MAT 347 Factorization, GCDs, and ideals January 16, 2015

Throughout this worksheet, R is always an integral domain; any unintroduced letter represents an element on R.

1 Factorization in terms of GCDs

Definitions:

- d is a GCD of a and b when it is a divisor of both a and b and, in addition, every other divisor of a and b divides d.
- Assume d is a GCD of a and b. We say that d satisfies the Bézout identity when there exist $x, y \in R$ such that d = xa + yb.
- R is a GCD domain when every pair of non-zero elements have a GCD.
- R is a Bézout-domain when every pair of non-zero elements have a GCD which satisfies the Bézout identity.
- 1. Let S be the ring of polynomials with coefficients in \mathbb{Q} which have no degree-one term.
 - (a) Do the elements X^2 and X^3 have a GCD in S? If so, does it satisfy the Bézout identity?
 - (b) Do the elements X^5 and X^6 have a GCD in S? If so, does it satisfy the Bézout identity?
- 2. Prove that every UFD is a GCD-domain.
- 3. Prove that in a Bézout domain every irreducible element is a prime. Hint: Let p be irreducible. Assume p|ab. Let d be a GCD of p and a. Then...

2 Factorization in terms of ideals

- 4. For each of the following statement, write an equivalent statement in terms of ideals:
 - (a) a is a unit.
 - (b) a divides b.
 - (c) a and b are associates.
 - (d) p is irreducible.
 - (e) p is prime.
 - (f) c is a divisor of a and a divisor or b.
 - (g) d is a GCD of a and b.
 - (h) There exists $x, y \in R$ such that d = ax + by.
 - (i) R is a Bézout domain.
 - (j) There exists an element in R which is not zero, not a unit, and cannot be written as product of irreducibles.

3 PIDs

Definition: A principal-ideal domain (abbreviated PID) is an integral domain where every ideal is principal.

- 5. Prove that every PID is a Bézout domain.
- 6. Prove that every PID is a UFD. (Hint: use your answers to questions 4i and 4j.)