FROM CLASSICAL TO DIFFERENTIAL GALOIS THEORY: A SUMMARY Alfonso Gracia–Saz

Disclaimer: This is only a rough summary (to complement the lecture on this topic in MAT347), and it may contain errors.

CLASSICAL GALOIS THEORY	DIFFERENTIAL GALOIS THEORY
Fields F	Differential fields F
	(fields with a derivation)
Extensions of fields K/F	Extensions of differential fields K/F
A polynomial is a formal expression	A DLO is a formal expression
$f(Y) = a_n Y^n + \dots a_1 Y + a_0$	$T(y) = a_n y^{(n)} + \dots a_1 y' + a_0 y$
which we can think of as a map	which we can think of as a map
$f: F \to F$	$T:F \to F$
Its roots are the solutions b to	Its space of solution is
f(b) = 0	$\ker_F(T) := \{ b \in F T(b) = 0 \}$
If $\deg f(Y) = n$,	If deg $T(y) = n$,
then f has at most n roots	then $\ker_F T$ is an F_0 -vector space
	with dimension at most n
The splitting field of $f(Y)$ over F	The Piccard-Vessiot extension of $T(y)$ over F
is a field K such that:	is a differential field K such that:
• f has n roots in K ,	• $\ker_K T$ has dimension n
• K/F is generated by those roots	• K/F is generated by ker _K T
Thm: This extension exists and	Thm: This extension exists and
is unique up to isomorphism	is unique up to isomorphism
Galois group $\operatorname{Gal}(K/F)$	Galois group $\operatorname{Gal}(K/F)$
Galois correspondance between	Galois correspondance between
subfields of K/F and subgroups of G	closed subfields of K/F and closed subgroups of G
Let K be the sf of $f(Y)$ over F ,	Let K be the P-V extension of $T(y)$ over F ,
then $\operatorname{Gal}(K/F) \leq S_n$	then $\operatorname{Gal}(K/F) \leq \operatorname{GL}(n, F_0)$
An extension K/F is radical if there are	An extension K/F is Liouvillian if there are
fields $F = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_m = K$	differential fields $F = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_m = K$
such that M_i is obtained from M_{i_1}	such that M_i is obtained from M_{i_1}
by adding one radical	by adding one algebraic element,
	or an exponential, or an antiderivative
$f(Y) \in F[Y]$ solvable by radicals if	T(y) is solvable by antiderivatives
	and elementary functions if
its splitting field is contained in R	its P-V extension is contained in R
such that R/F is radical	such that R/F is Liouvillian
Thm: Let K be the sf of $f(Y)$ over F .	Thm: Let K be the P-V extensio of $T(y)$ over F .
Let $G = \operatorname{Gal}(K/F)$. TFAE:	Let $G = \operatorname{Gal}(K/F)$. TFAE:
1) f is solvable by radicals	1) T is solvable by antiderivatives
	and elementary functions
2) G is solvable	2) G_0 (the connected component of
	the identity) is solvable