MAT 347 Differential Galois Theory March 30, 2015

Differential fields

A differential field is a field F together with a linear map $D: F \to F$ that satisfies

 $D(\alpha\beta) = D(\alpha)\beta + \alpha D(\beta)$ for all $\alpha, \beta \in F$

For every $\alpha \in K$, we define

 $\alpha' = D(\alpha), \quad \alpha'' = D(\alpha'), \quad \dots, \quad \alpha^{(n)} = D(\alpha^{(n-1)}).$

The main example is the field of rational functions $\mathbb{C}(X)$. We can think of X as a formal variable, or we can think of the elements in $\mathbb{C}(X)$ as actual function.

- 1. Guess the definition of "extension of differential fields". It is a bit more than merely saying "it is a field extension K/F such that both K and F are differential fields".
- 2. Let K/F be an extension of differential fields. Let $S \subseteq K$ be a subset. Define $F\{S\}$: the differential field generated by S over F. Describe the following:

(a)
$$\mathbb{C}(X)\{e^X\}$$

(b) $\mathbb{C}(X)\{\sin X\}$

I am abusing notation here, because I am not saying what K is.

3. Define Galois group of an extension of differential fields.

Differential operators

A differential linear operator with coefficients in F is a formal expression of the form

$$L(\xi) := a_n \xi^{(n)} + \ldots + a_2 \xi'' + a_1 \xi' + a_0 \xi$$

where $a_i \in F$, and ξ is a formal variable. We denote by $\mathcal{L}(F)$ the set of all such differential operators.

Notice that we can interpret $L(\xi)$ as a map from F to F, namely as the map

$$a_nD^n+\ldots+a_2D^2+a_1D+a_0I,$$

where I is the identity map. As we do with polynomials, we will use both interpretations.

The set of solutions of $L(\xi)$ in K is the set of $\beta \in K$ such that $L(\beta) = 0$. There is a result about existence and uniqueness of solutions of a differential operator in a bigger differential field which is akin to existence and solutions to splitting fields of polynomials.

- 4. Find the set of solutions of the following linear differential operators
 - (a) $\xi' \xi$
 - (b) $\xi'' + \xi$
- 5. Let K/F be an extension of differential fields. Let $G = \operatorname{Gal}(K/F)$. Let $L(\xi) \in \mathcal{L}(F)$. Prove that G acts on the set of solutions of $L(\xi)$ on K.
- 6. Compute the Galois group of the following extensions K/F, where $F = \mathbb{C}(X)$:
 - (a) $K = F(e^X)$
 - (b) $K = F(\sin X)$

Note: These are not finite groups. They are Lie groups (or matrix groups).

How we attacked solvability of polynomials via radicals

Recall the following ideas. Let K/F be an algebraic field extension (not differential fields, just plain vanilla fields).

- We said that K is obtained by adding one root from F when there exists $\alpha \in K$, $n \in \mathbb{N}$ such that $K = F(\alpha)$ and $\alpha^n = K$.
- We said that K/F is radical when there is a tower of subextensions $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_m = K$ such that K_i is obtained from K_{i-1} by adding one root.
- We proved that K is obtained from F by adding one root if and only if Gal(K/F) is cyclic assuming some conditions.
- Then we proved that K/F is radical (i.e. it has a tower of sub extensions such that...) iff $\operatorname{Gal}(K/F)$ is solvable (i.e it has a cyclic tower)– assuming some conditions.

Finally, meet our prey

- 7. Now let K/F be an extension of differential fields. Define the following:
 - (a) K is obtained from F by adding one antiderivative.
 - (b) K is obtained from F by adding the exponential of one element of F. Hint: Think of the differential equation satisfied by $e^{f(X)}$.
 - (c) K is obtained from F by adding one logarithm of one elements of F.
- 8. An *elementary function* is a function that we can obtain with complex numbers, polynomials, exponentials, trig functions, logarithm, inverse trig functions, roots, the field operations, and their compositions. Give a better definition of "elementary functions".

Hint: A lot of the elements in the previous list are redundant.

- 9. One kinky theorem is that the function $F(X) = \int_0^X e^{-t^2} dt$ is not an elementary function. How would you go about formalizing this problem in terms of differential Galois theory, and how would the structure of a proof go?
- 10. One important problem is which differential equations can be solved using elementary functions and their antiderivatives. How would you state it in terms of Galois theory?