MAT 347

Factorization in the Gaussian integers January 23, 2015

We have proven that $\mathbb{Z}[i]$ is a Euclidean domain, hence a PID, hence a UFD. Hence prime and irreducible mean the same thing in $\mathbb{Z}[i]$. We want to list all irreducibles in $\mathbb{Z}[i]$. In the process, we will solve some diophantine equations.

Recall that given $\alpha = x + iy \in \mathbb{Z}[i]$, we define $\overline{\alpha} := x - iy$ and $N(\alpha) = \alpha \overline{\alpha} = x^2 + y^2 \in \mathbb{Z}$.

1 Setting up the problem

- 1. Let $\alpha \in \mathbb{Z}[i]$. Prove that α is a unit iff $N(\alpha) = 1$.
- 2. Let $\alpha, \beta \in \mathbb{Z}[i]$. Prove that if $\alpha | \beta \in \mathbb{Z}[i]$ then $N(\alpha) | N(\beta)$ in \mathbb{Z} .
- 3. Let $\pi \in \mathbb{Z}[i]$. Prove that if $N(\pi)$ is prime in \mathbb{Z} then π is irreducible in $\mathbb{Z}[i]$.
- 4. Let $p \in \mathbb{Z}$ be irreducible in \mathbb{Z} . Prove that the following three conditions are equivalent:
 - (a) p is not irreducible in $\mathbb{Z}[i]$.
 - (b) There exists $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha) = p$.
 - (c) The equation $x^2 + y^2 = p$ has integer solutions x, y.
- 5. Let p be a prime in \mathbb{Z} . How many irreducibles in $\mathbb{Z}[i]$ of norm p may there be? (There are three possible answers.)
- 6. Let $\pi \in \mathbb{Z}[i]$. Prove that if π is irreducible in $\mathbb{Z}[i]$ then there exists some p irreducible in \mathbb{Z} such that $\pi|p$ in $\mathbb{Z}[i]$.

Hint: Show that the ideal $(\pi) \cap \mathbb{Z} \subseteq \mathbb{Z}$ is prime.

The above results together suggest that, in order to find all irreducibles in $\mathbb{Z}[i]$, all we need to do is find how each irreducible in p factors in $\mathbb{Z}[i]$. Make sure you understand this before moving on.

2 The three cases

7. Let n be an integer. Assume that $n \equiv 3 \pmod{4}$. Show that the equation $x^2 + y^2 = n$ does not have any integer solutions.

Hint: Assume it does and reduce the equation mod 4.

- 8. Is 2 irreducible in $\mathbb{Z}[i]$?
- 9. Let p be an odd prime in \mathbb{Z} . Prove that there exists $m \in \mathbb{Z}$ such that $p|m^2 + 1$ iff $p \equiv 1 \pmod{4}$.

Hint: Translate the condition $p|m^2 + 1$ into a condition in the group $(\mathbb{Z}/\mathbb{Z}p)^{\times}$. Remember what you know about that group.

10. Let p a prime in \mathbb{Z} such that $p \equiv 1 \pmod{4}$. Prove that p is not prime in $\mathbb{Z}[i]$. Hint: $m^2 + 1 = (m+i)(m-i)$.

3 Summary

11. Let p be a prime in \mathbb{Z} . How many irreducibles with norm p are there in $\mathbb{Z}[i]$? How many irreducibles with norm p^2 are there in $\mathbb{Z}[i]$?

Note: Your answer will depend on p.

12. Let p be a prime in \mathbb{Z} . Does the equation $x^2 + y^2 = p$ have integer solutions (x, y)? If so, how many?

Note: Your answer will depend on p.

13. Let n be a positive integer. Does the equation $x^2 + y^2 = n$ have integer solutions? If so, how many?

Note: Your answer will depend on n.

14. Find all integer solutions to the equation $x^2 + y^2 = 585$.