MAT347Y1 HW15 Marking Scheme

Friday, March 20

Total: 29 points.

14.5.10: 4 points. Many people tried to say that if $\mathbb{Q}(\sqrt[3]{2})$ were a subextension, then S_3 would be a subgroup of $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$. This is false. The Galois correspondence reverses direction: in this context, S_3 would appears as a *quotient*.

14.3.4: 4 points.

Handout #2(a): 8 points.

- (2) set-up for the lemma: Gal(L/Q) is a 2-group, and the relationship between M and its Galois group. Make sure you understand how FTGT reverses directions! M being 2-filtered is NOT the same as Gal(M/Q) being 2-filtered.
- (1) statement of the lemma: If G is a 2-group and $H \leq G$, then there exist $H = H_0 \leq \cdots \leq H_n = G$ with $|H_i: H_{i-1}| = 2$ for all *i*.
- (1) G has a normal subgroup K of order 2 (use the centre)
- (3) If $K \leq H$, use induction on |G| to get chain $H/K = H'_0 \leq \cdots \leq H'_n = G/K$ and apply Lattice Isomorphism Theorem
- (1) If $K \leq H$, Then |KH : H| = 2 and the previous case can be used to obtain a chain above KH.

Handout #2(b): 3 points. The normal closure is a composite of isomorphic copies of K, each copy of K has a tower of quadratic extensions, and the rest is just being careful with notation.

Handout #2(c): 2 points.

Handout #3: 8 points. (Following Dummit and Foote 14.5.14)

- (2) Express η_1 and η_2 by radicals
- (4) Express η'_1 , η'_2 , η'_1 , η'_2 by radicals (in terms of η_1 and η_2)
- (1) Express η_1'' by radicals.
- (1) Show that $\frac{1}{2}\eta_1'' = \cos \frac{2\pi}{17}$.