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The decomposition of Global Conformal
Invariants V.

Spyros Alexakis*

Abstract

This is the fifth in a series of papers where we prove a conjecture of
Deser and Schwimmer regarding the algebraic structure of “global confor-
mal invariants”; these are defined to be conformally invariant integrals of
geometric scalars. The conjecture asserts that the integrand of any such
integral can be expressed as a linear combination of a local conformal
invariant, a divergence and of the Chern-Gauss-Bonnet integrand.

The present paper complements [6] in reducing the purely algebraic
results that were used in [3] [4] to certain simpler Lemmas, which will be
proven in the last paper in this series, [g].
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1 Introduction

This is the fourth in a series of papers [3| 5] [6] [7} [§] where we prove a conjecture
of Deser-Schwmimmer [18] regarding the algebraic structure of global conformal
invariants. We recall that a global conformal invariant is an integral of a natural
scalar-valued function of Riemannian metrics, | A P(g)dVy, with the property
that this integral remains invariant under conformal re-scalings of the underlying
metricl] More precisely, P(g) is assumed to be a linear combination, P(g) =
> ez aiC'(g), where each C'(g) is a complete contraction in the form:

contr (V™R @ ... @ VM) R); (1.1)

here each factor V(™ R stands for the m" iterated covariant derivative of the
curvature tensor R. V is the Levi-Civita connection of the metric g and R is
the curvature associated to this connection. The contractions are taken with
respect to the quadratic form ¢¥. In this series of papers we prove:

Theorem 1.1 Assume that P(g) = Y_,c; aiC'(g), where each C'(g) is a com-
plete contraction in the form (1), with weight —n. Assume that for every
closed Riemannian manifold (M™, g) and every ¢ € C(M™):

[ Pegdva, = [ Pg)av,
We claim that P(g) can then be expressed in the form:
P(g) = W(g) + deTl(g) + Pfaﬁ‘(kal)

Here W(g) stands for a local conformal invariant of weight —n (meaning that
W(e??g) = e "W (g) for every ¢ € C>°(M™)), div;T*(g) is the divergence of
a Riemannian vector field of weight —n + 1, and Pfaft(R; ;1) is the Pfaffian of
the curvature tensor.

Before we discuss the position of the present paper in the series [3]-[8], we
digress to describe the relation between the present series of papers with classical
and recent work on scalar local invariants in various geometries.

Broad Discussion: The theory of local invariants of Riemannian structures
(and indeed, of more general geometries, e.g. conformal, projective, or CR) has
a long history. As discussed in [3], the original foundations of this field were
laid in the work of Hermann Weyl and Elie Cartan, see [28, 17]. The task of
writing out local invariants of a given geometry is intimately connected with
understanding polynomials in a space of tensors with given symmetries; these
polynomials are required to remain invariant under the action of a Lie group
on the components of the tensors. In particular, the problem of writing down
all local Riemannian invariants reduces to understanding the invariants of the
orthogonal group.

1See the introduction of [3] for a detailed discussion of the Deser-Schwimmer conjecture,
and for background on scalar Riemannian invariants.



In more recent times, a major program was laid out by C. Fefferman in
[20] aimed at finding all scalar local invariants in CR geometry. This was mo-
tivated by the problem of understanding the local invariants which appear in
the asymptotic expansion of the Bergman and Szeg6 kernels of strictly pseudo-
convex CR manifolds, in a similar way to which Riemannian invariants appear
in the asymptotic expansion of the heat kernel; the study of the local invariants
in the singularities of these kernels led to important breakthroughs in [I1] and
more recently by Hirachi in [25]. This program was later extended to conformal
geometry in [21]. Both these geometries belong to a broader class of structures,
the parabolic geometries; these admit a principal bundle with structure group a
parabolic subgroup P of a semi-simple Lie group G, and a Cartan connection
on that principle bundle (see the introduction in [15]). An important question
in the study of these structures is the problem of constructing all their local
invariants, which can be thought of as the natural, intrinsic scalars of these
structures.

In the context of conformal geometry, the first (modern) landmark in un-
derstanding local conformal invariants was the work of Fefferman and Graham
in 1985 [21], where they introduced the ambient metric. This allows one to
construct local conformal invariants of any order in odd dimensions, and up to
order 7 in even dimensions. The question is then whether all invariants arise
via this construction.

The subsequent work of Bailey-Eastwood-Graham [I1] proved that this is
indeed true in odd dimensions; in even dimensions, they proved that the re-
sult holds when the weight (in absolute value) is bounded by the dimension.
The ambient metric construction in even dimensions was recently extended by
Graham-Hirachi, [24]; this enables them to indentify in a satisfactory way all
local conformal invariants, even when the weight (in absolute value) exceeds the
dimension.

An alternative construction of local conformal invariants can be obtained
via the tractor calculus introduced by Bailey-Eastwood-Gover in [I0]. This
construction bears a strong resemblance to the Cartan conformal connection,
and to the work of T.Y. Thomas in 1934, [27]. The tractor calculus has proven to
be very universal; tractor buncles have been constructed [15] for an entire class
of parabolic geometries. The relation betweeen the conformal tractor calculus
and the Fefferman-Graham ambient metric has been elucidated in [16].

The present work [3]-[8], while pertaining to the question above (given that
it ultimately deals with the algebraic form of local Riemannian and conformal
invariants), nonetheless addresses a different type of problem: We here con-
sider Riemannian invariants P(g) for which the integral [,,, P(g)dV; remains
invariant under conformal changes of the underlying metric; we then seek to un-
derstand the possible algebraic form of the integrand P(g), ultimately proving
that it can be de-composed in the way that Deser and Schwimmer asserted. It is
thus not surprising that the prior work on the construction and understanding
of local conformal invariants plays a central role in this endeavor, in the papers
[4, [5].



On the other hand, a central element of our proof are the main algebraic
Propositions 5.1, 3.1, 3.2 in [3| []; these deal exclusively with algebraic properties
of the classical scalar Riemannian invariants The “fundamental Proposition
[LI’ makes no reference to integration; it is purely a statement concerning lo-
cal Riemannian invariants. Thus, while the author was led to led to the main
algebraic Propositions in [3, 4] out of the strategy that he felt was necessary to
solve the Deser-Schwimmer conjecture, they can be thought of as results of an
independent interest. The proof of these Propositions, presented in the present
paper and in [§] is in fact not particularily intuitive. It is the author’s sincere
hope that deeper insight (and hopefuly a more intuitive proof) will be obtained
in the future as to why these algebraic Propositions hold.

We now discuss the position of the present paper in this series of papers.

The purpose of the present paper is to complete the part ITA in this series:
In [3] [ [5] we proved that the Deser-Schwimmer conjecture holds, provided one
can show certain “Main algebraic propositions”, namely 5.2 in [3] and 3.1, 3.2
in [4]. In [6] we claimed a more general Proposition which implies Proposition
5.2 in [3] and Propositions 3.1, 3.2 in [4]; this new “fundamental Proposition”
2.1 in [6] is to be proven by an induction of four parameters. In [6] we also
reduced the inductive step of Proposition 2.1 to three Lemmas (in particular
we distinguished cases LILIII on Proposition 2.1 by examiniming the tensor
fields appearing in its hypothesis, see (IL7)) below; Lemmas 3.1, 3.2, 3.5 in [6]
correspond to these three cases). We proved that these three Lemmas imply the
inductive step of the fundamental Proposition in cases I,IL,III respectively, apart
from certain special cases which were deferred to the present paper. In these
special cases we will derive Proposition 2.1 in [6] directlyE in section Bl Now,
in proving that the inductive step of Proposition [[.1] follows from Lemmas 3.1,
3.2, 3.5 in [6] we asserted certain technical Lemmas, whose proof was deferred
to the present paper. These were Lemmas 4.6, 4.8, and 4.7, 4.9 in [6]; also, the
proof of Lemma 5.1 in [6] was deferred to the present paper. We prove all these
Lemmas from [6] in section

For reference purposes, and for the reader’s convenience, we recall the precise
formulation of the “fundamental Proposition” 2.1 in [6], referring the reader to
[6] for a definition of many of the terms appearing in the formulation. First how-
ever, we will recall (schematically) the “main algebraic Proposition” 5.2 in [3];
this is a special case of Proposition 2.1 in [6], and provides a simpler version of it.

A simpler version of Proposition 2.1 in [6]: Given a Riemannian metric g
over an n-dimensional manifold M" and auxilliary C*° scalar-valued functions
Qq,...,8, defined over M", the objects of study are linear combinations of
tensor fields Y, a;Ch# = where each Cl** is a partial contraction with

2These “main algebraic propositions” are discussed in brief below. A generalization of
these Propositions is the Proposition [[L1] below.
3By this we mean without recourse to the Lemmas 3.1, 3.2, 3.5 in [6].



« free indices, in the form:
peontr(VWR® - @ VI Re VOO, @ ... @ VEnQ,); (1.2)

here V(™ R stands for the m*" covariant derivative of the curvature tesnor RE
and V), stands for the b covariant derivative of the function Q5. A partial
contraction means that we have list of pairs of indices (4,5),- .., (¢, a) in (L2,
which are contracted against each other using the metric ¢¥. The remaining
indices (which are not contracted against another index in (I2)) are the free
indices iy, ..., i,-

The “main algebraic Proposition” 5.2 in [3] (roughly) asserts the following:
Let > L, alCé’“'“z“ stand for a linear combination of partial contractions in

the form (LZ), where each C},’”"'Z“ has a given number oy of factors and a
given number p of factor V(¥)Q),. Assume also that o1 + p > 3, each b; > 2E
and that for each contracting pair of indices (4,5) in any given C!l]’il"'ia, the
indices 4,5 do not belong to the same factor. Assume also the rank p > 0 is

fixed and each partial contraction Cé’il"'i“,l € L, has a given weight —n + ME

o
Let also }ycp aCy" "™ stand for a (formal) linear combination of partial

contractions of weight —n 4+ y;, with all the properties of the terms indexed in
L, except that now all the partial contractions have a different rank y;, and
each y; > p.

The assumption of the “main algebraic Proposition” 5.1 in [3] is a local
equation in the form:

. . iy . ) lyiy...d
E a X divg, .. .deiuC'é’””'Z“ + E a X divy, .. -deiyl Cyt =
€L, €L~y

3

(1.3)
which is assumed to hold modulo complete contractions with o+ 1 factors. Here
given a partial contraction C4 - in the form (L2) X div;, [CL" ] stands for
sum of o — 1 terms in div;, [Cé’il'“ia] where the derivative Vs is not allowed to
hit the factor to which the free index ,, belongs[1

Proposition 5.2 in [3] then asserts that there will exist a linear combination of
partial contactions in the form (L2), >°, .y anCh™ 41 with all the properties
of the terms indexed in L ,, and all with rank (u + 1), so that:

lel; heH

4In particular it is a tensor of rank m + 4; if we write out its free indices it would be in the
form Vﬁ.’") R;ikl-

- 1--Tm Mg

°This means that each function €2, is differentiated at least twice.

6See [3] for a precise definition of weight.

"Recall that given a partial contraction Cé’“"'“" in the form (L2) with o factors,
divg, Cé’“"'“" is a sum of o partial contractions of rank o — 1. The first summand arises
by adding a derivative V*s onto the first factor 77 and then contracting the upper index *s
against the free index ;_ ; the second summand arises by adding a derivative Vs onto the
second factor T» and then contracting the upper index *s against the free index ;, etc.



the above holds modulo terms of length o + 1. The symbol (...) means that we
are symmetrizing over the indices between prentheses.

In [6] we set up a multiple induction by which we will prove Proposition 5.2
in [3] (outlined above) and also the main algebraic Propositions 3.1, 3.2 in [4].
The generalized proposition [T which we formulated in [6] deals with tensor
fields in the forms:

peontr(V" Rijy @ -+ @ V) Ryju @

1.5
V(bl)Ql(g)...@V(bp)Qp@V(bl®~"®V¢u)7 (1)

peontr(V" Rijpy @ -+ @ V) Ry @
S*V(Vl)Rijkl R ® S*V(Ut)Rijkl®
v, @ V(bp)Qp®

Vs @V, @V, @ @V, @ @V 0, @ DVea, . )
(1.6)

(See the introduction in [6] for a detailed description of the above form). We
remark that a complete or partial contraction in the above form will be called
“acceptable” if each b; > 2, for 1 <7 < pE This convention was introduced in
[6].

The claim of Proposition is a generalization of the “main algebraic Proposi-
tion” in [3]:

Proposition 1.1 Consider two linear combinations of acceptable tensor fields

in the form (1.8):
Z alcé’il'“i” (Qh ceey Q;D; ¢1; ey (bu)v

l€L,

l,i1...1
Z a’lOg ! Bl(le"'aQPagblv"'v(bu)a

IEL>,

where each tensor field above has real length o > 3 and a given simple character
Rsimp- We assume that for eachl € L, B > p+1. We also assume that none
of the tensor fields of mazimal refined double character in L, are “forbidden”
(see Definition (2.12)).
We denote by

Zajcg(glu e 7Qp7¢17 .. 7¢u)

JjeJ
a generic linear combination of complete contractions (not necessarily accept-
able) in the form (I3) that are simply subsequent to k’simpﬁ We assume that:

8In other words, we are requiring each function €; is differentiated at least twice.

90f course if Def(Rsimp) = 0 then by definition Yljes =0



> aXdivi, ... Xdivi Cy ' (Q,. ., D61, du)+

leL,
. . lyi1...7
Z X div;, ... Xdivi, Cq Ny Qs Py )t (1.7)
l€L>
Za’jcg(gla'"anv(blv"'aqsu) =0.
JjeJ

We draw our conclusion with a little more notation: We break the index set
L, into subsets L?, z € Z, (Z is finite) with the rule that each L* indexes tensor
fields with the same refined double character, and conversely two tensor fields
with the same refined double character must be indexed in the same L*. For
each index set L*, we denote the refined double character in question by L=
Consider the subsets L* that index the tensor fields of mazximal refined double
chamcter We assume that the index set of those z’s is Zprar C Z.

We claim that for each z € Zypq, there is some linear combination of ac-
ceptable (p + 1)-tensor fields,

Z arcvl;“,il..,ia+1 (le R Q;Da ¢15 ce (bu)v
rcR*

where each C;’il"'i"“ (Q,...,Qp,01,...,04) has a p-double character l;f and
also the same set of factors S*V(”)Rijkl as in L? contain special free indices, so
that:

> aChi (L Qs ) ViV 0

leL?

Z aTXdiUiMJrng’il"'i"*l (Ql, ceey Qp, ¢1, ey qﬁu)Vilv R viM’U = (18)
rcR*

Z atC;’“"'i“ (Ql, R ,Qp, R ¢1, ey ¢U)Vi1v C. V@’U,

teT

modulo complete contractions of length > o +u+ p+ 1. Here each
C;’il”'i“(ﬂl, Ceey Qp, D1y ¢u)
is acceptable and is either simply or doubly subsequent to [

(See the first section in [6] for a description of the notions of real length,
acceptable tensor fields, simple character, refined double character, mazximal

10Note that in any set S of p-refined double characters with the same simple character there
is going to be a subset S’ consisting of the maximal refined double characters.

11 Recall that “simply subsequent” means that the simple character of C;’il s subsequent
to Simp(L7).



refined double character, simply subsequent, strongly doubly subsequent). The
Proposition [ is proven by a multiple induction on the parameters —n (the
weight of the complete contractions appearing in (7)), o (the total number of
factors in the form V(m)Rijkl, S*V(”)Rijkl, vAQ, among the partial contrac-
tions in (I]:ﬂ)) ® (the number of factors V1, ..., Vo, appearing in ([L7)), @
(the number of factors V¢, V¢, Vé appearing appearing in (I7)), and oy + oo
(the total number of factors V(m)Rijkl,S*V(”)Rijkl). Proposition [l when
® =0 coincides with the “Main algebraic Proposition” in [3] outlined above[d

2 Proof of the technical Lemmas from [6].

2.1 Re-statement of the technical Lemmas 4.6—4.9 from
[6].

We start by recalling a definition from [6] that will be used frequently in the
present paper:

Definition 2.1 Consider any tensor field in the form (1.6). We consider any
set of indices, {z---,u, belonging to a factor T (here T is not in the form
Vo). We assume that these indices are neither free nor are contracting against
a factor V.

If the indices belong to a factor T in the form VB)Qy then {,,,..., ..} are
removable provided B > s + 2.

Now, we consider indices that belong to a factor V(m)Rijkl (and are neither
free nor are contracting against a factor Vop). Any such index , which is
a derivative index will be removable. Furthermore, if T has at least two free
derivative indices, then if neither of the indices ;, ; are free then we will say one
of i, is removable; accordingly, if neither of ,; is free then we will say that
one of r,1 is removable. Moreover, if T has one free derivative index then: if
none of the indices i, ; are free then we will say that one of the indices ;, ; is
removable; on the other hand if one of the indices ;,; is also free and none of
the indices k,; are free then we will say that one of the indices ,; is removable.

Now, we consider a set of indices {4y, ..,z,} that belong to a factor T =
S*V(”)Rijkl and are not special, and are not free and are not contracting against
any V¢. We will say this set of indices is removable if s < v. Furthermore, if
none of the indices ,; are free and v > 0 and at least one of the other indices
in T is free, we will say that one of the indices i, is removable.

For the first two Lemmas, 2.1], we will consider tensor fields in the form:

12The partial contractions in (7)) are assumed to all have the same simple character—
this implies that they all have the same number of factors V(m)Rijkl, S*V(")Rijkl, vAQ,
respectively.

13Similarly, the “Main algebraic Propositions” 3.1, 3.2 in [4] coincide with Proposition [[1]
above when ® = 1.



peontr(V™) Rijyy @ + - @ V™1 Ryjy ®

S.VIR @ @S, VYR, @ VY®

v, @ V(bp)Qp@)

Voo -V, ® v¢;w+1 K- & V¢;w+d R ®Vzyap ® @ v¢zw+d+y)'
(2.1)

(Notice this is the same as the form (IZ6), but for the fact that we have inserted
a factor VY in the second line). Our claims are then the following:

Lemma 2.1 Assume an equation:

3" anXadivy, ... Xodivi,, Cy M QL QY 61 bw) =

heHy (2 2)
Zajcg(glv v 7Q;Da ¢15 < '7¢u/)a

jeJ

where all tensor fields have rank ap > a. All tensor fields have a given u-simple
character K,,,, for which o > 4. Moreover, we assume that if we formally
treat the factor VY as a factor Ve, 11 in the above equation, then the inductive
assumption of Proposition [Ll can be applied. (See subsection 3.1 in [6] for a
strict discussion of the multi-parameter induction by which we prove Proposition
1)

The conclusion (under various assumptions which we will explain below):
Denote by Ha ., the index set of tensor fields with rank o

We claim that there is a linear combination of acceptabl tensor fields,

Y deD ang’il'”ia“ (Q,...,,Y,¢1,...,0u), each with a simple character R,

simp
so that:

Z ahC;“il'“ia (Ql, e ,Qp, Y', (]51, ey ¢u/)Vi1v .. .Viav—
he€H> o
X*divia+1 Z adch’ilmia+l (Qla ceey QP? }/7 (blv ceey qu’)vilv ce Viav = (23)

deD

+ZatC;(Ql,...,QP,K¢1,...,¢UI,UQ).

teT

The linear combination on the right hand side stands for a generic linear com-
bination of complete contractions in the form (21]) with a factor VY and with

a simple character that is subsequent to Fi’simp.

14«Acceptable” in the sense that each factor ©; is differentiated at least twice).



The assumptions under which (24)) will hold: The assumption under which
(Z4) holds is that there should be no tensor fields of rank « in (Z3) which are
“bad”. Here “bad” means the following:

If o =0 in K. then a tensor field in the form (21]) is “bad” provided:

stmp
1. The factor VY contains a free indez.

2. If we formally erase the factor VY (which contains a free index), then
the resulting tensor field should have no removable indices and no free
indices[lq Moreover, any factors Sy R;j;i; should be simple.

If o0 > 0 in K. then a tensor field in the form (211) is “bad” provided:

simp
1. The factor VY should contain a free index.

2. If we formally erase the factor VY (which contains a free indez), then
the resulting tensor field should have no removable indices, any factors
Sy Riji1 should be simple, any factor Vgi)ﬂh should have at most one of
the indices 4,p free or contracting against a factor Vs.

8. Any factor V(m)Rijkl can contain at most one (necessarily special, by
virtue of 2.) free index.

Furthermore, we claim that the proof of this Lemma will only rely on the
inductive assumption of Proposition [l Moreover, we claim that if all the
tensor fields indexed in Hy (in (22)) do not have a free index in VY then we
may assume that the tensor fields indexed in D in ({27]) have the same property.

Lemma 2.2 We assume (2.2), where 0 = 3. We also assume that for each of
the tensor fields in Hg there is at least one removable index. We then have
two claims:

Firstly, the conclusion of Lemmal21l holds in this setting also. Secondly, we
can write:

> anXdivi, ... Xdivg, Ch e (Qu, ., QY 61, b)) =

heHs
> agXdivi, ... Xdiv; ,CP" ' (Q, . 0, Y b1, fur) (2.4)
qeqQ
+ZatC;(le" '7Q;DaYa Qsla' "7¢u/)7
teT

15Thus, the tensor field should consist of factors S Rijki, v(2)Qy,, and factors v&’l'??‘rm Rijr
with all the indices r, ... contracting against factors Voy,.

6Te. o =1 in Z2).

17Recall from [6] that H5 " is the index set of tensor fields of rank « in [Z2) with a free
index in the factor VY.

' Tm

10



where the linear combination ) a,Cq™ """ stands for a generic linear com-
bination of tensor fields in the form:

peontr(V™ Rijyy @ - @ V") Ry @

S,VIR @@ S.VYR, 1 @ VP Yg

V(bl)Ql R ® V(bP)Q Q

Voo, - @V, @V - ® V¢;w+d Q@ QVeru, ® - ® v¢zw+d+y)’
(2.5)

Zw+1

with B > 2, with a simple character /%"Simp and with each o’ > a. The accept-
able complete contractions C’;(Ql, s, Y b1, L, dur) are simply subsequent
to K’ Xdiv; here means that V; is not allowed to hit the factors Vo, (but

simp*

it is allowed to hit VP)Y).

For our next two Lemmas, we will be considering tensor fields in the general
form:

COntT(V(ml)Rijkl K ® V(ms)Rijkl(@
S.VUIR @ ® S, VPR @ Vﬁ’ﬁ)B (Vaw1Viws — Vw1 Vawr)  (2.6)
@V, @ - @ V®Q, @V @ ® Véy);

here vﬁ?t’B( ..) stands for the sublinear combination in Vgi),,rB(. ..) where
each V is not allowed to hit the factor Vws.

Lemma 2.3 Consider a linear combination of partial contractions,

Zaxc1ll le"'vgpa[w17w2]5¢17"'7¢u/)7

zeX

where each of the tensor fields C2"" is in the form (Z8) with B = 0 (and
s antisymmetric m the factors Vawl, Viws by definition), with rank a > « and
real length o > 48 We assume that all these tensor fields have a given simple
character which we denote by K, (we use u’ instead of u to stress that this
Lemma holds in generality). We assume an equation:

Z e Xodivi, ... Xoudiv;, C2" " (Q, ..., Qp, [w1,wa], b1, .., du)+
zeX

Za] Qlu"'7Qp7[w17w2]7¢17"'7¢u):Oa

jed

(2.7)

18 Recall that in the definition of “real length” in this setting, we count each factor
Vm R, 8. VW R VBIQ, once, the two factors w1, ws for one, and the factors Vo, V', Ve
nor nothing.

11



where X, div; stands for the sublinear combination in X div; where V; is in ad-
dition not allowed to hit the factors Vwi,Vws. The contractions C? here are
simply subsequent to E’Simp. We assume that if we formally treat the factors
Vw1, Vws as factors Vi1, Voutra (disregarding whether they are contracting
against special indices) in the above, then the inductive assumption of Proposi-
tion [I1] applies.

The conclusion we will draw (under various hypotheses that we will explain
below) is that we can write:

> auXydivi, . Xy divg, CPP (D, Qp w1, w2, 61, ) =
rzeX

Z amXerivil e X+d7;’l)ia Cg’il'“ia (Ql, e ,Qp, [wl, wg], (]51, ey ¢u)+ (28)
reX’

Zajcg(ﬂlu'"7Q;D7[w17w2]7¢17"'7¢u) = 07

JjeJ

where the tensor fields indexed in X' on the right hand side are in the form (2.0)
with B > 0. All the other sublinear combinations are as above. We recall from
[6] that X div; stands for the sublinear combination in Xdiv; where V; is in
addition not allowed to hit the factor Vwy (it is allowed to hit the factor VP)w, ).

Assumptions needed for (2.8): We claim (2.8) under certain assumptions on
the a-tensor fields in (2.7) which have rank o and have a free index in one of
the factors Vwi, Vws (say to Vwy wlog)—we denote the index set of those tensor
fields by X4* C X.

The assumption we need in order for the claim to hold is that no tensor
field indezed in X** should be “bad”. A tensor field is “bad” if it has the
property that when we erase the expression Vi,wi1Vywe (and make the index
that contrated against , into a free index) then the resulting tensor field will
have no removable indices, and all factors S, R;;i; will be simple.

Lemma 2.4 We assume (2.7), where now the tensor fields have length o = 3.
We also assume that for each of the tensor fields indexed in X, there is a
removable index in each of the real factors. We then claim that the conclusion
of Lemma 2.3 is still true in this setting.

For the most part, the remainder of this paper is devoted to proving the
above Lemmas. However, we first state and prove some further technical claims,
one of which appeared as Lemma 5.1 in [()]

2.2 Two more technical Lemmas.

We claim an analogue of Lemma 4.10 in [6] can be derived when we have tensor
fields with a given simple character Kgimp, and where rather than having one

9Tts proof was also deferred to the present paper.
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additional factor Vey4+1 (which is not encoded in the simple character Rsimgp),
we have two additional factors V,ou41, Veduta.

Lemma 2.5 Consider a linear combination of acceptable tensor fields in the
form (L6]) with a given u-simple character Rgimp:

DL alC'é’il"'iﬁ (Q,...,Qp, 01, ..., 04). Assume that the minimum rank among
those tensor fields above is a > 2. Assume an equation:

> wX.div, .. X odivg, Cy™ (b1, 3u) Vi bust Vi utat
leL

Zajcg(glvuwglh(bl?"'7¢u) =0
jeJ
(2.9)

(here X.div; means that Vi is in addition not allowed to hit the factors Vouti,
Vouta). We also assume that if we formally treat the factors Véui1, Vouio
as factors Voui1, Voura then (29) falls under the inductive assumption of
Proposition [I1] (with respect to the parameters (n,o, ®,u)). Denote by L* C
L the index set of terms with rank . We additionally assume that none of

the tensor fields C’é’“"'w (Q,...,Qp,01,...,04) are “forbidden”, in the sense
defined above Proposition 2.1 in [6].

We then claim that there exists a linear combination of (a+ 1)-tensor fields
with a u-simple character Rsimp (indexed in'Y below) so that:

Z alc(l]’ilmio‘ (Ql, ceey Qp, (bl, ceey (bu)V“ ¢u+1vi2¢u+2vi3v . Vl-av
leL~

+X*di’l)ia+1 Z ayCé7i1...ia+1 (Qh ey Qp, D1y ¢U)V“ ¢u+1vi2¢u+gvi3’u A Viav
yey

+ Z ajcg’il'”ia (Ql, ey Qp, (251, ey ¢U)V“ ¢u+1vi2¢u+gvi3v. .. Via’U.
jeJ
(2.10)

Furthermore, we also claim that we can write:

Z a'lei’Uig, cee Xdivigc\iéyilmiﬂ (le R Q;Da ¢15 ceey qu)v“ ¢u+lvi2¢u+2 =
leL

Za/jcé(ﬂl7 cee 7Qp7¢17 .. 7¢u)+
jed
Z agX divy ... Xdiv; CF " (Qu, 0, Qpy b1, -+, ug2) Vig b1 Vig Gurat

qEQ1

> agXdivi, ... Xdivi, CI ' (. Qp b1, duya),
qEQ2
(2.11)
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where the tensor fields indexed in Q1 are acceptable with a u-simple character
Rsimp and with a factor V(2)¢u+1 and a factor Voy1o. The tensor fields indexed
in Q2 are acceptable with a u-simple character Rsimp and with a factor V(2)¢u+2
and a factor Vy41.

Proof of Lemma[Z3: We may divide the index set L* into subsets L§, LY
according to whether the two factors V11, Vo, 42 are contracting against the
same factor or not—we will then prove our claim for those two index sets sepa-
rately. Our claim for the index set L{; follows by a straightforward adaptation
of the proof of Lemma 4.10 in [3]. (Notice that the forbidden cases of the present
Lemma are exactly in correspondence with the forbidden cases of that Lemma).
Therefore, we now prove our claim for the index set L§:

We denote by L; C L, J; C J the index set of terms for which the two factors
Véut1, Vouto are contracting against the same factor. It then follows that
(239) holds with the index sets L, J replaced by Lj, Ji—denote the resulting new

equation by New[([23)]. Now, for each tensor field C’é’il"'iﬁ and each complete
contraction CJ, we let Sym[CL" ], Sym[Cy™ "), AntSym|[C7], AntSym|C]]

stand for the tensor field/complete contraction that arises from C_(lj“'”w , Cg
by symmetrizing (resp. anti-symmetrizing) the indices 4, in the two factors
Vadbut1, Vodura. We accordingly derive two new equations from New[([Z3))],
which we denote by New|[([Z9)]sym and New[(ZI)] antsym.-

We will then prove the claim separately for the tensor fields in the sublin-
ear combination ZIGL? a;Sym[C]L#- and the tensor fields in the sublinear

combination ZZGL? arAntSym[C]hi-i.

The claim (2I0) for the sublinear combination 37,c o ai AntSym|[C]Lir-ta

g
follows directly from the arguments in the proof of Lemma 2.3l Therefore it

suffices to show our claim for the sublinear combination 37 /. aSym|[C]in-ie.

We prove this claim as follows: We divide the index set L} according to the
form of the factor against which the two factors V¢,11, Vo are contracting:
List out the non-generic factors in k’simp@ {Ty,...,T,}. Then, for each k < a
we let Li . stand for the index set of terms for which the factors Vo1, Voo
are contracting against the factor 7). We also let LY , ., stand for the index set
of terms for which the factors Ve, 1, Vo2 are contracting against a generic
factor V(m)Rijkl. We will prove our claim for each of the sublinear combinations
ElEL‘?,a+1 aSym|[C];7- separately.

We firstly observe that for each k¥ < a + 1, we may obtain a new true
equation from (Z9) by replacing L by Ly ,+1—denote the resulting equation by
29)1,5ym,k- Therefore, for each k < a + 1 for which T} is in the form v Q.
our claim follows straightforwardly by applying Corollary 1 from [3]

20Recall from the introduction in [6] that the non-generic factors in Kgimp are all the factors
in the form V(4 Q,, S*V(”)Rijkl, and also all the factors V(m)Rijkl that contract against at
least one factor Vs.

21There is no danger of falling under a “forbidden case”, since we started with tensor fields
which were not forbidden.
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Now, we consider the case where the factor T}, is in the form S, V®) R peq: In
that case we denote by Ly 1 4 the index set of terms for which one of the factors
Vout1, Vouro is contracting against a special index in Ty. In particular, we
will let LT, , C Ly stand for the index set of terms with rank . We will
then show two equations:

Firstly, that there exists a linear combination of tensor fields as claimed in

ZI0) so that:

Z a[Sym[C]f]’il"'ia (Ql, e ,Qp, (251, ey ¢U)V“ ¢u+1vi2wvi3v c. Viav—
lEL‘I"ij

Z adeiviaHC'g’il“'i‘*“ (Ql, ceey Qp, gf)l, ey (bu)V“ gbuHVthiav . Vl-av

yey

= E aleZ"Uia+1Cé’ll"'z"‘z"‘*lvil Gu+1Vi,wViv.. . V; v+

lELY

Z ajcg’“'“i"‘ (Ql, ey Qp, ¢1, ey qbu)ViquuHViszisv - ViaU,
jeJ
(2.12)

where the tensor fields in Lg ; have all the properties of the terms in Ly j, rank
« and furthermore none of the factors V¢, 11, Vo2 are contracting against a
special index.

Then (under the assumption that L§ ket = 0) we claim that we can write:

S° aXdivi, ... Xdivi, Sym[Clg™ " (Qu, .. Qpy 1, $u) Vi, Gust VigGuso
IGLIY)C,“

= Y aXdiv, ... Xdivi, Sym[Clg" 7 (Qn, .. Qb1 )

leLr k0K

Viy Qut1ViyGura + E a;Sym[CIH"2 (.., Qp, b1, .+, Gu) Vi, hut1 Viy Guya,
jedJ
(2.13)

where the tensor fields in L ; ok have all the properties of the terms in Ly,
but they additionally have rank > « + 1 and furthermore none of the factors
Vout1, Voo are contracting against a special index.

If we can show the above two equations, then we are reduced to showing
our claim under the additional assumption that no tensor field indexed in L
in Sym(Z29) has any factor Vé,11, Vd,+1 contracting against a special index
in 7). Under that assumption, we may additionally assume that none of the
complete contractions indexed in J in ([2.9) have that property Therefore, we
may then erase the factor Ve, 1 from all the complete contractions and tensor
fields in (2Z9); by virtue of the operation Erase, introduced in the Appendix
of [B]-our claim then follows by applying Corollary 1 from [3] to the resulting
equation and then re-introducing the erased factor Ve, 1.

22This can be derived by repeating the proof of Z12), @13)-

15



Outline of the proof of (213), (213): Firstly we prove ([ZI2): Suppose
wlog T} is contracting against V¢Zl and Vg5, ..., V¢}; then replace the two
factors Vo1, Vedu+1 by gep and then apply RictonH (obtaining a new
true equation) an then apply the eraser to the resulting true equation. We then
apply Corollary 1 from [3] to the resulting equation and finally we replace

the factor Vﬁ?,,rbﬂpﬂ by an expression

SV o Righer, Vi1V 6ui2 Ve g1 V9265 . V¥ g,
As in the proof of Lemma 4.10 in [6], we derive our claim. Then, (ZI3)) is proven
by iteratively applying this step and making Vu’s into Xdiv’s at each stage.

We analogously show our claim when the factor T} is in the form V(m)Rijkl:
In that case we denote by Ly 4 the index set of terms for which both the factors
Vou+t1, Voo are contracting against a special index in 7j,. We will then show
two equations:

Firstly, that there exists a linear combination of tensor fields as claimed in

2I10Q) so that:

Z a[Sym[C]é’il“'ia (Ql, e ,Qp, (]51, ey ¢U)V“ ¢u+1vi2wvi3v. .. Viav—
lEL(Ix,k,u

Z CLdeZ.’UiQ+ICg’i1”'i°‘+1 (Ql, ceey Qp, gf)l, ey (bu)V“ ¢u+1vi2wvi3v . Vl-av =
yey

> aXdiv, ,Cy Y ¢ Vi,wVi L Vi ot

€LY,

Z ajcg’“'“i"‘ (Ql, ceey Qp, ¢1, ey qbu)Vil%HViszisu RN ViaU,
jeJ
(2.14)

where the tensor fields in L@ ;- have all the properties of the terms in Ly i, but
they additionally have rank « and furthermore one of the factors V11, Ve ia
does not contract against a special index. Then (under the assumption that
Lik,ﬁ = () we denote by Lj 14 the sublinear combination of terms in Ly with
both factors V¢, 1 or Ve, 1 contracting against a special index in Ty. We
claim that we can write:

23See the relevant Lemma in the Appendix of [3].

24Gince the factor Ve, 2 survives this operation, and since we started out with terms that
were not “forbidden”, there is no danger of falling under a “forbidden case” of Corollary 1
from [3].
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Z wXdivi, ... Xdivi, Sym[Clg" " (..., Qp, b1, ..., $u) Vi, bups
€L 1y

Vieburz = Y. aXdivi, ... Xdivy, Sym[Clg" " (Qu, ..., Q, 1, bu)

€L k0K

Visbut1Visbutz + »_ azSym[C2 (D0, ., Qp, 61, 6u)Viy but1 Vi burta,
ies
(2.15)

where the tensor fields in Ly, ok have all the properties of the terms in Ly,
but they additionally have rank > « + 1 and furthermore one of the factors
Vou+1, Vouta does not contract against a special index.

If we can show the above two equations, then we are reduced to showing
our claim under the additional assumption that no tensor field indexed in L in
Sym(29) has the two factors Vo1, Vo2, contracting against a special index
in T),. Under that assumption, we may additionally assume that none of the
complete contractions indexed in J in (2.9]) have that property. Therefore, we
may then erase the factor Ve, 1 from all the complete contractions and tensor
fields in (Z9);—our claim then follows by applying Lemma 4.10 in [6] to the
resulting equatio and then re-introducing the erased factor V¢, 1.

Outline of the proof of (2.14), (213): Firstly we prove (2.14). Suppose wlog
Ty is contracting against V¢1,..., Ve, (possibly with A = 0); then replace
the two factors Vo¢1, Vedus+1 by gap and then apply Ricto€2p41 (obtaining a
new true equation) an then apply the eraser to the factors Véy,..., V¢, in the
resulting true equation. Then (apart from the cases, discussed below, where the
above operation may lead to a “forbidden case” of Corollary 1 in [6]), we apply
Corollary 1 frm [6] to the resulting equation, and finally we replace the factor

vﬁ?,,,rb Qp41 by an expression

vith) Riry 1kry Vi1 VEbu oV 01 ... V.

1.:8hT1.-.Th—2

As in the proof of Lemma 4.10 in [6], we derive our claim. Then, (ZI4)) is proven
by iteratively applying this step and making Vv’s into Xdiv’s at each stage
(again, provided we never encounter “forbidden cases”). If we do encounter for-
bidden cases, then our claims follow by just making the factors Vo, 11, V12
into Xdiv’s and then applying Corollary 1 in [3] to the resulting equation (the
resulting equation is not forbidden, since it will contain a factor V(m)Rijkl with
two free indices), and in the end re-naming two factors Vv into Veyt1, Vduto.
O

A Further Generalization: Proof of Lemma 5.1 from [6].

25Notice that there is no danger of falling under a “forbidden case” of that Lemma, since
there will be a non-simple factor S,V (*) R;jki, by virtue of the factor Vg, 4a.
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We remark that on a few occasions later in this series of papers we will be us-
ing a generalized version of the Lemma 2.5l The generalized version asserts that
the claim of Lemmal[Z3lremains true, for the general case where rather than one
or two “additional” factors Ve, 11, Voyu+2 we have > 3 “additional” factors
Véuti,-.., Vours. Moreover, in that case there are no “forbidden cases”.

Lemma 2.6 Let ), ;. alC'é’il"'i“’i’”l”'i“*ﬁ Q. Qp, 01,0, 00),

dier, alC:,’“mlbl ottt hs (Q,...,Qp, 01,...,04) stand for two linear com-
binations of acceptable tensor fields in the form (I8), with a u-simple character
Rsimp- We assume that the terms indexed in L1 have rank p+ 3, while the ones
indexed in Lo have rank greater than u + (3.

Assume an equation:

3" aXdivi,,, ... Xdivi,, ,Cg™ " (. Qb b0) Vi butt - Vig Guss
leL

. . l,i1...0
+ ) wXdiviy,, ... Xdivi, Cy" (L Q1 ) Vi ur - Vigbus
lEL>

+> a;CH Q. Q1 bugs) =0,
jeJ
(2.16)

modulo terms of length > o +u+ B4 1. Furthermore, we assume that the above
equation falls under the inductive assumption of Proposition 2.1 in [6] (with
regard to the parameters weight, o, ®,p). We are not excluding any “forbidden
cases”.

We claim that there exists a linear combination of (u+ B+ 1)-tensor fields
in the form (1.6) with u-simple character Keimp and length o +u (indexed in H
below) such that:

Liiy..i
E ang“ Z’”B(Ql,...,ﬂp,m,...,qbu)ViquuH...VquSquﬁViBHu...Viﬁﬂv
leL,

+ > anXdivi, . Cg™ QL Qs bu) Vi Gur - Vi b
heH

Vilv. ..ViﬁﬂLU-i- Zang(Ql, .. .,Qp,¢1, .. .,¢U+B,U“) =0,
jet
(2.17)

modulo terms of length > o +u+ 8+ pu+ 1. The terms indexed in J here are
u-simply subsequent to Ksimp.

Proof of Lemma The proof of the above is a straightforward adap-
tation of the proof of Lemma 25 except for the cases where the tensor fields
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Clit ettt gre “had” | where “bad” in this case would mean that all fac-
tors are in the form R;jw;, S« Rijki, V(Q)QhE and in addition each factor V@,
contracts against at most one factor Vo, 1 < h < u 4+ . So we now focus on
that case:

Let us observe that by weight considerations, all tensor fields in (2.9) must
now have rank p.

We recall that this special proof applies only in the case where there are spe-
cial free indices in factors S, R;jr among the tensor fields of minimum rank in
39). (If there were no such terms, then the regular proof of Lemma 2B applies).
We distinguish three cases: Either p > 0, or p = 0,01 > 0 or p = 07 = 0 and
o2 > 0. We will prove the above by an induction on the parameters (weight),
o: Suppose that the weight of the terms in (2.16) is —K and the real length is
o > 3. We assume that the Lemma holds when the equation (2I6]) consists of
terms with weight —K', K’ < K, or of terms with weight —K and real length
0',3<d' <o.

The case p > 0: We first consider the u-tensor fields in (2.9]) with the extra
factor V11 contracting against a factor V@) Qy,. Denote the index set of those

terms by L,. We will firstly prove that:

STl Qb1 0 Vi bugt - VigGussVigy U Vi, 0
€L,
(2.18)

It suffices to prove the above for the sublinear combination of u-tensor fields
where V¢, 1 contracts against V®Q;. (ZI8) will then follows by repeating
this step p times.

We start by a preparatory claim: Let us denote by f;mi - Zu the index
set of y-tensor fields for which the factor V(€ contains a free index, say the
index ;, wlog. We will firstly prove that:

> wCE Vi bur - VigbuisVig, v Vig, 0 =0. (2.19)
€L,

Proof of (219): We will use the technique (introduced in subsection 3.1 of
[7]) of “inverse integration by parts” followed by the silly divergence formula.

Let us denote by CA'é the complete contraction that arises from each C* "~ +7

by formally erasing the expression ngles ¢u+1 and then making all free
indices 5, - - -4, into internal contractionsZ] Then, the “inverse integration
by parts” implies a new integral equation:

26Notice that by weight considerations, if this property holds for one of the terms

Oy e S hen it will hold for all of them.

2TWe recall that to “make a free index i, into an internal contraction” means that we add
a derivative Vi, onto the factor T;, to which the free index iy belongs. The new derivative
index V% is then contracted against the index iy i Tiy.
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/ S alCl+Y a;Ci+ > a.CidVy =0. (2.20)
M

"leL, jeJ =

Here the complete contractions indexed in J have length o + u, u factors V¢,
but are simply subsequent to the simple character Kgimp. The terms indexed in
Z either have length > o + u + 1 or have length o + u, but also at least one
factor V(B ¢, with B > 2.

Now, in the above, we consider the complete contractions indexed in L, 4 C
L, and we “pull out” the expression AV Vi¢, 1 to write:

A —l
Z CL[Cé = Z alC'g . (AVthvtqﬁl).

I€L, 4 IEL,

Now, we consider the silly divergence formula applied to ([Z20) obtained by
integrating by parts with respect to the function ;. If we denote the integrand
in 220) by F,, we denote the resulting (local) equation by silly[F,] = 0. We
consider the sublinear combination silly*[F,] which consists of terms with length
o + u, p internal contractions and u — 1 4+ § factors V¢p, h > 2 and a factor
A¢yt1. Clearly, this sublinear combination must vanish separately modulo
longer terms:

silly*[Fy] = 0.

The above equation can be expressed as:

Spread” V| Z alaf]] Q1 - Agyy1 =0. (2.21)
lefp”ﬁ

(Here Spread™ Vs is a formal operation that acts on complete contractions in
the form (L) by hitting a factor T in the form V(m)Rijkl or VP, with a
derivative V* and then hitting another factor 77 # T in the form V(m)Rijkl or
V), by a derivative V, which contracts against V* and then adding over all
the terms we can thus obtain.) Now, using the fact that (22I]) holds formally,

we derive .,
> al,=0. (2.22)

leL,

Thus, applying the operation Sub, u— 1 times to the above and then multiply-
ing by Vi, Vil_vvi2 du+1 we derive (ZI9). So for the rest of this proof we
may assume that L, 3 = 0.

Now we prove our claim under the additional assumption that for the tensor
fields indexed in fﬂ, the factor V@, contains no free index.

We again refer to the equation (220) and perform integrations by parts
with respect to the factor V(B)Q;. We denote the resulting local equation
by silly[Ls] = 0. We pick out the sublinear combination silly*[L,] of terms

28This can be proven by using the operation Erasel...], see the Appendix in [6].
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with o + u factors, u + 3 factors V¢, p internal contractions, with v+ 8 — 1
factors Vop, h > 2 and a factor A¢y. This sublinear combination must vanish
separately, silly*[Ly] = 0; the resulting new true equation can be described
easily: Let us denote by C’f;jl the 1-vector field that arises from C’é’“ L€ Ly

by formally erasing the factor V;?Ql V*¢1, making the index 7 that contracted
against ; into a free index ;, and making all the free indices ;,,...,;, into
internal contractions. (Denote by &{;,,, the simple character of these vector

fields). Then the equation silly*[Ly] = 0 can be expressed in the form:

> w{Xdiv;, Ch7 }A¢ + Y a;CIA¢y = 0; (2.23)
I€Ly,« eJ
here the complete contractions C’g are simply subsequent to E’Simp. The above

holds modulo terms of length > o + u + 1. Now, we apply the operation Sub,,
p times (see the Appendix in [3]). In the case o > 3, applying the inductive
assumption of our Lemma to the resulting equation (notice that the above
falls under the inductive assumption of this Lemma since we have lowered the
weight in absolute value; we ensure that Lemma[2.6] can be applied by just label-
ing one of the factors Vw into V¢, 1+1. We derive (due to weight considerations)
that there can not be tensor fields of higher rank, thus:

> aSubl CH Vi vAg = 0. (2.24)
leL,

Now, formally replacing the factor V;, v by V;?in Vi¢1, and then setting w = v,
we derive the claim of our Lemma. In the case o = 3 ([Z24]) follows by inspec-
tion, since the only two possible cases are 0o = 2 and o1 = 2; in the first case
there are only two possible tensors field in fu while in the second there are four.
The equation (Z23) (by inspection) implies that the coefficients of all these ten-
sor fields must vanish, which is equivalent to ([2:24]).

Now, we will prove our claim under the additional assumption Iu = (still
for p > 0). We again refer to (Z20) and again consider the same equation
silly[Ly) = 0 as above. We now pick out the sublinear combination of terms
with o + u factors, u + 0 factors V¢y, and p internal contractions. We derive:

> aXdivy, Xdiv;,Cy7"7 +3 " a,;CI = 0; (2.25)
€L, eJ
here the terms C’f;jl]é arise from the p-tensor fields C’;il"'i" by replacing all
1 free indices by internal contractions, erasing the factor V;i)Ql and making
the indices 7, * into free indices 71,72, Now, applying Sub,, u times, and then
applying the inductive assumption of Lemma 4.10 (this applies by length

considerations as above for o > 3; while if 0 = 3 the claim ([2.26) will again
follow by inspection) we derive:
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> wlChv vV, = 0; (2.26)
leL,

Replacing the expression V; vV ,v by a factor Vﬁ}z Q9 and then setting w = v,
we derive our claim in this case p > 0.

The case p = 0,0; > 0: We will reduce ourselves to the previous case:
We let Lb the index set of u-tensor fields where the factor 77 = S*Rijmv%l
contains a special free index (say the index j is the free index ;,,, wlog). We
will prove our claim for the index set L}L; if we can prove this, then clearly our
Lemma will follow by induction.

To prove this claim, we consider the first conformal variation of our hypoth-
esis, I'mage3,[L,] = 0, and we pick out the sublinear combination of terms with
length o +u+ (3, with the factor V(”)S*Rijklvid;l has been replaced by a factor
V(”+2)Y, and the factor V¢, now contracts against a factor 7o = R;j;r;. This
sublinear combination vanishes separately, thus we derive a new local equation.
To describe the resulting equation, we denote by

C'é’“"'zﬁ'““'l‘”ﬁ (Y, ¢1,...,0u)Vi,but1 - Vigdusp the (1 — 1)-tensor field that
arises from by formally replacing the factor by and also adding a derivative
index V;, onto the factor 75 = R;ji; and then contracting that index against a
factor V¢;. Denote the (u — 1)-simple character of the above (the one defined
by Va,..., V) by <. We then have an equation:

simp*

ZalewiM...deimcg“ Y by bu) Vi Gutd - Vig uts
leL,g

+ Y anXdivi,,, ... Xdivi,, Cy” " (Y, 61, ., 6u)Vi, but1 .- Vi, buss
heH

) a6, bu) Vi uk - Vi, Gu s
jeJ
(2.27)

The terms indexed in H are acceptable, have a (u — 1)-simple character &7;,,,,
and the factor V¢, contracts against the index ; in the factor 75 = R;jj;; writing
that factor as S*Rijklvig?)l, we denote the resulting u-simple factor by Ksimgp.
The terms indexed in J are simply subsequent to &%,

Now, applying the
inductive assumption of Lemma 2.6*] we derive that:

Lis..i,s
Z anCy (Y, b1, 0u) Vi Pust -+ Vi dugpVig V... Vig, 0 =0.
he H

(2.28)

29The terms indexed in L}L are now simply subsequent to Ksimp-
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Thus, we may assume wlog that H = () in (Z27)). Now, we again apply Lemma
to (227) (under that additional assumption), and we derive that:

Z alé(l]ﬂlmw+lmzu+ﬁ (K (bl, ey ¢u)vl¢u+1 SN Viﬂ+1 ¢u+ng+2v NN Vi13+uv =0.
leL},

(2.29)
Now, erasing the factor V¢, from the above, and then formally replacing the
factor Vﬁ)Y by S’*Ri(ab)lviél Viv, we derive our claim.

The case p = 0,07 = 0: In this case 0 = 02. In other words, all factors
in Ksimp are simple factors in the form S*Rijklvig?)h. We recall that in this
case all p-tensor fields in ([2.9) must have at most one free index in any factor
S«Rijri. In that case, we will prove our claim in a more convoluted manner,
again reducing ourselves to the inductive assumption of Proposition 2.1 in [6].

A key observation is the following: By the definition of the special cases,
i+ 0 < o9. In the case of strict inequality, we see (by a counting argument)
that at least one of the special indices in one of the factors S, R;;r; must contract
against a special index in another factor Sy Rgpeq- In the case i+ 3 = o9 this re-
mains true, ezcept for the terms for which the 3 factors V¢, contract against
special indices, say the indices , in g factors T,, = S*Riklviqzy, and moreover
these factors must not contain a free index, and all other factors S, R;x; contain
exactly one free index, which must be special. In this subcase, we will prove
our claim for all p-tensor fields excluding this particular “bad” sublinear com-
bination; we will prove our claim for this sublinear combination in the end.

We will now proceed to normalize the different (u+ (3)-tensor fields in (2.9]).
A normalized tensor field will be in the form (I6]), with possibly certain pairs

of indices in certain of the factors S, R;;i; being symmetrized.

Let us first introduce some definitions: Given each C(lj“'”i“, we list out the

factors 11, ...T,, in the form S, R;x. Here T, is the factor for which the index
i 1s contracting against the factor Vd;a. We say that factors S, R;x; are type I if
they contain no free index. We say they are of type II if they contain a special
free index. We say they are of type III if they contain a non-special free index.

Given any tensor field C_(lj“'”z“ in the form (L0, pick out the pairs of factors,
Tw, T in the form S, R;ji; for which a special index in T, contracts against a
a special index in T. (Call such particular contractions “special-to-special”
particular contractions). Now, in any C’é’“"'z“ we define an ordering among
all its factors S, R;;r;: The factor T, = S*Riklvid;a is more important than
Ty = S*Ri/j/k/llvi,gf;b if a < b.

Now, consider a tensor field Cé’”'”z“ and list out all the pairs of factors Ty, Tp
with a special-to-special particular contraction. We say that (T}, 1) is the most
important pair of factors with a special-to-special particular contractionPd if any
other such pair (7, Td) has either T, being less important than T, or T, = T,

30 Asume wlog that Ty is more important than T}
31 Again assume wlog that T. is more important than 7T,;.
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and Ty less important than Tj.

Now, consider a tensor field C_(lj“'”l“ and consider the most important pair
of factors (T, Tp) with a special-to-special particular contraction. Assume wlog
that the index ; in T, = S*Rijklvid;a contracts against the index ; in T =
S*Ri/j/k/l/vi/ (;NSb. We say that C},’”'”Z“ is normalized if both factors T,,T; are
normalized. The factor T, = S*Riklviq% is normalized if: Either the index ;
contracts against a factor 7T, which is more important than T3, or if the indices
j» & are symmetrized. If T; is of type II, then we require that the index ; in
Ty = Si«Rij(freeyy must be contracting against a special index of some other
factor T, and moreover T, must be more important than Ty. If T, is of type
III, then it is automatically normalized. The same definition applies to T,
where any reference to T, must be replaced by a reference to T,.

Let us now prove that we may assume wlog that all u-tensor fields in ([2.9])
are normalized: Consider a Cé’”"'l“ in ([29) for which the most important pair
of factors with a special-to-special particular contraction is the pair (T,,T}).
We will prove that we can write:

lyiy...1 ~lyig...i t,31...1
C‘] - Cg n+B + E ath M+B; (230)
teT

here the term C’é’“'”i’”ﬁ is normalized, the most important pair of factors with

a special-to-special particular contraction is the pair (Ty,Tp), and moreover its

refined double character is the same as for Cg'' "7, Each Cy"'""**” has

either the same, or a doubly subsequent refined double character to Cél,’il"'i”" ;

moreover in the first case its most important pair of factors with a special-
to-special particular contraction will be less important than the pair (T,,T}).
In the second case the most important pair will either be (7,,T}) or a less
important pair.

Clearly, if we can prove the above, then by iterative repetition we may assume
wlog that all (u + (3)-tensor fields in (29) are normalized.

Proof of (Z:30): Pick out the most important pair of factors with a special-

to-special particular contraction is the pair (T,,T}p) in Cé’“"'l”" . Let us first
normalize T,. If T, is of type III, there is nothing to do. If it is of type II
and already normalized, there is again nothing to do. If it is of type II and not
normalized, then we interchange the indices j,;. The resulting factor is nor-
malized. The correction term we obtain by virtue of the first Bianchi identity is
also normalized (it is of type III). Moreover, the resulting tensor field is doubly

subsequent to C;’“'”Z’”B. Finally, if the factor T, is of type I, we inquire on the
factor T, against which ; in T,, = S, R;;r; contracts: If it is more important than
Ty, then we leave T, as it is; it is already normalized. If not, we symmetrize
j»k- The resulting tensor field is normalized. The correction term we obtain
by virtue of the first Bianchi identity will then have the same refined double

lyiv...i . . . .
character as Cy ttet8 and moreover its most important pair of factors with a

special-to-special particular contraction is less important than that pair (T, Tp).
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We now prove the claim of Lemma in this special case, under the ad-
ditional assumption that all tensor fields in (Z9) are normalized. We list out
the most important pair of special-to-special particular contractions in each
Cé’“"'z““", and denote it by (a,b);. We let (c, 3) stand for the lexicographicaly

minimal pair among the list (a,b);,! € L,,. We denote by LLa’ﬁ) C L, the index
set of terms with a special-to-special particular contraction among the terms
T,,Ts. We will prove that:

S aCy™t Tt VL. V0 =0, (2.31)
leL™?

Clearly, the above will imply our claim, by iterative repetition

Proof of (2:31): Consider I'magey, y,[Ly] = 0 and pick out the sublinear
combination where the factors T,,, T are replaced by VY09, VB Y, ®g, and
the two factors V&a, V(;;g contract against each other. The resulting sublinear
combination must vanish separately. We erase the expression vt&avt&g and
derive a new true eqation which will be in the form:

" wXdivy, ... Xdiv, Cg™ " (0, Y1, Ya) + Y a;08(Q0, Y1, Ya) = 0
lenf? jeJ
(2.32)

here the tensor fields C'é’“ " (Qy, Y7, Ya) arise from the tensor fields Cé’“ tets
by replacing the expression
V%QS*R“M ® S*Ri/jklvilqgg by an expression VY1 ® Vi Ya (notice we have
lowered the weight in absolute value).

Now, applying the inductive assumption of Lemma to the above we
derive:

ST @l (0, Y1, Y2) Vi v V0 = 0; (2.33)
len{®®

The proof of (Z3I)) is only one step away. Let us start with an important
observation: For each given complete contraction above, examine the factor
vg?yl; it either contracts against no factor Vv or one factor Vv In the
first case, the factor ngm)Yl must have arisen from a factor S,R;ji of type
I. In fact, the indices ,, correspond to the indices ;, in the original factor,
and we can even determine their position: Since the pair («,3) is the most
important pair in (23]), at most one of the indices .,, can contract against a
special index in a more important factor than Tz. If one of them does (say ),

32In the subcase p + 3 = o2 it will only imply it for the “excluded” sublinear combination
defined above.

33Denote the resulting (u — 2)-simple character by R tmp

34We have lowered the weight in absolute value.

35The two corresponding sublinear combinations vanish separately, of course.
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then that index must have been the index ; in T, = S.R;r;. If none of them
does, then the two indices ., , must be symmetrized over, since the two indices
j»& in T, to which they correspond were symmetrized over. Now, these two
separate sublinear combinations in ([2:33]) must vanish separately (this can be
proven using the eraser fro the Appendix in [3]), and furthermore in the first
case, we may assume that the index . (which contracts against a special index

in a more important factor than Tjz) occupies the leftmost position in V,(fm)Yl
and is not permuted in the formal permutations of indices that make ([2:33)) hold
formally).

On the other hand, consider the terms in (Z33) with the factor V(Y7 con-

tracting against a factor Vv. By examining the index , in the factor V( >Y1vt

we can determine the type of factor in Cl 9 from which the factor vy,
arose: If the index , is contracting against a special index in a factor S, R;ji
which is more important than T, then V (2)¥7 can only have arisen from a factor
of type II in Cl i

index ; in SiR;j(freey in To. If the 1ndex y in V Ylvtu does not contract

against a special index in a factor T, which is more important than T}, then
Lt ipyp

RGN fact, the index , in V(2 Y1 must correspond to the

the factor V(®Y; can only have arisen from a factor of type IIT in Cy
In fact, the index , in V Y] must correspond to the index j in S« Rj(free)r in
T,.

The same analysis can be repeated for the factor VY3, with any reference
to the factor Tz now replaced by the factor T,.

In view of the above analysis, we can break the LHS of (2.33) into four sublin-
ear combinations which vanish separately (depending on whether vy, vy,
contract against a factor Vv or not). Then in each of the four sublinear combi-
nations, we can arrange that in the formal permutations that make the LHS of
(233) formally zero, the two indices in the factors VY7, V)Y, are not per-
muted (by virtue of the remarks above). In view of this and the analysis in the

previous paragraph, we can then Teplace the two factors V Yl, V( )Yg by an
expression Vz¢a5’ Rizot ® SuRir qu lyi ¢g, in such a way that the resulting lin-
ear combination vanishes formally without permuting the two indices ¢, w, ¢’ w’ -
This proves our claim, except for the subcase yu + 8 = g2 where we only derive
our claim for all terms except for the “bad sublinear combination”. We now
prove our claim for that.

We then break up the LHS of [2I6) according to which factor T the factor
V¢, +1 contracts—denote the index set of those terms by Lff . Denote the result-
ing sublinear combinations by Lf ,K =1,...,02. Given any K, we consider
the eqation I'magei,[L,] = 0, and we pick out the sublinear combination where
the term V(B)S*Rijklvi(;ﬁ;(, is replaced by V(F+t2)Y | and the factor Vg now
contracts against the factor V¢, 1. This sublinear combination must vanish
separately. We then again perform the “inverse integration by parts” to this
true equation (deriving an integral equation), and then we consider the silly di-
vergence formula for this integral equation, obtained by integrating by parts with
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respect to V(P)Y. We pick out the sublinear combination with o +u+ 3 factors,
1 internal contractions and w + [ factors V¢, and a expression Vg, 11 VZhi
This gives us a new true local equation:

> aX.divy, X.div;, Ch772 + Y " a;CI = 0. (2.34)

leLk jeJ
Here the tensor fields Oé*jlj? arise from C’é’“"'l" by formally replacing all u free
indices by internal contractions, and also replacing the expression V ¢,11 ®
S*Ri(jk)mvigz;;( by quﬁuHVSQEK ® Y, and then making the indices 7% that
contracted against ;, into free indices /*,72. X,div; stands for the sublinear
combination in X div; where V7 is not allowed to hit the factor Y. Now, applying
the inductive assumption of Lemma to the above@ we derive that:

1527 . R
E aCy*VjwVj,w = 0.
leLk

Now, we replace the expression V*¢x V0,11V, wV,,wY by

VlgbuHS*Ri(jl jz)lviqg;( and then replacing all internal contractions by factors
Vv (applying the operation Sub,, from the Appendix in [3]). The resulting (true)
equation is precisely our remaining claim for the “bad” sublinear combination.
O

2.3 Proof of Lemmas 4.6, 4.8 in [6]: The main part.

We first write down the form of the complete and partial contractions that we
are dealing with in Lemmas 2] and In the setting of Lemma [2.] we recall
that the tensor fields C"%-e indexed in Hs (in the hypothesis of Lemma 2.T])
are all partial contractions in the form:

peontr(V™ Rijpy @ -+ @ V") Rijy @ S. VO Rij @ -+ @ S,V Ryju@
v @ 0V, o VY

Voo @V, @V, @0V, @@V, . 0 OVd,,.)
(2.35)

where we let f +d+y = «/. The main assumption here is that all tensor fields
have the same u'-simple character (the one defined by V¢, ..., Vo, ), which
we denote by /%’jimp. The other main assumption is that if we formally treat the
factor VY as a function V¢, 1, then the hypothesis of Lemma 2] falls under
the inductive assumptions of Proposition[IT] (i.e. the weight, real length, ® and
p are as in our inductive assumption of Proposition [LT]).

In the setting of Lemma [2.3] we recall that we are dealing with complete and

partial contractions in the form:

36We have lowered the weight in absolute value.
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contr(v(ml)Rijkl K- ® V(mal)Rijkl & S*V(Vl)Rijkl Q- Q S*V(Vt)Rijkl(@
v, @ v, o [le ® Vuws]®

Vo, - @ V., @V, OV, B @y @O Py )s
(2.36)

Zf+1

where we let f + d +y = u/. The main assumption here is that all partial con-
tractions have the same u/-simple character (the one defined by Vo1, ...,V ),
which we denote by & nszmp The other main assumption is that if we formally
treat the factors Vwi, Vwsy as factors Vo1, Vo2, then the hypothesis of
Lemma 2.3 falls under the inductive assumptions of Proposition [IT] (i.e. the
weight, real length, ® and p are as in our inductive assumption of Proposition
CT).

Note: From now on, we will be writing v’ = u, for simplicity. We will also
be writing f{;mp = Rsimp, for simplicity. We will also be labelling the indices

IEEERER as R R PR

New induction: We will now prove the two Lemmas [Z.1] by a new in-
duction on the weight of the complete contractions in the hypotheses of those
Lemmas. We will assume that these two Lemmas are true when the weight of
the complete contractions in their hypotheses is —W, for any W < K < n. We
will then show our Lemmas for weight — K.

Reduce LemmalZ2]) to two Lemmas: In order to show Lemma[2.]] we further
break up Ha into subsets: We say that h € HS if and only if Chin+1--fat1 hag
a free index ( say the free index ;_ ,, wlog) belonging to the factor VY. On
the other hand, we say that h € H} if the index in the factor VY is not free.
Lemma 2.1 will then follow from Lemmas 2.7} below:

Lemma 2.7 There exists a linear combination of acceptable (o — m + 1)-tensor

fields, Y~ oy a a,Cy’ 1ot (Q,...,0,Y,01,...,0u), where the index ;. , be-
longs to the factor VY, with a simple character Keimp, so that:

Z Binit i _
ath + +1(Qlu"'7ﬂpuy7 ¢17"'7¢u) Z7r+1 . via+1v -
heHS

E aUX*di’UiaJrQ C;)’l"+1"'l°‘+2 (Ql, Ce ,Qp, Y, ¢1, ceey (bu) i1V viaJrl’U—f'
veV

Z ajcg)iﬂ+1mia+1 (Qh sy qu Y7 ¢17 ERE (bu) ing1 U via+lv'
jedJ
(2.37)

Each C7 is simply subsequent to Rsimp-
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We observe that if we can show our first claim, then we can assume, with
no loss of generality, that HS = (), since it immediately follows from the above
that:

Z ahX*diviTr+l te X*divioHrl Ct_(;lyiﬂ-+lmia+l (Qla ) Q;Dv }/7 (bla ) (bu) -
heHg
3 auXudivi,, ... Xudivi, Xodivg, ,Coimv o2 (Q, 0 QY 61, bu)
veV
+ ZG/JC;(QM s 7quy7 ¢17 .. '7¢u)7
JjeJ
(2.38)

where each complete contraction C7 is subsequent to Rsimp- (Note that one of
the free indices in the tensor fields Cy""" " **** will belong to the factor VY).

Second claim, in the setting of Lemma 2.1t

Lemma 2.8 We assume H§ = (). We then claim that modulo complete con-
tractions of length > o +u + 1:

D apCirrieni QL QY 61, u) Vi v Vi 0 =
he€Hy
> Xudivi,,Chimtiier2 (L QY 61, 00) ViU Vi, 0
teT
Zajcg(gla .. '7QP7K¢15 .. ~a¢u)7
jeJ
(2.39)

where each C7 is acceptable and subsequent to Rsimp-

We observe that if we can show the above two Lemmas then Lemma 2.7]
will follow. (Notice that replacing by the RHS of ([2:38)) into the hypothesis of
Lemma 2] we do not introduce 1-forbidden terms).

We make two analogous claims for Lemma 2.3}

Reduce Lemma [Z3 to two Lemmas: We say that h € HS if and only if
Chimt1+lat1 has a free index belonging to one of the factors Vw;, Vws. On
the other hand, we say that h € HY if in none of the factors Vw, Vws in
Chvin+1-dat1 contains a free index. (Observe that we may assume with no loss
of generality that there are no tensor fields C™i=+1-%a+1 with free indices in
both factors Vwi, Vws-this is by virtue of the anti-symmetry of the factors
Vw1, Vws). We make two claims. Firstly:
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Lemma 2.9 There is a linear combination of acceptable (a0 — 7 + 1)-tensor
fields, > oy auCq ™2 (Qu, L Qy, [wi,wa], d1, - .-, @), in the form (2.33)

with a simple character Reimp, so that:

Z apXydivg ... X+divia+103’““”'i°‘“(Ql, cos S wi,wal, 01, Bu) =
heHg

Z aUX+diviﬂ+1 .. .X+di’l)ia+1X+di’l)ia+20;)’i”+l'”ia+2 (Ql, ey Qp, [wl,wg], b1, - -
veV
+ Z aqX+di’Ui7r+1 e X+d7;’l}ia+1cg’i“+1"'i°‘+l (Ql, ceey Qp, V+[w1,wg], ¢1, ey (bu)
q€Q
+ Z ang(Ql, ceey Qp, [wl,wg], (bl, ceey gf)u)
jeJ

(2.40)

(Recall that by definition the complete contractions indezed in Q have a factor
V(2)W1).

We observe that if we can show our first claim, then we can, with no loss of
generality, assume that HS = (.
Second claim:

Lemma 2.10 We assume HY = 0, and that for some k > 1, we can write:

> auXydivi, .. Xdiv,  Climeter (Qy, L Q [wn,wal, 61, du)
heH}

+ Z atX_i_di’inJrl e X+di’l)ia+kcg’i”+l"'ia+k (Ql, e ,Qp, [wl, (AJQ], ¢1, ey ¢u)

teTy,

+ ) g X divesy . Xydivi,  Climtio QL Q Vo fwr, wa] 61 du)
q€Q

+ ZG/JC;(QM ) 7Qp7 [w17w2]7¢17 .. '7¢u)7
JjeJ
(2.41)

where the last two linear combinations on the right hand side of the above are
generic linear combinations in the form described in the claim of Lemma Z3B7
On the other hand, atC';’Z"“”'Z‘”k Q.. Qp, [wi,wa], 1, .., Pu) is a
linear combination of acceptable (o —w+k)-tensor fields in the form (2.36) with
a simple character Kgipmp, and with two anti-symmetric factors Vwy, Vwa which
do not contain a free index. We then claim that modulo complete contractions
of length > o +u + 1 we can write:

37In Lemma 23] Q is called V.
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Z a'tX+divi1 e X+divia+kcg7“mla+k (le ey Q;Da [(.()17(,()2], ¢15 ctt (bu) =
teTy,
> aXidivi,,, ... Xydivi,,,  Chmles ( QL [wn,wal, 61, fu)

tE€ET41

+ ) agXidivi, . Xy divi,  CE e (Qy, L QY wr,wal, 61, )
q€Q

+ ZG/JC;(QM ) 7Qp7 [w17w2]7¢17 .. '7¢u)7
JjeJ
(2.42)

with the same notational conventions as above.

We observe that if we can show the above two claims, then Lemma 23] will
follow by iterative repetition of the second claim.
We will now show the four Lemmas above.

Proof of Lemmas[2.8 and[2Z10: Lemma[28is a direct consequence of Lemma
4.10 in [6]1°Y Lemma 210 can be proven in two steps: Firstly, by Lemma
we derive that there exists a linear combination of acceptable (a4 k + 1)-tensor
fields (indexed in X below) with a u-simple character Kgsimp so that:

Z CLtC';"il'”ia*k (Ql, ey Qp, [wl,wg], (bl, ey gbu)Vilv . Viwkv—
teTy,

Z atX*divia+k+1C;7zw+lmza+k+1 (le ey Q;Du [w17w2]7 ¢17 sy (bu)vilv s via+kv

t€Tk41

+ Za/jcé(gla cee 7Qp7 [w17w2]7¢17 v 7¢u7va+k)7
jeJ
(2.43)

where the complete contractions indexed in J have length o +a + k41 and are
simply subsequent to Rgimp.

Then, making the factors Vv in the above into X divs, we derive Lemma
2.100 O

Proof of Lemma 2.7

We have denoted by Rgimp the simple character of our tensor fields. We
distinguish two cases: In case A there is a factor V(m)Rijkl in Keimp, and in
case B there is no such factor.

We denote oo + 1 = -y, for brevity.

38 Observe that our hypotheses on the tensor fields in the equation in Lemma I not being
“bad” ensure that we do not fall under the “forbidden” cases of Lemma 4.10 in [6].
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Now we break the set HY into subsets: In case A we say that h € H§’+ if
and only if VY is contracting against an internal index of a factor V(m)Rijkl.
In case B we say that h € H§’+ if and only if VY is contracting against one of
the indices g,; in a factor S*V(”)Rijkl.

We define HY ™ = HY\ HYY.

In each of the above cases and subcases we treat the function VY as a
function V¢, 41 in our Lemma hypothesis. Then, by applying the first claim in
Lemma 4.10 in [6] to our Lemma hypothesis and then making the Vus into
X, divs, we derive that we can write:

X.divi,,, ... X.div;, Z apClineriodia (O QL Y, 61, u) =

heHY™

Xedivi,, o Xodive, S apCliro-iob (@ 0, Y 61, 60)
heHS™ ™

+ Zajcg(gh . '7QP7Y7 ¢17 .- '7¢u)u

jeJ
(2.44)
where ZheHg’**** ahcg*i"“'“ia*“ (Q,...,9,,Y, ¢1,...,¢,) stands for a generic
linear combination as defined above (i.e. it is in the general form ), - HY but

the factor VY is not contracting against a special index in any factor V(m)Rijkl
or S,V R, On the other hand, each CJ(Q,...,92,Y,¢1,...,4,) is a
complete contraction with a simple character that is subsequent to Ksimp-
Thus, by virtue of Z44), we reduce ourselves to the case where Ho'™ = 0.
We will then show Lemma 2.7] separately in cases A and B, under the assump-

tion that Ho™ = 0.

Proof of Lemma [277 in case A: We will define the C-crucial factor, for the
purposes of this proof only: We denote by Set the set of numbers u for which
V¢, is contracting against one of the factors V(m)Rijkl. If Set # 0, we define
4+ to be the minimum element of Set, and we pick out the factor V(m)Rijkl in
each C" against which V¢, . contracts. We call that factor V(m)Rijkl C-crucial.
If Set = 0, we will say the C-crucial factors and will mean any of the factors
V) Rk

Now, we pick out the subset Hg’* C H&, which is defined by the rule: h €
H g’* if and only if VY is contracting against the (one of the) C-crucial factor(s).

Now, for each h € H3 we denote by

Hitdivi.ycigyiﬂ+ln.ia+l (Qla R Q;DvK (bla feey ¢’u.)

39By weight considerations, since we started out with no “bad terms” in Lemma 21 we
will not encounter no “forbidden tensor fields” for Lemma 4.10 in [6].

40Recall that a special index in a factor V(m)Rijkl is an internal index, while a special
index in a factor S*V(”)Rijkl is an index g, ;-
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the sublinear combination in X,div;, Cp" """ "**1(Qy, ..., 0, Y, ¢1, ..., ¢,) that
arises when V;_ hits the (one of the) C-crucial factor ] It then follows that:

> anXadivi,,, ... Xodivi, Hitdiv, CJpime o1 (Qy, . QY 61, du)
heHY
+ > anXadivi, o Xadivg Clreton (O QY b1 )+
heHS*
ZG’JC(;(QD .. 'an7K¢1a .. ~a¢u);
=
(2.45)
where each C’g has the factor VY contracting against the C-crucial factor
V(m)Rijkl and is simply subsequent to Kgimp.
We now denote the (u + 1)-simple character (the} one defined by V¢q,...
Vo1 = VY) of the tensor fields Hitdivivcg’z"“”'z"“” Q.Y 01, .., 0u)

by Ry (Observe that they all have the same (u + 1)-simple character).

We observe that just applying Corollary 1 in [6] to (all tensor fields are
=

acceptable and have the same simple character &;,,,,) 2 we obtain an equation:

> apHitdivy, Clim e (O, Q. Y, 1, 6u) Vi, 0. Vi 0
heHg

> auXdivi, ,, Corimtriciar(Qy, . QY 61, ¢u) Vi, v Vi v =
uelU
Zajcg’i"+l"'ia (Ql, ey Qp, K (bl, ceey gbu)Vi”lv - VZ‘Q’U = 0,
jeJ
(2.46)

where the tensor fields indexed in U are acceptable (we are treating VY as a
factor V@, 41), have a simple character &/ and each C7 is simply subsequent

, stmp
t0 Kgimp-

But then, our first claim follows almost immediately. We recall the operation
Eraseyy]...] from the Appendix in [3] which acts on the complete contractions

in the above by erasing the factor VY and the (derivative) index that it contracts
against. Then, since (2Z.40]) holds formally, we have that the tensor field required
for Lemma 271 is:

Z ay,Erasevy [C';’i”“"'i"“i‘"+1 Q. 0, Y, 1,0, 00)] - Vi Y.
ueU

41 Recall that i is the free index that belongs to VY.

42Notice that by weight considerations, since we started out with no “bad” terms in the
hypothesis of Lemma 2] there is no danger of falling under a “forbidden case” of that
Corollary.
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Proof of Lemmal[2.7 in case B: We again distinguish two subcases: In subcase
(i) there is some non-simple factor S*V(”)Rijkl in Kgimp or a non-simple factor
VB)Q, contracting against two factors V@), in Kgimp. In subcase (ii) there are
no such factors.

In the subcase (i), we arbitrarily pick out one factor S’*V(”)Rijkl or VIBIQ,
with the properties described above and call it the D-crucial factor. In this first
subcase we will show our claim for the whole sublinear combination ) -, - He
in one piece.

In the subcase (i7), we will introduce some notation: We will examine each
factor T = S’*V(”)Rijkl, T = VB)Q, in each tensor field CQ’““"'“’“"“ and
define its “measure” as follows: If T = S*V(”)Rijkl then its “measure” will stand
for its total number of free indices plus % If T = VPQ, then its “measure”
will stand for its total number of free indices plus the number of factors V¢,
against which it is contracting.

We divide the index set H$ into subsets according to the measure of any
given factor. We denote by M the maximum measure among all factors among
the tensor fields C_(;I’Z"““'l‘*’l‘*“, h € H$. We denote by H2* C H$ the index set
of the tensor fields which contain a factor of maximum measure. We will show
the claim of Lemma 2.7 for the sublinear combination }, 2. .... Clearly, if
we can do this, then Lemma 27 will follow by induction.

We will prove Lemma 27 in the second subcase (which is the hardest). The
proof in the first subcase follows by the same argument, only by disregarding
any reference to M free indices belonging to a given factor etc.

Proof of Lemma[2.7 in case B for the sublinear combination ZheHﬁ’* sl

We will further divide H2* into subsets, H2** k = 1,...,0, according to
the factor of maximum measure: Firstly, we order the factors S*V(”)Rijkl, ...
v®Q, in Rsimp, and label them T1,...,T, (observe each factor is well-defined
in Kgimp, because we are in case B). We then say that h € Hg*l if in Cp7' 7t
the factor Ty has measure M. We say say that h € Hy"™? if in Cg"'"*'"* the
factor T3 has measure M and T has measure less than M, etc. We will then
prove our claim for each of the index sets h € Hy =k We arbitrarily pick a
k < K and show our claim for ZheHg,*,k e

For the purposes of this proof, we call the factor T} the D-crucial factor.

Now, we pick out the subset Hg’k C H&, which is defined by the rule: h €
Hg’k if and only if VY is contracting against the D-crucial factor Tj.

Now, for each h € H3 we denote by

Hitdiv; Clrimetiet1(Qy, . 0, Y 61, )

the sublinear combination in X div,, Cy ™ "* " (Qy, ... Q,, Y, 1. . ., by,) that
arises when V;_ hits the D-crucial factor It then follows that:

43Again we observe that if we can prove this then Lemma [27] in case B will follow by
induction.

44Recall that iy belongs to VY by hypothesis.
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> anXdivi ., ... Xdivi, Hitdiv, Cl"'v+ 50 (Qy, .., QY 61, ., ¢u)
heHg

+ > anXdivi,, ... Xdivy, Clirrriet (Qy, L QY 0, du)+
heHS®

Za] Qlu"'aﬂp7x¢17"'7¢u)7

jed
(2.47)

where each C’g has the factor VY contracting against the D-crucial factor and
is simply subsequent to Rgimp.

We now denote the (u + 1)-simple character (the one defined by V¢1,...,
Vo1 = VY) of the tensor fields Hitdiv,, Cy"™ ™' (Qy, ..., Q. Y, b1, - ., bu)
by Ry (Observe that they all have the same (u+1)- sunple character).

We apply Corollary 1 in [6] to (247) (all tensor fields are acceptable and have
the same simple character &};,, ) and then pick out the sublinear combination
where there are M factors Vv or Vg, or V¢, contracting against T}, we obtain
an equation:

> apHitdiv, Clro (. QY 61, 00 Vi, v Vi,

heHy* P

E ay X divi,  Cprmttte et ( Q. QY B1, e, 00) Vv V0 =
uelU

> aChimie QL QY s Gu) Vi, v Vi v =0,
jeJ
(2.48)

where the tensor fields indexed in U are acceptable and have a simple character
=/

K and each CV is simply subsequent to &’

simp simp*

Now, observe that if M > 3, we can apply the eraser to VY (see the Ap-
pendix of [3]) and the index it is contracting against in the D-crucial factor and
derive our conclusion as in case A.

On the other hand, in the remaining cases™ the above argument cannot be
directly applied. In those cases, we derive our claim as follows:

In the case M = 1 the D-crucial factor is of the form V), then we cannot
directly derive our claim by the above argument, because if for some tensor fields
in U above we have VY contracting according to the pattern V;Y' V¥,V ¢
(where ¥ = v or ¢ = ¢3,), then we will not obtain acceptable tensor fields after
we apply the eraser. Therefore, if M = 1 and the D-crucial factor is of the form
V®)Qy,, we apply Lemma 4.6 in [6] to (Z48) (treating the factors Vv as factors

45Observe that the remaining cases are when M =0, M = M =1.
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V(;S)@ to obtain a new equation in the form (2.48]), where each tensor field in
U has the factor VY is contracting against a factor VW@, 1 > 3[ Then,
applying the eraser as explained, we derive our Lemma [Z7] in this case.

When M = % or M = 0, then we first apply the inductive assumptions of
Corollaries 3,2 in [6] (respectively) to (Z48) "] in order to assume with no loss of
generality that for each tensor field indexed in U there, the factor VY is either
contracting against a factor V(®)Q,,, B > 3 or a factor S*V(”)Rijkl, v > 1.
Then the eraser can be applied and produces acceptable tensor fields. Hence,
applying Frasevy to (Z48) we derive our claim. O

Proof of Lemma[2.9:

We re-write the hypothesis of Lemma (which is also the hypothesis of
Lemma [29) in the following form:

E apX.divi ., .. .X*dzvia+1{Cg Setet (O Qpwr, we, 1,y Pu)—
he€H,

Switch[C]p'm 1 tert (Q, ..., Qp, w1, w2, @1, - ., Pu) }
= ZCLJ‘O;(Ql, ceey Qp, [wl,wz], gf)l, ceey (bu)

jeJ
(2.49)

Here the operation Switch interchanges the indices , and ; in the two factors
Vawl, wa2.

Notational conventions: We have again denoted by H§ C Hs the index set
of those vector fields for which one of the free indices (say ;,.,) belongs to a
factor Vw; or Vws. With no loss of generality we assume that for each h € HS
ias1 Delongs to the factor Vw;. We can clearly do this, due to the antisymmetry
of the factors Vwy, Vws.

We have defined HS = Hs \ H$. For each h € HS we denote by T,,,,T,, the
factors against which Vw;, Vwy are contracting. Also, for each h € H§ we will
denote by T, the factor against which Vws is contracting

For each h € Hj, we will call the factors T,,,7,, against which Vw; or
Vwy are contracting “problematic” in the following cases: If T,,, or T, is of
the form V(m)Rijkl and Vw; or Vwy is contracting against an internal index.
Alternatively, if T,,, or T, is of the form S*V(”)Rijkl and the factor Vw; or
Vws is contracting one of the indices § or ;.

We then define a few subsets of HY, H&:

46 Furthermore, we can observe that we do not fall under a “forbidden case” of Lemma 4.1
in [6], by weight considerations, and since the tensor fields in our Lemma assumption are not
“bad” )

47Note that the weight becomes less negative, hence Lemma 4.10 in [6] applies.

48By our assumptions there will be a removable index in these cases. Hence our extra
requirements of those Lemmas are fulfilled.

49Note that the definition of Twq,Tw, depends on h; however, to simplify notation we
suppress the index h that should appear in T, Tw, -
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Definition 2.2 We define Hgﬁ** to stand for the index set of the tensor fields

Rim g1 ia ) ) , )
Cy'm g for which Vwy, Vws are contracting against different factors and

both T, T, are problematic.

We define H5 , C HS to be the index set of the tensor fields C’g’i"“'”ia“ s
for which T,,, is problematic.

We define Hg* to stand for the index set of the tensor fields Cg’i"“'“i‘*“ s
for which either T,,, = T, or T, # T.,, and one of the factors T, , T, is

problematic.

Abusing notation, we will be using the symbols », HE etc to denote

generic linear combinations as explained above, when these symbols appear in
the right hand sides of the equations below.

We then state three preparatory claims:
Firstly, we claim that we can write:

. . Ryimtt.ia
E anXydivi,, ... Xydivi, O ( Qo Qp, w1, we, 0145 D)
heH}

2,%%

— Switch[C]Z’iﬂ+1mia+1 (Qla ey Qp, w1, w2, ¢17 ey (bu)} =

. . h.i
E apnXydivi ., .. .X+dwia+1{Cg bttt (O Qw1 W2, O1, e, By)
heHS

- SwitCh[C]ZﬁiﬂJrlmiaJrl (le R Q;Da w1, w2, (blv R (bu)}
=+ Zajcg(gla .. '7Q;D7 [Wl,WQ], ¢15 e qu)v

jeJ
(2.50)

where the linear combination ), gy, - On the RHS stands for a generic linear

combination in the form described above. Observe that if we can show (Z50)
then we may assume with no loss of generality that Hg** = () in our Lemma
hypothesis.

Then, assuming that H. Sﬁ** = () in our Lemma hypothesis we will show that
there exists a linear combination of («¢—7+1)-tensor fields (indexed in X below)
which are in the form ([21]) with a simple character Kg;mp so that:
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Z ah{cg’i"+1"'io‘+l (Ql, - ,Qp,wl,wz, ¢1, ey ¢u)_

heHs ,
SwitCh[C]ZJWJrlmiaJrl (Qlu ) Q;D7w17 w2, ¢17 EERE) ¢u)}viw+lv s via+lv_
X*di’Uia+2 Z aw{C§7i1n~ia+17:a+2 (Ql, A ,Qp,wl,wz, (]51, ey ¢u)—
reX

Switch[C]Z’i’r*l"'i"‘*l (Ql, ey Qp,wl, W, ¢1, ey qbu)}ViHlv R ViaJrl’U
+ Z a/h{CZ;’ilmia+1 (Ql7 ) Qp7w17w27 ¢17 RS (bu)_

heHS
Switch[C]l it tett (Qy, L Qw1 wa, b1, Gu) Vi, U Vi, v
= ZG’JC(;(QM R Q;Da [w17w2]5 ¢15 ce ¢uvva7ﬂ)'

jeJ
(2.51)

We observe that if we can show the above, we may then assume that H§ , = 0
(and H3 ,, = 0) in the hypothesis of Lemma 2.

Finally, under the assumption that H. gﬁ** =Hj, = () in our Lemma hypoth-
esis, we will show that we can write:

; ; hyii...ia
g anXydivi, ... Xqdivi, O ( QL Qpwr,wa, 01, ) —
heHS

Switch[C]Z’i”“'“ia“ (Ql, ey Qp, w1, W, ¢1, ey (bu)} =
Z ahX+diviﬂ+1 .. .X+di’l)ia+l {Cg’il“'i"‘+1 (Ql, RN Qp, W1, W2, P1y ey (bu)—

heHS &k

Switch[C]Z’i”“'“ia“ (Ql, ey Qp, w1, w2, ¢1, ey ¢u)}
+ ZG’JC;(QM .. '7Qp7 [W1,WQ],¢1, (R 7¢u)7

jeJ
(2.52)

where the sublinear combination ), HE e OD the right hand side stands

for a generic linear combination of acceptable tensor fields in the form (23]
with simple character Kgimp, with no free indices in the factors Vwi, Vws and
where the factors T,,,T,, are not problematic. Therefore, if we can show the
above equations, we are reduced to showing Lemma under the additional
assumptions that HZ , = Hy,, = Hy, = 0.

(Sketch of the) Proof of (Z250), (Z221)), (2252): (Z350) follows by re-iterating
the proof of the first claim of Lemma 4.10 in [6] Y (251) follows by re-iterating

50By the additional restrictions imposed on the assumption of Lemma[Z3lthere is no danger
of falling under a “forbidden case” of Corollary 1 in [@].
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the proof of the first claim of Lemma 4.10 in [6], but rather than applying Corol-
lary 1 [6] in that proof, we now apply Lemma [Z7 (which we have Shown) Fi-
nally, the claim of ZE2) for the sublinear combination in HY , where T,,, # T,,
follows by applying Lemma 25P7 We can then show that the remaining sublin-
ear combination in ), gy, - must vanish separately (modulo a linear combi-

nation > jeg - ) by just pfcking out the sublinear combination in the hypothesis
of Lemma 2.I0] where both factors Vw;, Vwy are contracting against the same
factor. O

Now, under these additional assumptions that Hg* = Hb%** = Hli* = 0,
we will show our claim by distinguishing two cases: In case A there is a factor
V(m)Rijkl in Kgimp; in case B there is no such factor. An important note: We
may now use Lemma [2.7] which we have proven earlier in this section.

Proof of Lemma[2.9 in case A.

We define the (set of) C-crucial factor(s) (which will necessarily be of the
form V(m)Rijkl) as in the setting of Lemma 27l Firstly a mini-claim which
only applies to the case where the C-crucial factor is unique:

Mini-claim, when the C-crucial factor is unique: We then consider the tensor
fields 05 drttetett Uh e HY for which Vws is contracting against the C-crucial
factor. Notice that by our hypothesis that Hg* = ), we will have that Vwy
is contracting against a derivative index in the C-crucial factor. Denote by
Hy™" C HY the index set of these tensor fields.

We observe that for each h € Hy'" we can now construct a tensor field by
erasing the index in the factor V(m)Rijkl that contracts against the factor Vws
and making the index in Vws into a free index ;,. We denote this tensor field

by c}“*““*”ﬂ (Q,...,Qp,wi, w2, 01,...,¢,). By the analogous operation

we obtain a tensor field Switch[Cp™ " VB (Qy L Qpw, wa, b1, -y du)].
It follows that in the case where the C-crucial factor is unique, for each
he Hy™:

51Observe that the assumption that Lemma 23] does not include “forbidden cases” ensures
that we will not need to apply Lemma 27 in a “forbidden case”.

52In this case there will be a factor Vw; or Vws contracting against a non-special index;
therefore there is no danger of falling under a “forbidden” case of Lemma 271
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X*diviﬂl .. .X*divia+1{05’i“+1“'i"‘+l (Ql, . ,Qp,wl,wg, (]51, ey ¢u)

— Switch[C]Z’i”+l"'ia+l (Ql, e ,Qp,wl,wg, (]51, ey ¢u)} =

Xodivi,,, .. Xodivy, ,, Xodiv,, {C ™08 (0O wr,wa, b1, )
- SwitCh[C]ZJﬂ+lmia+liﬁ (le ey Qp;W1;W27 (blv trt ¢u)}+

Z aTX*di’inJrl .. .X*divia+l{cg’i”+l"'ia+l (Ql, Ce ,Qp,wl,wg, (]51, ceey ¢u)
reR

- SwitCh[C]Tﬁiﬂ+l...ia+l (Qlu e 7Qp7w17w27 ¢17 ) ¢u)}+

Za]C;(Qlu .. '7Qp7w17w27¢17 .. '7¢u)7

jeJ
(2.53)

where each tensor field C_g’i"“"'i"‘“ (Q,...,Q,w1,w2,¢1,...,¢,) has the fac-
tor Vwy contracting against some factor other than the C-crucial factor.
But we observe that:

. . . h,i 41..0 +1’i5
Xodivg, ... Xudivy, , Xadivi, {Cy"™ T, Qpwi, W, P, -, Pu)

— Switch[C]}gL’i”“”'io‘“iﬁ Q1.+, Qp,w1,w2, 01, .., 0u) } = 0.
(2.54)

Therefore, in the case Set # () or Set = (§ and o7 = 1, we have now reduced
Lemma 9 to the case where Hy'" = 0.

Now, (under the assumption that Hy" = () when the C-crucial factor is
unique) we consider the sublinear combination Special in the equation hypoth-
esis of Lemma [Z.0] that consists of complete contractions with Vw; contracting
against the C-crucial factor while the factor Vws is contracting against some
other factor. (If Set = () and o1 > 1 Special stands for the sublinear combi-
nation where Vw; is contracting against a generic C-crucial factor and Vws is
contracting against some other factor). In particular, for each h € H§, since
Hg" = () we see that the sublinear combination in

. . h.i
E apXadivi, ., ... Xadivi, {C/ ™4 ( Q0 Qp wr, w2, 015, D)
heHg

— Switch[C]Z’i’r*l"'io‘*l (Ql, ey Qp,wl, w2, ¢1, ey (bu)}
(2.55)

that belongs to Special is precisely:

. . gy Pii1oia )
g apXudivi, ... Xaodivy, Hitdiv;, C'= 141 Q0 Qpwi, w2, @150, Gu);
heHg
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(in the case Set = () and oy > 1 Hitdiv;, , just means that V; can hit any
factor V(m)RZ—jkl that is not contracting against Vws; recall that in the other
cases it means that it must hit the unique C-crucial factor).

We also consider the tensor fields Cin+1-tat1  Qopjtch[C]Min+1-tatt | €
HY for which Vw is contracting against the C-crucial factor and Vws is not (or,
if there are multiple C-crucial factors, where Vw;, Vw, are contracting against
different C-crucial factors). For this proof, we index all those tensor fields in
H2Y and we will denote them by Cpimtitatt

Thus we derive an equation:

. . g h.i
E anXadivi, .. Xudivi, Hitdiv,  , Cy' 1+ (Qq, .0 Qp, w1, w9, @1, - o Pu)
heHg
) . Byimg1.ni _
+ 5 apXudivi .. Xadivy, , Cpr 0o ( Q0 Qp wr,wa, 614 u) =
heHZY
E a/jcg(Qlw"7Qp7w17w27¢17"'7¢u)'

jeJ
(2.56)

We group up the vector fields on the left hand side according to their weak
(u + 2)—chamcter (defined by Véu,...,Vo,, Vwi, Vws). (Recall that we
started off with complete contractions with the same wu-simple characters-so
the only new information that we are taking into account is what type of factor
is Vws contracting against). We consider the set of weak simple characters that
we have obtained. We denote the set by {#1,...Rp}, and we respectively have
the index sets Hy'™ and Ho"™

We will show our Lemma by replacing the index set H§ by any Hg =
f<B.

It follows that for each f < B:

Z apXidivg ... Xidiv;, Hitdivia+lcg’i"+1”'ia+1
heHy "
(Ql, e ,Qp,wl,WQ,¢1, .. 7¢u)+
Z apXodivi ,, ... Xodivy, , , Climei-es(Qy L Qp wi,wo, b1, .., fu) =

e
heH, !

Za]C;(Qla cee 7Qp7w17w27¢17 .. '7¢u)7
jeJ

(2.57)
where the complete contractions Cg have a u-simple character that is subsequent

t0 Ksimp. We will show our claim for each of the index sets Hg i separately.

53See [6] for a definition of this notion.
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Now, we treat the factors Vwi, Vws in the above as factors Vo, 11, Vouio.
We see that since Hg** =H?, = Hg* = (), all the tensor fields in the above
have the same (u 4 2)-simple character.

Our claim (Lemma 23) for the index set Hy""' then follows: Firstly, apply
the operator Eraseyy,|...] to (IZI)II) We are then left with tensor fields
(denote them by

[ P a,R
C(gﬂ e (Qla'"7Qp7w25¢1a"'a¢u)7h’6H2 fa

Byt ia bR
C'gﬁz +1 ,L+1(le"'anv("JQv(blv"'agbu)ah6H2 fa

respectively) with the same (u + 1)-simple character say Rsimp,r- We can then
apply Corollary 1 from [6] (since we have weight —n + 2k, k > 0 by virtue of
the eraser—notice that by weight considerations, since we started out with no
“bad” tensor fields, there is no danger of falling under a “fobidden case”). to
derive that there is a linear combination of acceptable a-tensor fields indexed
in V below, with (u + 1)-simple character Kgimp, s so that:

Z a/hc(};)lﬂ+1mza(ﬂla"'7Qp7w27¢17"'7¢u) 17\-+1 . viav_

heH, ™!

E . v,% Lt
a’vX*dZ’U’L'Q+1Og)W+1 a+1(le"'anaw27¢17"'7¢u) ing1 U v U=
veV

Z a’jcgﬁiﬂJrlmia (Qla e an7w27 (bla DRI qu) Zn+1 . Viavv
jeJ
(2.58)

where each complete contraction indexed in J is (u + 1)-subsequent to Rsimp, f-
In this setting X,div; just means that in addition to the restrictions imposed
on X div; we are not allowed to hit the factor Vws.

Then, if we multiply the above equation by an expression V;w; Vv and then
anti-symmetrize the indices a, b in the factors V,wi, Vyws and finally make all
Vs into X divs, we derive our claim. O

Proof of Lemmal[29 in case B (when o1 =0).

Our proof follows the same pattern as the proof of Lemma [2.7] in case B.

We again define the “measure” of each factor in each tensor field Ch drstats
as in the proof of case B in Lemma 2771 Again, let M stand for the maximum
measure among all factors in all tensor fields Ch ittt e B8 We denote
by Hy M H$ the index set of the tensor fields for Wthh some factor has
measure M.

We will further divide H2™ into subsets, Hf’M’k, k=1,...,0, according to
the factor which has measure M: Firstly, we order the factors S*V(”)Rijkl, .V PQ,

54Gee the relevant Lemma in the Appendix of [3].

42



in Rsimp, and label them T4, . .., T, (observe each factor is well-defined in Rgjmyp,
because we are in case B). We then say that h € Hy""! if in Ch drdiete T hag
measure M. We say say that h € HM? if in Ch rite T has measure M
and 77 has measure less than M, etc. We will then prove our claim for each of
the index sets h € Hy MEF We arbitrarily pick a £ < o and show our claim
for ZheHg,M,k e

For the purposes of this proof, we call the factor T} the D-crucial factor (in
this setting the D-crucial factor is unique).

Now, we pick out the subset Hg’k’Jr C HJ, which is defined by the rule:
h e Hg’k if and only if Vw; is contracting against the D-crucial factor 7). We
also pick out the subset Hg’k’_ C HJ, which is defined by the rule: h € Hg’k if
and only if Vws is contracting against the D-crucial factor T. Finally, we define
Hy' C HY, Hy'~ C H$ to stand for the index set of tensor fields for which Vw,
contracts against the D-crucial factor.

Now, for each h € H$ we denote by

HthZ’U»L,Y C(‘(];.'iﬂJrlmiaJrl (le RN Qpa w1, w2, (blv T (bu)

the sublinear combination in X div;, Ch 1ot (.., w1, w2, 01, Dy)
that arises when V;_ hits the D- cru01a1 factor. It then follows that:

. . g Binttoia
g apXudivi ... Xadivy, Hitdiv;, Cg'= 1"t (Qq, 0 Qp w1, w2, G155 Gu)
heHg

- Z apX.divi_,, .. .X*diviwlSun'tcl"L[C']’g"i”“"'i‘"+1 (.0, w1, w2, 01, -+, o)
heHS"

. . hyipit.i
+ E apnXdivi_,, ... Xdivg 'm0t (Q o QO wr,wa, 1,4 du)
heHY M+

— Z apXdiv, ., ... Xdiv; Switch[C]Z’i"“'“i““ (.0, Qpy w1, w2, 01, .o, o)
hEHb’k‘7

+ZCLJ Ql,...,Qp,wl,WQ,¢1,...,¢u),
JjeJ

(2.59)

where each C’J has the factor Vw; contracting against the D-crucial factor and
is simply subsequent t0 Reimp-

We now denote the (u+1)-simple character (the one defined by V1, ..., Vwi)
of the tensor fields Hitdiv,, Cy ™" " (Q, ..., Qp, w1, w2, O1, - - - D) DY Rljp
(Observe that they all have the same (u 4 1)-simple character).

We observe that just applying Lemma 2] to (259) (all tensor fields are
acceptable and have the same simple character ;,,,,~we treat Vw; as a factor

55 Again we observe that if we can prove this then Lemma ] in case B will follow by
induction.
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V¢ut+1 and the factor Vwsy as a factor VY') and we then pick out the sublinear
combination where there are M factors Vv contracting against T}, we obtain
an equation:

e Pit1oia
E apHitdiv; Cg' =1t (Qq, .., Qpwi, w2, 15000, 0u) Vi v Vi vt
heHg "

E aszwiaHCg’ Tt badl (Ql, ey Qp,wl,wg, (bl, ceey gbu)VZ-”lv Ce VZ‘QU—F
reX

Z ang’i”““'ia (Ql, ey Qp,wl,wg, gf)l, ey (bu)ViHlv . VZ'QU = O,
JjeJ
(2.60)

where the tensor fields indexed in X are acceptable and have a (u + 1)-simple
character &,;,,, and each C7 is simply subsequent to &, ,-

Now, observe that if M > % then we can apply the Eraser (from the Ap-
pendix in [3]) to Vw; and the index it is contracting against in the D-crucial
factor and derive our conclusion as in case A.

The remaining cases are when M = 1, M = % and M = 0. The first one
is easier, so we proceed to show our claim in that case. The two subcases
M= %, M = 0 will be discussed in the next subsection.

In the case M = 1, i.e. the D-crucial factor is of the form V() Q,, then we
cannot derive our claim, because if for some tensor fields in X above we have
Vwi contracting according to the pattern: V,wiV¥Q,V, 4, where ¢ = v or
1 = ¢p. Therefore, in this setting, we first apply the eraser twice to remove
the expression VE?)Q;IV%/)Vj w1 and then apply Corollary 2 from [6P9 to (260)
(observe that (2.60) now falls under the inductive assumption of Lemma 4.6 in
[6] since we have lowered the Weigh to obtain a new equation in the form
(Z60), where each tensor field in X has the factor Vw; contracting against a
factor VWQ,,, | > 3. Then, applying the eraser as explained, we derive our
Lemma in this case.

The cases M = %, M = 0: Notice that in this case we must have a = 7,
by virtue of the the definition of maximal “measure” above. We will then prove
our claim by proving a more general claim by induction, in the next subsection.
O

2.4 The remaining cases of Lemma [2.9L

We prove our claim in this case by an induction. In order to give a detailed
proof, we will re-state our Lemma hypothesis in this case (with a slight change

56Recall that we showed in [6] that this is a Corollary of Lemma 4.6 in [6], which we have
now shown.

57There is no danger of falling under a “forbidden case” of Lemma 21 by weight considera-
tions since we are assuming that none of the tensor fields of minimum rank in the assumption
of Lemma are “bad”.
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of notation):

The hypothesis of the remaining cases of Lemma[Z.9: We are assuming an
equation:

Z a'mX*di’UilC’;’il (le ) va (blv Tt (bu; [(4)1,(4)2])—|—

rzeX,

Z axX*div“C;’il (Q,..., Qp, d15 -5 Pu, (w1, wa])+ (2.61)
z€Xy

Zajcg(ﬂlv"'7QP7¢17"'7¢U) = 0’

jed

which holds modulo complete contractions of length > o+« + 3 (0 > 3-here o
stands for u + p—see the next equation). We denote the weight of the complete
contractions in the above by —K. The tensor fields in the above equation are
each in the form:

peontr(S. VIR, i ® - @ S,V R, iy ®
Va0, ®...V@)Q, @ [Vw; ® Vw,] (2.62)
@V @@ V,).

We recall that the u-simple character of the above has been denoted by Kgipmp.
Recall that we are now assuming that all the factors v, in Rsimp are accept-
able§ The complete contractions indexed in J in ([Z61]) are simply subsequent
to Rsimp. We also recall that X,div; stands for the sublinear combination in
Xdiv; where V; is not allowed to hit either of the factors Vwy, Vws.

We recall that the tensor fields indexed in X, have the free index ;, belonging
to the factor Vw;. The tensor fields indexed in X} have the free index ;, not
belonging to any of the factors Vwi, Vws.

We recall the key assumption that for each of the tensor fields indexed in
X, there is at least one removable index in each tensor field
C;’il (Ql, ceey Qp, D1y ey Ou, [wl,wg]), x € Xa

In order to complete our proof of Lemma[2.9] we will show that we can write:

58 meaning that each a; > 2.

59Recall the definition of a “removable” index from Definition 21}
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Z aIngil (Qla B 'an7¢17 ceey ¢ua [w17w2])vi1v =

rEX,

Z azX*divi2 . X*divia O;’il'“ia (Ql, ceey Qp, (bl, ceey (bu, [wl,(.UQ])ViIU—F
zeX'’

> a;CHQ, . Qs bu),

jeJ

(2.63)

where the tensor fields indexed in X' are acceptable in the form (Z.62), each
with rank a > 2. Note that this will imply the remaining cases of Lemma [2.9]
completing the proof of Lemma

We recall that we are proving this claim when the assumption (Z.61]) formally
falls under our inductive assumption of Proposition [[1] (if we formally treat
Vwi, Vws as factors Vo, 11, V.12).

We will prove ([2.63)) by inductively proving a more general statement. The
more general statement is as follows:

The general statement:

Assumptions: We consider vector fields C'g’“ (i, Qo b1,y D, Y1, 007),

C;”“ (., b1, .-, Doy [X1, X2]s W1, - - -, 7)) in the following forms, respec-
tively:

pcontr(S*V(”l)Rwljm R+ ® S*V(”“)Rw”,k,l,@)
Va0, ®... V@0, VY @ Vi ® - @ Vi, (2.64)
®V”“(z~51 ®"'®V$”¢Zv),

pcontr(S*V(”l)lejkl R ® S*v(uv)vaj’k’l’@)
Va0, @... V@0, @ [Vx1 ® Ve @ Vi @ - - ® Vi, (2.65)
RV @@ V™),
for which the weight is —W 4+ 1, W < K. We also assume v + b > 2. Note:
the bracket [...] stands for the anti-symmetrization of the indices 4, in the

expression V,wi Vyws.
We assume (respectively) the equations:
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Z G/CX*divilc§7i1(Qlu .. '7Qb7¢17 .. '7¢U7}/7w17 v 71/17')—"
Ceza

D acXadivi, ... Xadiv, CS 0 Qe Dy b, b0, Yo, )+
(€Za

Z a’CX*dithgm (Qla e aQba ¢17 e (b'uv K’L/)lv Tt ¢T)+

CEZy

Za’jcg(glv"'aQba¢la'"aqsvv}/vl/)lv"'v’l/)‘r) = Oa
jeJ
(2.66)

Z aCX*di’U’L'ngC)il (Qla e aQba ¢15 N '7¢'U7 [XlaXQ]vwla e 71/)7')_'_
CEZa

Z aCX*divil .. .‘X,kd’i’l}iwC'g’il'“iw (Ql, . ,Qb, ¢1, ey (bv, [Xl, Xg],’lﬁl, .. .,wT)-i-
(eZ,

Z aCX*diUilc_gﬂil (Qlu e 7Qb7 ¢17 sy ¢U7 [Xlu X2]7¢1= .. '7w7’)+

CEZy

Za/jcg(glw"aﬂba(blu' "7¢’U7 [XlaX?]uz/}lu' "71/17') = 07
jeJ
(2.67)

which holds modulo complete contractions of length > v + b+ 7 + 3.

The tensor fields indexed in Z, are assumed to have a free index in one of
the factors VY, Viq,..., Vi, or one of the factors V1, Vxa, Vio1,..., Vi,
respectively. The tensor fields indexed in Z, have rank v > 2 and all their free in-
dices belong to the factors VY, Vi, ..., Vi, or the factors Vi1, Vxa, Vi, ..., Vi ,
respectively. The tensor fields indexed in Z, have the property that ;, does
not belong to any of the factors VY, Vi1,..., Vi, Vx1,Vxe, Vi1,..., Vi,
respectively. We furthermore assume that for the tensor fields indexed in
Zo\U Zy U Za, none of the factors Vi)y,. .., Vb, are contracting against a spe-
cial index in any factor S*V(”)Rijkl and none of them are contracting against
the rightmost index in each V(®)(, (we will refer to this property as the @-
property). We assume that v+ b > 2, and furthermore if v+ b = 2 then for each
¢ € ZoJ Zy, the factor(s) VY (or V1, Vxz) are also not contracting against a
special index in any S*V(”)Rijm and are not contracting against the rightmost
index in any V(). Finally (and importantly) we assume that for the tensor
fields indexed in Z,, there is at least one removable index in each C%%. (In
this setting, for a tensor field indexed in Z,, a “removable” index is either a
non-special index in a factor S*V(”)Rijkl, with ¥ > 0 or an index in a factor
vBQ,, B > 3).

Convention: In this subsection only, for tensor fields in the forms (2.60),
(257) we say then an index is special if it is one of the indices j,; in a fac-
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tor S’*V(”)Rijkl (this is the usual convention), or if it is an index in a fac-

tor Vg?),,TBQh for which all the other indices are contracting against factors
Vi, ..., Vipr.

All tensor fields in (2.60), (Z67)) have a given v-simple character Rsipmp. The
complete contractions indexed in J are assumed to have a weak v-character
Weak(Rsimp) and to be simply subsequent to Rsimp. Here X, div; stands for the
sublinear combination in X div; where V; is not allowed to hit any of the factors
VY, Vi1,...,Vi, or Vxi1,Vxe, VU, ..., Vi, respectively.

The Claims of the general statement: We claim that under the assumption
(257, there exists a linear combination of acceptable 2-tensor fields in the form
254), 2565) respectively (indexed in W below), for which the @-property is
satisfied, so that (respectively):

Z achﬁil(le-- 'ava(bla' "a¢vaYa¢1a' "71/)T)Vi1v_

CE€EZ,

Z an*divi2C;U’ili2 Qo Qs b1y D0, Y U, )V 04 (2.68)
weW

Za’jcgj]-ﬁil(glv s aQba ¢15 e (bvv}/vl/)lv e 71/)T)V’L'1U = 07

jeJ

Z a/CCg’il(Qlw"7Qb7¢17"'7¢’ua [X17X2]71/117-~71/17)Vilv+

(€EZa

> awXudivi,C 2 (., b1,y G, [X1s Xal ¥, ) Vi 0
weWw

Zajcgﬁil(glu e 7Qb7¢17 .. '7¢U7 [X17X2]7¢1= .. '7w7’)vilv =0.

jeJ

(2.69)

We observe that when 7 = 0 and v + b > 3, [2:69) coincides with (DZBI)@
Therefore, if we can prove this general statement, we will have shown Lemma
in full generality, thus also completing the proof of Lemma

We also have a further claim, when we assume ([2.66)), (Z67) with v +b = 2.
In that case, we also claim that we can write:

60 Also, the assumption of existence of a non-removable index coincides with the correspond-
ing assumption of Lemma [2:3]
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X div;, > acCS™ (Qu, .o, Uy b1, 00, Yo, ) =
¢€Z.UZyUZa

Z aqX+diUilcg»i1 (U, Doy b1,y D0, Y 01, 00 )+ (2.70)
q€Q

Za’jcg(glv"'vgbaqsla' "7¢U7K1/)17"'71/)T)7

jeJ

X+d7:v’i1 Z a’CCgC)il(Qla'"aQba¢la'"7¢’U7[X15X2]7¢15"'71/)T):
Ceza UEaUZb

Z aqXeriving’il (le R va ¢15 DRI QS’U; [X17X2]5 1/}15 ce %—)—F
q€Q
Zajcg(glu ce 7Qb7¢17 .. '7¢U7 [X17X2]7¢1= .. '7w‘r)7
jeJ
(2.71)
where the tensor fields indexed in @ are in the same form as (Z64) or (265
respectively, but have a factor (expression) VY or V(2)w1Vj]w2, respectively,

ali

and satisfy all the other properties of the tensor fields in Z,.

Consequence of (2.68), (2.09) when v+ b > 3: We here codify a conclusion
one can derive from (2.68)), (2.69). This implication will be useful further down
in this subsection. We see that by making the factors Vv into X.div’s in (2.60)),

Z810) and replacing into (Z.68), ([2269]), we obtain new equations:

Z aCX*di’U’L'ngC)il (le .. 'aQba ¢15 e (b’vaYa 1/}17 e 71/)7')_'_

CeZy,

Z aCX*diUilcgyil (Ql7 v 7Qb7¢17 .. '7¢’U7Y7 1/117 .. '7w7’)+ (272)
CEZy

Zajc_g(ﬂla"'7Qb7¢17"'7¢’U7Y71/117"'71/JT) = 07

jeJ

Z CLCX*d’[:’U,L-ng’il (Qla .. 'aQba ¢15 N '7¢’U7 [XlaX?]vwla .. '71/)7')_'_

lez,

Z aCX*di’U’L'ngC)il (le .. 'aQba¢la .. 'a¢v7 [leXQ]awla .. '71/)7')_'_ (273)
CEZy

Za/jcg(ﬂla"'7Qb7¢17"'7¢’uu [X17X2]7¢17"'71/JT) = 07

jedJ

where here the tensor fields indexed in Z/, are like the tensor fields indexed in
Z, in (Z66]), [Z67) but have the additional feature that no free index belongs
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to the factor Vi1 (and all the other assumptions of equations (2.66), (Z.67)
continue to hold).
We then claim that we can derive new equations:

Z a’CX+div’ilc§1il (le e 'aQba ¢15 ceey (bvv}/vl/)lv T 71/)T)+

lez,
Z a’CX+divilch)il(le" 'ava(bla' "a¢vaYa¢17" '71/)7') =
e ‘ (2.74)
ZaqX-‘rdiving)“(Qlw"7Qb7¢17'"7¢’U7Y71/117"'7w‘r)+
q€Q
Za/jcg(glu'"7Qb7¢17'"7¢U7K¢17"'7w7’)7
jeJ
Z a/CX-i-diUing)il(Qlu'"7Qb7¢17'"7¢U7[X17X2]7w17"'7w‘r)+
cezl
Z CLCX+d’[:’U,L-IC§’i1(Ql,, "aQba¢la' "7¢'U7 [XlaXQ]vwla' "71/)7') =
7 _ (2.75)
ZaqX+divilcgﬁzl(le"'aQba¢la'"a¢v7[X17X2]5¢15"'a¢7)+
q€Q
Zajcg(glu'"7Qb7¢17"'7¢v7[X17X2]7w17"'7w‘r)7
jeJ

where here X div; stands for the sublinear combination in Xdiv; where V;
is allowed to hit the factor VY or Vxi (respectively), but not the factors
Vi1,...,Vér, (Vxza). Furthermore, the linear combinations indexed in @ stand
for generic linear combinations of vector fields in the form (Z64) or (2565,
only with the expressions VY or V{,w1Vyws replaced by expressions vy,

V?)wlvb]wg.

la

Proof that (2.7), (2-73) follow from (2.68), [2.69): We prove the above by

an induction. We will firstly subdivide Z7, Z, into subsets as follows: ¢ € Z| 4
or ( € Zp e if the factor VY (or one of the factors Vi, Vx2) is contracting
against a special index in the same factor against which Vi; is contracting.
Now, if Z! o U Zs,a # 0 our inductive statement will be the following:
We inductfvely assume that we can write:
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> acXydivi, .. Xdivg CS (L Qs frs b YU, ) =
CEZ, a

Z GCXJ,_di’Uing’il(Ql, .. '7Qb7¢17 .. '7¢U7Y71/117 s 71/17')"_
(E€EZy,@

> wXdivi, .. X divi, CL QL Qb G, Y )+
teTk

> acXidivi, . Xy divg CSP (R, Q1 0, Yo, )
CEZ; noa

Z aqX+divi10;]I’il (Qla v aQba ¢15 N '7¢1}7K1/)17 te 71/)7')_'—
q€Q

Zajcg(ﬂlu'"7Qb7¢17"'7¢U7Y71/117"'71/JT)7
jeJ
(2.76)

and

Z G/CX+diUilc§’il(Ql,.. '7Qb7¢17' "7¢’U7 [XlaX?]uz/}lu' "71/17') -

ezl

Z a’CX+divilc(§7il (le ) va (bla C) ¢’Ua [X17X2]5 1/}15 ce a¢7’)+
(€EZy,@

Z atX‘i’di’Uil . 'X+divikcg7i1mik (le M va ¢15 cee ¢’Ua [X17X2]5 1/}15 e a¢7)+
teTk

Z aCXJFdivil o 'X+divi705§7i1...i’y (Qla s aQb; ¢17 t '7¢'U7 [XlaXQ]vwlv cee 71/)7')+

CEZ] Noa

Z a/qX-‘rdiUing)il (Qlu .. '7Qb7¢17 .o '7¢U7 [X17X2]7¢17 cee 71/17')—"
qeQ

ZG’JOé(le '7Qb7¢15' "a¢’va [leXQ]aq/}la' c a¢7’)a

jeJ
(2.77)

where the tensor fields indexed in T have all the properties of the tensor fields
indexed in Z/ 4 (in particular the index in V#); is not free) and in addition have
rank k. The tensor fields indexed in Z! oo in the RHS have all the regular
features of the terms indexed in Z, (in particular rank v > 1 and the factor
V1 does not contain a free index) and in addition none of the factors VY (or
Vx1, Vxz) are contracting against a special index.

Our inductive claim is that we can write:
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Z a<X+divi10_(§7i1(le" '7Qb7¢17" 'a¢vaYa¢1a' "a¢7’) =

¢ezl

Z aCX-‘,-diving)il(Qla"'7Qb7¢17"'7¢’uuy71/]17' ,,71/17_)—}—

CEZy
> wXidivi, ... Xydivi  Co QL Qb d Y1)+
teTk+1
Y acXidivg, . Xypdivg CSU QL Qb b0, Yot )+
C€Z, Noa

Z a’qX+divilcgﬁil(Qla .. '7Qb7¢17 s '7¢’U5Ya ¢15 N 'a¢7’)+
q€Q

Za/jcg(glw"aﬂba(blu' "7¢’U7Y71/117' "7w7’)7
jeJ
(2.78)

Z a<X+divi10g§7i1 (le .. '7Qb7¢17 ceey ¢’U} [leXQ]aq/}lv s 'a¢7’) =
ez,

Z aCX+divilc§7il(Qla"'7Qb7¢17"'7¢’uu [X17X2],’(/117_,,7’L/J7_)+

CEZy

Z a/tX-i-di’Uil e X-‘rdivikc(?il.“ikJrl (Qla cee 7Qb7 ¢17 sy ¢’U7 [X17 X2]7 1/117 e 7’(/17_)—}—
teTk+1
Z aCX-i-di’Uil .. 'X-i-divi,ycg’ilmi‘y (Qlu e 7Qb7 ¢17 ey ¢U7 [Xlu X2]7¢17 cee 7w‘r)

C€Z, Noa

+ Z a’qX+divilcgﬁil (le .. '7Qb7¢17 ceey ¢’U} [leXQ]aq/}lv < 'a¢7’)+
q€Q

Za/jcg(glw"aﬂba(blu' "7¢’U7 [XlaX?]udJlu' "71/17') =0.
jedJ
(2.79)

We will derive 2.78), (279) momentarily. For now, we observe that by
iterative repetition of the above inductive step we are reduced to showing (2°74)),
([2.75)) under the additional assumption that Z], o = 0.

Under that assumption, we denote by Z, @ C Z; the index set of vector fields
for which the factor VY (or one of the factors V1, Vxa) is contracting against
a special index. We will then assume that we can write:
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Z a’CX+div’ilcgcyil (le .. 'aQba¢la .. 'a(bvv}/vl/)lv te 71/)7') =
(€Zp,a

> w X divi, .. Xy divy, CY QL 6, h0, Y
teVk

Z G/CX—‘,-diUilC_gyil (Ql7 .. '7Qb7¢17 .. '7¢’U7Y7 1/117 .. '7w7’)+

(€Zy,Noa

Z a’qX+divilcigﬂil (le .- '7Qb7¢17 R (b’vaYa ¢15 e '71/)7')_'_
q€Q

ZG’JO;(QM 'aQba¢la' "a(bvv}/vl/)lv" '71/)7')7

jeJ

Z CLCX+d’[:’U,L-IC§’i1 (le .. '7Qb7¢15 C) ¢’U} [leXQ]aq/}la N 'a¢7’) =
(€EZy,@

> X ydiv, .. X divi, CL QL Dy, b1, G, X1 Xl Vs

teVk
Z a<X+divi10g§7i1 (le .. '7Qb7¢17 ceey ¢’U} [leXQ]aq/}lv s 'a¢7’)+

CEZb,Now

Z a/qX-‘rdiUing)il (Qlu .. '7Qb7¢17 .o '7¢U7 [X17X2]7¢17 cee 71/17')—"
q€Q

Za’JOé(le <. '7Qb7¢15 .. 'a¢’va [leXQ]aq/}la e a¢7’)a

jeJ

e+

(2.80)

¥ )+

(2.81)

where the tensor fields indexed in V* have all the features of the tensor fields
indexed in Z; @ but in addition have all the k free indices not belonging to
factors Viq, ..., V.. The tensor fields indexed in Z yo,a have all the regular
features of the tensor fields in Z, and in addition have the factor VY (or the
factors V1, Vx2) not contracting against special indices. The terms indexed
in @ are as required in the RHS of (274, (Z78) (which are the equations that

we are proving).
We will then show that we can write:
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> X divi, CFM Q. Qb1 G0, Yo, 1) =
(€EZy,@

> aXydivi, .. X divi, CEM QL b, b, Y )+

teVkt+l

> acX div, CSM (D, Qs f1y 0, Yo, )+

CEZy,Now

Z a’qX+divilcigﬂil(Qla <. '7va¢17 .. '7¢'U5Ya ¢15 c 'aw7)+
qeQ

Za’jcg(glv .. '7va¢1a .. 'a¢vaYa¢1a .. '71/)7')5

jedJ

(2.82)

Z a’CX‘Fdiv’ing)il(Ql?"'7va¢1a'"a¢v;[X17X2]51/}15"'aw7’):

(€EZy,@

Z atX‘i’di’Uil "'X+div’ik+10_;)ilmik+l(le"'ava(bla"~a¢va[X17X2]aq/}1a"'a¢T)
teVk+t

+ > acXdiv, C5M (. br, - by X1 X2l W )+

(€Zy,Noa

Z aqX+diUiICg’i1 (Ql, .. -aQb7¢17 ey Go, [X1,X2],¢1, e ,’L/JT)—F
qeqQ

Za’JOé(le .. '7va¢1a .. 'aqs’va [X17X2];1/}1; e a¢7’)'
jedJ
(2.83)

(Here the tensor fields indexed in V**! have all the features described above
and moreover have rank k + 1).

Thus, by iterative repetition of this step we are reduced to showing our claim
under the additional assumption that Z;)@ =Zpo =0.

We prove ([2:82)), (Z83) below. Now, we present the rest of our claims under
the assumption that Z! o = Ze@ = 0. For the rest of this proof we will be
assuming that all tensor fields have the factor VY (or the factors Vxi, Vxa2)
not contracting against special indices.

We then perform a new induction: We assume that we can write:
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Z a<X+divi10g§7i1(le"'7Qb7¢17"'a¢vaYa¢1a"'a¢7) =

¢ez!

Z aCX-‘,-diving’il(Qlu' "7Qb7¢17"'7¢1)7y71/]17' ,,71/17_)—}—

CEZy

> wXdivi, .. X divi, CL QL Qb G0 Y )+
teTk

ZaqX-i-diving’il(Qlu"'7Qb7¢17"'7¢U7}/7w17"'71/]7)+

qeQ

ZajOgJ]-(le"'7Qb7¢17"'a¢vaYa¢1a"'a¢T)a

jeJ
(2.84)

Z aCX+divilc§7il(Ql7"'7Qb7¢17"'7¢v7[XlaX?]uz/}la"wz/]T) -

lez,

Z a<X+divi10_(§7i1(le" '7Qb7¢17" 'a¢va [leXQ]aq/}lv" 'a¢7’)+

CEZy

Z atX+div’i1 . 'X+divikcg7i1mik (le . 'ava(bla .. 'a¢’va [X17X2]51/}15 e a¢7)+
teT*

Za’qX+divilcg)il(Qla'"7Qb7¢17"'7¢1}5[X15X2]7¢17"')¢T)+

q€Q

Za/jcg(gla"'7Qb7¢17'"7¢’U7[X17X2]7w17"'71/]7')7

jeJ
(2.85)

where the tensor fields indexed in T have all the properties of the tensor fields
indexed in Z/ (in particular the index in V4 is not free) and in addition have
rank k. We then show that we can write:

Z a/CX-i-diUing)il(Qla"'7Qb7¢17'"7¢U7K¢17"'7w7’) -
cezl
Z CLCX+d’[:’U,L-IC§’i1(Ql7,, 'ava(bla' "a¢’vaYa ¢17" '71/)7')_'_
CEZy
> wXydivi, .. X divi,, CLH QL Qb 0, Yot )+
teTk+1
ZaqX+d’Z:’U,L-ICg’i1(Ql’,,,7Qb7¢1,_,,,¢U,Y,¢1,_,,71/)T)+
q€Q
Za/jcg(glu'"7Qb7¢17'"7¢U7K¢17"'7w7’)7

jeJ
(2.86)
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Z a<X+divi10g§7i1 (le .. '7Qb7¢17 ceey ¢’U} [leXQ]aq/}lv s 'a¢7’) =
¢ezl

Z aCX'f‘diving’il(Qh .. '7Qb7¢17 .. '7¢’U7 [X17X2]72/117 v 71/17')—"
CEZy

Z a/tX-i-di’Uil e X+d7;?)ik+1 C;’ilmik+1 (Qla ey Qba ¢17 ey (bvu [X17 X2]7 wla o 71/17')

teTk+1

+ Z aqXeriving’il(Ql, e Q01,1 D, [Xl,XQ],’t/Jl, R ,’L/JT)—I—
qe@

Zajcg(gl, R 0 O SR Wl N IR TS T B
jeJ
(2.87)

We will derive (286), [2:87) momentarily. For now, we observe that by it-
erative repetition of the above we are reduced to showing [2.74), [275) under
the additional assumption that Z/ = (). In that setting, we can just repeatedly
apply the eraser (see the Appendix in [6] for a definition of this notion) to as
many factors Vi), as needed in order to reduce ourselves to a new true equation
where each of the real factors is contracting against at most one of the factors
Vii,..., Vi, VY (or Vxi, VXQ) Then, by invoking Corollary 1 from [6]
and then re-introducing the factors we erased, we derive our claim.

Proof of (2.88), (2.87): Picking out the sublinear combination in (2.84]),
Z388) with one derivative on VY or Vx; and substituting into (Z72), 273)

we derive a new equation:

Z a'tX*di’Uil cee X*dZ’U»LkC;’“Zk (Qla cety Qba ¢15 e (bvv}/vl/)lv T ¢T)+

teTk

Z a’CX*divilcg)il(Qla' "7Qb7¢17" '7¢’U5Yaq/}1a' "a¢7’) =
CEZy

Za’jcg(gla'"aQba¢1a'"7¢’U7K1/)17"'71/)T)7

jeJ

(2.88)

61 All remaining factors Vi1, ..., Ve, and also the factor(s) VY (or V1, Vx2) are treated
as factors V¢,

62Notice that there will necessarily be at least one non-simple factor S*V(")Rijkl or
V(B)Qy,, by virtue of the factor(s) VY (or Vw1, Vws), therefore that Corollary can be applied.
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Z a’tX*di’U’L'l .. X*dlekO;)”Zk (Qla .. '7Qba¢17 < '7¢'U7 [XlaXQ]vwlv et 71/)7')_'—
teTk
Z a’CX*divilcg§7i1(le" '7Qb7¢17" 'a¢va [leXQ]aq/}lv" 'a¢7’) =

(EZy
Zajcg(ﬂlu .. '7Qb7¢17 o '7¢U7 [X17X2]7¢17 cee 7w7’);
Jj€J
(2.89)
(the sublinear combination »_.., ... above is generic).

We now divide the index set T* according to which of the factors Vs,. .., V., VY
(or V1,...,Ve,,Vx1) contain the k free indices. Thus we write: TF =
Uaca Tk (each o € A corresponds to a k-subset of the set of factors Vi/1,.. ., Vi), VY
or Vip1,...,.Vio-,.Vx1). We will then show that for each o € A there exists a
tensor field » ;g ang’“"'z’““ in the form (Z64) or (2.65) with the first k
free indices belonging to the factors in the set «, and the free index 4, , not
belonging to Vi1, so that:

Z atC;)ilmik(Qla"'7Qb7¢17'"7¢’U7Y71/117'"7w7’)vilv'-'vikv_

teTk >

Xodivi,, > ayCoo s ( Q. Q61,0 h0, Yot ) Vi 0. Va0
be B>

:Zajcgilmik(gla'"aQba¢la'"7¢'U7}/71/)17"'71/)T)vi1v"'vikva

jeJ
(2.90)

Z a’tc(?il.“ik (le .. '7va¢17 sy ¢’U} [X17X2]aq/}17 .. '5¢7)v’ilv tee v’ikv_
teTk «

X*divilwrl Z abc’_gyil.“ikJrl (Qla R Qb; ¢17 T (b'uv [Xla Xﬂvwlv tee 71/)T)v’i1v R v’ikv
be B~

= Zajcgilmik(glw"7Qb7¢17' "7¢’U7 [XlaX?]uz/}lu' "71/JT)V7Q1U' vlkv

jeJ
(2.91)

If we can show the above for every a € A, then replacing the factor Vv by
X div’s we can derive our claim (2.80]),

Proof of (Z290), (Z291): Refer to [288) and (Z89). Denote Y or x1 by ¥r4+1
for uniformity. We pick out any a € A; assume that o = {Vt)y,, ..., Vbg, }.

Pick out the sublinear combination where the factors Vi), , ..., Va5, which
belong to « are contracting against the same factor as Vi;. This sublinear
combination Z, vanishes separately (i.e. Z, = 0). We then apply the eraser to
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the factors Viba, ..., VY € A (notice this is well-defined, since all the above fac-
tors and the factor Vi; are contracting against non-special indices). We obtain
a new true equation, which we denote by Erase[Z;] = 0. It then follows that
Erase[Zy] - (Vi e, VA0 ... Vi 10, Viv) = 0 is our desired conclusion (2.90),
@aD). O

(Sketch of) Proof of (273), (2.79) (2:83), (2:83): These equations can

be proven by only a slight modification of the idea above. We again subdi-
vide the index sets T*, V¥ according to the set of factors Vg, ..., Vi), or
Vo, ..., Vi,, Vw; which contain the & free indices (so we write T% = UaeA Tk«
and VF = Uaca V) and we prove the claims above separately for those sub-
linear combinations.

To prove this, we pick out the sublinear combination in our hypotheses with
the factors Vi, h € a contracting against the same factor against which V)
and VY (or Vi1 and Vw) are contracting. Say a = {hy, ..., hi}; we then for-
mally replace the expressions S vf‘j.)nrull.“lkRijlell'l/}hl VAL Vn, vi(g,lvwl vky

or V(?.) Vi, .. Vi, V3 VY ete, by expressions

1Tl dgst
S, Vg'f’il Rijki Vi(;;l Vi VY, Vi’;‘:k:sth V1 VY and derive our claims (2.75)),
2-29) (Z382), 23]3) as above. O

Proof of the claims of our general statement (i.e. (2.68), (2.69) by induc-
tion): We will prove these claims by an induction. Our inductive assumptions
are that (2.65), (2.69) follow from (Z.66), (Z67) for any weight — W', W’ < K
and when W’ = K they hold for any length v +b > v > 2. We will then show
the claim when the weight is —K, and v + b = v+ 1. In the end, we will check
our claims for the base case v +b = 2.

Proof of the inductive step: Refer back to ([2.66]), (2.67). We will prove this
claim in four steps.

Step 1: Firstly, we will denote by ZsPec, 77, Z,7°“ the index sets of the
tensor fields for which VY or one of the factors Vyi, Va2 (respectively) is
contracting against a special index. Then wusing the inductive assumptions of
our general claim, we will show that there exists a linear combination of 2-tensor
fields (indexed in W below) which satisfies all the requirements of (2.66]), (Z.68))
so that:

Z accg,nvilv — X*diviz Z a,wc‘;l),hizvil’u =

ceziree weW
_ y (2.92)
E agcg’llvilv + E CLjCé’Zlvilv,
CezQx jeJ

where the tensor fields n Z9X are generic linear combinations of tensor fields of
the same general type as the ones indexed in Z, in (2.60), (Z68) and where in
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addition none of the factors VY or Vi, V2 are contracting against a special
index.
Thus, if we can show the above, by replacing Vv by an X, div;, and substi-

tuting back into (2.60), (Z68]), we are reduced to showing ([2.67)), ([2:69) under

the additional assumption that Z5P¢¢ = ().

Step 2: Then, under the assumption that ZP°¢ = (), we will show that we
can write:

Y acXudiv, G+ > acXudivy, .. X,div, CT Y =
CGZ{:FCC Ce?zpec
Xodivg, ... Xudivi, Y a,CoM £ " a;090,
ceC jeJ

(2.93)

where the tensor fields on the RHS are of the general form as the ones indexed in
Zy, Z, in our hypothesis, and moreover the factor VY (or the factors V1, V2)
is (are) not contracting against special indices.

Notice that if we can show (292), (2.93) then we are reduced to showing
our claim under the additional assumption that for each ¢ € Z, U?a J Zp the
factor(s) VY (or Vx1, Vx2) are not contracting against special indices. We will

show (2:92), (293) below.

Proof of (2.67), (2.69) under the additional assumption that for each ¢ €
Zo\UZ.\UZy the factor VY or (Vxi,Vxa) is not contracting against special
indices:

Step 3: Proof of (2-93)) below:

We note that for all the tensor fields in the rest of this proof will not have
the factor VY (or any of the factors Vi, Vxz) contracting against a special
index in any factor S’*V(”)Rijkl or VB)Q,. Now, we arbitrarily pick out one
factor T' = S*V(”)Rijkl or T=V®BQ, in Rsimp and call it the “chosen factor”
for the rest of this subsection.

We will say that the factor VY (or Vws) is contracting against a good index
in T, if it is contracting against a non-special index in 7" when T is of the form
S*V(”)Rijkl with v > 0; when T is of the form V(®)Q,, then it is contracting
against a good index provided B > 3.

We will say that the factor VY (or Vws) is contracting against a bad index
if it is contracting against the index ; in a factor T" = S, R;;p; or an index in
a factor T = V@Q,. We denote by ZfAD C Z, the index set of tensor fields
for which VY (or Vws) is contracting against a bad index. We also denote
by ZPAP C Z, the index set of the vector fields for which VY is contracting
against a bad index in T" and T also contains a free index. We will show that
we can write:
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Z agcgc’ilvilv — X, div;, Z ahC';”zVilv =

(ezBAD | JzBAD heH
’ _ _ (2.94)
> acCy Vi + 3 a;C,
CGZ&GOOD UZZ/7GOOD JjeJ

where all the tensor fields indexed in Z/¢99P | J Z/¢OOD are generic vector fields
of the forms indexed in Z,, Z, only with the factors VY or Vw, contracting
against a good index in the factor T. The tensor fields indexed in H are as
required in the claim of our general statement (they correspond to the index set
W in our general statement).

Step 4: Proof that ([2:93) implies our claims (2.68), (2.69).

We start by proving (2.94) (i.e. we prove Step 3). Then, we will show how
we can derive our claim from (294) (i.e. we then prove Step 4).

Proof of Step 3: Proof of (2.97]): We can prove this equation by virtue of our

inductive assumption on our general claim. First, we define 7fAD C Z, tostand
for the index set of tensor fields where the factor VY (or Vws) is contracting
against a bad index in the chosen factor. We pick out the sublinear combination
in our Lemma assumption where VY (or Vwsy) are contracting against the
chosen factor T' = S, Rjp or T = V(Q)Qz). This sublinear combination must
vanish separately, and we thus derive an equation:

Y aXaediv, G5+ Y acXaadiv, ... Xodivg, C5 et

¢ezBAD | JzBAD CEZQBAD
E afC'g’“ = E a;Cy,
CGZZM)BAD JjeJ

(2.95)

where X, div;, stands for the sublinear combination for which V;, is not allowed
to hit the chosen factor 7. ZJ*BADP C 7, stands for the index set of tensor fields
indexed in Z, with the free index ;, not belonging to the chosen factor and also
with the factor VY (or Vws) contracting against a bad index.

Now, define an operation Opl...] which acts on the complete contractions
above by formally replacing any expression VEJQ-)QIViY (or VE?)vaixg) by
V;D (D is a scalar function), or any expression Si R;;x Viqgl \VA % (or
S*Rijmviq;lvjxg) by V.01V 0. (Denote by Fsimp the simple character of
these resulting vector fields). Acting on ([Z295]) by Opl...] produces a true equa-
tion, which we may write out as:
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Z acX**diUil Op[C’]g,il + X**dz’vil Z afcg’il

CEZEAD UZ;BAD feF
o _ (2.96)
+ > acXadiv, .. Xeudiv, C5P e =Y " a,;CY.
CEEGBAD JjeJ

Here X,.div; stands for the sublinear combination in div; where V; is not al-
lowed to hit the factor to which V; belongs, nor any of the factors V¢, ..., Vo,
V1, ..., Vi, nor any factors VD, V0, V0. The vector fields indexed in F
are generic vector fields with a simple character Kgimp, for which the free index
i, does not belong to any of the factors V1,..., Vi, or any of the factors
VD, (V)(l), V@l, V92

Now, observe that the above equation falls under our inductive assumption of
the general statement we are proving: We now either have factors Vi,. .., Vi, VD,
or le,. . ,Vl/)T,Vxl,VD or le,. . ,Vz/JT,[VHl, VGQ] or le,. . ,Vz/)T,VXl,[VHl, VHQ]
Notice that the tensor fields indexed in HBAP | H fAD are precisely the ones that
contain a free index in one of these factors. Therefore, by our inductive assump-
tion of the “general claim” we derive that there exists a linear combination of
2-tensor fields, >,y ..., (with factors Vi)q,...,V¢;,VD etc, and which satisfy
the @-property for the factors V1,..., Vi, ) so that:

Z acOp[C]5" Vi, v — X, divy, Z a,Cy 2V v =
CezpAPzpaP vev

E ajC;’“ Vil v.

jeJ

(2.97)

Now, we define an operation Op~![...], which acts on the complete contrac-
tions in the above equation by replacing the factor V;D by an expression
v”QmVJY (OI‘ Viijijg) or the expression V[aﬁlvb] 92 by S*Rijabvid;lij
(or S*Rijabvi(ﬁlvng). The operation Op~! clearly produces a true equation,
which is our desired conclusion, (Z94). O

Proof of Step 4: We derive our conclusions (2.68)), (2.69) in pieces. Firstly,
we show these equations with the sublinear combinations Z, replaced by the
index set Zg_ spec, which index the terms with the free index ;, belonging to the
factor VY or Vw; (this will be sub-step A). After proving this claim, we will
show (Z68), (2.69) under the additional assumption that Z, spec = 0 (this will
be sub-step B).

Proof of sub-step A: We make the Vu’s into X.div’s in (2.94]) and replace the
resulting equations into our Lemma hypothesis. We thus derive a new equation:
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Z agX*div“Cg’il + Z aCX*diviICg’il-l—

(€Z, cez} (2.08)
> acXodivg, ... Xodiv, C§ "+ " a;CY =0 '

C * (SRR * ta g I1~g 9
¢ez? jeJ

where we now have the tensor fields indexed in Z, have a free index among the
factors Vi1,..., Vo, VY (or Viq,..., Vi, Vxi, Vxza), and furthermore the
factor VY (or the factors Vw;, Vws) are not contracting against a bad index in
the chosen factor T'. The tensor fields indexed in Z;} have a free index that does
not belong to one of the factors Vi1, ..., Vi, VY (or Vipy, ..., Vb, Vx1, Vxa),
and furthermore if the factor VY (or one of the factors Vwy, Vws) is contracting
against a bad index in the chosen factor 7', then T does not contain the free
index ;,. Finally the tensor fields indexed in Zf each have rank a > 2 and all
free indices belong to the factors Vi)y, ..., Vi, VY, (Vwi, Vwy). We may then
re-write our equation (2:9]) in the form:

D acXadiv, CM + Y acXodivg, C5 +

(€EZa CEZ;

> acXudivi, ... Xudivg, C5™ 7 +3 " a,;CI =0,
¢cez?! jeJ

(2.99)

where now for the tensor fields indexed in ZZ?I, each a > 1 and the factor Vi,
does not contain a free index for any of the tensor fields for which VY (or one
of Vwi, Vws) is contracting against a bad index in the chosen factor.

We will denote by Zl})ﬁ C Z} and Zl?,ﬁ/ C Zl?/ the index sets of tensor fields
where VY (or one of Vwy, Vws) is contracting against a bad index in the chosen
factor T'.

From (Z99) we derive an equation:

Z ac X divg, Cg’“ +

s (2.100)
Z CLCX**divil Ce X**divia Og’ilmia + Z CLJ'O!'; = O,
cezz,’ jeJ

where X..div; stands for the sublinear combination in X.div; for which V; is
in addition no allowed to hit the chosen factor T'.

Then, applying operation Op as in Step 3 and the the inductive assumption
of the general claim we are proving@ and then using the operation Op~1[...]
as in the proof of Step 3, we derive a new equation:

63The resulting equation falls under the inductive assumption, as in Step 3.
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3 acXudiv, CS1 + Y acXudiv, ... Xudivg, C5 e =

€2 cezyy’ (2.101)
> acX.divi, ... Xodivg, C§ '+ " a,;C) =0,
(€Zok Jjed

where the tensor fields indexed in Zpx have rank a > 1 (all free indices not
belonging to factors Vi1,..., VY or Viy,...,Vxz2) and furthermore have the
property that the one index in VY or Vw; is not contracting against a bad
index in the chosen factor (and it is also not free). Thus, replacing the above
back into (2.99]), we derive:

Z aCX*diUth’il + Z acX*divilcg’il-i-

(EZa CGZ;/
. , (2.102)
> acX.divi, ... Xodivy, S+ +3 " a,;C) =0,
cez2” jeJ

where the tensor fields indexed in Z}', Z2" have the additional restriction that
if the factor VY (or Vw;, Vws) is contracting against the chosen factor 7' then
it is not contracting against a bad index in 7.

We are now in a position to derive sub-step A from the above: To see this
claim, we just apply Eraseyy or Erasey,, to (Z102) and multiply the result-
ing equation by V;, YViu.

Sub-step B: Now, we are reduced to showing our claim when Z, spec = .
In that setting, we denote by Z, s C Z, the index set of vector fields in Z, for
which the free index ;, belongs to the factor Vis; we prove our claim separately
for each of the sublinear combinations E<€ 7, .---- This claim is proven by
picking out the sublinear combinations in (I?ED, (2:67) where the factors Vi),
and VY (or V1) are contracting against the same factor; we then apply the
eraser to V)5 (this is well-defined and produces a true equation), and multiply
by V;,%sVv. The resulting equation is precisely our claim for the sublinear
combination } .., ...

(Sketch of the) Proof of Steps 1 and 2 (i.e. of (Z.92) and (2.93)): We will

sketch the proof of these claims for the sublinear combinations in

zgree | z,7ee U?Zpec where one of the special indices in C%% is an index , or
; that belongs to a factor S’*V(”)Rijm. The remaining case (where the special
indices belong to factors V(“)Qh) can be seen by a similar (simpler) argument

For each ¢ € Z3°°|J 2,7 U Z e We denote by 632 oo

U “spec g
fields that arise from C<1 C§""in ([Z60), ([Z68) by replacing the expressions

" the tensor

64The only extra feature in this setting is that one must prove the claim by a separate
induction on the number of factors Vi), that are contracting against V(#)Qy,.
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We denote by Kgimp the resulting simple character. We derive an equation:

S*VS"I;?..T,,Rijklviélvkya S*Vglf?__nRiijiq;lexg by a factor Vf«lfr2)uj19b+l-

Y acXudiv, O+
ez goves
3 acXidiv, ... Xodivg, Ty + 3 a,C) = 0.
ceziree jeJ

(2.103)

Now, again applying the inductive assumption of our general statement,
we derive that there is a linear combination of tensor fields (indexed in W
below) with a free index ;, belonging to one of the factors Viy,..., Vi, or
Vi, ..., V., Vxi so that:

o3k . w,ird Yol
Z acC, 1vi1u — X.div,, Z ayCy """V v = Zang. (2.104)

ceziree weWw JjeJ

Now, applying an operation Op* to the above which formally replaces the
factor V. Q. by a factor S,V T2 Rir. i Vie1 VY or
S*V%iﬁ,gRim,lkm Vi$1V¥*xa, we derive (Z92) (since we can repeat the per-
mutations by which ([ZI04) is made to hold formally, modulo introducing cor-
rection terms that allowed in the RHS of (Z92))).

We will now prove (Z93]) by repeating the induction performed in the “Con-
sequence” we derived above (where we showed that inductively assuming (2:84)),

[2388) we can derive 213), (2Z79)):

We will show the claim of Step 2 in pieces: First consider the tensor fields

indexed in Z, @ of minimum rank 2 (denote the corresponding index set is

—9 .
Z,.@); we then show that we can write:

> acXdivi, Xdivi, C§? =

CGZZ,@

> acXdivg, ... Xdiv, C5" 5+ Y acXdiv, C5 + (2.105)
CEE:;,@ (€Zp,a

Z acXdivg, ... Xdiviacg’“”'i“ + Z ajC'j.
(€EZok jE

The tensor fields indexed in 72@, Zp,@ in the RHS are generic linear combina-
tions in those forms (the first with rank 3). The tensor fields indexed in Zox are
generic linear combinations as allowed in the RHS of our Step 2. Assuming we
can prove (ZI05]), we are then reduced to showing our claim when the minimum
rank among the tensor fields indexed in Z, @ is 3. We may then “forget” about
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any Xdiv;, where ;, belongs to the factor Vi;. Therefore, we are reduced to
showing our claim when the minimum rank is 2 and the factor Vi); does not
contain a free index. We then show our claim by an induction (for the rest of
this derivation, all tensor fields will not have a free index in the factor Vi ):
Assume that the minimum rank of the tensor fields indexed in 71@ is k, and

. .Sk .
they are indexed in Z, . We then show that we can write:

3" acXdivy, ... Xdivy, C§™ " =

CEZZ@

Z angivil . Xdivik+1cg’ilmik+l + Z G{Xdivil O§7i1+ (2106)
o7 e

S acXdivi, .. Xdiv, C5 e+ a; 0
(€EZok Jje

The tensor fields indexed in 73_@, Zy@ in the the RHS are generic linear com-
binations in those forms (the first with rank k + 1). The tensor fields indexed
in Zok are generic linear combinations as allowed in the RHS of our Step 2.

Iteratively repeating this step we are reduced to showing our Step 2 when
Za,@ = @

In that case we then assume that the tensor fields indexed in Z, @ have
minimum rank & (and the corresponding index set is Z{f) a) and we show that
we can write:

S acXdivi, ... Xdivg, C§7 =

CEZf o

> acXdiv, ... Xdiv,,, Cy™ 4 (2.107)
cezgt!

N7 acXdivi, ... Xdiv, C5P e+ a; 07,
(€EZoK jE€

(with the same conventions as in the above equation).

If we can prove (ZI05) and (ZI07) we will have shown our step 2.

Proof of (2104), (2100), (2.107): We start with a small remark: If the
chosen factor is of the form S’*V(”)Rijkl, we replace our assumption by a more
convenient equation: Consider the tensor fields Cg’il'”ia, ¢ € 7a,@UZb1@;

we denote by C’_g’il"'ia the tensor fields that arise from C_g’il"'ia by replacing
the expression Vglf?,,ruRijleid;leY (or V&T?,,TVRijle%lexg) by a factor

fo;Jri)V 71p+1. We then derive an equation:
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Z a{X*di’U’il e X*diviaég7i1...ia (le ceey Qp+17 ¢27 e (bua (Xl)vwlv e 71/)7')
CEEaUZb

+ ZG’JOé(le o 'an+17¢27 o '7¢ua (Xl)vwlv s 71/)7')-
jeJ
(2.108)

Now we can derive our claims:

Proof of (Z106): We divide the index set Z,» . according to the two fac-

tors which contain the two free indices and we show our claim for each of those
tensor fields separately. The proof goes as follows: We pick out the sublin-
ear combination in our hypothesis (or in (ZI08)) where the factors Vi, Vibp
(or Vibp, Vx2) are contracting against the same factor. Clearly, this sublinear
combination, Xg4, vanishes separately. We then formally erase the factor Vy,.
Then, we may apply the inductive assumption of our general claim to the re-
sulting equation (the minimum rank of the tensor fields will be 1), and (in case
our assumption is ([ZI08) we also apply an operation Op~! which replaces the
factor V¥, Qpi1 by 8.VY2  Rin ke, Vi1 VEY (VEy1)). This is our de-

sired conclusion.

Proof of (2103)), (2-107): Now, we show (ZI05) for the subset Zfﬁ’g (which

indexes the k-tensor fields for which the free indices ;,,...,;, belong to a cho-
sen subset of the factors Viy,..., Vb, (Vx1) (hence the label a designates the
chosen subset). To prove this equation, we pick out the sublinear combination
in the equation (2.I08) where the factors Vi, ..., Vib,, (Vx1) (indexed in «)
are contracting against the same factor as Vi;. Then we apply the eraser to
these factors and the indices they contract against. This is our desired conclu-
sion. To show (ZI0OT), we only have to treat the factors Vi), as factors Voy,.
The claim then follows by applying Corollary 1 in [6] and making the factors
Vo into Xdiv'sd O

Proof of the base case (v+b=2) of the general claim: We firstly prove our
claim when our hypothesis is (2.67) (as opposed to (2.GG)).

Proof of the base case under the hypothesis (2.07): We observe that the
weight — K in our assumption must satisfy K > 2748 if v >0 and K > 27+6
ifv=0.

First consider the case where we have the strict inequalities K > 27 + 8
ifv>0and K > 27+ 6 if v = 0. In that case our first claim of the base
case can be proven straightforwardly, by picking out a removable index in each
Cg’ia ,C € Z, and treating it as an X,div (which can be done when we only have

650Observe that by virtue of the factor V)1, we must have at least one non-simple factor
SV R,k or VIB)Qy, in @2I08)-hence (ZI08) does not fall under any of the “forbidden
cases” of Corollary 1 in [6], by inspection.
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two real factors). Thus, in this setting we only have to show our second claims

2.170), @.11).

In this setting, by using the “manual” constructions as in [5], we can con-
struct explicit tensor fields which satisfy all the assumptions of our claim in the
base case (each with rank > 2), so that:

X+d7:v’i1 Z a’CCg)il(Qla'"aQba¢la'"7¢’U7[X15X2]7¢15"'71/)T):

¢cez! Uz,
Z aqX+divilcg.’iq(le ) va (blv ceey ¢’U} [X17X2]71/)17 ] ¢T)+
q€Q
Z apX+di’Ui1 .. .X+di’l)ic+lcg’il"'ic+l (Ql, ey Qb, ¢1, RN (bv, [Xlu Xg],
peP
1/)1,.. .71/)7-) +ZCLJC(;
jed
(2.109)
Here the tensor field C;’*“.'"“fl will be in one of three forms:
If v = 2 then each C§"" """ will be in the form:
v foq---Jo v faq---fa ] l
peontr(S, VT Ry i © 8.V R, T @ (2.110)

®[Vix1 @ Vjixal @ Vyihy - @ Vi by @ V1 @ V26,

where {b1,...,bp,d1,...,dy} ={1,...,7}.
If v =1 then ZPGP .-+ = 0 (this can be arranged because of the two anti-

symmetric indices j,; in the one factor S’*V(”)Rijkl).
If v = 0 then each C§"" "™ will be in the form:

ol 0, @ y@ininlicng,

®[Vix1 ® Vjixa] @ Vyahy - @ Vb @ V1 @ V26),

(
peontr(V (2.111)

where {b1,...,bp,d1,...,dy} ={1,...,7}.

Then, picking out the sublinear combination in (2120), (ZI21)) with factors
Vii,..., Vi, Vx1, Vxe we derive that EpEP -+ = 0. This is precisely our
desired conclusion in this case.

Now, the case where we have the equalities in our Lemma hypothesis, K =
214+ 8 if v > 0 and K = 27+ 6 if v = 0. In this case we note that in our
hypothesis Z;, = () if v # 1, while Z, = Z, = 0 if v = 1.

Then, if v # 1, by the “manual” constructions as in [5], it follows that we
can construct tensor fields (as required in the claim of our “general claim”), so
that:
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Z a’CCg)il (le .. 'aQba¢la .. 'a¢v7 [leXQ]aq/}la .. '71/)T)Vi1v
Ceza

X*divigaccgiliz(ﬂl? .. '7Qb7¢17 .. '7¢U7 [X17X2]7¢17 cee 7w7’)vilv —
a/*C;’il(Qla cee 7Qb7¢17 .. '7¢’U7 [X17X2]71/11= e 71/JT)V7Q1U+
Za/jcg)il (Qlu e 7Qb7¢17 .. '7¢U7 [X17X2]7¢1= .. '7w7’)vilv7

JjeJ

(2.112)

where the tensor field C';’il is in the form:

1. fro1

pcontr(S*V(Vl)f Ry, ol @ ij,kl ®®

5 5 (2.113)
[Vile & Vj/)(g] & Vf1¢1 e ® Vle/JT & Vzl¢1 & Vz2¢2),

if v =2, and in the form:

pcontr(V(TH)'fln"fT O @ VIE0,®

. _ (2.114)
[Vile & Vj’X2] V- Ve, ® V¢ ® V12¢2),

ifv=0.
Thus, we are reduced to the case where Z, only consists of the vector field

@I13) or (2II4), and all other tensor fields in our Lemma hypothesis have
rank > 2 (we have denoted their index set by Z!). We then show that we can
write:

X+divi1 Z aCCg’il(Qla-"7Qb7¢17"'7¢v7 [X17X2]72/117"'71/JT) -
iz,

Z a,qX+d’[:’U,L-ICg’i1 (Qla .. '7Qb7¢17 < '7¢’Ua [XlaX?]vwlv s 'a¢7’)+
q€Q

> apXdivi, . X pdivg,  CP™ e QL Qs b, X X 1, 1)
peP

+>_a;Cl,
jeJ
(2.115)

where the tensor fields indexed in P here each have rank > 2 and are all in the
form:

1. fr—1

pcontr(S*V(”l)f erj}ikl ® S*Rmvj,kl(@

N i (2.116)
[VnXl & vj/XQ] & Vyﬂ/)l e ® vyﬂ/"r ® VI1¢1 ® vm2¢2)7
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pcontr(v(l’l)'fl""ﬂsﬂl ® Vj,SQQ®

(2.117)
[Viix1 @ Vjrxa] @ Vy, 1+ @ Vy 90,

where each of the indices / is contracting against one of the indices y,- The
indices 4, that are not contracting against an index fn are free indices.

Then, replacing the above into our Lemma hypothesis (and making all the
Vu’s ito X div’s), we derive that a, = 0 for every p € P and a, = 0. This
concludes the proof of the base case when v +b = 2, v # 1. In the case v =1
we show our claim by just observing that we can write:

X+diUi1 Z a/CCg)il (Qlu' "7Qb7¢17 [XlaX?]uz/}lu' "71/17') -

CEZy
Z (quJ,_di’Uil ngil (Ql7 v 7Qb7 ¢17 [X17 X?]u 1/117 v 71/17') (2118)
q€Q
+ Zajcg(gla .. '7Qb7¢17 [XlaXQ]vwla .. '71/)7');
jeJ

this concludes the proof of the base case, when the tensor fields in our Lemma
hypothesis are in the form (Z&7).

Now, we consider the setting where our hypothesis is (2.66). We again
observe that if v = 0 then the weight —K in our hypothesis must satisfy K >
27 + 4. If v > 0 it must satisfy K > 27 4+ 6. We then again first consider the
case where we have the strict inequalities in the hypothesis of our general claim.

In this case (where we have the strict inequalities K > 27 +4 if v = 0 and
K > 2746 if v # 0) our first claim follows straightforwardly (as above, we just
pick out one removable index in each C§»i1,§ € Z, and treat it as an X,div).
To show the second claim we proceed much as before:

We can “manually” construct tensor fields in order to write:

X-i-divil Z aCC_gyil(Qla'"7Qb7¢17'"7¢’U7Y71/117"'7w‘r):
¢ez, Uz,

Z aqX-‘rdiUing)iq (Qlu e 7Qb7 ¢17 .. '7¢U7 [X17X2]7¢17 cee 7w‘r)+
qeQ

Z apX+divi1 e X+divic+l Cg>i1"'ic+1 (Ql’ ctt Qb; ¢15 Tt (b'uv [Xla X2]7 wla R} ’l/)T)
peP

+ Z ajOg.
jeJ
(2.119)

Here the tensor field Cg"il"'i”l will be in one of three forms:
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If v = 2 then each C?" "+ will be:

pcontr(S*V(”l)fbl".'fbh lefbh+1 il ® S*V(W)fdl'"fdy sz'fderl ) l®

e - ) tet1 (2.120)
ViY@Vt @V, ® Vi1 @ V2 ¢a),

where {bl, cey by, dy, . .,dy+1} = {1, e, T+ 1}

If v =1 then Zpe p -+ = 0 (this is because of the two antisymmetric indices
k1 in the one factor S*V(_”)Rijkl).

If v = 0 then each C}""" "™ will be in the form:
Foy ot Fay oo fy e
pcontr(v(Al)if.l..icfficgl ® y(Az)ldrTd +IQQ (2'121)

® vfr+1y ® vfldjl e ® vfer)7

where {b1,...,bn,d1,...,dy} ={1,..., 7+ 1}.

Then, picking out the sublinear combination in (2120), (ZI21)) with factors
Vi, ...,Vr, VY we derive that ZpGP --- = 0. This is precisely our desired
conclusion in this case.

Finally, we prove our claim when we have the equalities K = 27+ 4 if v < 2
and K = 27 + 6 if v = 2) in the hypothesis of our general claim.
In this case by “manually” constructing X div’s so that we can write:

> ac X divi, ... Xydivg, CS™ ' (Q, ., Y11, ) =

¢ez,UzZyUZa
> agXdivi, .. Xy divg, CE QL QY )+
9€Q
> apXdiv, ... X ydivi, CP e (D, D, Y 4, 1)r)
peEP
a0, Y ).

jeJ

(2.122)

Here the tensor fields indexed in P are in the following form:
If v = 0 then they will either be in the form:

peontr(Vy,Y @ Vel o g@®Frantrg o 0w 0. 0V, 60),
(2.123)

(where {x1,...,2,} ={1,...,7}), or in the form:

pcontr(VqY ® V(A)lfflfza 0, ® V(B)fma+1"'fqu92 ® VfIT/)l ® - ® Vf.,_(bq-),
(2.124)
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(where {x1,...,2;} ={1,...,7}).
If v = 2 they will be in the form:

peontr(V;, Y @ VACORA R AT S, Rifeakl v B rari Sy pitfe, y

~ ~ (2.125)
QVpt1 @@V ¢:Vip1 @ Viga),
(where {x1,...,2,} ={1,...,7}), or in the form:
peontr(VY @ VA1l g pifesal g gB) frair-lrpitses |
? *(2.126)

RV th1 @+ @V, ¢, Vid1 @ Vo).

If v =1 the equation ([2122) will hold with P = §:

Then, picking out the sublinear combination in (ZI22) which consists of
terms with a factor VY and replacing into our hypothesis, we derive that the
coeflicient of each of the tensor fields indexed in P must be zero. This completes
the proof of our claim. O

2.5 Proof of Lemmas 2.2, 2.4k
Proof of Lemma[2.2:

The first claim follows immediately, since each tensor field has a removable
index (thus each tensor field separately can be written as an X, div).

The proof of the second claim essentially follows the “manual” construction
of divergences, as in [5]. By “manually” constructing explicit divergences out of
each O te(Q,...,Qp,d1,...,¢u), h € Ha, we derive that we can write:

> anXdiv, ... Xdivi Cp Q. 0, Y, 1, ) =
heHs

(Const)1 X divy, ... Xdiv;,Cq™ (..., Qp, Y, b1, ., bu)+
(Const)s Xdivi, ... Xdivy, Co™ " (Q, ..., Qp, Y, b1, ., du)

> agXdiv, ... Xdiv;, C&" ' (Q, ., 0, Y b1, du)+
qeqQ
Za’jcg(glv ce. 7Q;DaYa Qsla M '7¢u)7

jeJ

T (2127)

where the tensor fields indexed in @) are as required by our Lemma hypothesis,
while the tensor fields C', C? are explicit tensor fields which we will write out
below (they depend on the values p, o1, 02)@

66In some cases there will be no tensor fields C1, C? (in which case we will just say that in

@I27) we have (Const)1 =0, (Const)2 = 0).
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We will then show that in (ZI27) we will have (Const); = (Const)s = 0.
That will complete the proof of Lemma We distinguish cases based on the
value of p: Either p=2orp=1orp=0.

The case p = 2: With no loss of generality we assume that the factor
VA Q, is contracting against the factors Vi, ..., Ve, and VB)Q, is con-
tracting against Vogzi1,..., Vor+¢; we may also assume wlog that z < ¢t. By
manually constructing divergences, it follows that we can derive (2127)), where
each of the tensor fields C'', C? will be in the forms, respectively:

(B) )
Y1 Ytly 41 ly+5

peontr(V;. Y ® VE;?) oV D@V @@ VVa,),

(2.128)

’Ul-il...i»y

(where if ¢ > 2 then § = 0, otherwise t + 6 = 2), or

peontr(V,Y @ vIv 0 0V DV 9 -0 VYe,),

(2.129)

'U1 Vg l1...ly y1 Yt lyt1-- H+5

(where if ¢ > 2 then § = 0, otherwise t + 0 = 2).

The case p = 1: We “manually” construct divergences to derive (ZI21),
where if 01 = 1 then there are no tensor fields C*, C? (and hence (ZIZ7) is our
desired conclusion); if o1 = 0,02 = 1 then there is only the tensor field C* in
@I210) and it is in the form:

peontr(VIY @ S, v Ri;

V2. Vg l] .y Uiy 4157429 ® vyl Ytly 1 1W+JQ2 (2130)
Vg @V ®-- @ VVg,),
where if ¢ > 2 then § = 0, otherwise § =2 — .
The case p = 0: We have three subcases: Firstly oo = 2, secondly (o2 =

1,01 = 1), and thirdly o1 = 2.
In the case oy = 2, the tensor fields C', C? must be in the forms, respectively:

peontr(V;. Y ® S, v\ i B 142l © S,V R,

V2. Vgl Y1 ye Wy 43Tyt (2 131)

RV @V g @ Vg3 ®-- @ V¥4,),

peontr(V1Y @ S, qu iy i
OV GOV G @V @ @ VVP,),

t—1) !
Rzzw+1lw+2l by S vél thz Ty +3iyta (2132)

(if z = t = 0 then the tensor field C* above will not be present).
In the case o1 = 2, the tensor fields C*, C? must be in one of the two forms:
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m — 7 l v
pcome(Vi*Y®V5}1f?wil.”iw Rii’v+li7+2l®vj(ytl---113tR i 3ina OVIO1® - @VYQy),
(2.133)

l

(ma1) - Ri
peontr(V,Y @ VIV, ™ Rii i 1iyial ® VTR Gy t3iyta (2.134)

V1. Vg1 ly Y1...Yt

®VU1¢1 ®®vm¢u)

In the case o1 = 1,09 = 1, there will be only one tensor field C', in the
form:

peontr (V1Y © 5,V Riisorinist @ VD Ry L@ Vi

--Umi1~~~7;'y Y1i---Yt

(2.135)
RV @ @ VYd,).

We then derive that (Const); = (Const)s = 0 as in [5] (by picking out the
sublinear combination in (ZI27) that consists of complete contractions with a
factor VY —differentiated only once).

Proof of Lemma [2Z):

We again “manually” construct explicit X div’ to write:

> anXdivi, ... Xdivi Cp' o (Qu,. ., 0, Y, 1, ) =
heHs>

(Const)1 X divy, ... Xdiv;,Cq™ (..., Qp, Y, b1, ., bu)+
bu)

(Const)s Xdivi, ... Xdivi. Co™ (.., 0, Y, 61,y b))+ (2.136)
3 agXdivi, ... Xdiv;, C&" ' (Q, ., 0, Y b1, du)+

q€Q

Za’jcg(glv <. '7Q;DaYa Qsla N '7¢u)7

jeJ

where the tensor fields indexed in @) are as required by our Lemma hypothesis,
while the tensor fields C', C? are explicit tensor fields which we will write out
below (they depend on the values p,o1,02). In some cases there will be no
tensor fields C',C? (in which case we will just say that in (ZIZT7) we have
(Const); =0, (Const)a = 0).

The case p = 2: With no loss of generality we assume that the factor
VA Q, is contracting against the factors Vi, ..., Vo, and VB)Q, is con-
tracting against Vg, 41,...,Vg,,,; we may also assume wlog that z < ¢. By
manual construction of divergences, it follows that we can derive (Z127)), where
there is only the tensor field C* and it is in the form:
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pcontr(V[i*x1®Vq]X2®V1()1) iy, ZWQ ®Vg§? Wiyt HQQ®VU1¢1®' . '(®Vy‘(§5u)7
2.137

(where if ¢ > 1 then § = 0, otherwise § = 1).

The case p = 1: We “manually” construct divergences to derive (2130,
where: if o7 = 1 then there are no tensor fields C*, C? in the RHS of (Z.138)
(and this is our desired conclusion); if o3 = 0,02 = 1 then there is only the
tensor field C* in the RHS of (ZI36)) and it is of the form:

pCO’nt’l‘(V[z*wl ® v wo ® Sy V(V Rii»y+1i~,+2q X V(B) ) D ® Viqg)l

V2 VBl .y Y1 Ytly 1Syt s
@V @@ VY¢y),
(2.138)

where if ¢ > 2 then § = 0, otherwise § =2 — .

The case p = 0: We have three subcases: Firstly oo = 2, secondly (o2 =
1,01 = 1), and thirdly o, = 2.

In the case o3 = 2, the tensor fields C',C? in the RHS of ([2127) will be in
the two forms, respectively:

pcontr(V[i w1 ® V9ws @ S, v

QU2 Vg Ty Rii7+1iw+2l®

(t—1) (2.139)
S vm e BRiviysin s '® V1¢1 ® Vv’ ¢2 @V ® - @ V¥,),
)
pcontr(V[pwl ® V(1]"‘)2 ® S« quz Vg ll..ly Rii~,+1iw+2p® (2.140)

SV Riiiiniaq @ Vi1 @V o @ V3 @ - @ VY h,,).

Yi---Yt

In the case o7 = 2, the tensor fields C!, C? will be the forms, respectively:

m i l
peontr(Vi; w1 ® vl @ Vvl l)v it By 1y 2l © Vq’;ll)th Gyt 3iyta (2.141)

@V @@ VYy),

pcont’r(v[pwl @ Vv w2 & Vvl RO Riiyriniap ® vétl 173t RZ”””*“ (2.142)
® Vg ® ...®Vyt¢u),

(if at least one of the two factors V(m)Rijkl is contracting against a factor Voy,.
Otherwise, we can prove ([Z.I306) with no tensor fields C1, C? on the RHS).

In the case o1 = 1,02 = 1, the tensor fields C', C? must be in the forms,
respectively:
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pCOTLtT‘(V[i* w1 ® vq]w2 ® S*VSI)UZ“H Riiw+1iw+2l ® vétl_l,;t quw+3iw+4l
BVP1 @V ® @ VV,),
(2.143)

peontr(Viw) ® Vi, ® S*VE)TI) Riiyiri 0l ® Vét;.lztquiwgl

..’Uz-il...i»y

. (2.144)
@V @ Vo @+ @ VY ,).

We then derive that (Const); = (Const)s = 0 by picking out the sublinear
combination in ([Z.I36]) that consists of complete contractions with two factors
VY, Vwy—each factor differentiated only once). O

3 The proof of Proposition [1.1] in the special
cases:

3.1 The direct proof of Proposition [I.1] (in case II) in the
“special cases”.

We now prove Proposition[T.Ildirectly in the special subcases of case I1. We recall
the setting of the special subcases of Proposition[[.Ilin case II are as follows: In
subcase IIA for each p-tensor field of maximal refined double character, C’é’“ e
there is a unique factor in the form 7' = V(m)Rijkl for which two internal indices
are free, and each derivative index is either free or contracting against a factor
V¢p. For subcase IIB there is a unique factor in the form T = V(m)Rijkl
for which one internal index is free, and each derivative index is either free or
contracting against a factor V¢y,. In both sucases ITA, IIB there is at least one
free derivative index in the factor 7. o

Moreover, both in subcases ITA, 1IB, all other real factors in Cf{“"'z“ are
either in the form S, R;ji; or V@ Qy,, or they are in the form V(m)Rijkl, where
all the m derivative indices contract against factors Vo,

In order to prove Proposition [Tl directly in the special subcases of subcases
ITA, IIB we will rely on a new Lemma:

Our new Lemma deals with two different settings, which we will label setting
A and setting B below.

In setting A, we let

Z alcé)iI...iH (Qh ey qu ¢17 sy (bu)

leL

67For the rest of this subsection, we will slightly abuse notation and not write out the
derivative indices that contract against factors V¢, —we will thus refer to factors R;j;x;, setting
m = 0.
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stand for a linear combination of u-tensor fields with one factor V(m)Rijkl con-
taining o > 2 free indices, distributed according to the pattern

vg?:")ee)...(free)R(fTee)j(fTee)l’ and all other other factors being all in one of the

forms Rijkl,S’*Rijkl,V@)Qh. (Le. they have no removable indices).
In setting B we let

Z alCé)iI...iH (Qh ey qu ¢17 sy (bu)

leL
stand for a linear combination of u-tensor fields with one factor V(m)Rijkl con-
taining o > 2 free indices, distributed according to the pattern
vg}?ee)...(free)R(free)j(free)l= and all but one of the other factors being in one of
the forms Rijri,S«Rijki, V@ Qy,: one of the other factors (which we label T") will
be in the form VR;;ii,5«V Rijki, V&) Q. We will call this other factor “the fac-
tor with the extra derivative”. Moreover, in setting B we impose the additional
restriction that if both the indices ;,; in the factor VE}?‘&B)__(free)R(free)j(free)l
contract against the same other factor 77, then either T" is not the factor with
the extra derivative, or if it is, then T” is in the form V Rgpeq, and furthermore

the indices j,; contract against the indices ,. and we assume that the indices
ssa,c are symmetrized over[5§

Lemma 3.1 Let ), 7 alCé’il'”i“ be a linear combination of p-tensor fields as
described above. We assume the following special case of {I.77):

> aXdiv, .. Xdiv, Cy™ (.. Qi dr, . du)+

lerL’
Z athivil . .Xdi’UiﬁCg’ilmiB (Ql, ey Qp, ¢1, ey (bu) (31)
heH
+ Zajcg(glv o ana ¢17 ce 7¢u)7
jeJ

here, in both cases A and B the terms indexed in L will be as described above;
the p-tensor fields indexed in L' will have fewer than « free indices in any given
factor of the form V(m)Rijkl. The tensor felds indexed in H each have rank
> u and also each of them has fewer than « free indices in any given factor of
the form V(m)Rijkl. Finally, the terms indexed in J are simply subsequent to
’zsimp-
We claim that:
ZalCé’“'“i“Vilv...Viuu =0. (3.2)
leL

68In other words, in that case the factors 7,7’ contract according to the pattern:

(free)H'(free)R(free)j(fr'ee)lv(sRajkd)7 where the indices s, o, ¢ are symmetrized over.
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We will prove this Lemma shortly. Let us now, however, note how the above
Lemma directly implies Proposition [Tl in the special subcases ITA (directly)
and IIB (after some manipulation).

Lemma [31] implies Proposition [L1] in the special subcases of case II:

We first start with subcase IIA: Consider the sublinear combination of u-
tensor fields of maximal refined double character in (7). Denote their index
set by Lasqe C L. Recall that since we are considering the subcase where (L)
falls under the special case of Proposition[II]in case ITA, it follows that for each
C’é’“"'z“ there is a unique factor in the form V(m)Rijkl for which two internal
indices are free, and each derivative index is either free or contracting against a
factor V¢y,; denote by M + 2 the number of free indices in that factor

Now, by weight considerations (since we are in a special subcase of Propo-
sition [Tl in case ITA), any tensor field of rank > p in (7)) must have strictly
fewer than M +2 free indices in any given factor V(m)Rijkl. Therefore in subcase
IA, (D) is of the form B.II), with Lase, C L. Therefore, we apply Lemma [B.1]
to (LT) and pick out the sublinear combination of terms with a refined double
character Doub(L?), z € waaﬂ we thus obtain a new true equation, since (3.2])
holds formally, and the double character is invariant under the formal permuta-
tions of indices that make ([B.2]) formally zero. This proves our claim in subcase
ITA.

Now we deal with subcase IIB:

We consider the u-tensor fields of maximal refined double character in (7).
By definition (since we now fall under a special case), they will each have a factor
in the form vg?r)ee)...(free)R(fTee)jkl’ with a total of M + 1 > 1 free indices[T]
Each of the other factors will be in the form R;;r; or be simple factors in the
form S.R;jxi, or in the form V).

We denote by L C L the index set of p-tensor fields with M + 1 free indices
in a factor V(m)RijM. It follows by weight considerations that the factor in

question will be unique for each C;’“”'i“,l € z We then start out with some
explicit manipulation of the terms indexed in L:
We will prove that there exists a linear combination of y + 1-tensor fields,

Y oheH ahC_(}}’il"'i““, as allowed in the statement of Proposition [[LT] so that:

lyiy...i _ . hyi1...i
E aCy Vv, Vv = g apXdiv;, ,Cy"™ "'V 0. .V, v
lef heH
lyiy...1 l,i1...0
+ E Glcq’zl Z“VZ‘I’U e V@v E ang’“ Z“VZ‘I’U e VZ‘“U.
1€l new jed

(3.3)

6930 we set o = M + 2.

70Recall that f/z, 2 € Z)\jq. is the collection of maximal refined double characters that
Proposition [[LT] deals with.
7180, we set o = M + 1.
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Here the p-tensor fields indexed in Ly, have a factor

T = Vg%;l))m(fme)R(free)j(free)l, and one other factor T' has an extra deriva-
tive (meaning that T” is either in the form VR;;i or S.V Ry, or V(?’)Qh).
Moreover if both indices j,; in T" contract against indices 4.V in the same fac-
tor T and at least one of 7,! is removable, then T” # T”. Clearly, [33) in
conjunction with Lemma [3.] implies Proposition [[.T] in the “special cases” of
case II. So, matters are reduced to showing ([B.3)) (and then deriving Lemma[3.1]).

Proof of (Z3): We first apply the second Bianchi identity to the factor
T to move one of the derivative free indices ito the position j; in the factor
M—1 .
vgjree)) (free)R(free)j(free)l' Thus, we derive that modulo terms of length >

o+ u-+

lit.dpy v 1i iy, 1,2,01 .y p
Cg - C + Cg ’

[,1,41..0, Cl?zl

where the partial contractions Cy “ have the factor T replaced by

(m) (m)
a factor in the form: vk(free)...(free) R(free)j(free)lv Vl(free)...(free) R(free)jk:(free) )
respectively. We then erase the indices j,; in these two factors (thus creating
a new tensor field C’l’l’l1 RGOS Cl 2ttty By creating a free index i1 )s
and subtract the Xdiv;,,[...] of the corresponding (i + 1)-tensor field. We
then derive an equation:

C{l],l,ll,.,,zu _ Xdiviu+ICé’l’zl"'l“+l + E C{l]ﬂlm“a (34)
l€Lnew

where all the tensor fields indexed in L., satisfy the required property of
Lemma B]:L except for the fact that one could have both indices j,; in the

factor VM o free)R( free)j(freey contracting against indices 7. in a factor

l'Ll

free
T’ which has an additionnal derivative index. If Cy , I € Lpew is not in
the form allowed in the claim of Lemma [3.I] then (after possibly applying the
second Bianchi identity and possibly introducing simply subsequent complete
contractions) we may arrange that one of the indices 7,' is a derivative index.

In that case we construct another (u+1)-tensor field by erasing the derivative
index 7 or ! and making the index j or g in a free index ;,,,. Then, subtracting
the corresponding X div;, ., of this new (u+1)-tensor field, we derive our claim.
O

Therefore, matters are reduced to proving Lemma [B.11

Proof of Lemma [3 1)

Let us start with some notational conventions

Recall the first variation law of the curvature tensor under variations by a
symmetric 2-tensor by v;;: For any complete or partial contraction T'(g;;) (which
is a function of the metric g;;), we define: Image% = Z1i—0[T(gij +tvij)]. (We
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write Image})ij [...] or Image] [...] below to stress that we are varying by a
2-tensor, rather than just by a scalar).

We consider the equation [ magell)ij [Lg] = 0 (which corresponds to the first
metric variation of our Lemma hypothesis (i.e. of (Il)). This equation holds
modulo complete contractions with at least o 4+ u + 1 factors.

Thus, we derive a new local equation:

Z wXdiv;, ... Xdiv;, Image,, | [Cé’il'“i“]

l€L,

+ Z wXdiv;, ... Xdiv;, Image,, . [C(l]““‘]
I€L\L,

— 3o Tmagel, €3,
jeJ

which holds modulo terms of length > o + u + 1.

Now, we wish to pass from the local equation above to an integral equation,
and then to apply the silly divergence formula from [1] to that integral equation
(thus deriving a new local equation).

In order to do this, we start by introducing some more notation: Let us
write out:

Imagell)ab [O!l]vzllu] — Z atC;,il...ia
teT!

where each C};“"'ia is in the form:

peontr(VA2 0, @ VR @ - @ VM-I R VI, @ ... @ V)Q,

(3.6)

For our next technical tool we introduce some notation: For each tensor
field C% % in the form above, we denote by C! the complete contraction that
arises by hitting each factor T; (i = 1,2,3) by m derivative indices V¥1-tm
where 4,,...,u,, are the free indices that belong to T; in Cé’il"'ia (thus we
obtain a factor with m internal contraction, each involving a derivative in-
dex). Notice there is a one-to-one correspondence between the tensor fields
and the complete contractions we are constructing. We can then easily ob-
serve that there are two linear combinations X,er, arCy (1, ... Qp, 01, .., du),
YreryarCy(Q, ... Qp, d1, ..., u) where each Cp,r € Ry has at least 0 +u + 1
factors, while each C,r € Ry has o+ u factors but at least one factor v g, +
Ag¢p, with p > 2, so that for any compact orientable (M, g):

/M Zal Z atC;’*(vab) + Z GTC;(’UQZ)) + Z arC;(vab)dVg =0 (3.7)

leL teT! rERy r€R2
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(denote the integrand of the above by Z,(v.)). Here again each CJ has o + u
factors and all factors V¢, have only one derivative but its simple character is
subsequent to . We call this technique (of going from the local equation (33
to the integral equation (B17)) the “‘inverse integration by parts”.

Now, we derive a “silly divergence formula” from the above by performing
integrations by parts with respect to the factor V5 vy, (until we are left with
a factor v,p—without derivatives). This produces a new local equation which we
denote by silly[Zg(vep)] = 0. We will be using this equation in our derivation
of Lemma 311 o

Now, for each Cé’””'z“, 1 € L, we consider the factor

T =v R(free)j(freey with the M +2 free indices. We define T7 to be

(free)...(free)”
the factor in C’é’“"'z“ that contracts against the index ; in T and by T to be the
factor in Cé’il”'i“ that contracts against the index ; in T. We define Lygme C L
to be the index set of tensor fields for which 79 = T*: we define Lpot. same C L
to be the index set of tensor fields for which 77 # T!. We will then prove (3.2))

separately for the two sublinear combinations indexed in Leame, Lnot.same-

Proof of (3.2) for the index set Lsame:

We first prove our claim for ¢ > 3 and then note how to prove it when o = 3.

Consider silly[Ly(1,...,Qp, #1, ..., PusVap)] = 0. Pick out the sublinear
combination silly[Lg(Q1,...,Qp, é1,. .., Pu,Vap)] = 0 with g — M — 2 internal
contractions, and with the indices in the factor v, contracting against a factor
T' which either has no extra derivative indices, or if it does, then the contraction
is according to the pattern v ® VsRqjbi; we also require that the two factors
T".T" with an extra M + 2 extra derivatives each. This sublinear combination
must vanish separately, hence we derive:

Stly+[Zg(Q,y ..o, Qpy P15+, Py, Vap)] = 0. (3.8)

We also observe that this sublinear combination can only arise (in the process of
passing from the equation L, = 0 to deriving silly4[Z,(vap)] = 0) by replacing
the factor VE;\/{“)ee)...(free)R(fTee)j(free)l by Vg%le)m(fme)vﬂ and then (in the in-
verse integration by parts) replacing all p free indices by internal contractions
and finally integrating by parts the M + 2 pairs of derivative indices (V*,V,)
and forcing all upper indices hit a factor 7" # T” and the lower indices to hit a
factor T" # T',T" + T" [

Thus, we can prove our claim by starting from the equation ([B.8) and ap-
pling Sub, u— M — 2 times/™ just applying the eraser to the extra M + 2 pairs
of contracting derivatives]”™ and then replacing the factor ve, by

72(Thus the factor vE%Le)m(ﬁee)uﬂ gets replaced by AM+2y,.).

73The fact that o > 3 ensures the existence of two such factors.

7See the Appendix in [3] and just set w = v.

75This can be done by just repeating the proof of the “Eraser” Lemma in the Appendix of
[3]-
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5«]1\_4_)_,«1\/, Rigip Vo, .. V™ Ve VP, Finally we just divide by the combinatio-
rial constant (";3).

Let us now consider the case ¢ = 3: In those case the terms of maxi-
mal refined double character can only arise in the subcase HAE and can
only be in one of the forms: vgyr)ee)...(free)R(free)j(free)l ® Rk @ Vgi)ﬂl),

(M)
v(free)..

fine silly,[Z4(vqp)] to stand for the terms (v; @V

,(fTee)R(free)j(free)l ® RV R(free)j(fme)l). Thus, in that case we de-
(M+2) Rijkl®v(M+4) Q )

t1...targ2 t1..tv4atk 1

(v ® v(M+2) Rijkl(v(M+2))t1...tM+2 ® R(fme)j

t1...tv42
repeat the argument above.

!
(free) ) respectively, and then

Proof of (3.3) for the index set Lyot.same:
We prove our claim in steps: We first denote by f:;t_same C Lnot.same
the index set of tensor fields in Lyot.sqme for which both indices ;,; in the

factor T = VE%)ee)...(free)R(free)j(free)l contract against special indices in factors

T9. T of the form S« Rijri. We will firstly prove that:

Z alCé’il“'i“Vilv. . Viv= Z alCé’il“'i“Vilv. Vi, (3.9)
T e ter’
Here the terms in the RHS have all the features of the terms in Lot same, but in
addition at most one of the indices in the factor T' = VE%)&E)...(free)R(free)j(free)l
contract against a special index in a factor of the form S, R;;r;. Thus, if we can
prove ([3.9), we are reduced to proving our claim under the additional assumption
that Lnot.same = (Z)

For our next claim, we denote by L, .; sume C Lnot.same the index set of

tensor ields in Lpet.sqme for which one of the indices j;,; in the factor 7" =

*

vg%?ee)...(free)R(fTee)j(fTee)l contracts against a special index in factors 77, T"
of the form S, R;ju.
We will then prove that:

§ alCé’ll"'Z“Vilv...Viuv:E aCy Vv, Vi v, (3.10)
leL;, leL"

not.same

Here the terms in the RHS have all the features of the terms in Lot same, DUt
in addition none of the indices in the factor T' = VE%)ee)...(free)R(fTee)j(fTee)l
contracting against a special index in a factors of the form S, R;;i;. Thus, if
we can prove ([3), we are reduced to proving our claim under the additionnal

assumption that for eac C_(ljil”'i“, | € L the two indices j»1 in the factor T' =

76This follows by virtue of the symmetry of the indices s,q,q in any factor VsRgpeq 88
discussed above.
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ngr)ee)m( fTee)R( free)i(freey contract against two different factors and none of

the indices 7, are special indices in a factor of the form Sy Rijni-

In our third step, we prove ([3.2) under this additonnal assumption.

We now present our proof of the third step. We will indicate in the end how
this proof can be easily modified to derive the first two steps.

For each | € Lyot.same, let us denote by link(l) the number of particular
contractions betwen the factors 77, T" in the tensor fields C_(lj“”'z“. (Note that
by weight considerations 0 < link(l) < 3). Let B be the maximum value of
link(1),l € Lyot.same, and by ffot.same C Lnot.same the corresponding index
set. We will then prove our claim for the tensor fields indexed in ffot_same. By
repeating this step at most four times, we will derive our third claim.

Consider silly[Ly(,...,Qp, é1,. .., PusVap)] = 0. Pick out the sublinear
combination silly.[Ly(Q1,...,Qp, &1, ..., Gu,Vap)] = 0 with g — M — 2 internal
contractions, and with an extra M + 2 derivatives on the factors 77, T against
which the two indices of the factor vy, contract, and with M + 2 + B particual
contractions betwen the factors 77, T*. This sublinear combination must vanish
separately:

silly[Lg(Q1, ..., Qp, P14+« P, Vap)] = 0.

Moreover, we observe by following the “inverse integration by parts” and the
silly divergence formula obtained from [}, Zg(vay)dVy = 0, that the LHS of the

above can be desrcibed as E)élows: ~
For each C’é’“"'z“,l €L we denote by C’é(vab) the complete con-
(

not.same>
. . . M
traction that arises by replacing the factor 7' = V(fr)ee)...(free)R(fTee)j(fTee)l by

(M+2)
V(free)...(free) ¢
the factor T' by an internal contraction. We then denote by C!(v4) the com-

v;1, and then replacing each free index that does not belong to

plete contraction that rises from C’é (vap) by hitting the factor TV (against which
the index ; in vy contracts) by (M + 2) derivative indices Vy,,...,Vy,, ., and
hitting the factor 7! (against which the index ; in vj contracts) by derivatives
AVAZ S vtr+2 [T It follows that:

(0 =)sillys[Lg(Q,. .-, Qp, P15+ -+, Puy Vab)] = Z al2M+1[Cé(vab)].
Llot came
Now, to derive our claim, we introduce a formal operation Opl...] which acts
on the terms above by applying Sub, to each of the 4 — M — 2 internal con-
tractions@ erasing M + 2 particular contractions between the factors 77, T"
and then replacing the factor vj; by V&T_)_TMRMMVHU ... V™M yVioVFEy. This
operation produces a new true equation; after we divide this new true equation
by 2M+1 we derive our claim.

7TThese derivatives contract against the indices V¢ ,.. ., VtM+2 that have hit 77.
78See the Appendix of [3] for the definition of this operation.
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Note on the derivation of (3.9), (310): The equations can be derived by
a straighttforward modification of the ideas above: The only extra feature
we must add is that in the silly divergence formula we must pick out the
terms for which (both/one of the) indices j,; in v;; contract against a spe-
cial index in a factor S,V +2>Rab0dva03h. This linear combination will van-
ish, modulo terms where one/none of the indices j;,; in v; contract against
a special index in the factor Sy R;ji: This follows by the same argument
that is used in [6] to derive that Lemma 3.1 in [6] implies Proposition [I1]
in case I: We firstly replace the factor vj by an expression y(;y;). We then

just replace both/one of the expressions Viéh,yj by gi; and apply Rictof2
twice/once The only terms that survive this true equation are the ones
indexed in Lot same, for which the expression(s) S*VSI'?”TVRMM VigpVFy are
v+2)

1.0l e
ear combination of terms indexed in Lyt same must vanish, after we replace

two/one expressions S*Vglf?__nRijleiqgthy by vrt+2) Ys. Then, repeating

r1...7ug1
the permutations applied to any factors VS;HT)VJ[YJL, to S*VS;?,,TU RijiuVienVFy
we derive our claim. O

replaced by V£ Y;. We then proceed as above, deriving that the sublin-

3.2 The remaining cases of Proposition [I.1] in case III:

We recall that there are remaining cases only when ¢ = 3. In that case we have
the remaining cases when p = 3 and n — 2u — 2u < 2, or when p = 2,00 = 1
and n = 2u + 2pu.

The case p = 3: Let us start with the subcase n —2u —2u = 0. In this case,
all tensor fields in (7)) will be in the form:

(A)
pcontr(vil i

(@)
tatal 41 batal +a Topb! +1--Tbyb! +b77

L ev? 0@

Tatlelgqql Jor1-Togp/
ore (3.11)

Q3 @ V=1 @1 Q@ VEi+i'+i" ¢y,)

aJi---

where we are making the following conventions: Each of the indices ;, is free;
also, each of the indices j, is contracting against some factor Vgy,, and also
A, B,C > 2.

Thus, we observe that is this subcase yu is also the mazimum rank among the
tensor fields appearing in (I7). Now, assume that the p-tensor fields in (7))

of mazimal refined double character have a = a,a’ = o', a” = o”. With no loss
of generality (only up to renaming the factors Qq,Q9,Qs, ¢1,...,d,) we may
assume that a > o/ > o and that only the functions Vs, ..., V¢,, contract

against VA, in Ksimp. We will then show that the coefficient aq o o of this
tensor field must be zero. This will prove Proposition [[.T] in this subcase.

We prove that aq o = 0 by considering the global equation [ Z,dV, =0
and considering the silly divergence formula silly[Z;] = 0. We then consider

"Recall that this operation has been defined in the Appendix of [3] and produces a true
equation.

83



the sublinear combination silly;[Z,] consisting of terms with o, internal
contractions in the factors V(P)Qy, VIF)Qg, with a particular contractions be-
tween those factors and with all factors V¢, that contracted against vAO,
in Ksimp being replaced by A¢y, while all factors V¢, that contracted against
VB, VIO still do so. We easily observe that silly,[Z,] = 0, and further-
more sillyy[Z,] consists of the complete contraction:

contr(Qy @ VIS AYQy @V, A% Q3 © Ay

o ijb+b/+b// ¢’U.)

a . . . .
Jo+1--Jbtb/ Sadoyn y1oTogn! 4t

(3.12)

times the constant (—1)“'2%aq, o/ . Thus, we derive that aq,a/,07 = 0.

The second subcase: We now consider the setting where 0 = p = 3, n — 2u —
2 = 2. In this setting, the maximum rank of the tensor fields appearing in
(@) is 1+ 1. In this case, all (pu + 1)-tensor fields in (7)) will be in the form
@BII) (with a + o + o’ = p+ 1, while all the u-tensor fields will be in the
form (BII) but with a + o' 4+ o’ = p, and with one particular contraction ., °
between two of the factors VA Q,, VB Q,, V(O Q.

Now, if both the indices ., ¢ described above are removable, we can explicitly
express Cél,’“'“l“ as an X div of an acceptable (u+ 1)-tensor field. Therefore, we
are reduced to showing our claim in this setting where for each p-tensor field in
(I at least one of the indices ., ¢ is not removable. Now, let z € Zr4, stand
for one of the index sets for which the sublinear combination ), ;. alC’é’“"'ZM
in (L7) indexes tensor fields of maximal refined double character. We assume
with no loss of generality that for each I € L? the factors VAQ,, VB)Q,,
V©Q; have a > o > o free indices respectively Therefore, the tensor
fields indexed in L* can be in one of the following two forms:

(A) (B)
pcontr(vcvil-~~iaj1--~jb91 ® Via+1~~-ia+a/jb+1~--jb+b' ® (3.13)
(2) o . Lt ’
vCia+a/+l”'ia+a/+a//jb+b/+l"'jb+b/+b//QS ®V] 1¢1 ®VI]+J +i U«)’
(A) (B)
pcontT(vi1~~~iaj1~~~jb91 ® vcvia+1~~~ia+a/jb+1~~jb+b' ® (3 14)

v Q3 @ Vo1 gy -+ - @ VEi+s'+3" W),

Clotal+1tatal+a/ Jotb/ +1--Totrb! +b

(where A, B > 3).
Now, by “manually subtracting” Xdiv’s from these u-tensor fields, we can
assume wlog that the tensor fields indexed in our chosen L? are in the from

B.19).

80Recall that by our hypothesis o’ > 2.
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With that extra assumption, we can show that the coefficient of the tensor
field (3.14)) is zero. We see this by considering the (global) equation [, Z,dV, =
0 and using the silly divergence formula silly[Z,] = 0 (which arises by integra-
tions by parts w.r.t. to the factor V(4 Q). Picking out the sublinear combina-
tion silly;[Z,] which consists of the complete contraction:

AO‘”QB®

contr( ® veyhrfa AQ,QQ @V Vi (3.15)

Jb+1--Totn!

Ay ... VI )

~Sadvqvt 41 -Tognl 407

(notice that silly,[Z4] = 0), we derive that the coefficient of (3.14]) must vanish.
Thus, we have shown our claim in this second subcase also. O

The case p = 2, 0o = 1: Recall that in this case we fall under the special
case when n = 2u + 2u. In this setting, we will have that in each index set
L? z € Z};,, (see the statement of Lemma 3.5 in [6]) there is a unique p-tensor
field of maximal refined double character in (7)), where the two indices g, ; in the
factor S*V(”)Rijkl will be contracting against one of the factors VA, V(B)Q,
(wlog we may assume that they are contracting against different factors). But
now, recall that since we are considering case A of Lemma 3.5 in [6], one of
the factors VAQ,, VB)Q, will have at least two free indices. Hence, in at
least one of the factors VM, VIB)Q,, the index ¥, is removable (meaning
that it can be erased, and we will be left with an acceptable tensor field). We
denote by C'_(l,’“'”z“lwl the tensor field that arises from C_(l,’“'”z“ by erasing the
aforementioned *,! and making j or ; into a free index, we then observe that:

C(llulu _ Xdiviuﬂc(l]’il”'i“i““ =0 (3.16)

(modulo complete contractions of length > o +w+ 1). This completes the proof
of our claim. O
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