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THE BANACH-TARSKI THEOREM

Alfonso Gracia-Saz

Notation:

• Given sets X,Y, Z, when we write X = Y ·∪ Z, we mean that X is the disjoint union of X and Y . In

other words, X = Y ∪ Z and Y ∩ Z = ∅.

• The notation Isom(R3) refers to the group of isometries of R3, i.e. the set of rotations and translations

in R3 and their compositions.

• We denote by SO(3) the group of rotations of R3 around any axis that goes through the origin. Notice

that this is a group because the compositions of two rotations in R3 is another rotation. Notice also

that SO(3) is a subgroup of Isom(R3).

• Given g ∈ Isom(R3) and x ∈ R3 we write g · x to mean g(x). We may also write gx instead of g · x if

there is no ambiguity. Moreover, given X ⊆ R3, the notation g ·X represents

g ·X := {g · x | x ∈ X}

1 Equidecomposable sets

Definition 1.1. Let A,B ⊆ R3. We say that A and B are equidecomposable when we can find a natural

number n ∈ N, subsets A1, . . . , An ⊆ R3, subsets B1, . . . , Bn ⊆ R3, and isometries g1, . . . gn ∈ Isom(R3),

such that:

• A = A1 ·∪ . . . ·∪An,

• B = B1 ·∪ . . . ·∪Bn, and

• Bj = gj ·Aj for all j.

We write this as A ∼ B.

Example 1.2. Let A be a segment of length 2 and Let B be a right angle whose sides have length 1, as in

the figure below. They are equidecomposable.
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Exercise 1.3. Show that being equidecomposable is an equivalence relation among subsets of R3.

Theorem 1.4. A unit ball in R3 is equidecomposable with two copies of itself. This is the statement of the

Banach-Tarski theorem. The rest of this handout is devoted to proving it.
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2 Preliminary examples

Example 2.1. Let C be a circle and let x be a point in the circle. Then C ∼ C \ {x}. To see this, let θ be

an angle such that θ/2π is not a rational number. Let R be a rotation around the centre of the circle with

angle θ. Let H := {Rn(x) | n = 0, 1, 2, . . .}. Then:

• C = (C \H) ·∪H,

• C \ {x} = (C \H) ·∪ (H \ {x}), and

• H \ {x} = R ·H

Example 2.2. Let C be a circle and let x and y be two distinct points in C. We are going to try to prove

that C ∼ C \ {x, y}. We choose an angle θ, to be determined later, and we let R be a rotation around the

centre of the circle with angle θ. We let H := {Rn(x) | n = 0, 1, 2, . . .} ∪ {Rn(y) | n = 0, 1, 2, . . .}. Then, we

would like to claim that:

• C = (C \H) ·∪H,

• C \ {x, y} = (C \H) ·∪ (H \ {x, y}), and

• H \ {x, y} = R ·H

For this to work, we need various conditions on the angle θ. Specifically, we need Rnx 6= x, Rnx 6= y,

Rny 6= x, and Rny 6= y, for every n = 1, 2, . . .. These conditions, all together, ban a countable number of

angles that won’t work. Since [0, 2π] is uncountable, we can always choose a value of θ that will work.

Example 2.3. Let S2 be the unit sphere in R3. Let E be any countable subset of S2 such that, if x ∈ E,

then −x ∈ E. We are going to prove that S2 ∼ S2 \E. First, choose an axis that goes through the centre of

the sphere and which does not intersect any point in E (this is possible, since E is countable). Next, choose

an angle θ such that Rnx 6= y for all n > 0 and for all x, y ∈ E, where R is rotation by an angle θ around

the chosen axis. (This is possible because these conditions only ban a countable number of angles θ). Let

H := {Rnx | x ∈ E; n = 0, 1, 2, . . .}. Finally, notice that:

• S2 := (S2 \H) ·∪H,

• S2 \ E := (S2 \H) ·∪ (H \ E), and

• H \ E = R ·H,

which completes the proof.

3 Interlude: an excursion in group theory

Definition 3.1. Consider a finite set S = {a1, . . . , an}. A word in S is any finite string of symbols, where

every symbol is one of {a1, . . . , an} or of {a−1
1 , . . . , a−1

n }, with the understanding that if the symbols aj

and a−1
j are consecutive for any j, they can be cancelled. We denote the set of all such words F (S). The
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operation “juxtaposition” on F (S) is well-defined, and makes F (S) into a group, where the identity is the

empty word (which we denote 1). We call F (S) the free group generated by S. We will also write F2 to mean

F ({a, b}).

Theorem 3.2. We can decompose the group F2 as disjoint union of four pieces F2 = A ·∪ B ·∪ C ·∪D such

that F2 = A ·∪ aB = C ·∪ bD.

Proof. If α is any of the symbols a, b, a−1, or b−1, let us denote by S(α) the set of all words which, after

applying any legal cancelation, start with the symbol α. Notice that F2 = {1} ·∪S(a) ·∪S(b) ·∪S(a−1) ·∪S(b−1).

Let M := {a−1, a−2, a−3, . . .}. Then the following partition of F2 works:

• A = S(a) ∪ {1} ∪M ,

• B = S(a−1) \M ,

• C = S(b),

• D = S(b−1).

Lemma 3.3. SO(3) has a subgroup isomorphic to F2. This means that there are elements a, b ∈ SO(3)

such that any non-trivial word on the symbols {a, b} is not the identity when we think of it as a product of

powers of the elements a and b. For example, for most values of the angle θ, if a is a rotation by angle θ

around the x-axis and b is a rotation by angle θ around the y-axis, the result is true.

4 The proof of the Banach-Tarski Theorem

Notation 4.1. We denote the 2-dimensional sphere in R3 by S2. We denote the (closed) unit-ball by B3.

We also write B3? := B3 \ {0}. Remember that our goal is to prove that B3 is equidecomposable to two

copies of B3.

Theorem 4.2. S2 is equidecomposable to two copies of S2.

Proof. From the results in Section 3 we know that there are elements a, b ∈ SO(3) that generate a free group

isomorphic to F2. Let us call this group G. We also know that we can partition G as disjoint union of four

pieces with the following properties:

• G = A ·∪B ·∪ C ·∪D

• G = A ·∪ aB

• G = C ·∪ bD

Next, notice that the group G acts on the set S2. Let us define an equivalence relation in S2 as follows.

Given x, y ∈ S2, we say that x ≈ y when y = g · x for some g ∈ G. (In the group-theoretic language, this

means that x and y are in the same orbit of this action.) Let M be a subset of S2 that contains exactly one
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element of each equivalence class. Notice that every y ∈ S2 can be written as y = g · x for some g ∈ G and

x ∈M . This way of writing y is not unique, however.

Let K be the set of points y = S2 that can be written in more than one way as y = g · x with g ∈ G and

x ∈ M . We claim that K is countable. (Specifically, K is the set of points that are the intersection of S2

with the axis of one of the rotations in G). In addition, x ∈ K iff −x ∈ K. Hence, using Example 2.3, we

know that S2 ∼ S2 \K. Moreover, K is invariant (as a set) under G.

Now, let us define

• Â := {g · x |g ∈ A, x ∈M,x /∈ K}

• B̂ := {g · x |g ∈ B, x ∈M,x /∈ K}

• Ĉ := {g · x |g ∈ C, x ∈M,x /∈ K}

• D̂ := {g · x |g ∈ D,x ∈M,x /∈ K}

We get the following decompositions:

• S2 \K = Â ·∪ B̂ ·∪ Ĉ ·∪ D̂,

• S2 \K = Â ·∪ a · B̂,

• S2 \K = Ĉ ·∪ b · D̂

This proves that S2 \K is equidecomposable to two copies of S2 \K. Hence S2 is equidecomposable to two

copies of S2.

Corollary 4.3. B3? is equidecomposable to two copies of B3?.

Proof. Take the partitions of S2 that allowed us to prove Theorem 4.2 and use rays from the origin to

produce partitions of B3?.

Corollary 4.4. B3 is equidecomposable to two copies of B3.

Proof. Let C be a circle inside of B3 that contains the origin 0 as one of its points. We know the following:

• B3 = (B3 \ C) ·∪ C and B3? = (B3 \ C) ·∪ (C \ {0}).

• C ∼ C \ {0} from Example 2.1.

• Hence B3 ∼ B3?.

• B3? is equidecomposable to two copies of B3? from Corollary 4.3.

• Hence B3 is equidecomposable to two copies of B3.

4


