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We want to prove that a polynomial has a solvable Galois group if it is solvable by
radicals. We already proved the “if” part. Today we prove the “only if” part.

Cyclic Galois group

Let K/F be a normal field extension with characteristic 0. Let G = Gal(K/F ). Assume
that G is cyclic of order n. Assume that Xn− 1 splits in F . Our first goal is to prove that
“K is obtained from F by adding one n-th root.” This means we want to find α ∈ K such
that K = F (α) and αn ∈ F .

1. Let θ ∈ F be a primitive n-th root of unity. Let τ be a generator of G. Assume that
we find α ∈ K such that α 6= 0 and τ(α) = θα. Use Galois theory to prove that this
element α is the one we want.

2. Let β ∈ K. Find an element α ∈ K which is a linear combination of

β, τ(β), τ 2(β), . . . , τn−1(β)

which satisfies that τ(α) = θα.

3. It remains to prove that we can pick α in the previous question such that α 6= 0.
The following is a linear-algebra lemma:

Let K/F be a field extension. Let σ1, . . . , σm ∈ Gal(K/F ) be different
elements in the Galois group. Assume there are t1, . . . , tm ∈ F such that
t1σ1 + . . . tmσm = 0. Then t1 = . . . = tm = 0.

Prove this Lemma and use it to complete the proof we were working on.

Solvable Galois group

Let K/F be a normal field extension of characteristic 0. Assume Gal(K/F ) is solvable.
Our next goal is to show that there is a field extension R/K such that R/F is radical.

4. Let |Gal(K/F )| = m. Let K1 be the splitting field of Xm − 1 over K. Let F1 ⊆ K1

be the splitting field of Xm − 1 over F . Prove that Gal(K1/F1) is isomorphic to a
subgroup of Gal(K/F ).



5. Prove that Gal(K1/F1) is solvable.

6. Prove that Xn − 1 splits in F1 for every n that divides |Gal(K1/F1)|.

7. Finally prove that K1/F1 is radical.

8. Conclude that a polynomial has solvable Galois group over F iff it is solvable by
radicals over F .

Extra: symplifying calculations and Newton’s theorem

9. Let f(X) be a polynomial with degree n. Show that there is a number a such that
the change of variable y = x−a transforms f(X) into a polynomial g(Y ) with degree
n and with no term of degree n− 1.

10. The n elementary symmetric polynomials in the variables X1, . . . , Xn are defined as

Sk =
∑

1≤j1<j2<...<jk≤n

k∏
i=1

Xji

for k = 1, . . . , n. Write explicitly the elementary symmetric polynomials in the
variables α, β, γ.

11. A Theorem by Newton says that if h(X1, . . . , Xn) is a symmetric polynomial in n
variables, then it can be written in terms of the n elementary symmetric polynomials.
As an example, write the following expressions in terms of S1, S2, S3:

• α2 + β2 + γ2,

• α3 + β3 + γ3,

• α2β + β2γ + γ2α + αβ2 + βγ2 + γα2.

12. Let f(X) = X3 + aX2 + bX + c be a polynomial with roots α, β, γ. Write the coef-
ficients of the polynomial in terms of the roots.

13. In view of the previous problems, interpret the theorem by Newton using Galois
theory (and prove it in one line!)


