
CLASSIFICATION OF GROUPS OF ORDER 60
Alfonso Gracia–Saz

Remark: This is a long problem, and there are many ways to attack various of
the steps. I am not claiming this is the best way to proceed, nor the fastest. If you
have suggestions or questions, please let me know.

We want to classify groups of order 60 up to isomorphism. I will assume that you
are familiar with the classifications of groups of orders 12, 15, and 20.

Let G be a group of order 60. Let P be a Sylow 5-subgroup, Q be a Sylow 3-
subgroup, and R be a Sylow 2-subgroup of G. We know that P ∼= Z5, Q ∼= Z3, and
R ∼= Z4 or Z2 × Z2. A direct application of the Sylow theorems tells us that the
possibilities for the number of 5-Sylows, 3-Sylows, and 2-Sylows are:

n5 = 1, 6; n3 = 1, 4, 10; n2 = 1, 3, 5, 15.

We will complete this classification by proving:

1. If n5 = 6, then G ∼= A5.

2. If n5 = 1, then n3 = 1 or 4.

3. If n5 = 1 and n3 = 4, then G ∼= A4 × Z5.

4. If n5 = 1 and n3 = 1, then G ∼= Z15 o Z4 or G ∼= Z15 o (Z2 × Z2) for some
semidirect product.

5. There are exactly six non-isomorphic semidirect products Z15 o Z4.

6. There are exactly five non-isomorphic semidirect products Z15 o (Z2 × Z2).

This will complete the list of the 13 isomorphism classes of groups of order 60.

1 Case n5 = 6

There are various ways to conclude that in this case G ∼= A5, but they all involve a
fair amount of counting and case checking. The textbook first proves that any group
of order 60 with more than one 5-Sylow is simple (Proposition 21 on page 145) and
then that any simple group of order 60 is isomorphic to A5 (Proposition 23 on page
145). We will take a different approach.

Recall the following

Lemma 1.1. Let G be a group and H ≤ G with |G : H| = m. Let N be the
largest normal subgroup of G contained in H. Then there is a group homomorphism
φ : G→ Sm with kernel N . In particular G/N is isomorphic to a subgroup of Sm.



For our problem, first we will prove that there is a subgroup H ≤ G of order 12
(and index 5). Then we will prove that the largest normal subgroup of G contained
in H is {1}. From there we will conclude that G ∼= A5.

1.1 Proof that there exists a subgroup H with order 12

• Since n5 = 6, there are 24 elements of order 5.

• If n3 = 1 or 4, then NG(Q) = 15 or 60. In particular, Q is normalized by a
5-Sylow, so we can build a subgroup of order 15. But Z15 is the only group
of order 15, which has a normal 5-Sylow. Hence |NG(P )| ≥ 15 and n5 ≤ 4.
Contradiction. We now know that n3 = 10 and there are 20 elements of order
3.

• If n2 = 1 or 3, we can do a very similar argument using 2-Sylows instead of
3-Sylows and we also reach a contradiction. We now know that n2 = 5 or 15.

• Let R1 and R2 be two different 2-Sylows, let A = R1 ∩ R2 and assume that
|A| = 2. Let B = NG(A). Since R1 ≤ B we know that 4 divides |B|. Moreover
R1 ∪R2 ⊆ B, so we know that |B| > 4. Hence |B| = 12, 20 or 60.

– If |B| = 12, then we found our subgroup of order 12.

– If |B| = 20, then a 5-Sylow of B is normal in B. (We know this happens in
every group of order 20 because we have classified them). But this implies
that |NG(P )| ≥ 20 and n2 ≤ 3. Contradiction.

– If |B| = 60, then we have found an element a ∈ G with order 2 and such
that < a > �G. We know this implies that a ∈ Z(G). It is easy to check
that for every x ∈ G with order 3, ax has order 6; and for every x ∈ G
with order 5, ax has order 10. This produces 20 elements of order 6 and
24 elements of order 10, getting a contradiction.

In short, we have either found a subgroup of order 12 or reached a contradiction.

• If we do not have our subgroup of order 12 yet, we may assume that any pair
of distinct 2-Sylows interesect trivially, and if n2 = 15 they produce 45 distinct
elements of order 2 or 4, getting another contradiction. Therefore n2 = 5 and
|NG(R)| = 12. We found a subgroup of order 12.

1.2 Calculation of N for a subgroup H with order 12

Let N be the largest normal subgroup of G contained in H. Since |H| = 12, we know
that |N | = 1, 2, 3, 4, 6 or 12.



• If |N | = 3, 6 or 12, then N must contain a Sylow 3-subgroup of G. Since N is
normal and all 3-Sylows are conjugate, it must contain all of them. But there
are 20 elements of order 3. Contradiction.

• If |N | = 4 then N would be a normal 2–Sylow, and we would have n2 = 1.
Contradiction.

• If |N | = 2 then N ≤ Z(G) and we get a contradiction as we did a few paragraphs
above.

Hence |N | = 1.

1.3 Last step

By applying Lemma 1.1 to the subgroup H we found with order 12, we conclude that
G is isomorphic to a subgroup (of order 60) of S5. But we know that A5 is the only
subgroup of S5 with index 2 (cfr. a homework problem). Hence G ∼= A5.

2 If n5 = 1, then n3 6= 10

Since n5 = 1, P is normal. Hence PQ is a subgroup of G with order 15. The only
group of order 15 is Z15, which has a normal 3-Sylow. Hence Q is normal in PQ,
|NG(Q)| ≥ 15 and n3 ≤ 4.

3 Case n5 = 1 and n3 = 4

We will first prove that there is a subgroup of G isomorphic to A4. Then we will
prove that it is normal. Finally we will conclude that G ∼= Z5 × A4.

3.1 Proof that there is a subgroup H isomorphic to A4.

• We have assumed there are four 3-Sylows Q1, Q2, Q3, and Q4. Since P is
normal, for each one of them we can construct the group PQi, which is of order
15, and hence isomorphic to Z15. If i 6= j, then PQi ∩ PQj = P , so each PQi

produces 10 distinct elements not in P , which have orders 3 or 15, for a total
of 40 elements with order 3 or 15.

• Since P is normal, we can construct the subgroup PR, which has order 20.
There are 20 elements with orders not 3 or 15, so at most 20 elements with
an order which divides 20, so at most one subgroup of order 20. Hence PR
is the unique subgroup of order 20, hence characteristic, and hence normal.
Since all 2-Sylows are conjugate, they are all subgroups of PR. But the number
of 2-Sylows of a group of order 20 is 1 or 5, hence n2 = 1 or 5. Therefore



|G : NG(R)| = 1 or 5, and |NG(R)| = 12 or 60 In particular R is normalized by
a Sylow 3-subgroup of G. This is true for any other 2–Sylow as well.

• Assume that Qi normalizes R. Then we can build the group RQi, which has
order 12. Since |G : NG(Qi)| = 4, |NG(Qi)| = 15, and Qi cannot be normal
in RQi. We know that there is a unique group of order 12 without a normal
3-Sylow, namely A4. Hence we have shown that RQi

∼= A4. Call H = RQi.

3.2 Proof that H is normal.

• Since n3(A4) = 4, all four 3–Sylows of G have to be contained in RQi, and in
particular H = RQj for any j.

• The above steps will also be true for any other 2–Sylow subgroup of G. Let
R′ be a different 2–Sylow. Then we know that H ′ = R′Q1 is also a subgroup
isomorphic to A4. Now notice that both H and H ′ have eight elements of order
3. There are only 8 elements of order 3 in G in total, so |H ∩H ′| ≥ 8, and due
to their orders being 12, we conclude that H = H ′.

• Finally, notice that any subgroup of order 12 will be generated by some 2-
Sylow and some 3-Sylow. Hence H is the only subgroup of order 12, hence
characteristic, and hence normal.

3.3 Last step

We know that both H and P are normal. Also, H ∼= A4 and P ∼= Z5. Looking at
their orders, H ∩ P = {1} and HP = G. We conclude G = A4 × Z5.

4 Case n5 = 1 and n3 = 1

In this case P�G and Q�G so that PQ�G. Moreover PQ ∼= P×Q ∼= Z5×Z3
∼= Z15.

Notice also that PQ ∩ R = {1} and that (PQ)R = G. We conclude that G ∼=
PQo R, i.e. G ∼= Z15 o Z4 or G ∼= Z15 o (Z2 × Z2), and we are left with classifying
these semidirect products.

5 Classification of semidirect products Z15 o Z4

We want to classify all possible groups of the form Z15 oφ Z4 for different group
homomorphisms φ : Z4 → Aut(Z15).



5.1 Find all possible homomorphisms φ

Let us write Z4 =< x >. We know that Z15
∼= Z5 × Z3. Let us write Z5 =< a > and

Z3 =< b >. We also know that Aut(Z15) ∼= Aut(Z5)×Aut(Z3), and that Aut(Z5) ∼=
Z4 and Aut(Z3) ∼= Z2. By direct search we find generators Aut(Z5) =< σ > and
Aut(Z3) =< τ > defined by σ(a) = a2 and τ(b) = b−1.

A group homomorphism φ : Z4 → Aut(Z5)× Aut(Z3) will be defined by φ(x). It
is easy to see that there are six possible homomorphisms:

φ1(x) = (id, id) φ2(x) = (σ2, id) φ3(x) = (σ, id)
φ4(x) = (id, τ) φ5(x) = (σ2, τ) φ6(x) = (σ, τ)

Let us define Gi = Z15 oφi Z4 for each i = 1, . . . , 6. We have found six groups,
but we do not know yet whether there are any isomorphic groups in this list.

We have presentations for each one of these groups:

G1 =< a, b, x | a5 = b3 = x4 = 1, ab = ba, xax−1 = a, xbx−1 = b >

G2 =< a, b, x | a5 = b3 = x4 = 1, ab = ba, xax−1 = a−1, xbx−1 = b >

G3 =< a, b, x | a5 = b3 = x4 = 1, ab = ba, xax−1 = a2, xbx−1 = b >

G4 =< a, b, x | a5 = b3 = x4 = 1, ab = ba, xax−1 = a, xbx−1 = b−1 >

G5 =< a, b, x | a5 = b3 = x4 = 1, ab = ba, xax−1 = a−1, xbx−1 = b−1 >

G6 =< a, b, x | a5 = b3 = x4 = 1, ab = ba, xax−1 = a2, xbx−1 = b−1 >

5.2 Proof that the six obtained groups are not isomorphic to
each other

These six groups are indeed non-isomorphic. There are various ways to see this. For
every i, let us write φi(x) = (αi(x), βi(x)) ∈ Aut(Z5) × Aut(Z3). Then a direct
calculation shows that

CGi
(Z5) ∩ Z4 = kerαi

CGi
(Z3) ∩ Z4 = ker βi

In words, kerαi is the intersection of the centralizer of the unique 5-Sylow with
a 2-Sylow (and similarly for ker βi). Now let’s assume that F : Gi → Gj is an
isomorphism. Let P be the 5-Sylow of Gi and let P ′ be the 5-Sylow of Gj. Since
they are characteristic, F (P ) = P ′, hence F (CGi

(P )) = CGj
(P ′). Now let R be some

2-Sylow of Gi and let R′ be some 2-Sylow of Gj. We know that F (R) and R′ are
conjugate in Gj, i.e. there is an inner automorphism of Gj, call it H, such that
H(F (R)) = R′. Finally, notice that

CGi
(Q) ∩R ∼= HF (CGi

(Q) ∩R) = HF (CGi
(Q)) ∩HF (R) = CGj

(Q′) ∩R′.

As a consequence, if kerαi � kerαj, then Gi � Gj. Similarly if ker βi � ker βj,
then Gi � Gj. This is enough to conclude that these six groups are all distinct.



5.3 Identification of these groups

First notice that G1
∼= Z60. Also, G3

∼= Hol(Z5) × Z3. (For the definition of the
holomorph of a group, see problem 5 in page 179.)

To describe with few words a few of the other, let us introduce some notation.
Let H be any abelian group. Let K = Z2m =< x > for some integer m. Then we
define the group H �K := H oφK to be the semidirect product of H and K via the
homomorphism φ defined by φx(a) = a−1 for all a ∈ H. (Notice that this is always
well defined under these hypothesis.) With this notation we have

G2
∼= (Z5 � Z4)× Z3

G4
∼= Z5 × (Z3 � Z4)

G5
∼= Z15 � Z4

As for G6 we do not have a short name. An alternative presentation for it is

G6 =< c, x | c15 = x4 = 1, xcx−1 = c2 > .

6 Classification of semidirect products Z15 o (Z2 ×
Z2)

To classify these groups, we need to study all possible group homomorphisms

φ : Z2 × Z2 → Aut(Z15) ∼= Aut(Z5)× Aut(Z3)

Let us write Z2 × Z2 =< x > × < y >. We will also use the same notation for Z5

and Z3 as in the previous section.
There are 16 such homomorphisms φ but plenty of them produce isomorphic

semidirect products. Let us recall the following result (from problem 7 in the hand-
out):

Lemma 6.1. Let H and K be finite groups. Assume that H is abelian and that
(|H|, |K|) = 1. Let φ1, φ2 : K → Aut(H) be two group homomorphisms. If kerφ1 �
kerφ2, then H oφ1 K � H oφ2 K.

There are three options for kerφ.

6.1 Case | kerφ| = 4

In this case φ is trivial and the semidirect product is a direct product. This produces
a new group:

G7 = Z15 × (Z2 × Z2) ∼= Z30 × Z2.



6.2 Case | kerφ| = 2

There are 3 options for the kernel of φ, but they are the same up to a change on the
name of the generators, and they will produce isomorphic semidirect products, so we
may assume kerφ =< x >. (For a formal justification, see problem 7 in the handout.)
For any such φ we notice that

Z15 o (Z2 × Z2) = Z15 o (< x > × < y >) = (Z15o < y >)× < x >

for some semidirect product. In other words, our group is a direct product of a group
of order 2 and a non-abelian group of order 30. Since we have classified all groups of
order 30, we know this gives us three possibilities:

G8 = (D10 × Z3)× Z2
∼= D10 × Z6

G9 = (Z5 ×D6)× Z2
∼= Z10 ×D6

G10 = D30 × Z2
∼= D60

To check that no pair of these three groups are isomorphic to each other, calculate
the centralizer of their 5-Sylows and of their 3-Sylows. (Since the 5-Sylow and the
3-Sylow are unique, we can distinguish them by their centralizers.)

6.3 Case | kerφ| = 1

In this case Z2 × Z2
∼= Imageφ ≤ AutZ5 × AutZ3. There is a unique subgroup

of AutZ5 × AutZ3 isomorphic to Z2 × Z2, namely < σ2, τ >. There are 6 possible
homomorphisms φ, but they correspond to renaming the generators of Z2 × Z2 and
will all produce isomorphic semidirect products. (Again, for a formal justification, see
problem 7 in the handout.) Hence we get one new group. One possible presentation
is

G11 =< a, b, x, y | a5 = b3 = x2 = y2, ab = ba, xy = yx, xax−1 = a−1, xbx−1 = b, yay−1 = a, yby−1 = b−1 >

We also notice that G11 =< a, x > × < b, y >∼= D10 ×D6.



7 Summary

There are 13 groups of order 60 up to isomorphism:

G1 = Z60

G2 = (Z5 � Z4)× Z3

G3 = Hol(Z5)× Z3

G4 = Z5 × (Z3 � Z4)

G5 = Z15 � Z4

G6 = < c, x | c15 = x4 = 1, xcx−1 = c2 >

G7 = Z30 × Z2

G8 = D10 × Z6

G9 = Z10 ×D6

G10 = D60

G11 = D10 ×D6

G12 = A5

G13 = A4 × Z5


