MAT 347 Our last theorem March 27, 2015

We want to prove that a polynomial has a solvable Galois group if it is solvable by radicals. We already proved the "if" part. Today we prove the "only if" part.

Cyclic Galois group

Let K/F be a normal field extension with characteristic 0. Let G = Gal(K/F). Assume that G is cyclic of order n. Assume that $X^n - 1$ splits in F. Our first goal is to prove that "K is obtained from F by adding one n-th root." This means we want to find $\alpha \in K$ such that $K = F(\alpha)$ and $\alpha^n \in F$.

- 1. Let $\theta \in F$ be a primitive *n*-th root of unity. Let τ be a generator of G. Assume that we find $\alpha \in K$ such that $\alpha \neq 0$ and $\tau(\alpha) = \theta \alpha$. Use Galois theory to prove that this element α is the one we want.
- 2. Let $\beta \in K$. Find an element $\alpha \in K$ which is a linear combination of

$$\beta, \tau(\beta), \tau^2(\beta), \dots, \tau^{n-1}(\beta)$$

which satisfies that $\tau(\alpha) = \theta \alpha$.

3. It remains to prove that we can pick α in the previous question such that $\alpha \neq 0$. The following is a linear-algebra lemma:

Let K/F be a field extension. Let $\sigma_1, \ldots, \sigma_m \in \text{Gal}(K/F)$ be different elements in the Galois group. Assume there are $t_1, \ldots, t_m \in F$ such that $t_1\sigma_1 + \ldots t_m\sigma_m = 0$. Then $t_1 = \ldots = t_m = 0$.

Prove this Lemma and use it to complete the proof we were working on.

Solvable Galois group

Let K/F be a normal field extension of characteristic 0. Assume $\operatorname{Gal}(K/F)$ is solvable. Our next goal is to show that there is a field extension R/K such that R/F is radical.

4. Let $|\operatorname{Gal}(K/F)| = m$. Let K_1 be the splitting field of $X^m - 1$ over K. Let $F_1 \subseteq K_1$ be the splitting field of $X^m - 1$ over F. Prove that $\operatorname{Gal}(K_1/F_1)$ is isomorphic to a subgroup of $\operatorname{Gal}(K/F)$.

- 5. Prove that $\operatorname{Gal}(K_1/F_1)$ is solvable.
- 6. Prove that $X^n 1$ splits in F_1 for every *n* that divides $|\operatorname{Gal}(K_1/F_1)|$.
- 7. Finally prove that K_1/F_1 is radical.
- 8. Conclude that a polynomial has solvable Galois group over F iff it is solvable by radicals over F.

Extra: symplifying calculations and Newton's theorem

- 9. Let f(X) be a polynomial with degree n. Show that there is a number a such that the change of variable y = x a transforms f(X) into a polynomial g(Y) with degree n and with no term of degree n 1.
- 10. The *n* elementary symmetric polynomials in the variables X_1, \ldots, X_n are defined as

$$S_k = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} \prod_{i=1}^k X_{j_i}$$

for k = 1, ..., n. Write explicitly the elementary symmetric polynomials in the variables α, β, γ .

- 11. A Theorem by Newton says that if $h(X_1, \ldots, X_n)$ is a symmetric polynomial in n variables, then it can be written in terms of the n elementary symmetric polynomials. As an example, write the following expressions in terms of S_1, S_2, S_3 :
 - $\alpha^2 + \beta^2 + \gamma^2$,
 - $\alpha^3 + \beta^3 + \gamma^3$,
 - $\alpha^2\beta + \beta^2\gamma + \gamma^2\alpha + \alpha\beta^2 + \beta\gamma^2 + \gamma\alpha^2$.
- 12. Let $f(X) = X^3 + aX^2 + bX + c$ be a polynomial with roots α, β, γ . Write the coefficients of the polynomial in terms of the roots.
- 13. In view of the previous problems, interpret the theorem by Newton using Galois theory (and prove it in one line!)