
MAT 347
Differential Galois Theory

March 30, 2015

Differential fields

A differential field is a field F together with a linear map D : F → F that satisfies

D(αβ) = D(α)β + αD(β) for all α, β ∈ F

For every α ∈ K, we define

α′ = D(α), α′′ = D(α′), . . . , α(n) = D(α(n−1)).

The main example is the field of rational functions C(X). We can think of X as a formal
variable, or we can think of the elements in C(X) as actual function.

1. Guess the definition of “extension of differential fields”. It is a bit more than merely
saying “it is a field extension K/F such that both K and F are differential fields”.

2. Let K/F be an extension of differential fields. Let S ⊆ K be a subset. Define F{S}:
the differential field generated by S over F . Describe the following:

(a) C(X){eX}
(b) C(X){sinX}

I am abusing notation here, because I am not saying what K is.

3. Define Galois group of an extension of differential fields.

Differential operators

A differential linear operator with coefficients in F is a formal expression of the form

L(ξ) := anξ
(n) + . . .+ a2ξ

′′ + a1ξ
′ + a0ξ

where ai ∈ F , and ξ is a formal variable.. We denote by L(F ) the set of all such differential
operators.

Notice that we can interpret L(ξ) as a map from F to F , namely as the map

anD
n + . . .+ a2D

2 + a1D + a0I,



where I is the identity map. As we do with polynomials, we will use both interpretations.

The set of solutions of L(ξ) in K is the set of β ∈ K such that L(β) = 0. There is a
result about existence and uniqueness of solutions of a differential operator in a bigger
differential field which is akin to existence and solutions to splitting fields of polynomials.

4. Find the set of solutions of the following linear differential operators

(a) ξ′ − ξ
(b) ξ′′ + ξ

5. Let K/F be an extension of differential fields. Let G = Gal(K/F ). Let L(ξ) ∈ L(F ).
Prove that G acts on the set of solutions of L(ξ) on K.

6. Compute the Galois group of the following extensions K/F , where F = C(X):

(a) K = F (eX)

(b) K = F (sinX)

Note: These are not finite groups. They are Lie groups (or matrix groups).

How we attacked solvability of polynomials via radicals

Recall the following ideas. Let K/F be an algebraic field extension (not differential fields,
just plain vanilla fields).

• We said that K is obtained by adding one root from F when there exists α ∈ K,
n ∈ N such that K = F (α) and αn = K.

• We said that K/F is radical when there is a tower of subextensions F = K0 ⊆ K1 ⊆
. . . ⊆ Km = K such that Ki is obtained from Ki−1 by adding one root.

• We proved that K is obtained from F by adding one root if and only if Gal(K/F )
is cyclic – assuming some conditions.

• Then we proved that K/F is radical (i.e. it has a tower of sub extensions such that...)
iff Gal(K/F ) is solvable (i.e it has a cyclic tower)– assuming some conditions.



Finally, meet our prey

7. Now let K/F be an extension of differential fields. Define the following:

(a) K is obtained from F by adding one antiderivative.

(b) K is obtained from F by adding the exponential of one element of F .

Hint: Think of the differential equation satisfied by ef(X).

(c) K is obtained from F by adding one logarithm of one elements of F .

8. An elementary function is a function that we can obtain with complex numbers,
polynomials, exponentials, trig functions, logarithm, inverse trig functions, roots,
the field operations, and their compositions. Give a better definition of “elementary
functions”.

Hint: A lot of the elements in the previous list are redundant.

9. One kinky theorem is that the function F (X) =

∫ X

0

e−t
2

dt is not an elementary

function. How would you go about formalizing this problem in terms of differential
Galois theory, and how would the structure of a proof go?

10. One important problem is which differential equations can be solved using elementary
functions and their antiderivatives. How would you state it in terms of Galois theory?


