THE BANACH-TARSKI THEOREM

Alfonso Gracia-Saz

Notation:

- Given sets X, Y, Z, when we write $X = Y \cup Z$, we mean that X is the *disjoint union* of X and Y. In other words, $X = Y \cup Z$ and $Y \cap Z = \emptyset$.
- The notation Isom(\mathbb{R}^3) refers to the group of isometries of \mathbb{R}^3 , i.e. the set of rotations and translations in \mathbb{R}^3 and their compositions.
- We denote by SO(3) the group of rotations of \mathbb{R}^3 around any axis that goes through the origin. Notice that this is a group because the compositions of two rotations in \mathbb{R}^3 is another rotation. Notice also that SO(3) is a subgroup of $Isom(\mathbb{R}^3)$.
- Given $g \in \text{Isom}(\mathbb{R}^3)$ and $x \in \mathbb{R}^3$ we write $g \cdot x$ to mean g(x). We may also write gx instead of $g \cdot x$ if there is no ambiguity. Moreover, given $X \subseteq \mathbb{R}^3$, the notation $g \cdot X$ represents

$$g \cdot X := \{g \cdot x \mid x \in X\}$$

1 Equidecomposable sets

Definition 1.1. Let $A, B \subseteq \mathbb{R}^3$. We say that A and B are *equidecomposable* when we can find a natural number $n \in \mathbb{N}$, subsets $A_1, \ldots, A_n \subseteq \mathbb{R}^3$, subsets $B_1, \ldots, B_n \subseteq \mathbb{R}^3$, and isometries $g_1, \ldots, g_n \in \text{Isom}(\mathbb{R}^3)$, such that:

- $A = A_1 \cup \ldots \cup A_n$,
- $B = B_1 \cup \ldots \cup B_n$, and
- $B_j = g_j \cdot A_j$ for all j.

We write this as $A \sim B$.

Example 1.2. Let A be a segment of length 2 and Let B be a right angle whose sides have length 1, as in the figure below. They are equidecomposable.

Theorem 1.4. A unit ball in \mathbb{R}^3 is equidecomposable with two copies of itself. This is the statement of the Banach-Tarski theorem. The rest of this handout is devoted to proving it.

2 Preliminary examples

Example 2.1. Let C be a circle and let x be a point in the circle. Then $C \sim C \setminus \{x\}$. To see this, let θ be an angle such that $\theta/2\pi$ is not a rational number. Let R be a rotation around the centre of the circle with angle θ . Let $H := \{R^n(x) \mid n = 0, 1, 2, ...\}$. Then:

- $C = (C \setminus H) \cup H$,
- $C \setminus \{x\} = (C \setminus H) \cup (H \setminus \{x\})$, and
- $H \setminus \{x\} = R \cdot H$

Example 2.2. Let *C* be a circle and let *x* and *y* be two distinct points in *C*. We are going to try to prove that $C \sim C \setminus \{x, y\}$. We choose an angle θ , to be determined later, and we let *R* be a rotation around the centre of the circle with angle θ . We let $H := \{R^n(x) \mid n = 0, 1, 2, ...\} \cup \{R^n(y) \mid n = 0, 1, 2, ...\}$. Then, we would like to claim that:

- $C = (C \setminus H) \cup H$,
- $C \setminus \{x, y\} = (C \setminus H) \cup (H \setminus \{x, y\})$, and
- $H \setminus \{x, y\} = R \cdot H$

For this to work, we need various conditions on the angle θ . Specifically, we need $R^n x \neq x$, $R^n x \neq y$, $R^n y \neq x$, and $R^n y \neq y$, for every n = 1, 2, ... These conditions, all together, ban a countable number of angles that won't work. Since $[0, 2\pi]$ is uncountable, we can always choose a value of θ that will work.

Example 2.3. Let S^2 be the unit sphere in \mathbb{R}^3 . Let E be any countable subset of S^2 such that, if $x \in E$, then $-x \in E$. We are going to prove that $S^2 \sim S^2 \setminus E$. First, choose an axis that goes through the centre of the sphere and which does not intersect any point in E (this is possible, since E is countable). Next, choose an angle θ such that $R^n x \neq y$ for all n > 0 and for all $x, y \in E$, where R is rotation by an angle θ around the chosen axis. (This is possible because these conditions only ban a countable number of angles θ). Let $H := \{R^n x \mid x \in E; n = 0, 1, 2, \ldots\}$. Finally, notice that:

- $S^2 := (S^2 \setminus H) \cup H$,
- $S^2 \setminus E := (S^2 \setminus H) \cup (H \setminus E)$, and
- $H \setminus E = R \cdot H$,

which completes the proof.

3 Interlude: an excursion in group theory

Definition 3.1. Consider a finite set $S = \{a_1, \ldots, a_n\}$. A word in S is any finite string of symbols, where every symbol is one of $\{a_1, \ldots, a_n\}$ or of $\{a_1^{-1}, \ldots, a_n^{-1}\}$, with the understanding that if the symbols a_j and a_j^{-1} are consecutive for any j, they can be cancelled. We denote the set of all such words F(S). The

operation "juxtaposition" on F(S) is well-defined, and makes F(S) into a group, where the identity is the empty word (which we denote 1). We call F(S) the *free group generated by* S. We will also write F_2 to mean $F(\{a, b\})$.

Theorem 3.2. We can decompose the group F_2 as disjoint union of four pieces $F_2 = A \cup B \cup C \cup D$ such that $F_2 = A \cup aB = C \cup bD$.

Proof. If α is any of the symbols a, b, a^{-1} , or b^{-1} , let us denote by $S(\alpha)$ the set of all words which, after applying any legal cancelation, start with the symbol α . Notice that $F_2 = \{1\} \cup S(a) \cup S(b) \cup S(a^{-1}) \cup S(b^{-1})$. Let $M := \{a^{-1}, a^{-2}, a^{-3}, \ldots\}$. Then the following partition of F_2 works:

- $A = S(a) \cup \{1\} \cup M,$
- $B = S(a^{-1}) \setminus M$,
- C = S(b),
- $D = S(b^{-1})$.

Lemma 3.3. SO(3) has a subgroup isomorphic to F_2 . This means that there are elements $a, b \in SO(3)$ such that any non-trivial word on the symbols $\{a, b\}$ is not the identity when we think of it as a product of powers of the elements a and b. For example, for most values of the angle θ , if a is a rotation by angle θ around the x-axis and b is a rotation by angle θ around the y-axis, the result is true.

4 The proof of the Banach-Tarski Theorem

Notation 4.1. We denote the 2-dimensional sphere in \mathbb{R}^3 by S^2 . We denote the (closed) unit-ball by B^3 . We also write $B^{3\star} := B^3 \setminus \{0\}$. Remember that our goal is to prove that B^3 is equidecomposable to two copies of B^3 .

Theorem 4.2. S^2 is equidecomposable to two copies of S^2 .

Proof. From the results in Section 3 we know that there are elements $a, b \in SO(3)$ that generate a free group isomorphic to F_2 . Let us call this group G. We also know that we can partition G as disjoint union of four pieces with the following properties:

- $G = A \cup B \cup C \cup D$
- $\bullet \ G = A \cup aB$
- $\bullet \ G = C \cup bD$

Next, notice that the group G acts on the set S^2 . Let us define an equivalence relation in S^2 as follows. Given $x, y \in S^2$, we say that $x \approx y$ when $y = g \cdot x$ for some $g \in G$. (In the group-theoretic language, this means that x and y are in the same orbit of this action.) Let M be a subset of S^2 that contains exactly one element of each equivalence class. Notice that every $y \in S^2$ can be written as $y = g \cdot x$ for some $g \in G$ and $x \in M$. This way of writing y is not unique, however.

Let K be the set of points $y = S^2$ that can be written in more than one way as $y = g \cdot x$ with $g \in G$ and $x \in M$. We claim that K is countable. (Specifically, K is the set of points that are the intersection of S^2 with the axis of one of the rotations in G). In addition, $x \in K$ iff $-x \in K$. Hence, using Example 2.3, we know that $S^2 \sim S^2 \setminus K$. Moreover, K is invariant (as a set) under G.

Now, let us define

- $\widehat{A} := \{g \cdot x \mid g \in A, x \in M, x \notin K\}$
- $\widehat{B} := \{g \cdot x \mid g \in B, x \in M, x \notin K\}$
- $\widehat{C} := \{g \cdot x \mid g \in C, x \in M, x \notin K\}$
- $\widehat{D} := \{g \cdot x \mid g \in D, x \in M, x \notin K\}$

We get the following decompositions:

- $S^2 \setminus K = \widehat{A} \cup \widehat{B} \cup \widehat{C} \cup \widehat{D},$
- $S^2 \setminus K = \widehat{A} \cup a \cdot \widehat{B},$
- $S^2 \setminus K = \hat{C} \cup b \cdot \hat{D}$

This proves that $S^2 \setminus K$ is equidecomposable to two copies of $S^2 \setminus K$. Hence S^2 is equidecomposable to two copies of S^2 .

Corollary 4.3. B^{3*} is equidecomposable to two copies of B^{3*} .

Proof. Take the partitions of S^2 that allowed us to prove Theorem 4.2 and use rays from the origin to produce partitions of $B^{3\star}$.

Corollary 4.4. B^3 is equidecomposable to two copies of B^3 .

Proof. Let C be a circle inside of B^3 that contains the origin 0 as one of its points. We know the following:

- $B^3 = (B^3 \setminus C) \cup C$ and $B^{3\star} = (B^3 \setminus C) \cup (C \setminus \{0\}).$
- $C \sim C \setminus \{0\}$ from Example 2.1.
- Hence $B^3 \sim B^{3\star}$.
- $B^{3\star}$ is equidecomposable to two copies of $B^{3\star}$ from Corollary 4.3.
- Hence B^3 is equidecomposable to two copies of B^3 .