in

(4.12), we see that ∇tM can be decomposed as I0 + I1 + I2, where:

• I0 = −3ms−1
0 (trH) satisfies, due to (6.7),

‖I0‖L∞,∞
t,x

. ‖ trH‖L∞,∞
t,x

. Γ + ∆2.

• I1 can be expressed as sums of terms of the form J1 · J2, where

‖J1‖L∞,2
x,t

. ∆, ‖J2‖L2,2
t,x

. ∆,

• I2 can be written as sums of terms of the form K1 ·K2 ·K3, with

‖K1‖L∞,2
x,t

. ∆, ‖K2‖L∞,2
x,t

. ∆, ‖K3‖L2,∞
x,t

. ∆.

As a result, recalling (3.13), (5.2), and (BA)∆,δ, we obtain

‖∇tM‖L2,1
x,t

. ‖I0‖L∞,∞
t,x

+ ‖J1‖L∞,2
x,t

‖J2‖L2,2
t,x

+ ‖K1‖L∞,2
x,t

‖K2‖L∞,2
x,t

‖K3‖L2,∞
x,t

. Γ +∆2,

‖M‖L2,∞
x,t

. ‖M [0]‖L2
x
+ ‖∇tM‖L2,1

x,t

. Γ +∆2.

This proves the final estimate in (6.7). �

With these transport equation estimates, we can now prove the (K) condition.



NULL CONES TO INFINITY 43

Lemma 6.4. Suppose (BA)δ,∆ holds. Then:

• (Nδ, γ) satisfies (K)1,D for some D . ∆, with D ≪ 1.
• The following estimates hold for K:

(6.8) ‖K − 1‖L2,2
t,x

. ∆, ‖K − 1‖
H

∞,−1/2
t,x

. ∆.

Proof. Combining the equations for K and D1Z in Proposition 4.2, we see that

K − 1 = −
1

2
trH + (1 − t)

[

γab∇aZb −M +
1

2

(

1−
2m

s

)

trH −
1

4
trH trH

]

.

In terms of the definition of the (K) condition from Section 3.7, we take f ≡ 1,
V = (1− t)Z, and W the remaining terms of the above equation. By (6.7),

‖V ‖
H

∞,1/2
t,x

. ‖Z‖
H

∞,1/2
t,x

. ∆,

‖W‖L2,∞
x,t

. ‖ trH‖L2,∞
x,t

+ ‖M‖L2,∞
x,t

+ (1 + ‖ trH‖L∞,∞
t,x

)‖ trH‖L2,∞
x,t

. ∆.

This yields (K)1,D, with D . ∆. For (6.8), we use the second equation in (4.11)
(along with (5.1), (BA)δ,∆, and (6.7)) and then (3.28). �

6.4. Sobolev Estimates. The next step is to obtain N1-estimates for H and Z.
This is the first part of the improved versions of the bootstrap assumptions.

Lemma 6.5. If (BA)δ,∆ holds, then

‖H‖N1

t,x
+ ‖Z‖N1

t,x
.C,N Γ +∆2.(6.9)

Proof. From the first equation in (4.9), (5.1), (BA)δ,∆, and (6.1), we have

‖∇tH‖L2,2
t,x

. ‖H‖L∞,2
x,t

‖H‖L2,∞
x,t

+ Γ . Γ +∆2.

A similar process using the second equation in (4.9) yields

‖∇tZ‖L2,2
t,x

. Γ +∆2.

Next, applying (K)1,D and (2.8) to the second equation in (4.10), we obtain

‖∇Z‖L2,2
t,x

+ ‖Z‖L2,2
t,x

. ‖R‖L2,2
t,x

+ ‖M‖L2,2
t,x

+ ‖H‖L∞,2
x,t

‖H‖L2,∞
x,t

.

By (BA)δ,∆, (5.1), and (6.7), we can bound

(6.10) ‖∇Z‖L2,2
t,x

+ ‖Z‖L2,2
t,x

. Γ +∆2.

Similarly, using (2.9) on the first equation in (4.10) yields

‖∇H‖L2,2
t,x

+ ‖H‖L2,2
t,x

. ‖∇Ĥ‖L2,2
t,x

+ ‖Ĥ‖L2,2
t,x

+ ‖∇(trH)‖L2,∞
x,t

+ ‖ trH‖L∞,∞
t,x

. Γ +∆2 + ‖B‖L2,2
t,x

+ ‖Z‖L2,2
t,x

+ ‖H‖L∞,2
x,t

‖Z‖L2,∞
x,t

,

where we also applied (6.7). Applying (BA)δ,∆, (5.1), (6.1), and (6.10) yields

‖∇H‖L2,2
t,x

+ ‖H‖L2,2
t,x

. Γ +∆2.

By the definition of the N1
t,x-norm, the proof is complete. �

Next, we obtain some additional estimates for the curvature coefficients. Recall
the special covariant integral operator ∫ t⋆, which was defined in (3.2).



44 SPYROS ALEXAKIS, ARICK SHAO

Lemma 6.6. If (BA)δ,∆ holds, then

‖∫ t⋆A‖L∞,2
t,x

+ ‖∫ t⋆B‖L∞,2
t,x

.C,N ∆,(6.11)

‖∫ t⋆B‖N1i
t,x

+ ‖∫ t⋆R‖N1i
t,x

.C,N Γ +∆2,

‖B‖N0⋆
t,x

+ ‖R‖N0⋆
t,x

.C,N Γ +∆2.

Proof. It suffices to prove the first two estimates in (6.11) with ∫ t⋆Ψ replaced by
∫ t0(η+Ψ), since the remaining estimate for ∫ tδ(η−Ψ) can be obtained analogously.

First, using the first equation in (4.9), we can write

‖∫ t0(η+A)‖L∞,2
x,t

. ‖∫ t0(η+∇tH)‖L∞,2
x,t

+ ‖∫ t0(η+|H ||H |)‖L∞,2
x,t

= X0 +X1.

Using Hölder’s inequality, we have

X1 . ‖H‖2
L∞,2

x,t
. ∆2.

Moreover, integrating by parts and recalling that η+ vanishes at t = 0 yields

X0 . ‖η+H‖L∞,2
x,t

+ ‖∫ t0(η
′
+H)‖L∞,2

x,t
. ‖H‖L∞,2

x,t
+ δ−1‖∫ t0|H |‖L∞,2

x,t
. ∆.

Combining the above steps with a completely analogous computation using the
second equation in (4.9), we obtain the estimate

‖∫ t0(η+A)‖L∞,2
x,t

+ ‖∫ t0(η+B)‖L∞,2
x,t

. ∆.

From the preceding remarks, the first estimate of (6.11) follows.
We now consider the second part of (6.11). By (5.1), we immediately obtain

‖∇t∫
t
0(η+B)‖L2,2

t,x
+ ‖∫ t0(η+B)‖L2,2

t,x
. ‖B‖L2,2

t,x
. Γ.

Next, applying (2.8), (5.1), and (6.3), we obtain 24

‖∇∫ t0(η+B)‖L2,2
t,x

. ‖D1∫
t
0(η+B)‖L2,2

t,x
. ‖∫ t0(η+D1B)‖L2,2

t,x
+∆2.

From the second equation in (4.13),

‖∫ t0(η+D1B)‖L2,2
t,x

. ‖∫ t0(η+∇tR)‖L2,2
t,x

+ ‖∫ t0(η+|H |)‖L2,2
t,x

+ ‖∫ t0(η+|H ||R|)‖L2,2
t,x

+ ‖∫ t0(η+|Z||B|)‖L2,2
t,x

+ ‖∫ t0(η+H ⊗A)‖L2,2
t,x

= I0 + I1 + I2 + I3 + I4.

By (6.9), we obtain I1 . Γ +∆2. Also, I2 and I3 can be controlled using (3.12):

I2 . ‖H‖L∞,2
x,t

‖R‖L2,2
t,x

. ∆2, I3 . ‖Z‖L∞,2
x,t

‖B‖L2,2
t,x

. ∆2.

For I4, we first integrate by parts:

I4 = ‖∫ t0(η+H ⊗∇t∫
t
⋆A)‖L2,2

t,x

. ‖H ⊗ ∫ t⋆A‖L2,2
t,x

+ ‖δ−1∫ t0(|H ||∫ t⋆A|)‖L2,2
t,x

+ ‖∫ t0(|∇tH ||∫ t⋆A|)‖L2,2
t,x
.

Applying (3.12), Hölder’s inequality, (6.7), and the first part of (6.11), we obtain

I4 . ‖H‖L2,∞
x,t

‖∫ t⋆A‖L∞,2
x,t

+ ‖∇tH‖L2,2
t,x
‖∫ t⋆A‖L∞,2

x,t
. ∆2.

24Since ∇t annihilates both γ and ǫ, then ∫ t0 commutes with any of the symmetric Hodge

operators in the same way as it does with ∇. As a result, (6.3) applies here.
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Finally, for I0, we integrate by parts and apply (3.12) and (5.1):

I0 . ‖R‖L2,2
t,x

+ ‖δ−1∫ t0R‖L2,2
t,x

. Γ.

It follows from the above that

‖∫ t⋆B‖N1
t,x

. Γ +∆2.

Finally, for the initial value bound, we apply (3.16) to obtain

‖(∫ t⋆B)[0]‖
H

1/2
x

. ‖∫ tδ(η−B)[0]‖
H

1/2
x

. ‖∫ tδ(η−B)[δ]‖
H

1/2
x

+ ‖∫ tδ(η−B)‖N1

t,x
.

The first term on the right-hand side vanishes by definition, while the second term
can be bounded as in the preceding argument. As a result, we have

‖(∫ t⋆B)[0]‖
H

1/2
x

. ‖∫ t1(η−B)‖N1

t,x
. Γ + ∆2.

The above completes the Sobolev estimate for ∫ t⋆B in (6.11). The corresponding
estimate for ∫ t⋆R can be established using completely analogous methods. This
proves the second estimate in (6.11). The remaining estimate in (6.11) follows
immediately from the second estimate, since ∫ t⋆Ψ is a ∇t-antiderivative of Ψ. �

6.5. Transport-Besov Estimates. The next task is to obtain some basic Besov
and decomposition estimates from evolution relations.

Lemma 6.7. If (BA)δ,∆ holds, then

‖∇(trH)‖B∞,0
t,x

+ ‖M‖B∞,0
t,x

.C,N Γ +∆2,(6.12)

‖H ⊗H‖B2,0
t,x

.C,N ∆2,

‖∇tH‖N0⋆
t,x+B2,0

t,x
+ ‖H‖B∞,0

t,x
.C,N ∆.

Proof. From the first equation in (4.12), along with (3.14) and (3.22), we obtain

‖∇(trH)‖B∞,0
t,x

. ‖∇(trH)[0]‖B0
x
+ ‖∫ t0(H ⊗∇H)‖B∞,0

t,x

. Γ + ‖H‖N1i
t,x∩L2,∞

x,t
‖∇H‖N0⋆

t,x+B2,0
t,x

. Γ +∆2,

where we also applied (5.2) and (BA)δ,∆. The corresponding estimate for M is
similar, but requires first the remaining estimates for H .

Applying the fundamental theorem of calculus to H , we can write

‖H ⊗H‖B2,0
t,x

. ‖H ⊗ p(H [0])‖B2,0
t,x

+ ‖H ⊗ ∫ t0∇tH‖B2,0
t,x

= I1 + I2,

where p denotes the parallel transport operator defined in Section 3.2. The term
I1 can be controlled using (3.17), while I2 is bounded using (3.23):

‖H ⊗H‖B2,0
t,x

. ‖H‖N1i
t,x∩L∞,2

x,t
(‖H [0]‖B0

x
+ ‖∇tH‖N0⋆

t,x+B2,0
t,x

)(6.13)

. ∆2 +∆‖∇tH‖N0⋆
t,x+B2,0

t,x
.

In the last step, we applied (BA)δ,∆.
Next, we use the last equation in (4.9):

‖∇tH‖N0⋆
t,x+B2,0

t,x
. ‖∇Z‖N0⋆

t,x+B2,0
t,x

+ ‖H‖B2,0
t,x

+ ‖H ⊗H‖B2,0
t,x

+ ‖Z ⊗ Z‖B2,0
t,x

+ ‖R‖N0⋆
t,x

= I1 + I2 + I3 + I4 + I5.
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Using (3.20), (5.2), and (6.9), we can bound

I2 . ∆, I4 . ∆2,

while (6.11) and (BA)δ,∆ yield

I5 . Γ +∆2, I1 . ∆.

As a result, we obtain

(6.14) ‖∇tH‖N0⋆
t,x+B2,0

t,x
. ∆+ ‖H ⊗H‖B2,0

t,x
.

Combining (6.13) and (6.14) yields

‖H ⊗H‖B2,0
t,x

. ∆2, ‖∇tH‖N0⋆
t,x+B2,0

t,x
. ∆.

Moreover, applying (3.21) and (5.2), we have

‖H‖B∞,0
t,x

. ‖H[0]‖B0
x
+ ‖∫ t0∇tH‖B∞,0

t,x
. Γ + ‖∇tH‖N0⋆

t,x+B2,0
t,x

. ∆.

This proves the second and third inequalities of (6.12).
It remains to prove the Besov bound for M . As in the proof of (6.7), we decom-

pose ∇tM as I0 + I1 + I2; again, by the second equation in (4.12):

• I0 = −3ms−1
0 (trH) satisfies

‖I0‖B∞,0
t,x

. ‖∇(trH)‖L∞,2
t,x

+ ‖ trH‖L∞,2
t,x

. Γ +∆2,

where we applied (6.7) along with (2.2).
• I1 can be expressed as sums of terms of the form J1 · J2, where

25

‖J1‖N1i
t,x∩L∞,2

x,t
. ∆, ‖J2‖N0⋆

t,x+B2,0
t,x

. ∆,

• I2 can be written as sums of terms of the form K1 ·K2 ·K3, with

‖K1‖N1i
t,x∩L∞,2

x,t
. ∆, ‖K2 ·K3‖N0⋆

t,x+B2,0
t,x

. ∆.

More specifically, in most cases, we can bound, using (3.20) and (BA)δ,∆,

‖K2 ·K3‖B2,0
t,x

. ‖K2‖N1i
t,x
‖K3‖N1i

t,x
. ∆2.

The exception is when K2 ·K3 ≃ H ·H , for which we apply the second part
of (6.12), which was established in the preceding paragraph.

As a result, applying (3.14) and (3.22) yields

‖M‖B∞,0
t,x

. ‖M [0]‖B0
x
+ ‖I0‖B∞,0

t,x
+ ‖J1‖N1i

t,x∩L∞,2
x,t

‖J2‖N0⋆
t,x+B2,0

t,x

+ ‖K1‖N1i
t,x∩L∞,2

x,t
‖K2 ·K3‖N0⋆

t,x+B2,0
t,x

. Γ +∆2.

This completes the proof of the first inequality of (6.7). �

25In particular, for the term of the form Z ·B, we can take J2 to be B by applying (6.11).
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6.6. Advanced Curvature Estimates. Using Lemma 6.7, we can now prove
additional estimates for the renormalized curvature components. We begin with
the following preliminary trace-type estimates.

Lemma 6.8. If (BA)δ,∆ holds, then

(6.15) ‖(1− t)D−1
2 B‖L∞,2

x,t
+ ‖D−1

1 R‖L∞,2
x,t

.C,N ∆.

Proof. We apply the first equation in (4.10) to write

‖(1− t)D−1
2 B‖L∞,2

x,t
. ‖Ĥ‖L∞,2

x,t
+ ‖D−1

2 Z‖L2,∞
t,x

+ ‖D−1
2 ∇(trH)‖L2,∞

t,x

+ ‖D−1
2 (H · Z)‖L2,∞

t,x
.

The first term on the right-hand side is bounded by ∆ using (BA)δ,∆. The re-
maining terms can be controlled using (3.26) and (3.27):

‖(1− t)D−1
2 B‖L∞,2

x,t
. ∆+ ‖Z‖B2,0

t,x
+ ‖∇(trH)‖B2,0

t,x
+ ‖H ⊗ Z‖B2,0

t,x
.

The second term on the right-hand side is trivially bounded, while the third and
fourth terms are bounded using (6.12) and (3.20), respectively. This yields

‖(1− t)D−1
2 B‖L∞,2

x,t
. ∆+ Γ+∆2 . ∆,

as desired. By a similar argument using the second equation in (4.10), we obtain

‖D−1
1 R‖L∞,2

x,t
. ‖Z‖L∞,2

x,t
+ ‖D−1

1 M‖L2,∞
t,x

+ ‖D−1
1 (Ĥ · Ĥ)‖L2,∞

t,x

. ∆+ ‖M‖B2,0
t,x

+ ‖H ⊗H‖B2,0
t,x

.

Using (6.12) on the above completes the proof of (6.15). �

Our goal is the subsequent estimate, for which Lemma 6.8 is one part of its proof.

Lemma 6.9. If (BA)δ,∆ holds, then

‖∫ t⋆[(1 − t)∇D−1
2 B]‖N1i

t,x
+ ‖∫ t⋆∇D−1

1 R‖N1i
t,x

.C,N Γ +∆2,(6.16)

‖(1− t)∇D−1
2 B‖N0⋆

t,x
+ ‖∇D−1

1 R‖N0⋆
t,x

.C,N Γ +∆2.

Proof. Again, we need only prove the first part of (6.16) with ∫ t⋆Ψ replaced by
∫ t0(η+Ψ), as the corresponding estimates for ∫ tδ(η−Ψ) are completely analogous. As
in the proof of Lemma 6.6, we can apply (2.12) and (5.1) in order to obtain

‖∇t∫
t
0[(1− t)η+∇D−1

2 B]‖L2,2
t,x

+ ‖∫ t0[(1 − t)η+∇D−1
2 B]‖L2,2

t,x
. ‖∇D−1

2 B‖L2,2
t,x

. Γ.

An analogous estimate also yields

‖∇t∫
t
0(η+∇D−1

1 R)‖L2,2
t,x

+ ‖∫ t0(η+∇D−1
1 R)‖L2,2

t,x
. ‖∇D−1

1 R‖L2,2
t,x

. Γ.

For the spatial gradient, we let

IB = ‖∇∫ t0[(1− t)η+∇D−1
2 B]‖L2,2

t,x
, IR = ‖∇∫ t0(η+∇D−1

1 R)‖L2,2
t,x
.

Applying (2.7) and commuting ∇ and ∫ t0 using (6.3) yields

IB . ‖γab∇a∫
t
0[(1− t)η+∇bD

−1
2 B]‖L2,2

t,x
+ ‖ǫab∇a∫

t
0[(1− t)η+∇bD

−1
2 B]‖L2,2

t,x

+ ‖∫ t0[(1− t)η+∇bD
−1
2 B]‖L2,2

t,x

. ‖∫ t0[(1 − t)η+∆D−1
2 B]‖L2,2

t,x
+ ‖∫ t0[(1− t)|K||D−1

2 B|]‖L2,2
t,x

+ ‖∇D−1
2 B‖L2,2

t,x
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. ‖∫ t0[(1 − t)η+∆D−1
2 B]‖L2,2

t,x
+ ‖∫ t0[(1− t)|K − 1||D−1

2 B|]‖L2,2
t,x

+ ‖∫ t0(1− t)|D−1
2 B|‖L2,2

t,x
+ ‖∇D−1

2 B‖L2,2
t,x
.

Recalling the identities (2.1) and applying (2.12), (5.1), and (6.8), then

IB . ‖∫ t0[(1 − t)η+D
∗
2B]‖L2,2

t,x
+ ‖K − 1‖L2,2

t,x
‖(1− t)D−1

2 B‖L∞,2
x,t

+ Γ

. ‖∫ t0[(1 − t)∇t∫
t
0η+D

∗
2B]‖L2,2

t,x
+∆‖(1− t)D−1

2 B‖L∞,2
x,t

+ Γ

. ‖∫ t0(η+D
∗
2B)‖L2,2

t,x
+∆‖(1− t)D−1

2 B‖L∞,2
x,t

+ Γ.

An analogous argument also produces the estimate

IR . ‖∫ t0(η+D
∗
1R)‖L2,2

t,x
+∆‖D−1

1 R‖L∞,2
x,t

+ Γ.

Commuting once again using (6.3) and recalling (5.1) and (6.15) yields

IB . ‖∇∫ t0(η+B)‖L2,2
t,x

+ Γ+∆2,

IR . ‖∇∫ t0(η+R)‖L2,2
t,x

+ Γ +∆2.

The first terms on the right-hand sides can be bounded in the same manner as in
the proof of (6.11). Consequently, we obtain, as desired,

‖∫ t⋆[(1− t)∇D−1
2 B]‖N1

t,x
+ ‖∫ t⋆∇D−1

1 R‖N1

t,x
. Γ +∆2.

For the initial value bounds, we apply (3.16) like in the proof of (6.11),

‖∫ t⋆[(1− t)∇D−1
2 B][0]‖

H
1/2
x

. ‖∫ tδ[(1 − t)η−∇D−1
2 B]‖N1

t,x
. Γ +∆2,

‖∫ t⋆∇D−1
1 R[0]‖

H
1/2
x

. ‖∫ tδ(η−∇D−1
1 R)‖N1

t,x
. Γ +∆2,

where in the last steps, we applied the ∫ tδ-analogue of the preceding argument.
Combining all the above estimates completes the proof of the first estimate in (6.16).
The second estimate follows immediately from the first, since ∇t∫

t
⋆Ψ = Ψ. �

6.7. Completion of the Proof. We can now complete the proof of Theorem 5.1
by proving the strictly improved version of the bootstrap assumptions, (BA)δ,∆/2.
A part of this has already been done in (6.9). Here, we will prove the remaining
improved estimates associated with the (BA)δ,∆/2 condition.

Lemma 6.10. If (BA)δ,∆ holds, then

‖∇H‖N0⋆
t,x+B2,0

t,x
+ ‖∇Z‖N0⋆

t,x+B2,0
t,x

.C,N Γ +∆2,(6.17)

‖H‖L∞,2
x,t

+ ‖Z‖L∞,2
x,t

.C,N Γ +∆2.

Proof. First of all, since 2H = 2Ĥ + (trH)γ, we can bound

‖∇H‖N0⋆
t,x+B2,0

t,x
. ‖∇Ĥ‖N0⋆

t,x+B2,0
t,x

+ ‖∇(trH)‖B2,0
t,x

. ‖∇Ĥ‖N0⋆
t,x+B2,0

t,x
+ Γ+∆2,

where in the last step, we applied (6.7). For the term with Ĥ , we recall the identity
D−1

2 D2 = I and apply the first equation in (4.10) along with (3.27):

‖∇Ĥ‖N0⋆
t,x+B2,0

t,x
. ‖∇D−1

2 D2Ĥ‖N0⋆
t,x+B2,0

t,x

. ‖(1− t)∇D−1
2 B‖N0⋆

t,x
+ ‖Z‖B2,0

t,x
+ ‖∇(trH)‖B2,0

t,x
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+ ‖(1− t)(H ⊗ Z)‖B2,0
t,x

.

The third, second, and first term on the right-hand side are bounded using (6.7),
(6.9), and (6.16), respectively. From this, we have

‖∇Ĥ‖N0⋆
t,x+B2,0

t,x
. Γ +∆2 + ‖H ⊗ Z‖B∞,0

t,x
.

For the last term, we apply (3.20) and (6.9):

‖H ⊗ Z‖B∞,0
t,x

. ‖H‖N1i
t,x
‖Z‖N1i

t,x
. ∆2.

Combining above yields the desired bound for ∇H in (6.17).
By a similar argument using the second equation in (4.10), we obtain

‖∇Z‖N0⋆
t,x+B2,0

t,x
. ‖∇D−1

1 R‖N0⋆
t,x

+ ‖M‖B2,0
t,x

+ ‖H ⊗H‖B2,0
t,x

. Γ +∆2,

where in the last step, we applied (6.7), (6.12), and (6.16). The above considerations
complete the proof of the first estimate in (6.17).

For the second estimate, we apply (3.25) and recall that k = H :

‖H‖L∞,2
x,t

. (1 + ‖H‖L2,∞
x,t

)(‖H‖N1i
t,x

+ ‖∇H‖N0⋆
t,x+B2,0

t,x
),

‖Z‖L∞,2
x,t

. (1 + ‖H‖L2,∞
x,t

)(‖Z‖N1i
t,x

+ ‖∇Z‖N0⋆
t,x+B2,0

t,x
).

Recalling (3.15), (6.9), and the first part of (6.17), then, as desired,

‖H‖L∞,2
x,t

+ ‖Z‖L∞,2
x,t

. (1 + Γ +∆2)(Γ + ∆2) . Γ +∆2. �

Applying (6.9) and (6.17) and taking Γ (and hence ∆) sufficiently small yields the
strictly improved condition (BA)δ,∆/2. Thus, the bootstrap argument implies that
(BA)δ,∆ holds even without the bootstrap assumption. To obtain the estimates
(5.3), we simply recall the estimates (6.7), (6.8), (6.9), (6.12), and (6.17), and we
recall that ∆ is simply Γ times some (possibly large) constant. Furthermore, that
the (F2) and (K) conditions hold for (N , γ) follows from Lemmas 6.2 and 6.4.

It remains only to prove the refined curvature estimate (5.4). For this, we recall
the proof of Lemma 6.4, in particular, the identity

K − 1 = −
1

2
trH + (1 − t)

[

γab∇aZb −M +
1

2

(

1−
2m

s

)

trH −
1

4
trH trH

]

.

Given 0 ≤ τ < 1, we can restrict our attention to a small segment τ ≤ t < τ + ε
of the null cone N . Again, in terms of the definition of the (K) condition from
Section 3.7, we take f ≡ 1, V = (1− t)Z, and W the remaining terms of the above
equation. From main the estimates (5.3), we see that (K)1,D′ holds, with

D′ . sup
τ≤τ ′<τ+ε

‖ trH [τ ′]‖L2
x
+ (1− τ)Γ.

The estimate (5.4) now follows from (3.28) and by taking ε ց 0.
This concludes the proof of Theorem 5.1.
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