
Singular Ricci solitons and their stability under the Ricci

flow.

Spyros Alexakis∗ Dezhong Chen† Grigorios Fournodavlos‡

Abstract

We introduce certain spherically symmetric singular Ricci solitons and study their
stability under the Ricci flow from a dynamical PDE point of view. The solitons in
question exist for all dimensions n + 1 ≥ 3, and all have a point singularity where
the curvature blows up; their evolution under the Ricci flow is in sharp contrast to
the evolution of their smooth counterparts. In particular, the family of diffeomor-
phisms associated with the Ricci flow “pushes away” from the singularity causing the
evolving soliton to open up immediately becoming an incomplete (but non-singular)
metric. The main objective of this paper is to study the local-in time stability of
this dynamical evolution, under spherically symmetric perturbations of the singular
initial metric. We prove a local well-posedness result for the Ricci flow in suitably
weighted Sobolev spaces, which in particular implies that the “opening up” of the
singularity persists for the perturbations as well.
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1 Introduction

The question of defining solutions of geometric evolution equations with singular ini-
tial data is an interesting challenge and has been studied in recent years for a variety
of parabolic geometric PDE. For the Ricci flow, a number of solutions have been pro-
posed in various settings. Simon [17] obtained solutions for the Ricci flow for C0 initial
metrics that can be uniformly approximated by smooth metrics with bounded sectional
curvature. Koch and Lamm [16] showed existence and uniqueness for the Ricci-DeTurck
flow for initial data that are L∞-close to the Euclidean metric. Angenent, Caputo and
Knopf [3] considered initial data of neck-pinch type.1 They constructed a solution to the
flow starting from this singular initial metric, for which the singularity is immediately
smoothed out. This can be thought of as a (very weak) notion of surgery in that the
method of proof relies on a gluing construction to show the existence of such a solution,
but not uniqueness. Cabezas-Rivas and Wilking [5] have obtained solutions of the Ricci
flow on open manifolds with nonnegative (and possibly unbounded) complex sectional
curvature, using the Cheeger-Gromoll convex exhaustion of such manifolds.

More results have been obtained in the Kähler case and in dimension 2, where the
Ricci flow equation reduces to a scalar heat equation; we list a few examples: Chen,
Tian and Zhang [8] consider the Kähler-Ricci flow for initial data with C1,1 potentials
and construct solutions to the Ricci flow which immediately smooth out. The argument
is based on an approximation of the initial potential by smoother ones. Finally, more
results have been obtained in dimension 2 (see [15] for a survey): Giesen and Topping [13]
(building on earlier work by Topping [19]) have given a construction of Ricci flows on sur-
faces starting from any (incomplete) initial metric whose curvature is unbounded; these
solutions become instantaneously complete and are unique in the maximally stretched
class that they introduce. More recently yet [14], they constructed examples of immortal
solutions of the flow (on surfaces) which start out with a smooth initial metric, then the
supremum of the Gauss curvature becomes infinite for some finite amount of time before
becoming finite again.

This paper considers a special class of singular initial metrics and produces examples
of Ricci flow whose behavior is different from those listed above. Our initial metrics are
close to certain singular gradient Ricci solitons that we introduce separately in the first
part of this paper. The solitons exist in all dimensions n + 1 ≥ 3. Our main result is
that for small enough perturbations of the singular Ricci solitons, the Ricci flow admits
a unique solution, up to some time T > 0, within a natural class of evolving metrics
which stay close (as measured in a certain weighted Sobolev space) to the evolving Ricci

1In particular these initial data can form in the evolution of a smooth spherically symmetric initial
metric, as demonstrated in [1, 2].
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solitons. In other words, we obtain a local well-posedness result for the Ricci flow for
initial data with the same singularity profile as our Ricci solitons.

The solitons that we introduce (and, in fact, their perturbations that we consider) all
have SO(n + 1,R)-symmetry. In particular, the soliton metric at the initial time t = 0
can be written in the form:

gsol = dx2 + ψ(x)2gSn ,

where x ∈ (0,+∞) for stasy and x ∈ (0, δ), δ < +∞ for non-steady solitons; here gSn

denotes the canonical metric of the unit n-sphere. In all cases the function ψ(x) is a pos-
itive smooth function and moreover ψ(x) → 0 as x → 0+, with leading order behaviour

ψ ∼ x
1√
n . In particular, the (incomplete) metric above can be extended to a complete

C0 (in fact C
1√
n ) metric at x = 0, but the extended metric will not be of class C1. We

remark that (in the steady case) our (singular) solitons are complete Riemannian mani-
folds towards +∞, with an asymptotic profile there that matches the Bryant soliton. For
the rest of this introduction we discuss only the steady case.

Our first observation is that the evolution of the singular solitons themselves under
the Ricci flow is in sharp contrast with the behavior of their smooth counterparts. As
for smooth solitons, there exists an evolution of gsol under the Ricci flow given by a
1-parameter family of radial2 diffeomorphisms ρt : (0,+∞)× Sn → (0,+∞)× Sn, t ≥ 0,
where ρ0 = Id. The diffeomorphisms ρt are such that the pullback g(t) = ρ∗t (gsol) solves
the Ricci flow

∂tg(t) = −2Ric
(
g(t)

)
, g(0) := gsol.

However, the map ρt is not surjective in this case. In fact, for each t > 0, ρt(0,∞) =
(m(t),+∞) where m(t) > 0 is non-decreasing in t. In other words the flow ρt pushes
away from the singular point x = 0. Thus, for each t > 0 (M, g(t)) can be extended to
a smooth manifold with boundary, where the induced metric on the boundary is that
of a round sphere of radius limx→0+ ψ(ρt(x)) > 0. One can then visualize the evolving
soliton metric g(t) backwards in time: Starting at time t = 1 it contains the portion of
the original soliton corresponding to x > m(t), and its boundary at x = m(t) shrinks
down, as t→ 0+, to a point which yields the singular metric gsol.

The perturbation problem that we consider is still within the spherically symmetric
category. In particular, the initial metrics we consider are in the form

g̃ = dx2 + ψ̃2(x)gSn

A loose version of our main result can be written in the following form; the precise
statement can be found in Theorem 3.1.

Theorem 1.1. Let

ξ =
ψ̃

ψ
− 1

and assume that ∫ 1

0

ξ2

x2α
+

ξ2x
x2α−2

dx+
∫ +∞

1
ξ2 + ξ2xdx � 1

2“Radial” here and furtherdown means that the diffeomorhpism, for each t ≥ 0, depends only on the
parameter x ∈ (0,∞).
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for a large enough constant α. Then there exists a unique evolving spherically symmetric
metric g̃(t), t ∈ [0, T ], solving the Ricci flow equation

∂tg̃(t) = −2Ric
(
g̃(t)

)
, g̃0 := g̃, ξ(0, t) = 0

and which stays close, measured in a suitable weighted H1-space, to the evolving soliton
metric exhibiting the same “opening up” behavior of the initial singularity.

We remark briefly here on the choice of the weight function α: The definition of ξ and
the assumption that ξ belongs to the weighted Sobolev space above can be interpreted
geometricaly as requiring the initial metric g̃ (encoded in the function ψ̃) and the solition
inital metric g, ncoded in the function ψ to agree asymptoticaly to high order α at x = 0.
We expand more on this below.

1.1 Applications

It should be stressed at this point that our work here does not have direct bearing on
the issue of “flowing through singularities” that form in finite time under the Ricci flow,
(as studied, for example, in [3]), at least for closed manifolds. Indeed, it is well known
that for such manifolds the minimum of the scalar curvature is a non-decreasing function
under the Ricci flow; however the scalar curvature of the solitons we consider (and of
their perturbations) converges to −∞ at the singular point (x = 0).

Nonetheless, there are many important instances in PDEs of a geometric nature for
which one has initially singular solutions for which one would like to know whether
the evolution is stable under perturbations of the (singular) initial data. One specific
example that we wish to mention is that of the Einstein equations in the general theory
of relativity: We recall that the maximally extended Schwarzschild solution contains a
space-like singular hypersurface in the black hole region; this corresponds to {T 2−X2 =
1} in the Kruskal coordinates, Chapter 6 in [20]. It is in fact not known whether for
the vacuum Einstein equations this singularity is stable under any perturbations at all
of the initial data that lead to its formation.3 One possible approach to produce such
perturbations of the data at T = 0 that lead to a space-like singularity formation is
to solve the vacuum Einstein equations backwards in time, starting from singular initial
data which would correspond to perturbations of the Schwarzschild metric on a singular
hypersurface that contains at least part of the space-like singularity. Producing a solution
that exists (backwards) until the hypersurface T = 0 will then yield perturbations of the
Schwarzschild initial data that still develop singularities in the future. The resulting
(hyperbolic) PDE that one obtains for this problem has some key resemblances to the
(parabolic) PDE that we deal with here; the key common feature is the behavior of certain
singular space-time coefficients. This suggests that some of the methods developed here
will have a wider applicability.

While the above solitons have been constructed over the manifolds R× Sn, it would
perhaps be natural to seek similar examples in the more general cohomogeneity-1 cate-
gory, studied by Dancer and Wang, [10, 11, 12].

1.2 Outline of the ideas

Now, we briefly outline the sections of the paper and the challenges that each ad-
dresses. In Section 2 we introduce the (singular) spherically symmetric Ricci solitons

3For the purposes of this discussion let us say that the initial data is prescribed on a hypersurface that
corresponds to T = 0 in the maximally extended Schwarzschild space-time (in the Kruskal coordinates).
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that we consider. The study of these solitons follows the method presented in [6, Chap-
ter 1], originally developed by R. Bryant. In the class of spherically symmetric metrics,
the gradient Ricci soliton equation reduces to a second order ODE system, which can be
transformed into a more tractable first order system in parameters (W,X, Y ) via a trans-
formation that we review in (A.4). Knowledge of the variables W,X, Y in the parameter
y allows us to recover the metric component ψ and the gradient φx of the potential func-
tion φ of (A.3) in the parameter x. In the case of steady solitons, the system (A.6) in
fact reduces to a 2× 2 system; see §A.2. We provide a description of the trajectories in
the X,Y -plane that correspond to our singular solitons and compare them to the Bryant
soliton. In particular, we show there exists a 1-parameter family of singular gradient
steady Ricci solitons; they are all singular at x = 0 with the leading order asymptotics

ψ(x) ∼ x
1√
n φx(x) ∼

√
n− 1
x

, n > 1

and they are complete towards x = +∞, with the same asymptotic profile as the Bryant
soliton.

In Section 3 we introduce the perturbation problem we will be studying in the rest
of the paper. We consider spherically symmetric initial metrics of the form

g̃ = χ̃2(x)dx2 + ψ̃2(x)gSn

For such initial data, the Ricci flow equation can be written (after a change of variables) in
the equivalent form (3.4) of a PDE coupled to an ODE. The evolving Ricci soliton metric
(defined via the diffeomorphisms ρt) remains spherically symmetric and is represented
by coordinate components χ(x, t), ψ(x, t), while the stipulated Ricci flow that we wish
to solve for corresponds to two functions χ̃(x, t), ψ̃(x, t). Since the singular nature of
the initial data do not allow the system (3.4) to be attacked directly, we introduce new
variables which measure the closeness of χ̃, ψ̃ to χ, ψ.

More precisely, we define

ζ =
χ̃

χ
− 1 ξ =

ψ̃

ψ
− 1.

Then the system reduces to (3.10), for which the Ricci soliton corresponds to the solution
ζ = 0, ξ = 0. The coefficients of this system refer to the variable ψ of the background
evolving soliton, expressed with respect to its arc-length parameter s. What is critical
here is that the coefficients are singular at (x, t) = (0, 0); the precise nature of this sin-
gularity is essential in our further analysis.

A first challenge appears at this point, which in fact is independent of the singularities
of the coefficients. Indeed, it is related to the presence of the second order term ξss on
the RHS of the first equation in (3.10). Since the first equation is only of first order in
ζ, this term would not make it possible to close the energy estimates for our system. We
therefore introduce a new variable defined by

η =
(ζ + 1)2

(ξ + 1)2n
− 1.

The new system (3.14) for η and ξ involves only first derivatives of ξ in the evolution
equation of η and therefore can (in principle) be approached via energy estimates. It is
not clear whether there is any geometric significance underlying this change of variables.
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It is in fact not a priori obvious that such a simplification of the system should have been
possible via a change of variables. It is at this point that the spherical symmetry of both
the background soliton and of the perturbations that we study is used in an essential
way.

Thus, matters are reduced to proving well-posedness of (3.14), in the appropriate
spaces. We follow the usual approach of performing an iteration4, by solving a sequence
of linear equations for the unknows (ηm+1, ξm+1) in terms of the known functions (ηm, ξm)
solved for in the previous step, and proving that the sequence (ηm, ξm),m ∈ N converges
to a solution (η, ξ) of our original system.

We note that the usual approach would be to replace only the highest order terms in
the RHSs of (3.14) by the unknown function ξm+1 and replace all the lower-order ones
by the previously-solved-for ηm, ξm. However in the case at hand this approach would
fail for any function space, due to the nature of the singularities in the coefficients. For
example, as we will see the coefficient ψ2

s
ψ2 in the potential terms contains a factor of 1

s2
,

where s(x, t) is the arc-length parameter of the background evolving soliton. It turns out
that the leading order in the asymptotic expansion of s2 near x = 0, t = 0 is of the form

s2 ∼ x2 + 2(
√
n− 1)t.

Consequently, the best L∞x bound for 1
s2

would be 1
s2
≤ C

t ; this would result in an energy
estimate of the form ∂tE ≤ Et−1 which cannot close. The remedy for this problem is
to modify the iteration procedure according to (4.2). In this linear iteration the un-
known functions ξm+1, ηm+1 at the (m+ 1)-step also appear in certain lower-order terms
associated to the most singular coefficients.

Finally, we solve the system (4.2) and prove that it defines a contraction mapping in
certain (time-dependent) weighted Sobolev spaces H1

α(s) containing all functions

u ∈ H1(R+)
∫ 1

0

u2

(s2 + σt)α
+

u2
s

(s2 + σt)α−1
ds < +∞,

where we note that the weights depend on both the spatial and time variables x, t.
(We note here that we use the length element ds which corresponds to the arc-length
parameter of the background evolving Ricci soliton. In particular s(x, t) := ρt(x); thus
for all t > 0 s(x, t) > s(0, t) > 0,∀x > 0.)

The rather involved estimates in Section 4 aim precisely to show that the parameters
α and σ > 0 can be chosen in a way to make the estimates close; as we will see, this mostly
amounts to controlling the terms in the energy estimate that arise from the most singular
coefficients in (3.14). We note here that choosing α to be large forces both the initial
data and the evolution of the solution to stay close the evolving soliton. Choosing σ large
allows the evolving solution to ‘depart’ from the evolving soliton. Thus the challenge is
to balance these competing parameters to make the estimates close. We note that it
is essential for this ‘balancing’ to work that we can first close the estimates for the L2

norms, and after this has been done we can estimate the H1 norms.
Finally, in Section 5 we provide a proof of the existence of solutions to (4.2) in the

appropriate spaces, using a modification of the Galerkin iteration to this singular PDE-
ODE system. This part is included for the sake of completeness, since coupled systems
of this singular nature do not appear to have been treated in the literature.

4 In reality a contraction mapping argument, although we find it more convenient to phrase our proof
in terms of the standard Picard iteration.
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2 Singular spherically symmetric Ricci Solitons

We will be considering metrics over Mn+1 = (0, B) × Sn (where B ∈ R+ or B = +∞),
in the form

g = dx2 + ψ2(x)gSn , (2.1)

where ψ is a positive smooth function and gSn denotes the canonical metric on the unit
sphere. Our first aim for this section is to obtain such metrics which satisfy the (gradient)
Ricci soliton equation

Ric(g) +∇2φ+ λg = 0 λ ∈ R, (2.2)

for a smooth radial potential function φ : M → R, and which are singular as x→ 0+. In
particular we wish to construct a soliton metric which will extend continuously to x = 0
with ψ(x)→ 0, as x→ 0+, but will not close smoothly there.

Following known work on the complete case, an approach originally initiated in (un-
published) work of R. Bryant (see Appendix A and [6]), we construct the following
singular solutions of the equation (2.2).

Proposition 2.1 (Existence of singular Ricci solitons). For all λ ∈ R, n > 1 there exists
a class of spherically symmetric solutions to the gradient Ricci soliton equation (2.2) with
profile

ψ(x) ∼ ax
1√
n , a > 0 φx(x) ∼

√
n− 1
x

as x→ 0+. (2.3)

These solutions are a priori defined for B = δ < +∞, for some δ > 0 small, such that
ψ, φx have a smooth limit, as x→ δ− < +∞.

In the steady case λ = 0, the preceding solutions exist up to B = +∞ and their
behavior at infinity reads

cx
1
2 ≤ ψ(x) ≤ Cx

1
2 −C(1− 1

x
) ≤ φx(x) ≤ −c(1− 1

x
) c, C > 0, x� 1. (2.4)

Further, the behaviors of the derivatives of the above variables are in each case the
derivatives of the corresponding bounds and asymptotics, e.g.,

ψx(x) ∼ a√
n
x

1√
n
−1
, as x→ 0+ − C

x2
≤ φxx(x) ≤ − c

x2
, x� 1

Proof. See Propositions A.1, A.2 in Appendix A.

Remark 2.1. It is worth noting that for λ = 0 in dimension five, (i.e., n = 4) the soliton
metrics and associated diffeomorphisms can in fact be written out explicitly:

ψ(x) = a
√
x φx(x) =

1
x
− 6
a2
, x ∈ (0,+∞), a > 0. (2.5)
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Remark 2.2. In view of the asymptotics, we conclude that the above Ricci solitons
metrics are C0 extendible at x = 0, but singular in C1 norm for all dimensions n+1 ≥ 3.
In particular, one can readily check that the most singular curvature components blow up
like 1/x2, as x→ 0+.

2.1 The evolving soliton metric g(t): the action of the diffeomorphisms.

Since the metric g (2.1) satisfies the gradient Ricci soliton equation (2.2), it admits a
Ricci flow

∂tg(t) = −2Ric
(
g(t)

)
g(0) = g, (2.6)

evolving via diffeomorphisms

g(t) = ε(t)ρ∗t (g)

up to some time T > 0, where ε(t) := 1 + 2λt > 0, t ∈ [0, T ), and

ρt(x, p) = ρt(x) ρ0 = idM

is the flow generated by the (time dependent) vector field

1
ε(t)
∇gφ.

Thus, by definition of the pullback

g(t) = ε(t)
[
d(ρt(x))2 + ψ2(ρt(x))gSn

]
(2.7)

We note that since our manifold (Mn+1, g) is not complete at x = 0, ρt(x) is not neces-
sarily defined for all time, but nevertheless it exists locally t ∈ (−εx, εx), x > 0. However,
it easily follows from the asymptotics below that for the steady (λ = 0) solitons the flow
exists for all t ≥ 0.

Suppressing the sphere coordinates corresponding to different points (x, p), (x, q) in
Mn+1, we may consider ρt to be a real function in x

ρt : (0, B)→ (0,+∞)

and further we identify the time derivative of ρt with the (single) component of ∇gφ in
the ∂x direction, that is,

∂tρt(x) =
1
ε(t)

(∇∂/∂xφ)ρt(x) =
1
ε(t)

φx(ρt(x)). (2.8)

According to the asymptotics (2.3),

∂tρt(x) ∼ 1
ε(t)

√
n− 1
ρt(x)

(2.9)

which after integrating yields the leading behavior

ρ2
t (x) ∼ x2 + 2(

√
n− 1)t, as x, t→ 0+. (2.10)
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Remark 2.3. From the preceding asymptotics it follows that

ρt
(
(0, B)

)
⊆ (ρt(0),+∞),

ρt(0) > 0, t > 0 non-decreasing, and in particular ρt is not surjective. A geometric inter-
pretation of the latter is that the flow ρt “pushes” the domain away from the singularity
at x = 0, smoothing out the incomplete metric.

Restricting now on the singular steady solitons, we integrate (2.8) once more to arrive
at the following estimate at infinity for the flow

x− Ct ≤ ρt(x) ≤ x− ct x� 1� t ≥ 0. (2.11)

In fact, in the steady case λ = 0 we can give a complete description of the evolution
of the singular soliton metrics. Indeed, in this case we derive that there is a critical slice
{xcrit} × Sn of the manifold Mn+1 = (0,+∞) × Sn, which is invariant under ρt(·) and
moreover an attractor of the flow:

φx(x) > 0, x ∈ (0, xcrit) φx(xcrit) = 0 φx(x) < 0, (xcrit,+∞) (2.12)

Whence, for any point x ∈ (0,+∞), the integral curve ρt(x) will ‘reach’ xcrit as time
tends to infinity

lim
t→+∞

ρt(x) = xcrit lim
t→+∞

ρt
(
(0,+∞)

)
= [xcrit,+∞).

We remark also that the scalar curvature R achieves its maximum at xcrit, which means
that the manifold is deformed in this sense towards higher level sets of scalar curvature.

In order to prove the above picture, it suffices to show that (2.12) is valid. From the
profiles (2.3), (2.4) we confirm that φx has a positive sign close to x = 0 and is negative
near +∞. Hence there exists a point xcrit where φx(xcrit) = 0. It remains to show that
this is the only zero of φx. We recall at this point a general identity for solutions to the
gradient Ricci soliton equation (2.2) (see for instance [6, Proposition 1.15]).

Proposition 2.2. Let (Mm, g,∇φ) be a gradient Ricci soliton, i.e., a solution of the
equation (2.2). Then the following quantities are constant:

(i) R+ ∆gφ+mλ = 0 (tracing)

(ii) R+ |∇gφ|2 + 2λφ = C0,

where R is the scalar curvature of (Mm, g).

The fact that the scalar curvature R attains its maximum (C0) at xcrit is an immediate
consequence of identity (ii) for λ = 0.

Subtracting the two identities of the preceding proposition we obtain

∆gφ− |∇gφ|2 − 2λφ+mλ = −C0.

Whence, in our context for λ = 0, the previous equation amounts to

φxx +
ψx
ψ
φx − φ2

x = −C0, (2.13)

Claim: C0 > 0. From the asymptotics of φx (2.3), (2.4), we easily deduce that φ tends to
−∞ at both ends of the manifold x = 0,+∞. This implies that φ has a global maximum
M , realized at some point x̃. By (2.13) we get C0 ≥ 0. However, the constant C0 cannot
be zero, otherwise we would have φ ≡ M (by uniqueness of ODEs), which of course is
not possible. Our claim follows.

Thus, every critical point of φ is a strict local maximum. Therefore, φ can only have
one critical point, xcrit = x̃. �
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3 The Stability problem

Our main goal in this paper is to prove (local in time) well-posedness of the Ricci
flow for spherically symmetric metrics which start out close enough (in certain spaces we
construct in §3.4) to the soliton metrics (Propositions 2.1) we constructed in the previous
section. We recall below in §3.1 a useful form of the Ricci flow equation for spherically
symmetric metrics and then proceed to introduce a transformation of our system into
new variables ζ, ξ (3.9). These are designed to capture the closeness of the (putative)
evolving solution under the Ricci flow to the evolution of the background Ricci soliton.
The resulting system involves a second order parabolic equation in ξ coupled with a
transport equation in ζ, both of them having certain singular coefficients. This forces
us to study well-posedness of the system in certain weighted Sobolev spaces. Our main
result in these variables is stated in Theorem 3.1.

However, this is not the system we derive energy estimates with, because of the fact
that the transport equation in ζ contains a second order term in ξ, which makes it
impossible for such estimates to close. After a further crucial change of variables (§3.3),
replacing ζ with a new variable η, the resulting PDE in η, ξ (3.14) for which we derive an
estimate is of similar nature, except now this problem has been eliminated; the equation
of η containing only first derivatives of ξ.

The singularities in the coefficients of the system are determined fully by the back-
ground evolving soliton metric. The precise asymptotics of these coefficients are essential
to our further pursuits, so we begin by studying those right after writing down the final
system (3.14). Next, in §3.4 we set up formally the function spaces in which we will be
proving our well-posedness result for the system of η, ξ and state the final version of our
main result very precisely in Theorem 3.2. The proof of Theorem 3.2 is carried out in
the next section §4.

One final convention: We will be considering the stability question for all the singular
Ricci solitons (see Proposition 2.1). Since for λ 6= 0 our knowledge is restricted only on
the bounded interval (0, δ), we will treat two versions of the resulting PDE problem. One
will concern a bounded domain and the other, for the steady case λ = 0, will regard the
whole half-line; i.e., initial domain x ∈ (0, B), B = δ < +∞ or B = +∞.

3.1 Ricci flow in spherical symmetry

Let g̃(t), t ∈ [0, T ], be a 1-parameter family of smooth spherically symmetric metrics
on Mn+1 = (0, B)× Sn (B = δ < +∞ or B = +∞)

g̃(t) = χ̃2(x, t)dx2 + ψ̃2(x, t)gSn , (3.1)

where χ̃, ψ̃ are positive smooth functions, and assume it satisfies the Ricci flow equation

∂tg̃(t) = −2Ric
(
g̃(t)

)
t ∈ [0, T ]. (3.2)

We now let s̃(x, t) be the radial arc-length parameter for the above metric at any given
time t, i.e.,

ds̃ = χ̃(x, t)dx. (3.3)

Expressing ψ̃(·, t) relative to the parameter s̃ (and slightly abusing notation), g̃(t) be-
comes

g̃(t) = ds̃2 + ψ̃2(s̃, t)gSn .
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For this type of warped product metrics the Ricci tensor is given by (e.g., [6, §1.3.2])

Ric
(
g̃(t)

)
= −nψ̃s̃s̃

ψ̃
ds̃2 + (n− 1− ψ̃ψ̃s̃s̃ − (n− 1)ψ̃2

s̃)gSn .

Plugging into (3.2) we get{
2χ̃χ̃t = −2(−n ψ̃s̃s̃

ψ̃
)ds̃2(∂x, ∂x) = 2n ψ̃s̃s̃

ψ̃
χ̃2

2ψ̃ψ̃t = −2(n− 1− ψ̃ψ̃s̃s̃ − (n− 1)ψ̃2
s̃)

Thus, the Ricci flow equation (3.2) reduces to the coupled system χ̃t = n ψ̃s̃s̃
ψ̃
χ̃

ψ̃t = ψ̃s̃s̃ − (n− 1)1−ψ̃2
s̃

ψ̃

t ∈ [0, T ]. (3.4)

Observe that the first equation involves the evolution of the radial distance function,
while the second involves the evolution of the radii of the spheres, at a given radial
distance.

Of course, the singular Ricci soliton metrics we studies in the previous section fall in
the same framework. Indeed, returning to (2.7) we may write

g(t) = ds2 + ψ2(s, t), gSn = χ2(x, t)dx2 + ψ2(x, t)gSn , (3.5)

where we have set

s(x, t) =
√
ε(t) ρt(x), s(x, 0) = x ds =

√
ε(t) ∂xρt(x)dx (3.6)

and

χ(x, t) :=
√
ε(t) ∂xρt(x) ψ(x, t) :=

√
ε(t)ψ(ρt(x)). (3.7)

Note that ψ(x, 0) = ψ(x) corresponds to the component of the metric g (2.1). Arguing
similarly to the case of g̃(t), it follows that the (2.6) is equivalent to{

χt = nψssψ χ

ψt = ψss − (n− 1)1−ψ2
s

ψ

χ(x, 0) = 1, ψ(x, 0) = ψ(x). (3.8)

3.2 The main stability result: A transformed system for the Ricci flow
of the perturbed metric

The goal is to construct a spherically symmetric Ricci flow (3.1), (3.2) for the ap-
propriate spherically symmetric perturbed metric g̃ := g̃(0). We now take a first step
towards transforming our system of equations by introducing new variables. Let

ζ =
χ̃

χ
− 1 ξ =

ψ̃

ψ
− 1. (3.9)

The above formulas are defined for all x ∈ (0, B), t ∈ [0, T ]. In particular, these variables
measure (in a refined way) the difference between the unknown functions χ̃, ψ̃ and the
background variables χ, ψ. Note in addition that requiring ξ = 0 at the endpoint x =
0, t = 0 forces ψ̃ to have the same leading order asymptotics at x = 0 as the background
component ψ.
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We next wish to convert (3.4) into a system of equations for ζ, ξ, expressing the
evolution equations in terms of t and the arc-length parameter s of the background
evolving Ricci soliton. We are then forced to deal with the discrepancy between s̃, s. We
calculate:

∂s̃
(3.3)
=

1
χ̃
∂x =

χ

χ̃

1
χ
∂x

(3.6),(3.7)
=

1
ζ + 1

∂s

∂s̃∂s̃ =
1

ζ + 1
∂s(

1
ζ + 1

∂s) =
1

(ζ + 1)2
∂s∂s −

ζs
(ζ + 1)3

∂s,

and hence we write

ψ̃s̃ =
1

ζ + 1
(
ψ(ξ + 1)

)
s

ψ̃s̃s̃ =
1

(ζ + 1)2
(
ψ(ξ + 1)

)
ss
− ζs

(ζ + 1)3
(
ψ(ξ + 1)

)
s
.

Taking time derivatives in (3.9) and combining (3.4), (3.8), we derive the following cou-
pled system in the new variables ζ, ξ.

ζt = n
ψss
ψ

[ 1
ζ + 1

− (ζ + 1)
]

+ 2n
ψs
ψ

ξs
(ζ + 1)(ξ + 1)

+ n
ξss

(ζ + 1)(ξ + 1)
− nψs

ψ

ζs
(ζ + 1)2

− n ζsξs
(ζ + 1)2(ξ + 1)

ξt = (
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)
[ ξ + 1
(ζ + 1)2

− ξ − 1
]

+
n− 1
ψ2

(ξ + 1− 1
ξ + 1

) (3.10)

+ 2n
ψs
ψ

ξs
(ζ + 1)2

+
ξss

(ζ + 1)2
+ (n− 1)

ξ2s
(ζ + 1)2(ξ + 1)

− ψs
ψ

ζs(ξ + 1)
(ζ + 1)3

− ζsξs
(ζ + 1)3

Notice that the coefficients of the preceding system are expressed in terms of the compo-
nents (metric, curvature etc.) of the background soliton, which are of course singular at
x = t = 0. We will elaborate more on the nature of the singularities in the next subsec-
tion. We simply mention that this is basically the reason that forces us to study (3.10)
in non-standard modified spaces. The following version of our main theorem regards the
local existence of the system in the variables ζ, ξ (3.9).

Theorem 3.1. There exist constants α, σ > 0 appropriately large, such that the system
(3.10) is locally well-posed in the (time-dependent) weighted Sobolev space

E(t) :=
∫ x=δ

x=0

u2

(s2 + σt)α
+

u2
s

(s2 + σt)α−1
ds+

∫ x=B

x=δ
u2 + u2

sds < +∞, (3.11)

(B = δ < +∞, λ 6= 0 or B = +∞, λ = 0) assuming E(0) sufficiently small and the
Dirichlet boundary condition

ξ(x, t) = 0, {x = 0, B} × [0, T ] (3.12)

We remark that the smallness assumption on E(0) is required to control the smallness
in L∞ of η, ξ which appear in the denominators in (3.10) by E(t). It could possibly
be removed if the initial data lied in a suitably weighted H2 space, combined with an
assumption of smallness in L∞ of η, ξ.
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3.3 A crucial change of variables: The features of the resulting PDE

Unfortunately, due to the term n ξss
(ζ+1)(ξ+1) in the first equation of (3.10) we cannot

derive energy estimates in L2 for ζ, ξ. We remedy this problem by replacing the variable
ζ with

η :=
(ζ + 1)2

(ξ + 1)2n
− 1. (3.13)

The new system of η, ξ reads

ηt = − 2n(n− 1)
(
ψ2
s

ψ2

[ 1
(ξ + 1)2n

− 1
]

+ 2
ψs
ψ

ξs
(ξ + 1)2n+1

+
1− (ξ + 1)−2

ψ2
+

ξ2s
(ξ + 1)2n+2

)
− 2n(n− 1)

1− (ξ + 1)−2

ψ2
η + 2n(n− 1)

ψ2
s

ψ2
η

ξt = (
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)
[ 1
(η + 1)(ξ + 1)2n−1

− (ξ + 1)
]

+
n− 1
ψ2

(ξ + 1− 1
ξ + 1

) (3.14)

+ n
ψs
ψ

ξs
(η + 1)(ξ + 1)2n

+
ξss

(η + 1)(ξ + 1)2n
− ξ2s

(η + 1)(ξ + 1)2n+1

− 1
2
ψs
ψ

ηs
(η + 1)2(ξ + 1)2n−1

− 1
2

ηsξs
(η + 1)2(ξ + 1)2n

It is important that we know the exact leading asymptotics of the coefficients in
(3.14), as x, t→ 0+. Recall the formulas (3.6), (3.7)

s(x, t) =
√
ε(t)ρt(x) ψ(s, t) =

√
ε(t)ψ(

s√
ε(t)

)

and the profile of the background singular soliton at the two ends x = 0, B (Proposition
2.1) to deduce the following estimates:

ψs
ψ

= O(
1
s

)
ψ2
s

ψ2
= O(

1
s2

)
ψss
ψ

= O(
1
s2

) x ∈ (0, B), t ∈ [0, T ] (3.15)

and separately for

1
ψ2

= O(
1

s
2√
n

), x� 1
1
ψ2

= O(
1
s

), x� 1 t ∈ [0, T ], n > 1 (3.16)

for small T > 0. Using the above we also derive

∂s(
ψs
ψ

) = O(
1
s2

) ∂s(
ψ2
s

ψ2
) = O(

1
s3

) x ∈ (0, B), t ∈ [0, T ]. (3.17)

Also, directly from the asymptotics of the flow ρ2
t (x) (2.10),(2.11) the arc-length

parameter s of the background soliton shows to behave like

s2(x, t) := ε(t)ρ2
t (x) ∼ x2 + 2(

√
n− 1)t as x, t→ 0+ (3.18)

and

x− Ct ≤ s ≤ x− ct x� 1, B = +∞, t ∈ [0, T ] (3.19)

with an evolution estimated employing (2.8):

∂ts =
λ

ε(t)
s+O(

1
s

), x� 1 −C ≤ ∂ts ≤ −c, x� 1, B = +∞ t ∈ [0, T ] (3.20)
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Remark 3.1. Evidently from the above asymptotics, the best L∞x estimate that one could
hope for the ratio 1/s2 is of the form

‖ 1
s2
‖L∞(x) ≤

C

t
, (3.21)

which of course fails to be integrable in [0, T ], T > 0. Note that 1/s2 is the leading behav-
ior, suggested from the above estimates, of the most singular coefficients of the potential
terms in (3.14). This is precisely the reason why the standard Gronwall argument would
fail to yield an energy estimate in the usual Hk spaces for the system in question.

It will be useful furtherdown to write the less singular coefficients in (3.14), namely,
1
ψ2 as

1
ψ2

=:
A(s, t)
s

, ∂s(
A(s, t)
s

) = −2
1
ψ2

ψs
ψ

=
A(s, t)
s

O(
1
s

), (3.22)

where setting

A(t) := ‖A(s, t)‖L∞(s),

∫ t

0
A2(τ)dτ = o(

√
t), as t→ 0+. (3.23)

As stated in Theorem 3.1, the spaces we will be dealing with involve the coordinate
vector field ∂s and the volume form ds of the background soliton metric. The first issue
we stress here is the fact that the vector fields ∂s, ∂t (the latter is defined so that ∂tx = 0)
do not commute. In fact, we find the commutator to be singular:

∂

∂t

∂

∂s
=
∂

∂t

(
1√

ε(t) ∂xρt(x)
∂

∂x

)
(by definition of s (3.6))

=− λ

ε(t)
3
2

1
∂xρt(x)

∂

∂x
− 1√

ε(t)
∂t(∂xρt(x))
(∂xρt(x))2

∂

∂x
+

1√
ε(t) ∂xρt(x)

∂

∂t

∂

∂x

=− λ

ε(t)
∂

∂s
− ∂x∂tρt(x)

∂xρt(x)
∂

∂s
+

1√
ε(t) ∂xρt(x)

∂

∂x

∂

∂t

=− λ

ε(t)
∂

∂s
−
∂x
[

1
ε(t)φx(ρt(x))

]
∂xρt(x)

∂

∂s
+

∂

∂s

∂

∂t
(plugging in (2.8))

=− λ+ φxx(s)
ε(t)

∂

∂s
+

∂

∂s

∂

∂t

Consulting the asymptotics of the second derivative potential function (deduced from
Proposition 2.1) we conclude that

[∂t, ∂s] = O(
1
s2

)∂s x ∈ (0, B), t ∈ [0, T ]. (3.24)

We must also calculate the evolution of the volume form ds. The derivation is similar:

∂tds = ∂t(
√
ε(t) ∂xρt(x)dx) =

λ√
ε(t)

∂xρt(x)dx+
√
ε(t) ∂t∂xρt(x)dx

=
λ

ε(t)
ds+

√
ε(t) ∂x

[ 1
ε(t)

φx(ρt(x))
]
dx =

λ+ φxx(s)
ε(t)

ds,

which as above gives

∂tds = O(
1
s2

)ds. (3.25)
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3.4 The weighted Sobolev spaces and the final version of the main
theorem

As explained the singularities in the coefficients of the system (3.14), along with
the asymptotic behaviors we have derived force us to study well-posedness in weighted
Sobolev spaces. The weights will be adapted to the singularity at x = 0, t = 0.

Definition 3.1. Let σ > 0 (to be determined later). We define the weight

`2(x, t) =


s2 + σt, (x, t) ∈ (0, δ)× [0, T ], λ ∈ R
ϕ(s, t), (x, t) ∈ [δ, δ + 1)× [0, T ], λ = 0, B = +∞
1, (x, t) ∈ [δ + 1,+∞)× [0, T ], ” ”

(3.26)

where ϕ(·, t) is a cut off function interpolating between `2(δ, t) and 1, for each t ∈ [0, T ].

When we derive the main energy estimates in the next section we will need the
following key properties of the weight `. First, we estimate immediately by Definition
3.1 and (3.20) how ` changes along the directions ∂s, ∂t:

∂s` = O(1) ∂t` =
[O(1)

`
+
σ

`

]
1(0,δ) +O(1)1[δ,B). (3.27)

Also, from the asymptotics of s2 (3.18),(3.19) we obtain the following comparison estimate
of the functions s, `.

0 < c ≤ `2

s2
=
{

1 + 2σt
s2

O(1)
s2

≤

{
1 + C√

n−1
σ, x ∈ (0, δ)

C, x ∈ [δ,+∞), B = +∞
n > 1. (3.28)

Now we may proceed to the formal definition of the modified Hk spaces.

Definition 3.2. For any given t ∈ [0, T ] and α ≥ 1, we define the weighted space

Hk
α[t] : u ∈ Hk

(
(0, B)

)
, ‖u‖2Hk

α[t] =
∫ x=B

x=0

u2

`2α
+ · · ·+ (∂ksu)2

`2α−2k
ds < +∞. (3.29)

In the case k = 0, we denote H0
α[t] by L2

α[t]. When it is clear, we will suppress t in the
notation.

In this spirit, we define the energy

E(u, v;T ) = ‖u‖2C(0,T ;H1
α) + ‖u‖2L2(0,T ;H1

α+1) + ‖v‖2C(0,T ;H1
α) + ‖v‖2L2(0,T ;H2

α+1) (3.30)

and for brevity let

E0 = ‖η0‖2H1
α

+ ‖ξ0‖2H1
α
, (3.31)

where η0 := η(x, 0), ξ0 := ξ(x, 0). We can formulate now a more precise version of our
main result regarding the system (3.14).

Theorem 3.2. There exist α > 0, σ := σ(α) > 0 sufficiently large such that if E0 is
sufficiently small, then the system (3.14), subject to

ξ(x, t) = 0 {x = 0, B} × [0, T ], (3.32)

admits a unique solution up to some time T := T (E0, α, σ) > 0 in the spaces

η ∈ C(0, T ;H1
α) ∩ L2(0, T ;H1

α+1) ξ ∈ C(0, T ;H1
α) ∩ L2(0, T ;H2

α+1) (3.33)

ηt ∈ C(0, T ;L2
α−2) ∩ L2(0, T ;H1

α−1) ξt ∈ L2(0, T ;L2
α−1)

with initial data η0, ξ0.
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We remark here the fact that once we have such a solution to (3.14), then we straight-
forwardly derive that this solution (η, ξ) corresponds to a solution of (3.4), which in fact
will be smooth over Mn+1 × (0, T ], given the parabolicity of the Ricci flow.

4 The Contraction Mapping

We will prove Theorem 3.2 via an iteration scheme, which is essentially a contraction
mapping argument. We note that throughout the subsequent estimates we will use the
symbol C to denote a positive constant depending only on n. Further, the endpoints of
any integration in the spatial variable, unless otherwise indicated, will be the two ends
x = 0, B.

4.1 The iteration scheme and the contraction mapping

In order to derive energy estimates, it is very important how we define the Picard
iteration for the system (3.14). We choose to keep in the unknowns at each step the linear
lower order terms in the RHSs which are associated to the most singular coefficients in
the system. We construct a sequence

{
ηm, ξm

}∞
m=0

in the spaces

ηm ∈ C(0, T ;H1
α) ∩ L2(0, T ;H1

α+1) ξm ∈ C(0, T ;H1
α) ∩ L2(0, T ;H2

α+1) (4.1)

ηmt ∈ C(0, T ;L2
α−2) ∩ L2(0, T ;H1

α−1) ξmt ∈ L2(0, T ;L2
α−1),

satisfying

ηm+1
t = 2n(n− 1)

(
ψ2
s

ψ2

2nξm+1 +
∑2n

j=2

(
2n
j

)
|ξm|j

(ξm + 1)2n
− 2

ψs
ψ

ξm+1
s

(ξm + 1)2n+1

− A(s, t)
s

ξm
ξm + 2

(ξm + 1)2
(1 + ηm)− |ξms |2

(ξm + 1)2n+2
+
ψ2
s

ψ2
ηm+1

)
ξm+1
t = (

ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)
[
−ηm+1 − 2n(ηm + 1)ξm+1

(ηm + 1)(ξm + 1)2n−1
−
∑2n

j=2

(
2n
j

)
|ξm|j

(ξm + 1)2n−1

]
(4.2)

+ (n− 1)
A(s, t)
s

ξm
ξm + 2
ξm + 1

+ n
ψs
ψ

ξm+1
s

(ηm + 1)(ξm + 1)2n
+

ξm+1
ss

(ηm + 1)(ξm + 1)2n

− |ξms |2

(ηm + 1)(ξm + 1)2n+1
− 1

2
ψs
ψ

ηm+1
s

(ηm + 1)2(ξm + 1)2n−1
− 1

2
ηms ξ

m
s

(ηm + 1)2(ξm + 1)2n
,

where we set η0 = ξ0 = 0 and initially

ηm+1

∣∣∣∣
t=0

= η0 ξm+1

∣∣∣∣
t=0

= ξ0 m = 0, 1, . . . (4.3)

Further, ξm+1 is required to verify the Dirichlet boundary condition

ξm+1(x, t) = 0 {x = 0, B} × [0, T ]. (4.4)

Under the assumptions of Theorem 3.2, we show inductively that for sufficiently small
T > 0 (uniform in m), the sequence also satisfies the energy estimate

E(ηm, ξm;T ) ≤ 2E0 m = 0, 1, . . . (4.5)

We prove this in Section 5.
The main task that we undertake here is to prove Theorem 3.2 by showing that the

sequence (ηm, ξm)m∈N is actually Cauchy in the energy spaces we have introduced.
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Proposition 4.1. Let

dηm+1 = ηm+1 − ηm, dξm+1 = ξm+1 − ξm m = 0, 1, . . . , (4.6)

where ηm, ξm are the functions constructed above. Then under the assumptions in The-
orem 3.2 on α, σ, E0, T the following contraction estimate holds:

E(dηm+1, dξm+1;T ) ≤ 1
2
E(dηm, dξm;T ) m = 1, 2, . . . , (4.7)

The previous proposition readily implies Theorem 3.2; the iterates (ηm, ξm) converge
to a solution of the system (3.14) satisfying the assertions of the theorem.

Proof. It is carried out in §4.2.

Some standard pointwise estimates adapted to our weighted norms are needed to
proceed.

Lemma 4.1. Given functions ηm, ξm, m ∈ N, in the spaces (4.1), the following pointwise
bounds are valid:

‖η
m

`k
‖2L∞(x) ≤ C(k + 1)E0 ‖ξ

m

`k
‖2L∞(x) ≤ C(k + 1)E0, (4.8)

‖ξ
m
s

`k
‖2L∞(x) ≤ C

√
E0
(
‖ ξ

m
ss

`α−1
‖L2 + k‖ξ

m
s

`α
‖L2

)
,

∫ t

0
‖ξ

m
s

`k
‖2L∞dτ ≤ C(k + 1)

√
TE0, (4.9)

for all k = 0, . . . α− 1, α ≥ 1, t ∈ [0, T ]. If in addition E0 is small enough, the following
estimates also hold:

sup
x∈(0,B)

(
|ηm|+ |ξm|

)
<

1
2

inf
x∈(0,B)

(ξm + 1)−2n ≥ 1
2
, (4.10)

We note that (4.10) is the first main reason we consider small E0, which in particular
guarantees the parabolicity of the second equation of (4.2).

Proof. We treat the estimate of | ξ
m

`k
|. The rest follow easily from the same argument. By

the fundamental theorem of calculus we have∣∣∣∣ξm
(
(s(x, t), t

)2
`2k

−
ξm
(
s(0, t), t

)2
`2k

∣∣∣∣ (4.4)
=
∣∣∣∣ ∫ s(x,t)

s(0,t)
2
ξm

`k

(
ξms
`k
− k ξm

`k+1
`s

)
ds

∣∣∣∣
≤ 2‖ ξ

m

`k+
1
2

‖L2

(
‖ ξ

m
s

`k−
1
2

‖2L2 + Ck‖ ξ
m

`k+
1
2

‖2L2

) (4.5)

≤ C(k + 1)E0 (`s = O(1) (3.27))

In the case of |η
m

`k
|, instead of x = 0, we choose a reference point x ∈ [0,+∞] realizing its

infimum, which is controlled by the L2 norm and argue similarly as before. The estimate
(4.10) follows from (4.8) for k = 0, provided the initial weighted energy is small enough.

As for (4.9), the second part obviously follows from the first by integrating in time
and applying C-S, along with the energy estimate (4.5). An easy derivation of the first
part is obtained by noticing that there exists a reference point x0 := x0(t) for which
ξms (x0, t) = 0. Indeed, this is implied by the vanishing of ξm(x, t) at the endpoints
x = 0, B (4.4). The above argument applies directly.
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To write our system for dηm+1, dξm+1 concisely, we introduce generic notation

B,D

to denote rational functions in ηm, ξm, m = 0, 1, . . ., satisfying the following conditions:

• The denomerators of B,D have non-zero constant terms.

• The constant term in the numerator of B is non-zero, whereas the one in the
numerator of D vanishes.

The next lemma is an immediate consequence of the pointwise estimates (4.8) and the
energy estimate (4.5).

Lemma 4.2. If B,D are functions as above and E0 is sufficiently small, then the follow-
ing estimates hold:

‖B(s, t)‖L∞(x) < C ‖D
`k
‖2L∞(x) ≤ CE0, (4.11)

where k = 0, . . . , α− 1 and

‖ Bs
`α−1

‖2L2 + ‖ Ds

`α−1
‖2L2 ≤ CE0, (4.12)

for 0 ≤ t ≤ T and C a positive constant depending on the coefficients of the rational
functions B,D.

Consider now the two systems (4.2) corresponding to the steps m + 1 and m. We
derive a new system for dηm+1, dξm+1 (4.6) by subtracting these two systems. Doing so,
it is straightforward to check that we arrive at the following system:

dηm+1
t =

ψ2
s

ψ2
Bdξm+1 +

ψs
ψ
Bdξm+1

s + 2n(n− 1)
ψ2
s

ψ2
dηm+1 + dFm1

dξm+1
t = (

ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)(Bdηm+1 +Bdξm+1) +

ψs
ψ
Bdξm+1

s +
ψs
ψ
Bdηm+1

s (4.13)

+
dξm+1
ss

(ηm + 1)(ξm + 1)2n
+ dFm2 ,

where

dFm1 :=
ψ2
s

ψ2
Ddξm +

A

s
B(dξm + dηm) +

ψs
ψ
Bξms dξ

m +Bdξms (ξms + ξm−1
s ) (4.14)

+ |ξm−1
s |2dξmB

and

dFm2 := (
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)(Ddξm +Ddηm) +

A

s
Bdξm +

ψs
ψ
Bξms (dηm + dξm)

+ ξmssB(dηm + dξm) +Bdξms (ξms + ξm−1
s ) + |ξm−1

s |2B(dηm + dξm) (4.15)

+
ψs
ψ
ηms B(dηm + dξm) +B(ξms dη

m
s + ηm−1

s dξms ) + ηm−1
s ξm−1

s B(dηm + dξm)

We note that the terms dξms (ξms +ξm−1
s ) and ξmssB(dηm+dξm) are of the most problematic

and an additional reason we need to consider small initial energy E0 in order to close the
contraction mapping argument in H1

α.
Similarly to Lemma 4.1, we have the following L∞ estimates for the differences.
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Lemma 4.3. For every m ∈ N and t ∈ [0, T ] the following estimates hold:

‖dξ
m

`k
‖2L∞(s) ≤ C(k + 1)‖dξm‖2H1

k+1
‖dη

m

`k
‖2L∞(s) ≤ C(k + 1)‖dηm‖2H1

k+1
(4.16)

and

‖dξ
m
s

`k
‖2L∞(s) ≤ C‖

dξms
`α−1

‖L2

(
‖ dξ

m
ss

`α−1
‖L2 + k‖dξ

m
s

`α
‖L2

)
, (4.17)

k = 0, . . . , α− 1.

4.2 Proof of Proposition 4.1: the contraction estimate (4.7)

In this subsection we show that the desired contraction estimate (4.7) follows from the
next proposition, whose proof in turn we divide in three parts occupying the subsequent
subsections §4.3, §4.4, §4.5.

Proposition 4.2. The following estimates are valid in the time interval [0, T ]. First,
for dηm+1, dξm+1 in L2

α we have

1
2
(
‖dηm+1‖2L2

α[t] + ‖dξm+1‖2L2
α[t]

)
+ ασ

∫ t

0

(
‖dη

m+1

`α+1
‖2L2(0,δ) + ‖dξ

m+1

`α+1
‖2L2(0,δ)

)
dτ

≤ C
∫ t

0

(
α2 + ‖ξms ‖2L2

)(
‖dηm+1‖2L2

α[τ ] + ‖dξm+1‖2L2
α[τ ]

)
dτ (4.18)

+ C(α2 + σ)
∫ t

0

(
‖dη

m+1

`α+1
‖2L2(0,δ) + ‖dξ

m+1

`α+1
‖2L2(0,δ)

)
dτ

+ C
[
E0σ2T + (E0 + 1)σ

√
T +
√
TE2

0 + E0
]
E(dηm, dξm;T )

and second for the first derivatives dηm+1
s , dξm+1

s in L2
α−1

1
2
(
‖dηm+1

s ‖2L2
α−1[t] + ‖dξm+1

s ‖2L2
α−1[t]

)
+ ασ

∫ t

0

(
‖dη

m+1
s

`α
‖2L2(0,δ) + ‖dξ

m+1
s

`α
‖2L2(0,δ)

)
dτ +

1
6

∫ t

0
‖dξm+1

ss ‖2L2
α−1[τ ]dτ

≤ C
∫ t

0

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞ + α2
)(
‖dηm+1

s ‖2L2
α−1[τ ] + ‖dξm+1

s ‖2L2
α−1[τ ]

)
dτ

+ C

∫ t

0

(
‖ ξ

m
ss

`α−1
‖L2 + ‖ξ

m−1
ss

`α−1
‖L2

)
‖dξms ‖L∞‖dηm+1

s ‖L2
α−1[τ ]dτ (4.19)

+ C(α2 + σ)
∫ t

0

(
‖dη

m+1
s

`α
‖2L2(0,δ) + ‖dξ

m+1
s

`α
‖2L2(0,δ)

)
dτ

+ C

∫ t

0

(
‖dηm+1‖2L2

α
+ ‖dξm+1‖2L2

α

)
dτ + Cσ2

∫ t

0

(
‖dη

m+1

`α+1
‖2L2(0,δ) + ‖dξ

m+1

`α+1
‖2L2(0,δ)

)
dτ

+ C
[
E0σ2T + (E0 + 1)σ

√
T + E2

0

√
T + E0

]
E(dηm, dξm;T )

It is precisely at this point that the significance of the weights we introduced becomes
apparent. We wish to close the above energy estimates by applying the standard Gronwall
lemma. Unfortunately, this is not possible due to the terms in the RHSs of the estimates
in the preceding proposition having larger exponents in the weights (by one) than the
ones in the norms differentiated in the LHS, e.g., line three in (4.18). We call these terms
‘critical’. Estimating the extra weight of the critical terms in L∞(x) would not close

19



either, as noted in Remark 3.21. We have to keep it in the norms. Thus, the only way
to close the estimates is by absorbing these terms into the corresponding critical terms
in the LHSs which work in our favor, e.g., (4.18) line one. That is where the role of the
parameters α, σ comes into play:

Clearly, we may choose these parameters appropriately large such that the critical
terms in the estimate (4.18), line three, are absorbed in the LHS. However, we notice that
the critical terms in the estimate (4.19), lines five and six, cannot be directly absorbed
by the corresponding ones in the estimates (4.18), (4.19), lines one and two respectively,
since C(α2 + σ2) dominates ασ (C is large in our setting); see coefficients α2, σ2 in the
RHSs of (4.18) line three and (4.19) line six respectively. In order, to bypass this issue it
is crucial that we can close the estimates of dηm+1, dξm+1, before moving on to estimate
their derivatives. Since we are able to do that, we can then absorb the critical term in
(4.19), line five, by choosing ασ > C(α2 + σ) and use afterwards the already derived
estimate of the zeroth order terms to estimate the critical terms in (4.19) line six, instead
of absorbing them anywhere. This way we can close the estimates for the first order
terms dηm+1

s , dξm+1
s in L2

α−1 and obtain the desired contraction estimate (4.7) for small
T, E0.

We will use below in the proof the following simple modified version of Gronwall’s
inequality.

Lemma 4.4. Let f : [a, b]→ R be a continuous function which satisfies:

1
2
f2(t) ≤ 1

2
f2
0 +

∫ t

a
Ψ(τ)f(τ)dτ, t ∈ [a, b],

where f0 ∈ R and Ψ nonnegative continuous in [a, b]. Then the estimate

1
2
|f(t)| ≤ 1

2
|f0|+

∫ t

a
Ψ(τ)dτ, t ∈ [a, b]

holds.

Proposition 4.2 implies the contraction (4.7): Choosing α, σ appropriately large
such that

ασ > C(α2 + σ) + 1,

the critical terms on the RHS of (4.18), line three, are be absorbed in the LHS. Hence, we
may employ the standard (integral form of) Gronwall’s inequality, applying the estimate
(4.9), to close the estimate of the zeroth order terms dηm+1, dξm+1:

sup
[0,T ]

(
‖dηm+1‖2L2

α
+ ‖dξm+1‖2L2

α

)
+
∫ T

0

(
‖dη

m+1
s

`α
‖2L2(0,δ) + ‖dξ

m+1
s

`α
‖2L2(0,δ)

)
dτ (4.20)

≤ C exp{C(α2T + E0
√
T )}

[
E0σ2T + (E0 + 1)σ

√
T +
√
TE2

0 + E0
]
E(dηm, dξm;T )

We proceed to the estimate of the first derivatives (4.19). For the same choice of α, σ
as above (uniform C), we absorb the critical terms in the RHS, line five, involving the
first order terms dηm+1

s , dξm+1
s . Also, utilizing the preceding estimate (4.20) we estimate

the zeroth order terms on the RHS of (4.19), line six; including the critical terms with a
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bad sign coefficient of magnitude σ2. Thus, we have

1
2
(
‖dηm+1

s ‖2L2
α−1[t] + ‖dξm+1

s ‖2L2
α−1[t]

)
+
∫ t

0

(
‖dη

m+1
s

`α
‖2L2(0,δ) + ‖dξ

m+1
s

`α
‖2L2(0,δ)

)
dτ +

1
6

∫ t

0
‖dξm+1

ss ‖2L2
α−1[τ ]dτ

≤ C
∫ t

0

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞ + α2
)(
‖dηm+1

s ‖2L2
α−1[τ ] + ‖dξm+1

s ‖2L2
α−1[τ ]

)
dτ

+ C

∫ t

0

(
‖ ξ

m
ss

`α−1
‖L2 + ‖ξ

m−1
ss

`α−1
‖L2

)
‖dξms ‖L∞‖dηm+1

s ‖L2
α−1[τ ]dτ (4.21)

+ C
(
σ2eC(α2T+E0

√
T ) + 1

)[
E0σ2T + (E0 + 1)σ

√
T + E2

0

√
T + E0

]
E(dηm, dξm;T )

Employing Lemma 4.4 for

f2(t) = ‖dηm+1
s ‖2L2

α−1[t] + ‖dξm+1
s ‖2L2

α−1[t]

1
2
f2
0 = the last term in (4.21)

Ψ = C
(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞ + α2
)(
‖dηm+1

s ‖2L2
α−1[τ ] + ‖dξm+1

s ‖2L2
α−1[τ ]

) 1
2

+ C
(
‖ ξ

m
ss

`α−1
‖L2 + ‖ξ

m−1
ss

`α−1
‖L2

)
‖dξms ‖L∞

we obtain

sup
t∈[0,T ]

(
‖dηm+1

s ‖2L2
α−1[t] + ‖dξm+1

s ‖2L2
α−1[t]

)
≤
∫ T

0
Ψ(τ)dτ (4.22)

+ C
(
σ2eC(α2T+E0

√
T ) + 1

)[
E0σ2T + (E0 + 1)σ

√
T + E2

0

√
T + E0

]
E(dηm, dξm;T ).

Finally, applying C-S and (4.5),(4.17) we estimate∫ T

0
Ψdτ ≤ C(α2T + E0

√
T ) sup

t∈[0,T ]

(
‖dηm+1

s ‖2L2
α−1[t] + ‖dξm+1

s ‖2L2
α−1[t]

) 1
2 (4.23)

+ C
√
E0 · E(dηm, dξm;T )

Hence, for T > 0 small we absorb the first term in (4.23) to the LHS of (4.22) and close
the estimates of dηm+1

s , dξm+1
s .

From the above estimates we deduce the contraction estimate (4.7), provided T, E0
are sufficiently small.

4.3 Proof of Proposistion 4.2 I: Estimates for the non-linear terms

We establish some estimates for the functions dFm1 , dF
m
2 (4.14),(4.15) that we will

use in proving the estimates in Proposition 4.2.

Proposition 4.3. For any function u ∈ L2(0, T ;L2
α) and t ∈ [0, T ] the following esti-

mates hold:∫ t

0
‖dFm1 ‖2L2

α−1
dτ ≤ C

(
E0σ2T + (E0 + 1)σ

√
T +
√
TE2

0

)
E(dηm, dξm;T ), (4.24)
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∫ t

0
‖dFm2 ‖2L2

α−1
dτ ≤ C

(
E0σ2T + (E0 + 1)σ

√
T +
√
TE2

0 + E0
)
E(dηm, dξm;T ) (4.25)

and ∫ t

0

∫
u · ∂s(dFm1 )

`2α
dsdτ ≤ C

ε
σ

∫ t

0
‖ u
`α
‖2L2(0,δ)dτ +

C

ε

∫ t

0
‖ u

`α−1
‖2L2dτ

+
C

ε

∫ t

0

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞ + 1
)
‖ u

`α−1
‖2L2dτ (4.26)

+ C

∫ t

0

(
‖ ξ

m
ss

`α−1
‖L2 + ‖ξ

m−1
ss

`α−1
‖L2

)
‖dξms ‖L∞‖

u

`α−1
‖L2dτ (0 < ε < 1)

+ C

(
E0σ2T + E0σ

√
T + ε(E0 + 1) + (E0 + 1)2

√
T

)
E(dηm, dξm;T )

We remark that the only part that ‘does not belong’ in the above estimates, is the
last summand in (4.25) from which we do not gain any smallness in T . This term comes
from estimating ξmssB(dηm + dξm) in dFm2 (4.15) below.

Proof. Recall the leading behavior of the coefficients (3.15), (3.22). Plugging (4.14) in
the norm below we estimate:

‖dFm1 ‖2L2
α−1
≤
∥∥ψ2

s

ψ2

Ddξm

`α−1

∥∥2

L2 +
∥∥A
s

B(dξm + dηm)
`α−1

∥∥2

L2 +
∥∥ψs
ψ
Bξms

dξm

`α−1

∥∥2

L2 (4.27)

+
∥∥B dξms

`α−1
(ξms + ξm−1

s )
∥∥2

L2 +
∥∥|ξm−1

s |2B dξm

`α−1

∥∥2

L2

≤ CE0‖
dξm

s2`α−2
‖2L2 (using the estimate (4.11) for the fraction D

` )

+ CA2(t)
(
‖ dξ

m

s`α−1
‖2L2 + ‖ dη

m

s`α−1
‖2L2

)
+ C‖ξms ‖2L∞‖

dξm

s`α−1
‖2L2

+ C
(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞
)
‖ dξ

m
s

`α−1
‖2L2 + C‖ξms ‖2L∞‖dξm‖2L∞‖

ξm−1
s

`α−1
‖2L2

Employing the comparison estimate `2/s2 ≤ Cσ (3.28) for the first three terms in the
RHS of the second inequality above and the L∞ estimate of dξm (4.16) for the last term
we obtain

‖dFm1 ‖2L2
α−1
≤ C

(
E0σ2 +A2(t)σ + ‖ξms ‖2L∞σ + ‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞ (4.28)

+ ‖ξm−1
s ‖2L∞E0

)(
‖dξm‖2H1

α
+ ‖dηm‖2L2

α

)
After integrating in time and applying (3.23),(4.9) we arrive at (4.24).

Similarly, for the case of dFm2 plugging in (4.15) we derive:

‖dFm2 ‖2L2
α−1

(4.29)

≤
∥∥(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)
D(dξm + dηm)

`α−1

∥∥2

L2 +
∥∥A
s
B
dξm

`α−1

∥∥2

L2 +
∥∥ψs
ψ
Bξms

dηm + dξm

`α−1

∥∥2

L2

+
∥∥ξmssBdηm + dξm

`α−1

∥∥2

L2 +
∥∥B dξms

`α−1
(ξms + ξm−1

s )
∥∥2

L2 +
∥∥|ξm−1

s |2Bdη
m + dξm

`α−1

∥∥2

L2

+
∥∥ψs
ψ
ηms B

dηm + dξm

`α−1

∥∥2

L2 +
∥∥B(ξms

dηms
`α−1

+ ηm−1
s

dξms
`α−1

)
∥∥2

L2 +
∥∥ηm−1

s ξm−1
s B

dηm + dξm

`α−1

∥∥2

L2

≤ CE0
(
‖ dξm

s2`α−2
‖2L2 + ‖ dηm

s2`α−2
‖2L2

)
(applying (4.11) for D

` and B)
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+ CA2(t)‖ dξ
m

s`α−1
‖2L2 + C‖ξms ‖2L∞

(
‖ dη

m

s`α−1
‖2L2 + ‖ dξ

m

s`α−1
‖2L2

)
+ C

(
‖dηm‖2L∞ + ‖dξm‖2L∞

)
‖ ξ

m
ss

`α−1
‖2L2 + C

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞
)
‖ dξ

m
s

`α−1
‖2L2

+ C‖ξm−1
s ‖2L∞

(
‖dηm‖2L∞ + ‖dξm‖2L∞

)
‖ξ

m−1
s

`α−1
‖2L2

+ C
(
‖dη

m

s
‖2L∞ + ‖dξ

m

s
‖2L∞

)
‖ η

m
s

`α−1
‖2L2 + C‖ξms ‖2L∞‖

dηms
`α−1

‖2L2

+ C‖dξms ‖2L∞‖
ηm−1
s

`α−1
‖2L2 + C‖ξm−1

s ‖2L∞
(
‖dηm‖2L∞ + ‖dξm‖2L∞

)
‖η

m−1
s

`α−1
‖2L2

We employ once more the comparison estimate (3.28), the energy estimate of the iterates
(4.5) and the L∞ estimates for dηm, dξm, dξms to get

‖dFm2 ‖2L2
α−1

(4.30)

≤ C
(
E0σ2 +A2(t)σ + ‖ξms ‖2L∞σ + σE0

)(
‖dξm‖2H1

α
+ ‖dηm‖2H1

α

)
+ C

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞ + ‖ξm−1
s ‖2L∞E0

)(
‖dξm‖2H1

α
+ ‖dηm‖2H1

α

)
+ C‖ ξ

m
ss

`α−1
‖2L2

(
‖dξm‖2H1

α
+ ‖dηm‖2H1

α

)
+ E0‖

dξms
`α−1

‖L2‖
dξmss
`α−1

‖L2

Integrating from 0 ≤ τ ≤ t, applying C-S to the last term above and utilizing (4.9) we
achieve the estimate (4.25).5

We proceed to the relevant estimates of ∂s(dFm1 ). This time, to be comprehensive,
we plug in each term in the RHS of (4.14) at the time and estimate it separately. Recall
again the singular orders of the coefficients (3.15), (3.22) and the ones of their spatial
derivatives (3.17). Applying C-S to each arising term we have:∫

u

`2α−2
∂s

[
ψ2
s

ψ2
Ddξm

]
ds (4.31)

=
∫

u

`2α−2

[
∂s(

ψ2
s

ψ2
)Ddξm +

ψ2
s

ψ2
Dsdξ

m +
ψ2
s

ψ2
Ddξms

]
ds

≤ ‖ u

s`α−1
‖2L2 + CE0‖

dξm

s2`α−2
‖2L2

(by C-S and the pointwise estimate of D (4.11), k = 1)

+ ‖ u

s`α−1
‖2L2 + C‖dξ

m

s
‖2L∞‖

Ds

`α−1
‖2L2 + ‖ u

s`α−1
‖2L2 + CE0‖

dξms
s`α−2

‖2L2

≤ Cσ‖ u
`α
‖2L2(0,δ) + C‖ u

`α−1
‖2L2(δ,+∞) (recall def. (3.26); estimate `2/s2 (3.28))

+ CE0σ2‖dξ
m

`α
‖2L2 + CE0σ‖

dξms
`α−1

‖2L2 (by (4.12) for Ds and dξm-L∞ estimate (4.16))

Similarly, utilizing the estimates on B (4.11), (4.12) we obtain∫
u

`2α−2
∂s

[
A

s
B(dξm + dηm)

]
ds (4.32)

=
∫

u

`2α−2

[
∂s(

A

s
)B(dξm + dηm) +

A

s
Bs(dξm + dηm) +

A

s
B(dξms + dηms )

]
ds

≤ ‖ u

s`α−1
‖2L2 + CA2(t)

(
‖ dξ

m

s`α−1
‖2L2 + ‖ dη

m

s`α−1
‖2L2

)
5The second last term in the RHS of (4.30) is the first problematic term that forces us to assume

further smallness of the initial energy E0.
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‖ u

s`α−1
‖2L2 + CA2(t)

(
‖dξm‖2L∞ + ‖dηm‖2L∞

)
‖ Bs
`α−1

‖2L2

+ ‖ u

s`α−1
‖2L2 + CA2(t)

(
‖ dξ

m
s

`α−1
‖2L2 + ‖ dη

m
s

`α−1
‖2L2

)
≤ Cσ‖ u

`α
‖2L2(0,δ) + C‖ u

`α−1
‖2L2(δ,+∞) + CA2(t)(E0 + σ + 1)

(
‖dξm‖2H1

α
+ ‖dηm‖2H1

α

)
and ∫

u

`2α−2
∂s

[
ψs
ψ
Bξms dξ

m

]
ds (4.33)

=
∫

u

`2α−2

[
∂s(

ψs
ψ

)Bξms dξ
m +

ψs
ψ
Bsξ

m
s dξ

m +
ψs
ψ
Bξmssdξ

m +
ψs
ψ
Bξms dξ

m
s

]
ds

≤ ‖ u

s`α−1
‖2L2 + C‖ξms ‖2L∞‖

dξm

s`α−1
‖2L2 + C‖ξms ‖2L∞‖dξm‖2L∞‖

Bs
`α−1

‖2L2

+
C

ε
‖ u

s`α−1
‖2L2 + ε‖dξm‖2L∞‖

ξmss
`α−1

‖2L2 + ‖ u

s`α−1
‖2L2 + C‖ξms ‖2L∞‖

dξms
`α−1

‖2L2

≤ C

ε
σ‖ u
`α
‖2L2(0,δ) +

C

ε
‖ u

`α−1
‖2L2(δ,+∞) + Cσ‖ξms ‖2L∞‖

dξm

`α
‖2L2 (using (3.28))

+
(
ε‖ ξ

m
ss

`α−1
‖2L2 + CE0‖ξms ‖2L∞ + C‖ξms ‖2L∞

)
‖dξm‖2H1

α

The last term to be estimated is a bit more involved. We follow the same plan employing
the estimates on B (4.11), (4.12) and the L∞ estimates of dξm, dξms (4.16), (4.17).∫

u

`2α−2
∂s

[
Bdξms (ξms + ξm−1

s ) + |ξm−1
s |2dξmB

]
ds (4.34)

=
∫

u

`2α−2

[
Bsdξ

m
s (ξms + ξm−1

s ) +Bdξmss(ξ
m
s + ξm−1

s ) +Bdξms (ξmss + ξm−1
ss )

+ 2ξm−1
s ξm−1

ss dξmB + |ξm−1
s |2dξms B + |ξm−1

s |2dξmBs
]
ds

≤ C
(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞
)
‖ u

`α−1
‖2L2 + ‖dξms ‖2L∞‖

Bs
`α−1

‖2L2

+ ε‖ dξ
m
ss

`α−1
‖2L2 +

C

ε

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞
)
‖ u

`α−1
‖2L2

+ C‖ u

`α−1
‖L2‖dξms ‖L∞

(
‖ ξ

m
ss

`α−1
‖L2 + ‖ξ

m−1
ss

`α−1
‖L2

)
+
C

ε
‖ξm−1
s ‖2L∞‖

u

`α−1
‖2L2 + ε‖dξm‖L∞‖

ξm−1
ss

`α−1
‖2L2

+ ‖ξm−1
s ‖2L∞‖

u

`α−1
‖2L2 + C‖ξm−1

s ‖2L∞‖
dξms
`α−1

‖2L2 + C‖ξm−1
s ‖2L∞‖dξm‖2L∞‖

Bs
`α−1

‖2L2

≤ C

ε

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞
)
‖ u

`α−1
‖2L2 + C‖ u

`α−1
‖L2‖dξms ‖L∞

(
‖ ξ

m
ss

`α−1
‖L2 + ‖ξ

m−1
ss

`α−1
‖L2

)
+ C

[
(E0 + 1)‖ξm−1

s ‖2L∞ + ε‖ ξ
m
ss

`α−1
‖2L2

]
‖dξm‖2H1

α
+ ε‖ dξ

m
ss

`α−1
‖2L2 + E0‖

dξms
`α−1

‖L2‖
dξmss
`α−1

‖L2

We remark here that the control of the term Bdξms (ξmss + ξm−1
ss ) in the above estimate,

which results to the second term on the RHS of the last inequality, is one of the most
delicate that we have to perform6; essentially due to the fact that our energies depend

6In fact, if this term in the equation had been slightly more nonlinear, the overall scheme would break
down.
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on just one derivative in η. This term also forces us to consider small initial energy E0
to close the estimates; cf. the last term in the estimate (4.23).

Combining (4.31)-(4.34) we obtain∫
u · ∂s(dFm1 )

`2α−2
ds (4.35)

≤ C

ε
σ‖ u
`α
‖2L2(0,δ) +

C

ε

(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞ + 1
)
‖ u

`α−1
‖2L2(δ,+∞)

+ C‖ u

`α−1
‖L2‖dξms ‖L∞

(
‖ ξ

m
ss

`α−1
‖L2 + ‖ξ

m−1
ss

`α−1
‖L2

)
+ C

[
E0σ2 + (E0 + σ + 1)A2(t) + σ‖ξms ‖2L∞ + ε‖ ξ

m
ss

`α−1
‖2L2

+ (E0 + 1)
(
‖ξms ‖2L∞ + ‖ξm−1

s ‖2L∞
)](
‖dξm‖2H1

α
+ ‖dηm‖2H1

α

)
+ ε‖ dξ

m
ss

`α−1
‖2L2

+ E0‖
dξms
`α−1

‖L2‖
dξmss
`α−1

‖L2

Thus, integrating on [0, t] and employing once more the estimates (3.23),(4.9) we conclude
the desired estimate (4.26). This completes the proof Proposition 4.3.

4.4 Proof of Proposition 4.2 II: L2
α estimates of dηm+1, dξm+1

We prove (4.18). Let us commence with the L2
α estimates of dηm+1. Taking the time

derivative of the L2
α norm of dηm+1 and using (3.27), (3.25) we derive

1
2
∂t‖dηm+1‖2L2

α
=
∫
dηm+1dηm+1

t

`2α
ds− α

∫
|dηm+1|2

`2α+1
∂t`ds+

1
2

∫
|dηm+1|2

`2α
∂tds

≤
∫
dηm+1dηm+1

t

`2α
ds− ασ‖dη

m+1

`α+1
‖2L2(0,δ) + Cα‖dη

m+1

`α+1
‖2L2(0,δ) (4.36)

+ Cα‖dη
m+1

`α
‖2L2(δ,+∞) + C‖dη

m+1

s`α
‖2L2

As usual, we estimate the last term employing (3.28)

‖dη
m+1

s`α
‖2L2 ≤ Cσ‖

dηm+1

`α+1
‖2L2(0,δ) + C‖dη

m+1

`α
‖2L2(δ,+∞) (4.37)

Recall (3.15), (3.22) and the pointwise bound of B (4.11) to derive∫
dηm+1dηm+1

t

`2α
ds (plugging in the RHS of (4.13))

=
∫
dηm+1

`2α

[
ψ2
s

ψ2
Bdξm+1 +

ψs
ψ
Bdξm+1

s + 2n(n− 1)
ψ2
s

ψ2
dηm+1 + dFm1

]
ds (4.38)

≤ ‖dη
m+1

s`α
‖2L2 + C‖dξ

m+1

s`α
‖2L2 + ε‖dξ

m+1
s

`α
‖2L2 +

C

ε
‖dη

m+1

s`α
‖2L2

+ C‖dη
m+1

s`α
‖2L2 + ‖dη

m+1

`α+1
‖2L2 + ‖dFm1 ‖2L2

α−1

≤ C

ε
σ‖dη

m+1

`α+1
‖2L2(0,δ) +

C

ε
‖dη

m+1

`α
‖2L2(δ,+∞) (employing (3.28), 0 < ε < 1)

+ Cσ‖dξ
m+1

`α+1
‖2L2(0,δ) + C‖dξ

m+1

`α
‖2L2(δ,+∞) + ε‖dξ

m+1
s

`α
‖2L2 + ‖dFm1 ‖2L2

α−1
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We proceed to the case of dξm+1 slightly differently. We control the L2
α norm of the

term (ηm + 1)
1
2dξm+1 instead. Of course, it is evident from (4.10) that it is the same

thing as estimating dξm+1. We should note that it is not needed to go through this
procedure if E0 is small enough, but we wish to provide a more general plan. Similarly
to (4.36), keeping in mind the pointwise estimate on ηm (4.10), we deduce

1
2
∂t‖(ηm + 1)

1
2dξm+1‖2L2

α
≤
∫

(ηm + 1)dξm+1dξm+1
t

`2α
ds− 1

2
ασ‖dξ

m+1

`α+1
‖2L2(0,δ) (4.39)

+ Cα‖dξ
m+1

`α+1
‖2L2(0,δ) + Cα‖dξ

m+1

`α
‖2L2(δ,+∞)

+ C‖dξ
m+1

s`α
‖2L2 + ‖ηmt ‖L∞‖

dξm+1

`α
‖2L2

The second last term is controlled via (3.28), as in (4.37). We estimate the last term from
the equation satisfied by ηmt , analogous of the first equation in (4.2), using the pointwise
estimate on the iterates (4.8) and the comparison estimate (3.28), replacing the singular
orders of the coefficients (3.15), (3.22) with the weights `k, k = 1, 2.

‖ηmt ‖L∞‖
dξm+1

`α
‖2L2 (4.40)

≤ C
(√
E0σ +

√
σ‖ξms ‖L∞ +A(t)

√
σE0 + ‖ξm−1

s ‖2L∞
)
‖dξ

m+1

`α
‖2L2

Moving on to the main term, plugging in the RHS of (4.13), we have∫
(ηm + 1)dξm+1dξm+1

t

`2α
ds (4.41)

=
∫

(ηm + 1)dξm+1

`2α

[
(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)(Bdηm+1 +Bdξm+1) +

ψs
ψ
Bdξm+1

s

+
dξm+1
ss

(ηm + 1)(ξm + 1)2n
+
ψs
ψ
Bdηm+1

s + dFm2

]
ds

≤ C‖dξ
m+1

s`α
‖2L2 + C‖dη

m+1

s`α
‖2L2 + ε‖dξ

m+1
s

`α
‖2L2 +

C

ε
‖dξ

m+1

s`α
‖2L2 (by (4.11) for B)

+
∫

dξm+1dξm+1
ss

`2α(ξm + 1)2n
ds+

∫
ψs
ψ

Bdξm+1dηm+1
s

`2α
ds+

∫
(ηm + 1)dξm+1dFm2

`2α
ds

≤ C

ε
σ‖dξ

m+1

`α+1
‖2L2(0,δ) +

C

ε
‖dξ

m+1

`α
‖2L2(δ,+∞) + ε‖dξ

m+1
s

`α
‖2L2 (using (3.28))

+ Cσ‖dη
m+1

`α+1
‖2L2(0,δ) + C‖dη

m+1

`α
‖2L2(δ,+∞) + ‖dFm2 ‖2L2

α−1

+
∫

dξm+1dξm+1
ss

`2α(ξm + 1)2n
ds+

∫
ψs
ψ

Bdξm+1dηm+1
s

`2α
ds

We treat the last two terms separately integrating by parts. At this point the role of the
Dirichlet boundary condition (4.4) comes into play.∫

dξm+1dξm+1
ss

`2α(ξm + 1)2n
ds (4.42)

=−
∫

|dξm+1
s |2

`2α(ξm + 1)2n
ds+

∫
2nξms dξ

m+1dξm+1
s

`2α(ξm + 1)2n+1
ds+ 2α

∫
dξm+1dξm+1

s

`2α+1(ξm + 1)2n
∂s`ds
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≤− 1
2
‖dξ

m+1
s

`α
‖2L2 + ε‖dξ

m+1
s

`α
‖2L2 +

C

ε
‖ξms ‖2L∞‖

dξm+1

`α
‖2L2 (see (4.10))

+ ε‖dξ
m+1
s

`α
‖2L2 +

Cα2

ε
‖dξ

m+1

`α+1
‖2L2 (`s = O(1) (3.27))

≤ (2ε− 1
2

)‖dξ
m+1
s

`α
‖2L2 +

C

ε
‖ξms ‖2L∞‖

dξm+1

`α
‖2L2 +

Cα2

ε
‖dξ

m+1

`α+1
‖2L2(0,δ) +

Cα2

ε
‖dξ

m+1

`α
‖2L2

Similarly, by (3.15), (4.11), (4.12) we obtain 7∫
ψs
ψ

Bdξm+1dηm+1
s

`2α
ds (4.43)

=−
∫
∂s(

ψs
ψ

)
Bdξm+1dηm+1

`2α
ds−

∫
ψs
ψ

Bsdξ
m+1dηm+1

`2α
ds−

∫
ψs
ψ

Bdξm+1
s dηm+1

`2α
ds

+ 2α
∫
ψs
ψ

Bdξm+1dηm+1

`2α+1
∂s`ds

≤ ‖dη
m+1

s`α
‖2L2 + C‖dξ

m+1

s`α
‖2L2 +

C

ε
‖dη

m+1

s`α
‖2L2 + ε‖dξ

m+1

`
‖2L∞‖

Bs
`α−1

‖2L2

+ ε‖dξ
m+1
s

`α
‖2L2 +

C

ε
‖dη

m+1

s`α
‖2L2 + ‖dη

m+1

s`α
‖2L2 + α2‖dξ

m+1

`α+1
‖2L2

≤ C

ε
σ‖dη

m+1

`α+1
‖2L2(0,δ) +

C

ε
‖dη

m+1

`α
‖2L2(δ,+∞) (employing (3.28), 0 < ε < 1)

+ (Cσ + CεE0 + α2)‖dξ
m+1

`α+1
‖2L2(0,δ) (by the L∞ estimate (4.16) of dξm/`)

+ ε(1 + CE0)‖dξ
m+1
s

`α
‖2L2 + Cα2‖dξ

m+1

`α
‖2L2

Putting the above estimates (4.36)-(4.43) all together we conclude that

1
2
∂t
(
‖dηm+1‖2L2

α
+ ‖(ηm + 1)

1
2dξm+1‖2L2

α

)
+

1
2
ασ
(
‖dη

m+1

`α+1
‖2L2(0,δ) + ‖dξ

m+1

`α+1
‖2L2(0,δ)

)
≤ (4ε+ CεE0 −

1
2

)‖dξ
m+1
s

`α
‖2L2 +

C

ε

(
α2 + ‖ξms ‖2L2

)(
‖dηm+1‖2L2

α
+ ‖dξm+1‖2L2

α

)
(4.44)

+ C(
α2

ε
+
σ

ε
+ εE0)

(
‖dη

m+1

`α+1
‖2L2(0,δ) + ‖dξ

m+1

`α+1
‖2L2(0,δ)

)
+ ‖dFm1 ‖2L2

α−1
+ ‖dFm2 ‖2L2

α−1

Choosing ε small enough, the first term in the RHS of the preceding estimate has a
negative sign and hence it can be dropped. Integrating on [0, t] and taking into account
the integrated estimates of dFm1 , dF

m
2 in Proposition 4.3, we obtain the desired estimate

(4.18) in Proposition 4.2.

4.5 Proof of Proposition 4.2 III: L2
α−1 estimates of dηm+1

s , dξm+1
s

In this subsection we prove (4.19). Recall the bounds on the derivatives of the weight
7The possibility to control this next term using an integration by parts to offload the derivative from

dηm+1 is essential in order to close our estimates for the L2
α norms of dξm+1, dηm+1, without recourse to

the higher derivatives.
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` (3.27), the volume form ds (3.25) and the commutator [∂s, ∂t] (3.24) to obtain

1
2
∂t‖dηm+1

s ‖2L2
α−1

=
∫
dηm+1

s ∂tdη
m+1
s

`2α−2
ds− (α− 1)

∫
|dηm+1

s |2

`2α−1
∂t`ds+

1
2

∫
|dηm+1

s |2

`2α−2
∂tds

≤
∫
dηm+1

s ∂sdη
m+1
t

`2α−2
ds− (α− 1)σ‖dη

m+1
s

`α
‖2L2(0,δ) (4.45)

+ C(α− 1)‖dη
m+1
s

`α
‖2L2 + C‖dη

m+1
s

s`α−1
‖2L2

As usual, from (3.28)

‖dη
m+1
s

s`α−1
‖2L2 ≤ Cσ‖

dηm+1
s

`α
‖2L2(0,δ) + C‖dη

m+1
s

`α−1
‖2L2(δ,+∞),

In order to estimate the first term in the RHS of the inequality (4.45) we plug in dηm+1
t

from the first equation of (4.13) and treat each generated term separately. For all three of
the subsequent bounds we apply C-S at each term, using the estimates on the coefficients
(3.15) and the relevant function B (4.11), (4.12):∫

dηm+1
s

`2α−2
∂s

[
ψ2
s

ψ2
Bdξm+1

]
ds (4.46)

=
∫
dηm+1

s

`2α−2

[
∂s(

ψ2
s

ψ2
)Bdξm+1 +

ψ2
s

ψ2
Bsdξ

m+1 +
ψ2
s

ψ2
Bdξm+1

s

]
ds

≤ ‖dη
m+1
s

s`α−1
‖2L2 + C‖ dξ

m+1

s2`α−1
‖2L2 + C‖dξ

m+1

s
‖2L∞‖

Bs
`α−1

‖2L2 + C‖dξ
m+1
s

s`α−1
‖2L2

≤ Cσ‖dη
m+1
s

`α
‖2L2(0,δ) + C‖dη

m+1
s

`α−1
‖2L2(δ,+∞) + Cσ2‖dξ

m+1

`α+1
‖2L2(0,δ) (employing (3.28))

+ C‖dξ
m+1

`α
‖2L2(δ,+∞) + Cσ‖dξ

m+1
s

`α
‖2L2(0,δ) (by the L∞ estimate (4.16) on dξm+1)

+ C‖dξ
m+1
s

`α−1
‖2L2(δ,+∞)

Similarly, we obtain∫
dηm+1

s

`2α−2
∂s

[
ψs
ψ
Bdξm+1

s

]
ds (4.47)

=
∫
dηm+1

s

`2α−2

[
∂s(

ψs
ψ

)Bdξm+1
s +

ψs
ψ
Bsdξ

m+1
s +

ψs
ψ
Bdξm+1

ss

]
ds

≤ ‖dη
m+1
s

s`α−1
‖2L2 + C‖dξ

m+1
s

s`α−1
‖2L2 +

C

ε
‖dη

m+1
s

s`α−1
‖2L2 + ε‖dξm+1

s ‖2L∞‖
Bs
`α−1

‖2L2

+ ε‖dξ
m+1
ss

`α−1
‖2L2

≤ C

ε
σ‖dη

m+1
s

`α
‖2L2(0,δ) +

C

ε
‖dη

m+1
s

`α−1
‖2L2(δ,+∞) (by (3.28), 0 < ε < 1)

+ Cσ‖dξ
m+1
s

`α
‖2L2(0,δ) + C(1 + εE0)‖dξ

m+1
s

`α−1
‖2L2

+ ε(1 + CE0)‖dξ
m+1
ss

`α−1
‖2L2 (by the L∞ estimate (4.17) on dξm+1

s , k = 0, and C-S)
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and ∫
dηm+1

s

`2α−2
∂s

[
2n(n− 1)

ψ2
s

ψ2
dηm+1

]
ds (4.48)

=
∫
dηm+1

s

`2α−2

[
2n(n− 1)∂s(

ψ2
s

ψ2
)dηm+1 + 2n(n− 1)

ψ2
s

ψ2
dηm+1

s

]
ds

≤ C‖dη
m+1
s

s`α−1
‖2L2 + C‖dη

m+1

s2`α−1
‖2L2

≤ Cσ‖dη
m+1
s

`α
‖2L2(0,δ) + C‖dη

m+1
s

`α−1
‖2L2(δ,+∞) + Cσ2‖dη

m+1

`α+1
‖2L2(0,δ) (by (3.28))

+ C‖dη
m+1

`α
‖2L2(δ,+∞)

We proceed to the case of dξm+1
s . Similarly to (4.45), using in addition the boundary

condition (4.4) upon integrating by parts we have

1
2
∂t‖dξm+1

s ‖2L2
α−1
≤
∫
dξm+1
s ∂sdξ

m+1
t

`2α−2
ds− (α− 1)σ‖dξ

m+1
s

`α
‖2L2(0,δ)

+ C(α− 1)‖dξ
m+1
s

`α
‖2L2 + C‖dξ

m+1
s

s`α−1
‖2L2

=−
∫
dξm+1
ss dξm+1

t

`2α−2
ds+ (2α− 2)

∫
dξm+1
s dξm+1

t

`2α−1
`sds (4.49)

− (α− 1)σ‖dξ
m+1
s

`α
‖2L2(0,δ) + C(α− 1)‖dξ

m+1
s

`α
‖2L2 + C‖dξ

m+1
s

s`α−1
‖2L2

There are two main terms we must estimate here. In both estimates we plug in dξm+1
t

from (4.13), distributing the singularities in the coefficients (3.15) by applying C-S and
the usual pointwise estimates. We start first with the term

(2α− 2)
∫
dξm+1
s dξm+1

t

`2α−1
`sds (4.50)

= (2α− 2)
∫
dξm+1
s

`2α−1
`s

[
(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)(Bdηm+1 +Bdξm+1) +

ψs
ψ
Bdξm+1

s

+ |B|dξm+1
ss +

ψs
ψ
Bdηm+1

s + dFm2

]
ds

≤ α2‖dξ
m+1
s

`α
‖2L2 + C‖dη

m+1

s2`α−1
‖2L2 + C‖dξ

m+1

s2`α
‖2L2 + C‖dξ

m+1
s

s`α−1
‖2L2

+ ε‖dξ
m+1
ss

`α−1
‖2L2 +

C

ε
α2‖dξ

m+1
s

`α
‖2L2 + α2‖dξ

m+1
s

`α
‖2L2 + C‖dη

m+1
s

s`α−1
‖2L2

+ (2α− 2)
∫
dξm+1
s dFm1
`2α−1

`sds

≤ C

ε
α2‖dξ

m+1
s

`α
‖2L2(0,δ) +

C

ε
α2‖dξ

m+1
s

`α−1
‖2L2(δ,+∞) + Cσ2‖dη

m+1

`α+1
‖2L2(0,δ) (by (3.28))

+ C‖dη
m+1

`α
‖2L2(δ,+∞) + Cσ2‖dξ

m+1

`α+1
‖2L2(0,δ) + C‖dξ

m+1

`α
‖2L2(δ,+∞)

+ Cσ‖dξ
m+1
s

`α
‖2L2(0,δ) + C‖dξ

m+1
s

`α−1
‖2L2(δ,+∞) + Cσ‖dη

m+1
s

`α
‖2L2(0,δ)

+ C‖dη
m+1
s

`α−1
‖2L2(δ,+∞) + ε‖dξ

m+1
ss

`α−1
‖2L2 + ‖dFm2 ‖2L2

α−1
(`s = O(1) (3.27))
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and analogously for

−
∫
dξm+1
ss dξm+1

t

`2α−2
ds (4.51)

=−
∫
dξm+1
ss

`2α−2

[
(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)(Bdηm+1 +Bdξm+1) +

ψs
ψ
Bdξm+1

s

+
dξm+1
ss

(ηm + 1)(ξm + 1)2n
+
ψs
ψ
Bdηm+1

s + dFm2

]
ds

≤ ε‖dξ
m+1
ss

`α−1
‖2L2 +

C

ε
‖ dξ

m+1

s2`α−1
‖2L2 +

C

ε
‖dη

m+1

s2`α−1
‖2L2 +

C

ε
‖dξ

m+1
s

s`α−1
‖2L2

−
∫

|dξm+1
ss |2

`2α−2(ηm + 1)(ξm + 1)2n
ds+ ε‖dξ

m+1
ss

`α−1
‖2L2 +

C

ε
‖dη

m+1
s

s`α−1
‖2L2 +

C

ε
‖dFm2 ‖2L2

α−1

≤ 2ε‖dξ
m+1
ss

`α−1
‖2L2 +

C

ε
σ2‖dξ

m+1

`α+1
‖2L2(0,δ) +

C

ε
‖dξ

m+1

`α
‖2L2(δ,+∞) (by (3.28))

+
C

ε
σ2‖dη

m+1

`α+1
‖2L2(0,δ) +

C

ε
‖dη

m+1

`α
‖2L2(δ,+∞) +

C

ε
σ‖dξ

m+1
s

`α
‖2L2(0,δ)

+
C

ε
‖dξ

m+1
s

`α−1
‖2L2(δ,+∞) +

C

ε
σ‖dη

m+1
s

`α
‖2L2(0,δ) +

C

ε
‖dη

m+1
s

`α−1
‖2L2(δ,+∞)

− 1
3
‖dξ

m+1
ss

`α−1
‖2L2 +

C

ε
‖dFm2 ‖2L2

α−1
(from the poinwtise estimate (4.10))

Summary: Combining (4.45)-(4.51) we deduce

1
2
∂t
(
‖dηm+1

s ‖2L2
α−1

+ ‖dξm+1
s ‖2L2

α−1

)
+ (α− 1)σ

(
‖dη

m+1
s

`α
‖2L2(0,δ) + ‖dξ

m+1
s

`α
‖2L2(0,δ)

)
≤ C

(α2

ε
+ εE0

)(
‖dηm+1

s ‖2L2
α−1

+ ‖dξm+1
s ‖2L2

α−1

)
+
∫
dηm+1

s ∂s(dFm1 )
`2α−2

ds (4.52)

+
C

ε
(α2 + σ)

(
‖dη

m+1
s

`α
‖2L2(0,δ) + ‖dξ

m+1
s

`α
‖2L2(0,δ)

)
+ (4ε+ CεE0 −

1
3

)‖dξ
m+1
ss

`α−1
‖2L2

+
C

ε

(
‖dηm+1‖2L2

α
+ ‖dξm+1‖2L2

α

)
+
C

ε
σ2
(
‖dη

m+1

`α+1
‖2L2(0,δ) + ‖dξ

m+1

`α+1
‖2L2(0,δ)

)
+
C

ε
‖dFm2 ‖2L2

α−1

Let ε > 0 be small such that

4ε+ CεE0 <
1
6
.

Integrating on [0, t] and invoking the integrated estimates (4.25), (4.26) for u = dηm+1
s ,

we finally arrive at the estimate (4.19) in Proposition 4.2.

5 The Linear step in the iteration

In the beginning of §4.1 we took for granted that at each step m+1, m = 0, 1, . . ., the
linear system (4.2) possessed a solution with prescribed regularity and energy bounds.
We prove these assertions here.

Definition 5.1. For this section, we will let f, g, F1, F2 stand for generic functions in
the spaces

f, g ∈ L∞(0, T ;H1) F1 ∈ L2(0, T ;H1), F2 ∈ L2(0, T ;L2) (5.1)
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satisfying the bounds

1
2

+ ‖f‖L∞x < ‖f‖L∞x + g(x, t) < C ‖gs‖2L∞(0,T ;L2) < ε, (5.2)

for appropriate positive constants c, C, ε small, and∫ T

0
‖ Fi
`α−1

‖2L2dt < +∞, i = 1, 2 (5.3)∫
u · ∂sF1

`2α−2
ds ≤ Cσ‖ u

`α
‖2L2(0,δ) +G1(t)‖ u

`α−1
‖2L2 +G2(t),

for a.e. 0 ≤ t ≤ T and the general function u ∈ L2(0, T ;L2
α), where G1(t), G2(t) are

positive [0, T ]-integrable functions.

Motivated by (4.2), we consider the following linear system:

ηt =
ψ2
s

ψ2
fξ +

ψs
ψ
fξs + 2n(n− 1)

ψ2
s

ψ2
η + F1

ξt = (
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)f · (η + ξ) +

ψs
ψ
fξs + gξss +

ψs
ψ
fηs + F2 (5.4)

η

∣∣∣∣
t=0

= η0 ξ

∣∣∣∣
t=0

= ξ0, ξ = 0, on {x = 0, B} × [0, T ]

We prove:

Theorem 5.1. There exist α, σ sufficiently large such that (5.4) has a unique solution
up to time T > 0 in the spaces

η ∈ L∞(0, T ;H1
α) ∩ L2(0, T ;H1

α+1) ξ ∈ L∞(0, T ;H1
α) ∩ L2(0, T ;H2

α+1) (5.5)

ηt ∈ L∞(0, T ;L2
α−2) ∩ L2(0, T ;H1

α−1) ξt ∈ L2(0, T ;L2
α−1)

Further, the solution satisfies the energy estimate

E(η, ξ;T ) ≤ C̃
[
E0 +

∑∫ T

0
‖ Fi
`α−1

‖2L2dt+
∫ T

0
G2(t)dt

]
=: C̃C0(T ), (5.6)

for some positive constant C̃.

It is easy to see that the linear system (4.2) is of the type (5.4), if the energy
E(ηm, ξm;T ) is small enough. Taking the latter as an induction hypothesis, Theorem
5.1 then implies the existence of ηm+1, ξm+1 satisfying the same assertions, provided
T, E0 > 0 are sufficiently small (uniformly in m).

5.1 Plan of the proof of Theorem 5.1

We perform a new iteration for (5.4), first solving the first equation (ODE) for η (using
a previously-soved-for ξ̃)8 and then plugging η into the second (and main) equation of
(5.4) to solve for the new ξ. Let

ξ̃ ∈ L∞(0, T ;H1
α) ∩ L2(0, T ;H2

α+1) (5.7)

8This way we avoid some additional problems having to do with the fact that the level of regularity
of η is lower, by one derivative, than the one we have for ξ.
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be a function satisfying

‖ξ̃‖2L∞(0,T ;H1
α) + ‖ξ̃‖2L2(0,T ;H2

α+1) ≤ C̃C0(T ), (5.8)

with improved bounds for∫ T

0
‖ ξ̃

`α+1
‖2L2(0,δ)dt ≤

C̃

σ2
C0(T )

∫ T

0
‖ ξ̃s
`α
‖2L2(0,δ)dt ≤

C̃

σ
C0(T ); (5.9)

C̃ is some positive constant to be determined later. We consider the system

ηt =
ψ2
s

ψ2
f ξ̃ +

ψs
ψ
fξ̃s + 2n(n− 1)

ψ2
s

ψ2
η + F1

ξt = (
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)f · (η + ξ) +

f

ψ2
ξ +

ψs
ψ
fξs + gξss +

ψs
ψ
fηs + F2 (5.10)

η

∣∣∣∣
t=0

= η0 ξ

∣∣∣∣
t=0

= ξ0, ξ = 0, on {x = 0, B} × [0, T ]

Claim: For suitably large α, σ the preceding system has a unique solution

η ∈ L∞(0, T ;H1
α) ∩ L2(0, T ;H1

α+1) ξ ∈ L∞(0, T ;H1
α) ∩ L2(0, T ;H2

α+1) (5.11)

ηt ∈ L∞(0, T ;L2
α−2) ∩ L2(0, T ;H1

α−1) ξt ∈ L2(0, T ;L2
α−1),

which satisfies the energy estimates

E(η, ξ;T ) ≤ C̃C0(T ) (5.12)

and ∫ T

0
‖ ξ

`α+1
‖2L2(0,δ)dt ≤

C̃

σ2
C0(T )

∫ T

0
‖ ξs
`α
‖2L2(0,δ)dt ≤

C̃

σ
C0(T ). (5.13)

Observe that if we can prove this, a standard iteration argument (passing to a subse-
quence, weak limits etc.) yields a solution η, ξ of the original linear problem (5.4) in the
same space (5.11) and satisfying the same estimates as above. This reduces the proof of
Theorem 5.1 to proving our claim above.

5.2 A priori estimates for η

The function η given by the (ODE) first equation of (5.10) satisfies the following
energy estimates for α, σ, C̃ large, T > 0 small:

‖η‖2L∞(0,T ;H1
α) + ‖η‖2L∞(0,T ;H1

α+1) ≤
C̃

10
C0(T ) (5.14)

and ∫ T

0
‖ η

`α+1
‖2L2(0,δ)dτ ≤

C

α

C̃

σ2
C0(T )

∫ T

0
‖ηs
`α
‖2L2(0,δ)dτ ≤

C

α

C̃

σ
C0(T ). (5.15)
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Sketch of the argument . The relevant derivations are the same (and in fact a lot less
involved) with the ones in the non-linear case §4 (see Proposition 4.2). There is a slight
difference in the very last argument before closing the estimates, which we present sepa-
rately here. For example, following §4.4, we derive

1
2
∂t‖η‖2L2

α
+ ασ‖ η

`α+1
‖2L2(0,δ) (5.16)

≤ C(σ + α)‖ η

`α+1
‖2L2(0,δ) + Cα‖η‖2L2

α
+ Cσ‖ ξ̃

`α+1
‖2L2(0,δ)

+ C‖ ξ̃
`α
‖2L2 + C‖ ξ̃s

`α
‖2L2 + ‖F1

`α
‖2L2

Choosing α, σ such that

1
2
ασ > C(σ + α)

and integrating in time and utilizing (5.8), (5.9) we have

1
2
‖η‖2L2

α[t] +
ασ

2

∫ t

0
‖ η

`α+1
‖2L2(0,δ)dτ (5.17)

≤ 1
2
‖η0‖2L2

α
+ Cα

∫ t

0
‖η‖2L2

α[τ ]dτ + C(
1
σ

+ T )C̃C0(T ) +
∫ T

0
‖F1

`α
‖2L2dτ

The part of (5.14), (5.15) involving the zeroth order terms follows from (5.17) by Gron-
wall’s inequality.

5.3 The weak solution ξ: A Galerkin-type argument

Now that we have solved the first equation of (5.10) for η and obtained the required
energy estimates, we plug it into the second equation of the system (5.10) and solve for
ξ via a modified Galerkin method. We initially seek a weak solution

ξ ∈ L∞(0, T ;L2
α) ∩ L2(0, T ;H1

α+1,0) `2ξt ∈ L2(0, T ;H−1
α+1) (5.18)

satisfying∫ T

0

(
ξt, v

)
L2
α
dt =

∫ T

0

[(
(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)f · (η + ξ), v

)
L2
α

+
(ψs
ψ
fξs, v

)
L2
α

−
(
gsξs, v

)
L2
α
−
(
gξs, vs

)
L2
α

+ 2α
(
gξs, v

`s
`

)
L2
α

(5.19)

+
(ψs
ψ
fηs, v

)
L2
α

+
(
F2, v

)
L2
α

]
dt, ξ

∣∣∣∣
t=0

= ξ0

for all

v ∈ L∞(0, T ;H1
α,0(s)) ∩ L2(0, T ;H1

α+1(s)), (5.20)

where by
(
·, ·
)
L2
α

we denote the inner product in L2
α

(
v1, v2

)
L2
α

:=
∫
v1v2
`2α

ds. (5.21)

33



and by H1
α,0 the closure of compactly supported functions in H1

α(0, B); H−1
α+1 being the

dual of H1
α+1,0. In view of the regularity (5.18), ξ is actually continuous in time and

hence the initial condition in (5.19) makes sense.
Let {uk(x)}∞k=1 be an orthonormal basis of L2(0, B), which is also a basis ofH1

0

(
(0, B)

)
;

consisting of smooth, bounded functions. Then for each t ∈ [0, T ] (abusing slightly the
notation of the endpoints of integration)

wk(s, t) := `αuk(s) k = 1, 2, . . . (5.22)

is an orthonormal basis of L2
α and a basis of H1

α,0. We note that∫ T

0

∫ B

0

1
`2
dsdt

(3.28)

≤ C

∫ T

0

∫ B

0

1
s2
ds ≤ C

∫ T

0

1
s(0, t)

ds (5.23)

(3.18)

≤ C

∫ T

0

1√
t
dt ≤ C

√
T < +∞,

from which it follows that the set

span
{
dk(t)wk(s, t)

∣∣ t ∈ [0, T ], k = 1, 2 . . .
}
, (5.24)

dk(t) smooth, is also dense in L2(0, T ;H1
α+1,0(s)). Similarly to (5.23), by definition (5.22)

and (3.27), we verify the asymptotics∫
wk1wk2
s2`2α

ds = O(
1√
t
)

∫
∂swk1wk2
s`2α

ds = O(
1√
t
) (5.25)∫

∂swk1∂swk2
`2α

ds = O(
1√
t
)

∫
∂twk1wk2
`2α

ds = O(
1√
t
),

without assuming of course any uniformity in the RHSs with respect to the indices
k1, k2 ∈ {1, 2, . . .}.

Given ν ∈ {1, 2, . . .}, we construct Galerkin approximations of the solution of (5.19),
which lie in the span of the first ν basis elements:

ξν :=
ν∑
k=1

ak(t)wk ak(0) :=
∫
ξ0wk(x, 0)

x2α
dx (5.26)

solving

(
ξνt , wk

)
L2
α

=
(
(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)f · (η + ξν), wk

)
L2
α

+
(ψs
ψ
fξνs , wk

)
L2
α

−
(
gsξ

ν
s , wk

)
L2
α
−
(
gξνs , ∂swk

)
L2
α

+ 2α
(
gξνs , wk

`s
`

)
L2
α

(5.27)

+
(ψs
ψ
fηs, wk

)
L2
α

+
(
F2, wk

)
L2
α
,

for t ∈ [0, T ] and every k = 1, . . . , ν.

Proposition 5.1 (Galerkin approximations). For each ν = 1, 2, . . . there exists a unique
function ξν of the form (5.26) satisfying (5.27).
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Proof. Employing (5.25) we see that

(
ξνt , wk

)
L2
α

= a′k(t) +
ν∑
j=1

aj(t)O(
1√
t
)

and also utilizing (3.15), (5.2)

(
(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)f · ξν , wk

)
L2
α

+
(ψs
ψ
fξνs , wk

)
L2
α

=
ν∑
j=1

aj(t)O(
1√
t
).

Further, by our assumption on g (5.1) and (5.25) it holds

−
(
gsξ

ν
s , wk

)
L2
α
−
(
gξνs , ∂swk

)
L2
α

+ 2α
(
gξνs , wk

`s
`

)
L2
α

(`s = O(1) (3.27))

=
ν∑
j=1

ak(t)O(1) +
ν∑
j=1

ak(t)O(
1√
t
),

Lastly, setting

dk(t) :=
(
(
ψss
ψ

+ (n− 1)
ψ2
s

ψ2
)f · η, wk

)
L2
α

+
(ψs
ψ
fηs, wk

)
L2
α

+
(
F2, wk

)
L2
α

≤ C‖ η
s`α
‖2L2 +

∫
1
s2
ds+ C‖ηs

`α
‖2L2 +

∫
1
s2
ds+ C‖ F2

`α−1
‖2L2 +

∫
1
`2
ds

we observe that (5.27) reduces to a linear first order ODE system of the form

a′k(t) =
ν∑
j=1

ak(t)O(
1√
t
) +

ν∑
j=1

ak(t)O(1) + dk(t) k = 1, . . . , ν

having coefficients which are singular at t = 0, but luckily they are all integrable on
[0, T ]. This implies local existence and uniqueness of the system and hence of ξν at each
step ν ∈ {1, 2, . . .}.

Proposition 5.2 (Energy estimates). For α, σ, C̃ appropriately large and T > 0 small
the following estimates hold:

‖ξν‖2L∞(0,T ;L2
α(s)) + ‖ξνs ‖2L2(0,T ;H1

α+1,0) ≤
C̃

10
C0(T ), (5.28)

∫ T

0
‖ ξν

`α+1
‖2L2(0,δ)dt ≤

C

α

C̃

σ2
C0(T ) (5.29)

and (∫ T

0

(
ξνt , v

)
L2
α
dt

)2

≤ C̃

10
C0(T )

∫ T

0
‖v‖2H1

α+1,0
dt, (5.30)

for every ν = 1, 2, . . ., v =
∑ν

k=1 dk(t)wk.
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Proof. Multiplying the equation (5.27) with ak(t) and summing over k = 1, . . . , ν, we
can then follow the argument in §5.2 to prove (5.28),(5.29). Next, we readily compute
using the equation (5.27):

(
ξνt , v

)
L2
α
≤ C

(
‖ v

`α+1
‖L2 + ‖ vs

`α
‖L2

)[
‖ η

s2`α−1
‖L2 + ‖ ξν

s2`α−1
‖L2 + ‖ ξνs

s`α−1
‖L2

+ α2‖ξ
ν
s

`α
‖L2 + ‖ ηs

s`α−1
‖L2 + ‖ F2

`α−1
‖L2

]
Employing the comparison (3.28) and (5.14), (5.15) along with the already derived (5.28),
(5.29) we arrive at (5.30).

The estimates in Proposition 5.2 suffice to pass to a subsequence (applying a diagonal
argument due to (5.30)), yielding in the limit a weak solution ξ (5.18),(5.19) verifying
the energy bounds

‖ξ‖2L∞(0,T ;L2
α(s)) +

∫ T

0
‖ ξs
`α
‖2L2dt ≤

C̃

10
C0(T ) (5.31)

and ∫ T

0
‖ ξ

`α+1
‖2L2(0,δ)dt ≤

C

α

C̃

σ2
C0(T ). (5.32)

Uniqueness follows by the linearity of (5.19), since the difference of any two weak solutions
satisfies the corresponding estimates with zero initial data and zero inhomogeneous terms.

5.4 Improved regularity and energy estimates for ξ

We now show that ξ is in fact a strong solution of (5.10). Let 0 < t0 < T be a fixed
positive time. Looking at the second equation of (5.10) for t ∈ [t0, T ], we observe that
the coefficients involving ψ and its derivatives are smooth and bounded, while f, g ∈
L∞(0, T ;H1) (5.1). Moreover, from §5.2 we have η ∈ L∞(0, T ;H1) and by assumption
Fi ∈ L2(0, T ;L2), i = 1, 2. Hence, by standard theory of parabolic equations the weak
solution ξ (5.18) of (5.10) that we established in §5.3, having “initial data” ξ(s, t0) ∈ H1

(for a.e. 0 < t0 < T ), attains interior regularity

ξ ∈ L∞(t0, T ;H1
0 ) ∩ L2(t0, T ;H2) ξt ∈ L2(t0, T ;L2)

Since t0 ∈ (0, T ) is arbitrary, we can improve the regularity of the preceding solution

ξ ∈ L∞(0, T ;H1
α,0) ∩ L2(0, T ;H2

α+1) ξt ∈ L2(0, T ;L2
α−1) (5.33)

by straightforwardly using the second equation in (5.10) to derive the desired energy
estimates for the higher order terms. Recall that for fixed t > 0, the weight `2 is bounded
above and below (Definition 3.1). Thus, it makes sense to (time) differentiate the L2

α−1

of ξ and plug in directly the equation (5.10) to obtain (as in the non-linear case for dξm+1
s

§4.5):
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1
2
d

dt
‖ξs‖2L2

α−1
+ ασ‖ ξs

`α
‖2L2(0,δ) +

1
4
‖ ξss
`α−1

‖2L2 (5.34)

≤ C(α2 + σ)‖ ξs
`α
‖2L2(0,δ) + Cα2‖ξs‖2L2

α−1

+ Cσ2
(
‖ η

`α+1
‖2L2(0,δ) + ‖ ξ

`α+1
‖2L2(0,δ)

)
+ Cσ

(
‖ηs
`α
‖2L2(0,δ) + ‖ ξs

`α
‖2L2(0,δ)

)
+ C

(
‖η‖2L2

α
+ ‖ξ‖2L2

α
+ ‖ηs‖2L2

α−1

)
+ C‖ F2

`α−1
‖2L2

Let α, σ large such that 1
2ασ > C(α2 + σ). Invoking (5.8), (5.9), (5.14), (5.15), (5.31),

(5.32) upon integrating on [0, T ] we deduce

1
2
‖ξs‖2L2

α−1[t] +
1
2

(α− 1)σ
∫ t

0
‖ ξs
`α
‖2L2dτ +

1
4

∫ t

0
‖ ξss
`α−1

‖2L2dτ (5.35)

≤ 1
2
‖∂xξ0‖2L2

α−1
+ Cα2

∫ t

0
‖ξs‖2L2

α−1[τ ]dτ + C(
1
α

+ T )C̃C0(T ) + C

∫ T

0
‖ F2

`α−1
‖2L2dτ

Employing Gronwall’s inequality, t ∈ [0, T ], we finally conclude (T > 0 small, α large)

‖ξs‖2L∞(0,T ;L2
α−1(s)) +

∫ T

0
‖ ξss
`α−1

‖2L2dτ ≤
C̃

10
C0(T ) (5.36)

and ∫ T

0
‖ ξs
`α
‖2L2(0,δ)dτ ≤

C̃

σ
C0(T ) (5.37)

This completes the proof of the claim in the outline of the plan §5.1 and consequently of
Theorem 5.1 and the realization of the linear step in the iteration of the non-linear PDE
(4.2).

A Analysis of the singular Ricci solitons

Generally, for metrics of the form (2.1) [6, §1.3.2] the Ricci tensor is given by

Ric(g) = −nψxx
ψ
dx2 + (n− 1− ψψxx − (n− 1)(ψx)2)gSn (A.1)

and the Hessian of a radial function φ by

∇∇φ = φxxdx
2 + ψψxφxgSn , (A.2)

where ˙ = d
dx . Therefore, equation (2.2) reduces to a coupled ODE system of the form{

nψxx − ψφxx = λψ
ψψxx + (n− 1)ψ2

x − (n− 1)− ψψxφx = λψ2.
(A.3)

Following [6, Chapter 1, §5.2], we introduce the transformation

W =
1

−φx + n ψ̇ψ

, X =
√
nW

ψ̇

ψ
, Y =

√
n(n− 1)W

ψ
, (A.4)
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along with a new independent variable y defined via

dy =
dx

W
. (A.5)

For the above set of variables, the ODE system (A.3) becomes

(
′ =

d

dy

)
W ′ = W (X2 − λW 2)
X ′ = X3 −X + Y 2

√
n

+ λ(
√
n−X)W 2

Y ′ = Y (X2 − X√
n
− λW 2)

(A.6)

We readily check (see also [6, §1.5.2]) that the equilibrium points of the above system are

(0, 0, 0) (0,±1, 0) (0,
1√
n
,±
√

1− 1
n

).

and also (± 1√
λn
, 1√

n
, 0), when λ > 0.

In the present article we are concerned with the trajectories emanating from the
equilibrium point (0, 1, 0), for all λ ∈ R (in our primary analysis). The linearization of
(A.6) at (0, 1, 0) takes the diagonal form W

X − 1
Y

′ =
 1 0 0

0 2 0
0 0 1− 1√

n

 W
X − 1
Y

 (A.7)

Note that for n > 1, all eigenvalues (diagonal entries) are positive, which implies that
(0, 1, 0) is a source of the system. Whence, if a trajectory of (A.6) is initially (y = 0)
close to (0, 1, 0), i.e.,

|(W (0), X(0)− 1, Y (0))| < ε,

for ε > 0 sufficiently small (indicated by the RHS of (A.6)), then standard ODE theory
(e.g., see [9]) yields the estimate

|(W (y), X(y)− 1, Y (y))| ≤
√

3εeµy y ≤ 0, (A.8)

for some 0 < µ < 1 − 1√
n

(least eigenvalue).9 We will show that these trajectories
correspond to an essential singularity of the original metric (2.1) at x = 0.

A.1 Asymptotics at x = 0

We will be considering solutions of the system (A.6), with (W (0), X(0), Y (0)) suffi-
ciently close to the equilibrium point (0, 1, 0) and with Y (0),W (0) > 0. (The reflection-
symmetric trajectories over {Y = 0} and {W = 0} are easily seen to correspond to the
same metric, while the trajectories with Y (0) = 0 do not to correspond to Riemannian
metrics.)

We proceed to derive the asymptotic behavior, as y → −∞, of the variables W,X, Y .
Changing back to x, using (A.5), we determine the desired asymptotic behavior of the
unknown functions in the original system (A.3), as x → 0+. The final estimates will
confirm that x = 0 is actually a singular point of the metric g, where in fact the curvature
blows up.

9The latter estimate improves as the initial conditions approach the equilibrium point (0, 1, 0); in
other words one can pick µ closer to the eigenvalue 1− 1√

n
by taking ε sufficiently small.
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Proposition A.1. The above initial conditions for the system (A.6) furnish trajectories
(W,X, Y ), y ∈ (−∞, 0], which correspond to solutions (ψ, φx) of the system (A.3) defined
locally for x ∈ (0, δ), δ > 0, verifying the asymptotics:

W = x+O(x2µ+1), X = 1 +O(xµ), Y =

√
n(n− 1)
a

x
1− 1√

n +O(x2µ+1− 1√
n ),

ψ = ax
1√
n+O(x

2µ+1√
n ), a > 0

ψx
ψ

=
1√
n

1
x

+O(xµ−1), (A.9)

φx =
√
n− 1
x

+O(xµ−1),
ψxx
ψ

= −
√
n− 1
n

1
x2

+O(xµ−2), φxx = −
√
n− 1
x2

+O(xµ−2)

Proof. Let X(y) = 1 + g(y). Plugging into the equation of W ′ in (A.6) we obtain

W (y) = W (0) exp
{
y +

∫ y

0
W (z)g(z)(2 + g(z))dz − λ

∫ y

0
W 3(z)dz

}
,

where according to (A.8), for y ≤ 0,

|
∫ y

0
W (z)g(z)(2 + g(z))dz| ≤ 3ε2(2 +

√
3ε)

1− e2µy

2µ

and

| − λ
∫ y

0
W 3(z)dz| ≤ |λ| · 3

√
3ε3

1− e3µy

3µ
.

Thus,

W (y) =C1e
y +W (0)ey

[
exp

{∫ y

0
W (z)g(z)(2 + g(z))dz − λ

∫ y

0
W 3(z)dz

}
− exp

{
−
∫ 0

−∞
W (z)g(z)(2 + g(z))dz + λ

∫ 0

−∞
W 3(z)dz

}]
,

where C1 = W (0) exp
{
−
∫ 0
−∞W (z)g(z)(2+g(z))dz+λ

∫ 0
−∞W

3(z)dz
}
> 0. Using (A.8)

again, we readily estimate the second term as above

W (y) = C1e
y +O(e(2µ+1)y) y ≤ 0.

Similarly, from the equation of Y ′ (A.6) we obtain

Y (y) = C2e
(1− 1√

n
)y +O(e(2µ+1− 1√

n
)y) y ≤ 0.

for an appropriate positive (Y (0) > 0) constant C2. As for X, directly from (A.8) we
have the bound

X = 1 + g(y) = 1 +O(eµy) y ≤ 0,

which we can retrieve from the equation of X ′ by integrating on (−∞, y) and using (A.8),
along with the previously derived estimates for W,Y .

Recall the transformation (A.4) to derive asymptotics for the variables in (A.3): (y ≤
−M , M > 0 large)

ψ =

√
n(n− 1)W

Y
=

√
n(n− 1)(C1e

y +O(e(2µ+1)y))

C2e
(1− 1√

n
)y +O(e(2µ+1− 1√

n
)y)

=

√
n(n− 1)C1

C2
e

1√
n
y +O(e(2µ+ 1√

n
)y)

ψx
ψ

=
X√
nW

=
1 +O(eµy)

√
n(C1ey +O(e(2µ+1)y))

=
1√
nC1

e−y +O(e(µ−1)y)

φx =n
ψx
ψ
− 1
W

=
√
n

C1
e−y + nO(e(µ−1)y)− 1

C1ey +O(e(2µ+1)y)
=
√
n− 1
C1

e−y +O(e(µ−1)y).
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Also, going back to the second equation of (A.3) and dividing both sides by ψ2 yields

ψxx
ψ

=− (n− 1)
ψ2
x

ψ2
+
n− 1
ψ2

+
ψx
ψ
φx + λ

=− (n− 1)
[ 1√

nC1
e−y +O(e(µ−1)y)

]2 +
n− 1[√n(n−1)C1

C2
e

1√
n
y +O(e(2µ+ 1√

n
)y)
]2

+
[ 1√

nC1
e−y +O(e(µ−1)y)

][√n− 1
C1

e−y +O(e(µ−1)y)
]

+ λ

=−
√
n− 1
n

e−2y

C2
1

+O(e(µ−2)y).

Furthermore, the first equation of (A.3) gives

φxx = n
ψxx
ψ
− λ = −(

√
n− 1)

e−2y

C2
1

+ nO(e(µ−2)y) + λ = −(
√
n− 1)

e−2y

C2
1

+O(e(µ−2)y).

Having derived asymptotics, as y → −∞, for all the unknown functions appearing in the
problem, we would like to derive corresponding asymptotics in the independent variable x
that we started with. For that we recall (A.5) and normalize so that x→ 0+ as y → −∞
to deduce

x =
∫
Wdy =

∫
C1e

y +O(e(2µ+1)y)dy = C1e
y +O(e(2µ+1)y) (y ≤ 0),

Hence, it follows

C1e
y = x+O(x2µ+1),

for y ≤ −M , M > 0 large. Going back to each of the above estimates, we confirm the

rest of the asymptotics in Proposition A.1 for a =
√
n(n−1)C

1− 1√
n

1

C2
> 0.

Remark A.1. One could also consider the trajectories which emanate from the other
equilibrium (0,−1, 0) of (A.6) (also a source). These can be seen to correspond to solitons
with profile

ψ(x) ∼ x−
1√
n φx(x) = −1 +

√
n

x
, as x→ 0+.

They are in fact defined for all dimensions n + 1 ≥ 2, and in the steady case (λ = 0),
dim n+ 1 = 2, can be explicitly written out as:

ψ(x) =
1
x

φx(x) = −2
x
, x ∈ (0,+∞).

Notice that these metrics are also singular at x = 0, but their evolution under the Ricci
flow (through diffeomorphisms) is almost the opposite from the metrics we obtain near
the equilibrium at (0, 1, 0); see §2.1. In particular, they remain singular for all time.
However, these solitons are beyond the scope of this paper.
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A.2 The steady singular solitons; asymptotics at x = +∞

In the steady case, λ = 0, we can push the domain of the solutions considered
in Proposition A.1 all the way up to +∞. A very useful tool in the analysis of the
trajectories of (A.6) is the Lyapunov function [6, §1.4.3]

L = X2 + Y 2, (L− 1)′ = X2(L− 1), (A.10)

which implies that the unit disk is a stable region of the critical point (0, 0). Further, it
follows from (A.10) that the equation of W ′ in (A.6) is actually redundant, reducing the
system to {

X ′ = X3 −X + Y 2
√
n

Y ′ = Y (X2 − X√
n

)
(A.11)

We remark that the unique trajectory emanating from the equilibrium point ( 1√
n
,
√

1− 1
n)

and converging (as y → +∞) to the origin (0, 0) corresponds to the well-known Bryant
soliton (see [6]).

The source considered in (A.7) corresponds to the point (1, 0). Thus, if we consider
solutions of (A.6) with initial point (X(0), Y (0)) satisfying X2(0) + Y 2(0) < 1, Y (0) > 0
and lying close enough to (1, 0), we easily conclude that the trajectory (X(y), Y (y))
approaches the origin (0, 0), as y → +∞ (at an exponential rate). Whence it exists for
all y ∈ (−∞,+∞). In fact, these trajectories emanating from (1, 0) translate back to
Ricci soliton metrics of the form (2.1), which exist (and are smooth) for all x ∈ (0,+∞)
and have the leading behavior described in Proposition A.1 at x = 0.

One can easily see that the set of all such trajectories fills up the domain in the

unit disc bounded by the Bryant soliton trajectory
(
which emanates from ( 1√

n
,
√

1− 1
n)
)

and the positive X-axis. The asymptotics of these trajectories at +∞ are easily seen to
matching those of the one corresponding of the Bryant soliton. This has to do with the
Lyapunov function (A.10) and the uniform convergence of the trajectories at the origin
(0, 0), as y → +∞. Following [6, Chapter 1, §4] we arrive at the next proposition.

Proposition A.2. The soliton metrics corresponding to the (X,Y )-orbits above are com-
plete towards x = +∞ and satisfy the asymptotics

cx
1
2 ≤ ψ ≤ Cx

1
2 cx−

1
2 ≤ ψ̇ ≤ Cx−

1
2 −Cx−

3
2 ≤ ψ̈ ≤ −cx−

3
2 , (A.12)

for x > M large, retrieving from (A.3) the asymptotics of the derivatives of φ

−C < φx < −c −Cx−2 ≤ φxx ≤ −cx−2. (A.13)
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