MAT137 - Calculus with proofs

Assignment 9 due on March 25

Today: Integral test & comparison tests for series

- Wednesday: Alternating series
 - Watch video 13.13 it will be familiar!
 - Supplementary video: 13.14

For which values of $a \in \mathbb{R}$ are these series convergent?

1.
$$\sum_{n=1}^{\infty} \frac{1}{a^n}$$

3.
$$\sum_{n=1}^{\infty} a^n$$

$$2. \sum_{n=1}^{\infty} \frac{1}{n^a}$$

4.
$$\sum_{n=1}^{\infty} n^{a}$$

Quick comparisons: convergent or divergent?

$$1. \sum_{n=1}^{\infty} \frac{n+1}{n^2+1}$$

$$3. \sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n^2+1}$$

$$2. \sum_{n=0}^{\infty} \frac{n^2 + 3n}{n^4 + 5n + 1}$$

4.
$$\sum_{n=0}^{\infty} \frac{\sqrt[3]{n^2+1}+1}{\sqrt{n^3+n}+n+1}$$

Slow comparisons: convergent or divergent?

1.
$$\sum_{n=0}^{\infty} \frac{2^{n}-40}{3^{n}-20}$$

$$4. \sum_{n=0}^{\infty} \frac{1}{n (\ln n)^3}$$

2.
$$\sum_{n=1}^{\infty} \frac{(\ln n)^{20}}{n^{1.1}}$$

$$5. \sum_{n=1}^{\infty} \frac{1}{n \ln n}$$

3.
$$\sum_{n=0}^{\infty} \sin^2 \frac{1}{n}$$

$$6. \sum_{n=0}^{\infty} e^{-n^2}$$