MAT 347 Automorphisms October 24, 2014

There are two groups whose automorphism group you fully analyzed in homework:

• Cyclic groups. Aut $Z_n \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$

Let Z_n be the cyclic group of order n with multiplicative notation. For $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, we can define $\varphi_{\overline{a}} \in \operatorname{Aut}(Z_n)$ by $\varphi_{\overline{a}}(x) = x^a$.

Then the map

$$\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times} \mapsto \varphi_{\overline{a}} \in \operatorname{Aut}(Z_n)$$

is an isomorphism.

• Symmetric groups. If $n \ge 3$ and $n \ne 6$, then $\operatorname{Aut}(S_n) \cong S_n$. Every automorphism is inner (conjugation) and S_n has trivial centre.

More specifically, for every $\sigma \in S_n$ we can define $C_{\sigma} \in \operatorname{Aut}(S_n)$ by $C_{\sigma}(\tau) = \sigma \tau \sigma^{-1}$. Then the map

$$\sigma \in S_n \mapsto C_{\sigma} \in \operatorname{Aut}(S_n)$$

is an isomorphism.

Now for each of the following groups, study its automorphism group. The best possible outcome is that the automorphism group is isomorphic to a group we already know, you can describe the isomorphism, and you can fully describe each element of $\operatorname{Aut}(G)$. If you cannot do this, try to calculate $|\operatorname{Aut}(G)|$ as a first step, or try to at least get a bound on $|\operatorname{Aut}(G)|$. A good strategy is to search for the possible images of a set of generators.

- 1. $Z_2 \times Z_2$
- 2. $Z_4 \times Z_3$
- 3. $Z_4 \times Z_2$
- 4. D_8
- 5. Q_8
- 6. $Z_5 \times Z_5 \times Z_5$