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Abstract

Recently, Hundal has constructed a hyperplane H , a cone K , and a starting point y0 in ‘2

such that the sequence of alternating projections ((PKPH )ny0)n∈N converges weakly to some
point in H ∩ K , but not in norm. We show how this construction results in a counterexample
to norm convergence for iterates of averaged projections; hence, we give an a:rmative answer
to a question raised by Reich two decades ago. Furthermore, new counterexamples to norm
convergence for iterates of <rmly nonexpansive maps (=a la Genel and Lindenstrauss) and for
the proximal point algorithm (=a la G@uler) are provided. We also present a counterexample,
along with some weak and norm convergence results, for the new framework of string-averaging
projection methods introduced by Censor et al. Extensions to Banach spaces and the situation
for the Hilbert ball are discussed as well.
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1. Introduction

Throughout (most of) this paper, we assume that

X is a real Hilbert space with inner product 〈·; ·〉 and induced norm ‖ · ‖: (1)

Let A and B be closed convex sets in X with corresponding projectors (also known as
projection operators or nearest point mappings, see Fact 2.4) PA and PB, respectively.
The convex feasibility problem asks to

<nd a point in A ∩ B; (2)

assuming this intersection is nonempty. This problem is of considerable importance in
mathematics and the physical sciences; see [8,25,20,23], and the references therein.

Perhaps the oldest algorithmic approach to solve (2) is to generate the sequence of
alternating projections, which is de<ned by

x0 �→ x1 = PAx0 �→ x2 = PBx1 �→ x3 = PAx2 �→ · · ·
for some starting point x0 ∈X: (3)

If A and B are subspaces, then the sequence (xn)n∈N converges in norm to the point
in the intersection that is nearest to the starting point—this basic result was proved
by von Neumann [51] in 1933. Thirty-two years later, Bregman [15] proved that the
sequence (xn)n∈N converges at least weakly to some point in A ∩ B.

Ever since, there has been a nagging gap between von Neumann’s and Bregman’s
result: Is it possible that norm convergence fails? In 2000, Hundal announced his
a:rmative answer to this question; full details of his ingenious construction became
available two years later, see [34].

In the broader setting of <xed point theory, Hundal’s counterexample to norm con-
vergence of the iterates of compositions of projectors is similar to the counterexample
by Genel and Lindenstrauss [29] (see also [14, pp. 72–74]) to norm convergence of
the iterates of a Brmly nonexpansive map, as well as to G@uler’s counterexample [32]
to norm convergence of the proximal point algorithm. In passing, we note that cer-
tain modi<cations of these algorithms are able to always generate norm convergent
sequences; see, for instance, [11,53].

Another classical algorithmic approach to solve (2) is to employ (midpoint) aver-
ages of projectors, rather than compositions. This amounts to constructing a sequence
(xn)n∈N via

(∀n∈N) xn+1 =
(

1
2 PA + 1

2 PB
)
xn; where x0 ∈X: (4)

In his 1969 thesis, Auslender [2] established weak convergence of (xn)n∈N to some
point in A ∩ B; this result also follows from [45, Corollary 2.6]. Closely related are
Cimmino’s method of averaged reOectors for solving linear equations [24] and Mer-
zlyakov’s method of extrapolated averaged projectors for solving linear inequalities
[39]. On the other hand, a more general result by Reich (see [45, Theorems 1.7 and
2.3]) implies that if A and B are subspaces, then the sequence (xn)n∈N generated by (4)
does converge in norm to some point in A∩B. (Alternatively, one can apply von Neu-
mann’s result to the subspaces A×B and {(x; x) : x∈X } in the product space X ×X .)
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Analogously to the above discussion of alternating projections, Auslender’s weak con-
vergence result for general sets and Reich’s norm convergence for subspaces lead to
the question—originally raised by Reich at the end of [45, Section 2] in 1983—on
whether norm convergence of a sequence generated by (4) may actually fail.

The main objective in this paper is to show that Hundal’s recent ingenious coun-
terexample can also be used to provide an aCrmative answer to Reich’s question. We
then explain how this construction leads to new counterexamples to norm convergence
for the classical proximal point algorithm (see [38,49]) and for the string-averaging
projection method recently introduced by Censor et al. [21]. The notion of a strongly
nonexpansive map allows us to also comment on the situation in Banach spaces and
for the Hilbert ball.

The remainder of this paper is organized as follows. Section 2 contains auxiliary
results on projectors and reOectors as well as a review of the useful properties of
strongly nonexpansive maps. The classical results by von Neumann and by Bregman
are reviewed in Section 3, where we also include a new elementary proof of von
Neumann’s result. In Section 4, we describe Hundal’s counterexample and show that
the composition of the two projectors is not <rmly nonexpansive. Our solution to
Reich’s question is presented in Section 5; it also gives rise to a new counterexample
=a la Genel and Lindenstrauss. Section 6 contains a self-contained and somewhat more
explicit proof of Moreau’s result that the proximal maps form a convex set. This is
used in Section 7, where it leads to a new counterexample =a la G@uler. Convergence
results on string-averaging methods as well as a counterexample are given in Section
8. In the <nal Section 9, we discuss the situation in the Hilbert ball.

Notation employed is standard in convex analysis: I denotes the identity map and
N= {0; 1; 2; : : :} are the nonnegative integers. Also, S⊥ = {x∗ ∈X : (∀s∈ S)〈x∗; s〉= 0}
(respectively, S� = {x∗ ∈X : (∀s∈ S)〈x∗; s〉6 0}, span S, cone S, conv S, int S, –S) is
the orthogonal complement (respectively, polar cone, closed linear span, closed con-
vex conical hull, convex hull, interior, and indicator function) of a set S in X . The
subdiPerential map (respectively, gradient map, Fenchel conjugate) of a function f is
denoted by @f (respectively, ∇f, f∗), and f1 f2 stands for the in<mal convolution
of the functions f1 and f2. If T is a map de<ned on S, then its <xed point set is
Fix T = {x∈ S : x= Tx}. Finally, if r ∈R, then �r� denotes the largest integer less than
or equal to r.

2. Projectors, re�ectors, and strongly nonexpansive maps

De�nition 2.1 (Nonexpansive and <rmly nonexpansive). Let C be a set in X and
T :C → X be a map. De<ne a family of functions by

(∀x∈C)(∀y∈C)

�x;y : [0; 1]→ [0;+∞[ : � �→ ‖((1− �)x + �Tx)− ((1− �)y + �Ty)‖: (5)

Then T is Brmly nonexpansive (respectively, nonexpansive), if �x;y is decreasing
(respectively, �x;y(0)¿�x;y(1)), for all x and y in C.
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Clearly, if T is <rmly nonexpansive, then it is nonexpansive, which in turn is
equivalent to

(∀x∈C)(∀y∈C) ‖Tx − Ty‖6 ‖x − y‖: (6)

Lemma 2.2. Let C be a set in X and let T :C → X . Then the following properties
are equivalent:

(i) T is Brmly nonexpansive.
(ii) (∀x∈C)(∀y∈C) ‖Tx − Ty‖26 〈Tx − Ty; x − y〉.

(iii) 2T − I is nonexpansive.

Proof. See [31, Lemma 1.11.1].

Remark 2.3 (Extensions to Banach spaces): In Hilbert space, a <rmly nonexpansive
map is usually de<ned as in Lemma 2.2(ii); nonetheless, we begin with De<nition 2.1
because the latter is more useful in Banach spaces (see [31, Section 1.11]). Using the
duality map, the characterization in Lemma 2.2(ii) holds true in Banach space (see
[31, Lemma 1.11.1]).

Fact 2.4 (Projector and reOector). Suppose that C is a nonempty closed convex set
in X . Then, for every point x∈X , there exists a unique point PCx∈C such that
‖x − PCx‖ = inf y∈C ‖x − y‖. The point PCx is the projection of x onto C; it is
characterized by

PCx∈C and (∀c∈C) 〈c − PCx; x − PCx〉6 0: (7)

The corresponding map PC :X → C is the projector (or projection operator) onto
C. It is Brmly nonexpansive and, hence, the associated reOector RC = 2PC − I is
nonexpansive.

Proof. See [30, Chapter 12, 31, Propositions 1.3.5 and 1.111.2], or [55, Lemma 1.1].

Corollary 2.5. Let C be a nonempty closed convex set in X . Suppose that U :X → X
is unitary, i.e., a surjective linear isometry. Then U (C) is a nonempty closed convex
set, and PU (C) = UPCU ∗.

Proof. This follows easily from Fact 2.4.

Corollary 2.6. Let H be a hyperplane in X and suppose 0∈H . Then the correspond-
ing reFector RH is unitary and it satisBes RH = R∗

H = R−1
H . Let C be a nonempty

closed convex set in X and set D = RH (C). Then the following hold true:
(i) D is closed and convex;
(ii) PD = RHPCRH ;

(iii) (PHPC)|H = 1
2 (PC + PD)|H .
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Proof. Write H = {a}⊥, where ‖a‖= 1. Fix x∈X arbitrarily. Then PHx = x − 〈a; x〉a
and hence RHx = x − 2〈a; x〉a. It follows that RH is one-to-one. Also, one veri<es
easily that R2

H = I and that RH is an isometry. Hence RH is unitary and (i) and
(ii) follow from Corollary 2.5. Now pick h∈H . Then RHh = 2PHh − h = h and so,
using (ii), PDh= RHPCRHh= RHPCh= 2PHPCh− PCh. Hence PCh+ PDh= 2PHPCh,
as claimed.

We conclude this section with a discussion of the class of strongly nonexpansive
maps, introduced by Bruck and Reich [18] in 1977.

De�nition 2.7 (Strongly nonexpansive): Let C be a set in X and let T :C → X be a
map. Then T is strongly nonexpansive if it is nonexpansive and (xn − yn) − (Txn −
Tyn) → 0 whenever (xn)n∈N and (yn)n∈N are sequences in X such that (xn − yn)n∈N
is bounded and ‖xn − yn‖ − ‖Txn − Tyn‖ → 0.

While the class of <rmly nonexpansive maps is convex (use Lemma 2.2(iii)), it is
not closed under composition (in the Euclidean plane, consider projectors corresponding
to two distinct nonorthogonal intersecting lines). This serious limitation does not occur
for strongly nonexpansive maps.

Fact 2.8. Let T1; T2; : : : ; Tm be strongly nonexpansive maps deBned on a set in X .
Suppose T is given in one of the following ways:

(i) T = Tm · · ·T2T1.
(ii) T =

∑m
i=1 �iTi, where {�1; �2; : : : ; �m} ⊂ ]0; 1[ and

∑m
i=1 �i = 1.

Then T is strongly nonexpansive. If F =
⋂m
i=1 Fix Ti �= ∅, then Fix T = F .

Proof. [18, Propositions 1.1 and 1.3] imply that T is strongly nonexpansive. To obtain
the identity for F , which we now assume to be nonempty, use [18, Lemma 2.1] (for
(i)) and [45, Lemma 1.4] (for (ii)).

De�nition 2.9 ((Sunny) retraction). A map T :X → C is a (sunny) retraction onto C
if it is continuous with Fix T = C (and Tx = c implies T (c + &(x − c)) = c, for all
x∈X , c∈C, and &¿ 0). Note that C is necessarily closed.

Remark 2.10. Some comments on retractions are in order. See also [31, Section 1.13]
for further information.

(i) If C is a nonempty closed convex set in X , then it not hard to show that the
projector PC is a sunny nonexpansive retraction onto C [31, (3.7) on p.17].

(ii) Outside Hilbert space, projectors are still sunny retractions, but they fail to be
nonexpansive.

(iii) Every sunny nonexpansive retraction is <rmly nonexpansive [45, Lemma 2.1].

The class of strongly nonexpansive maps is quite rich.
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Fact 2.11. Let T be a map deBned on a set in X . Then T is strongly nonexpansive
provided that one of the following conditions holds:

(i) T is Brmly nonexpansive.
(ii) T = (1− �)T1 + �T2, where T1 is strongly nonexpansive, T2 is nonexpansive, and

�∈ [0; 1[.
(iv) T :X → X is a sunny nonexpansive retraction onto Fix T .

Proof. For (i) and (ii), see [18, Propositions 1.3 and 2.1]. Item (iii) follows from (i)
and Remark 2.10(iii).

Remark 2.12. In any smooth Banach space, there is at most one sunny nonexpansive
retraction onto a given subset [31, Lemma 1.13.1]; consequently, if T is as in Fact
2.11(iii), then T must coincide with the projector onto Fix T .

The next result shows that the iterations of strongly nonexpansive maps are well
understood.

Fact 2.13. Let C be a closed convex nonempty set in X , and let T :C → C be
strongly nonexpansive. Set F = Fix T and pick x∈C. Then the following hold true:
(i) If F = ∅, then limn ‖Tnx‖= +∞.
(ii) If F �= ∅, then (Tnx)n∈N converges weakly to some point in F .
(iii) If C =−C and T is odd, then (Tnx)n∈N converges in norm to some point in F .
(iv) ‖Tnx − Tn+1x‖ → inf c∈C ‖c − Tc‖

Proof. See [18, Corollaries 1.4, 1.3, 1.2, and Proposition 1.2], respectively.

Remark 2.14 (Extensions to Banach spaces): The results cited above hold true in con-
siderably more general settings: indeed, Fact 2.8 is valid for a general Banach space
X , while Fact 2.11 holds true when X is uniformly convex. We now provide some
su:cient conditions for the items of Fact 2.13.

(i) C is boundedly weakly compact and each weakly compact convex subset of C
has the <xed point property for nonexpansive mappings [18, Corollary 1.4].

(ii) X and X ∗ are uniformly convex [45, Proposition 2.4].
(iii) X is uniformly convex (combine either [18, Corollary 1.2] or [45, Proposition

1.5] with [3, Theorem 1.1]).
(iv) does not require any additional assumption (use [18, Proposition 1.2], or combine

[45, Proposition 1.5] with [43, Proposition 4.3]). Furthermore, norm convergence
of (Tnx − Tn+1x)n∈N to the unique element of minimum norm in the closure of
the range of I−T is guaranteed either when X is uniformly convex [43, Theorem
3.7(b)], or when the norm of X is Gâteaux diPerentiable and the norm of its dual
X ∗ is Fr0echet diPerentiable [44, Corollary 5.3(b)].

All these conditions are satis<ed provided both X and X ∗ are uniformly convex—this
holds, of course, for the classical Lp and ‘p spaces, where 1¡p¡+∞.
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3. von Neumann’s and Bregman’s classical results

We now present an elementary geometric proof of von Neumann’s original norm
convergence result.

Theorem 3.1 (von Neumann). Let A and B be closed linear subspaces in X . DeBne
the sequence of alternating projections by

x0 ∈X; (∀n∈N) x2n+1 = PAx2n and x2n+2 = PBx2n+1: (8)

Then (xn)n∈N converges in norm to PA∩Bx0.

Proof. Set C = A ∩ B. By Pythagoras, we have

(∀n∈N) ‖xn‖2 = ‖xn+1‖2 + ‖xn − xn+1‖2: (9)

In particular,

(‖xn‖)n∈N is decreasing and nonnegative; hence convergent: (10)

By (strong) induction on n, we now establish the related statement

(∀n∈N) (∀k ∈N)(∀l∈N) 16 k = l− n
⇒ ‖xk − xl‖26 ‖xk‖2 − ‖xl‖2: (11)

Clearly, (11) is true for n= 0 and also for n= 1 (by (9)). So assume (11) holds true
for some n¿ 1, and take k; l in N such that 16 k = l− (n+ 1).

Case 1: n is even.
Then n+ 1 = l− k is odd. If l is odd, then both xk+1 =PAxk and xl =PAxl−1 belong

to A, whereas xk − xk+1 = (I − PA)xk ∈A⊥; hence altogether

〈xk − xk+1; xk+1 − xl〉= 0: (12)

If l is even, we argue similarly with A replaced by B and we derive (12) once again.
Using (12), (9), and the induction hypothesis, we now obtain

‖xk − xl‖2 = ‖xk − xk+1‖2 + ‖xk+1 − xl‖2

= ‖xk‖2 − ‖xk+1‖2 + ‖xk+1 − xl‖2

6 ‖xk‖2 − ‖xk+1‖2 + ‖xk+1‖2 − ‖xl‖2

= ‖xk‖2 − ‖xl‖2:

Case 2: n is odd.
Then n+ 1 = l− k is even, which—similarly to the derivation of (12)—implies that

〈xk − xl; xl − xl−1〉= 0: (13)
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Thus ‖xk −xl−1‖2 =‖xk −xl‖2 +‖xl−xl−1‖2. Using this, (9), the induction hypothesis,
and (10), we conclude

‖xk − xl‖2 = ‖xk − xl−1‖2 − ‖xl − xl−1‖2

= ‖xk − xl−1‖2 − ‖xl−1‖2 + ‖xl‖2

6 ‖xk‖2 − ‖xl−1‖2 − ‖xl−1‖2 + ‖xl‖2

6 ‖xk‖2 − ‖xl‖2:

Altogether, statement (11) is veri<ed.
Now, by (10) and (11), the sequence (xn)n∈N is Cauchy and hence convergent,

say to

x∞ = lim
n∈N

xn: (14)

Since (x2n+1)n∈N lies in A and (x2n+2)n∈N lies in B, we conclude that x∞ ∈A∩B=C.
Therefore,

PCxn → PCx∞ = x∞: (15)

Now <x n∈N and t ∈R, and set c = (1 − t)PCxn + tPCxn+1. Then c∈C = A ∩ B =
Fix (PA) ∩ Fix (PB) and so PAc= PBc= c. Also, xn+1 ∈{PAxn; PBxn}. Since projectors
are nonexpansive (Fact 2.4), we obtain ‖xn+1 − c‖6 ‖xn − c‖. After squaring and
simplifying, this inequality turns into

(1− 2t)‖PCxn+1 − PCxn‖2 + ‖PC⊥xn+1‖26 ‖PC⊥xn‖2: (16)

Since n and t were chosen arbitrarily, we conclude

(∀n∈N) PCxn = PCxn+1: (17)

Combining (14), (15) and (17), we obtain limn∈N xn = PCx0.

Remark 3.2. See [50–52] for classical proofs of Theorem 3.1, and also [27, Chap-
ter 9] for recent information and further pointers to the literature. The convergence
part in the proof given above is a modi<cation of the proof of [28, Proposition 1,
p. 105]. The part determining the limit is borrowed from [12, Fact 2.2(v)]; see also
[4, Theorem 6.2.2], [13, Theorem 2.2]. Let us sketch the following diPerent approach.
De<ne L :X → A ∩ B by x0 �→ limn xn. Then L is nonexpansive and Fix L = A ∩ B.
Hence A ∩ B is a nonexpansive retract of A ∩ B. Therefore, using either [42, bottom
of p. 162] or [45, Lemma 3.2], L = PA∩B. (Alternatively, one can check directly that
L2 = L, which implies x0 − Lx0 ∈ (A ∩ B)⊥ and thus Lx0 = PA∩Bx0.)

Theorem 3.1 immediately raises the following question: what can be said about
the case where the sets A and B are merely two closed convex sets with nonempty
intersection?

Let us recall Bregman’s basic weak convergence result from 1965.
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Theorem 3.3 (Bregman). Let A and B be closed convex sets in X such that A∩B �= ∅.
DeBne the sequence of alternating projections by

x0 ∈X; (∀n∈N) x2n+1 = PAx2n and x2n+2 = PBx2n+1: (18)

Then (xn)n∈N converges weakly to some point in A ∩ B.

Proof. The original proof can be found in [15]. We include the following short proof
(for another approach via Fej'er monotonicity, see [5, Theorem 2.10(i)]). The projectors
PA and PB are <rmly nonexpansive (Fact 2.4), and hence strongly nonexpansive (Fact
2.11(i)). By Fact 2.8(i), PBPA is strongly nonexpansive with Fix (PBPA)=A∩B. Using
Fact 2.13(ii), we see that (x2n)n∈N converges weakly to some point c∈A ∩ B. Now
‖x2n−c‖¿ ‖x2n+1−c‖¿ ‖x2(n+1)−c‖, for all n∈N; consequently, ‖x2n−c‖−‖PAx2n−
c‖ → 0. Since PA is strongly nonexpansive, it follows that x2n−x2n+1=x2n−PAx2n → 0.
Hence (x2n+1)n∈N converges weakly to c, and so does the entire sequence (xn)n∈N.

Remark 3.4 (Extensions to the inconsistent case): For further results on the behavior
of the sequence of alternating projections in the inconsistent case (i.e., when A∩B=∅),
see [6,7,9], and the references therein.

Remark 3.5 (Extensions to Banach spaces): A closer inspection of the proof of The-
orem 3.3 reveals that the following generalization holds true. Suppose X is a Banach
space such that both X and X ∗ are uniformly convex, and C is a closed convex
nonempty set in X . Let T1; T2 be two strongly nonexpansive maps from C to C with
F = Fix (T1)∩Fix (T2) �= ∅. Then for every x0 ∈C, the sequence (xn)n∈N generated by

(∀n∈N) x2n+1 = T1x2n and x2n+2 = T2x2n+1 (19)

converges weakly to some point in F .

4. Sequential projectors and Hundal’s counterexample

The gap of knowledge between Theorems 3.1 and 3.3 was closed after nearly four
decades. In 2000, during the Haifa workshop on “Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications” [19], Hein Hundal outlined his
construction of two sets such that the corresponding sequence of alternating projections
converges weakly, but not in norm. Moreover, since the sets are a hyperplane and a
cone, his counterexample shows that there is no hope of extending Theorem 3.1 even
to cones.

Let us write ‘2 = span {e1; e2; : : : ; }, where the nth standard unit vector en has a one
at position n, and zeros elsewhere. We now describe Hundal’s construction.

Fact 4.1 (Hundal’s counterexample). Let X = ‘2 = span {e1; e2; : : : ; } and deBne v by

v : [0;+∞[→ ‘2

r �→ exp(−100r3)e1 + cos((r − �r�)+=2)e�r	+2 + sin((r − �r�)+=2)e�r	+3: (20)
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Further, deBne Hundal’s hyperplane H , coneK , and starting point y0 by

H = {e1}⊥; K = cone {v(r) : r¿ 0}; and y0 = v(1): (21)

Then the closed convex cone K satisBes sup〈e1; K〉= 0 and H ∩ K = {0}. Moreover,
Hundal’s sequence of alternating projections (yn)n∈N, given by

(∀n∈N) yn+1 = PKPHyn; (22)

converges weakly to 0, but not in norm.

Proof. See [34].

Remark 4.2. Some comments regarding Fact 4.1 are in order.

(i) While lengthy, Hundal’s construction is self-contained and elementary (in the
sense that no external advanced results are utilized).

(ii) Hundal formulated his example with the cone K de<ned in (21) and with H
replaced by the halfspace {e1}� = {x∈ ‘2 : 〈e1; x〉6 0}. This is fully equivalent
to how we stated his example because K ∩ int({e1}�) = ∅. However, for our
purposes, it is more convenient to work with the hyperplane H instead.

(iii) For future use, we point out now that

(PHyn)n∈N converges weakly to 0; but not in norm: (23)

Indeed, weak convergence is implied by the fact that H ∩ K = {0} and Theo-
rem 3.3 (or, since H is a closed linear subspace, by the weak continuity of PH ).
The lack of norm convergence is seen as follows: since 0∈H ∩ K and projec-
tors are nonexpansive (Fact 2.4), we have ‖yn‖ = ‖yn − 0‖¿ ‖PHyn − PH0‖ =
‖PHyn−0‖¿ ‖PKPHyn−PK0‖=‖yn+1‖, for all n∈N. Hence 0¡ inf n∈N ‖yn‖=
inf n∈N ‖PHyn‖, and thus (PHyn)n∈N fails to converge to 0 in norm.

We now show that neither PHPK nor PKPH is <rmly nonexpansive; thus, Fact 4.1
does not contain an obvious counterexample to norm convergence of iterates of <rmly
nonexpansive maps =a la Genel and Lindenstrauss [29]. However, it is conceivable—but
it seems unlikely—that some powers of these compositions are <rmly nonexpansive.
Conversely, the <rmly nonexpansive map in the counterexample by Genel and Linden-
strauss [29] does not appear to be the product of projectors.

Lemma 4.3. Let H and K be Hundal’s hyperplane and Hundal’s cone, respectively.
Then neither PKPH nor PHPK is Brmly nonexpansive.

Proof. “PKPH ”: We require some notation and results from [34]. Let p, h, and P1

be as in [34], and let -∈R satisfy [34, Eq. (14)]. For .∈R, set x(.) = p(-) + .e1.
For all . su:ciently negative, we have 〈e1; x(.)〉6 0. Then 〈e1; PHx(.)〉 = 0 for all
. su:ciently negative and hence PHx(.) = P1p(-). By [34, Theorem 3.14], there
exists -̂∈ ]-; �-�+1[ and /̂∈ ]0; 1[ such that PKPHx(.)=PKP1p(-)= /̂p(-̂). Note that
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the last term is independent of . and that 0 = 〈e1; /̂p(-̂)〉= /̂ + h(-)¿ 0. Thus

〈PKPHx(.); x(.)〉= 〈PKPHx(.); PHx(.)〉+ 〈PKPHx(.); PH⊥x(.)〉
= 〈PKPHx(.); PHx(.)〉+ 〈/̂p(-̂); (h(-) + .)e1〉
= 〈PKPHx(.); PHx(.)〉+ (h(-) + .)0: (24)

The last term, (h(-) + .)0, can be made arbitrarily negative by choosing . su:ciently
negative. In particular, for all . su:ciently negative, we have

‖PKPHx(.)− PKPH0‖2 = ‖PKPHx(.)‖2 ¿ 〈PKPHx(.); x(.)〉
= 〈PKPHx(.)− PKPH0; x(.)− 0〉: (25)

In view of Lemma 2.2(ii), PKPH is not <rmly nonexpansive.
“PHPK”: Assume to the contrary that PHPK is <rmly nonexpansive. On the one

hand, since PHPK0 = 0, it follows that ‖PHPKx‖26 〈PHPKx; x〉, for all x∈X . On the
other hand, using the Moreau decomposition (see [41, Corollaire 4.b]) I = PK + PK�

and the fact that PH is a self-adjoint idempotent, we have for all x∈X : 〈PHPKx; x〉=
〈PHPKx; PKx + PK�x〉= ‖PHPKx‖2 + 〈PHPKx; PK�x〉. Altogether, 〈PHPKx; PK�x〉¿ 0
and so

〈PH (K); K�〉¿ 0: (26)

Now set X+ = {(xn)n∈N ∈ ‘2 : (∀n∈N)xn¿ 0}. Then K ⊂ X+ and (X+)� = −X+;
hence, −X+ ⊂ K�. Thus, using (26), we see that

〈PH (K);−X+〉¿ 0: (27)

Further, PH (K) ⊂ PH (X+) ⊂ X+ and hence −PH (K) ⊂ −X+. Now (27) yields
−‖PH (K)‖2¿ 0 so that PH (K) = {0}, which is the desired contradiction.

5. Averaged projectors

We now show that Hundal’s sequence can be viewed as the iterates of an average
of two projectors. Consequently, since Hundal’s sequence fails to converge in norm,
we have obtained a counterexample to the norm convergence of iterates of averaged
projectors. This provides not only an answer to a question posed by Reich (see the
last paragraph in [45, Section 2]) that was unresolved for two decades, but also a new
counterexample =a la Genel and Lindenstrauss [29].

Theorem 5.1 (An iteration of averaged projectors that fails to converge in norm). Let
H , K , and (yn)n∈N be Hundal’s hyperplane, cone, and sequence, respectively (see
Fact 4.1). DeBne L= RH (K), z0 = PH (y0), and

(∀n∈N) zn+1 =
(

1
2 PK + 1

2 PL
)
zn: (28)

Then (zn)n∈N=(PHyn)n∈N and this sequence converges weakly to 0, but not in norm.
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Proof. Suppose that, zn = PHyn, for some n∈N. Then zn ∈H ; hence, using (22) and
Corollary 2.6(iii), we deduce yn+1 = PHPKyn = PHPKzn =

(
1
2 PK + 1

2 PL
)
zn = zn+1. By

induction, (zn)n∈N = (PHyn)n∈N. The result now follows from Remark 4.2(iii).

Corollary 5.2 (A new counterexample =a la Genel and Lindenstrauss). Let K , L, and
z0 be as in Theorem 5.1, and set T = 1

2 PK + 1
2 PL. Then T is Brmly nonexpansive and

(Tnz0)n∈N converges weakly to 0∈Fix T , but not in norm.

Proof. By Fact 2.4, the reOectors RK and RL are nonexpansive, hence so is R= 1
2 RK +

1
2 RL. Now Lemma 2.2 implies that T = 1

2 PK + 1
2 PL = 1

2 R+ 1
2 I is <rmly nonexpansive.

Since 0∈K , it follows that 0∈RH (K) = L and hence 0 = T0. The statement regarding
the convergence of (zn)n∈N has already been observed in Theorem 5.1.

Remark 5.3. In 1975, Genel and Lindenstrauss provided the <rst example of an iter-
ation of a <rmly nonexpansive map that fails to converge in norm; see [29] and also
[14, pp. 72–74]. Corollary 5.2 is a new example of this kind. It is somewhat more
explicit because the original construction in [29] relies upon the Kirszbraun–Valentine
theorem (see [35] and also [30, Theorem 12.4]).

Remark 5.4 (Extensions to Banach spaces): The following results are drawn from [45];
their proofs also depend on the useful properties of strongly nonexpansive maps sam-
pled in Section 2. Let T =

∑m
i=1 �iRi, where

∑m
i=1 �i = 1, each �i ¿ 0, and each Ri

is a retraction onto some closed convex set Ci in X (see De<nition 2.9) such that
C =

⋂m
i=1 Ci �= ∅. Fix x0 ∈X . Then (Tnx0)n∈N converges in norm to some point in

C if (i) X is a uniformly convex Banach space and each Ri is a linear projection of
norm one onto a subspace Ci [45, Theorem 1.7]; or if (ii) X is smooth and uniformly
convex, each Ci is symmetric, and each Ri is a sunny nonexpansive retraction onto
Ci [45, Theorem 2.3]. Moreover, the sequence (Tnx0)n∈N converges at least weakly,
provided that (iii) X is both uniformly convex and uniformly smooth, and each Ri is
a sunny nonexpansive retraction onto Ci [45, Theorem 2.5].

In particular, all these results are applicable to projectors PCi in Hilbert space.
Returning to our usual setting, we note that the su:cient conditions (i)—(iii) from
above become the following: (i) each Ci is a closed linear subspace; (ii) each set Ci
is symmetric; and (iii) is always satis<ed.

6. Proximal maps

We denote the proximal map (see [16,41], or [49]) of a given proper lower semi-
continuous convex function f :X → ]−∞;+∞] by Prox(f):

Prox(f) = (I + @f)−1 =∇( 1
2 ‖ · ‖2 f∗) : (29)

For example, if C is a nonempty closed convex set in X , then Prox(–C) = PC .
Rockafellar proved that @f is maximal monotone [48]. The resolvent of a maximal
monotone operator A :X → 2X is de<ned by (I + A)−1. Minty characterized resol-
vents as <rmly nonexpansive maps with full domain [40]. In particular, every proximal



H.H. Bauschke et al. / Nonlinear Analysis 56 (2004) 715–738 727

map is <rmly nonexpansive with full domain, but the converse is false—consider, for
instance, R2 → R2 : (.; -) �→ 4

5 (2.− -; 2-− .).
In this section, we show that the proximal maps form a convex set, a result <rst

observed by Moreau [41] (see also Remark 6.2 below). Consequently, if H and K
denote Hundal’s hyperplane and cone, respectively (see Fact 4.1), then 1

2 PH + 1
2 PK ,

the midpoint average of the projectors PH and PK , is not only <rmly nonexpansive
(Corollary 5.2), but also a proximal map. This will be exploited in the next section,
where we provide a new counterexample to norm convergence for sequences generated
by the proximal point algorithm.

Theorem 6.1. Let f1 and f2 be functions from X to ] −∞;+∞] that are convex,
lower semicontinuous, and proper. Suppose �1 and �2 belong to ]0; 1[, �1 + �2 = 1,
and set

f =
(
�1
(
f∗

1
1
2‖ · ‖2)+ �2

(
f∗

2
1
2 ‖ · ‖2))∗ − 1

2 ‖ · ‖2: (30)

Then f is a proper lower semicontinuous convex function such that

f∗ =
(
�1
(
f1

1
2‖ · ‖2)+ �2

(
f2

1
2‖ · ‖2))∗ − 1

2‖ · ‖2 (31)

and Prox(f) = �1Prox(f1) + �2Prox(f2). If each fi is the indicator function of a
nonempty closed convex set Ci in X , then

f(x) = �1�2 inf
{

1
2‖c1 − c2‖2 : �1c1 + �2c2 = x and each ci belongs to Ci

}
=

1
�1�2

1
2
d2(0; (�1(C1 − x)) ∩ (�2(x − C2))) (32)

for every x∈X .

Proof. For convenience, we set j= 1
2‖ · ‖2. It is well-known that j= j∗ and dom j=X .

For i∈{1; 2}, we let

hi = j f∗
i and gi = �ihi: (33)

Since each f∗
i is proper, lower semicontinuous, and convex, so is each hi = j f∗

i ;
moreover, each hi has full domain. It follows that g1 +g2 is lower semicontinuous and
convex, with full domain. Thus (g1 + g2)∗ is proper, which shows that

f = (g1 + g2)∗—j (34)

is proper as well. Later, we require

(g1 + g2)∗ = g∗1 g∗2 ; (35)
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an identity proven by Attouch and Br0ezis [1]. Now <x x∗ ∈X ∗. Then

f∗(x∗) = sup
z∗

(g1 + g2)∗∗(x∗ + z∗)− j(z∗)

= sup
z∗

(g1 + g2)(x∗ + z∗)− j(z∗)

= sup
y∗

(g1 + g2)(y∗)− j(y∗ − x∗)

= sup
y∗

�1(j f∗
1 )(y∗) + �2(j f∗

2 )(y∗)− (j(y∗) + j(x∗)− 〈x∗; y∗〉)

= sup
y∗

�1(j(y∗)− (j f1)(y∗)) + �2(j(y∗)− (j f2)(y∗))

− (j(y∗) + j(x∗)− 〈y∗; x∗〉)
=−j(x∗) + sup

y∗
〈x∗; y∗〉 − (�1(j f1) + �2(j f2))(y∗)

= (�1(j f1) + �2(j f2))∗(x∗)− j(x∗); (36)

where • in the 1st equality, we used the fact that (g1 +g2)∗ is proper (since g1 +g2 is),
j=j∗, dom j∗=X , and [33, Theorem 2.2]; • the 2nd equality is obtained by noting that
g1 + g2 is proper, lower semicontinuous and convex, so that the Biconjugate Theorem
[54, Theorem 2.3.3] holds; • we changed variables in the 3rd equality; the 4th equality
follows from the de<nitions; • Moreau’s result that (w j)+(w∗ j)=j for every proper,
lower semicontinuous, and convex function w (see [41, Eq. (9.1)] or prove it directly
via Fenchel duality) implies the 5th equality; • the two remaining equalities follow
from the de<nitions. Since x∗ was chosen arbitrarily, we have proved the announced
identity for f∗, namely

((�1(j f∗
1 ) + �2(j f∗

2 ))∗ − j)∗ = (�1(j f1) + �2(j f2))∗ − j: (37)

Now this identity holds true for any two proper lower semicontinuous convex functions
f1; f2 from X to ]−∞;+∞]. Applying (37) to f∗

1 ; f
∗
2 , we obtain

((�1(j f1) + �2(j f2))∗ − j)∗ = (�1(j f∗
1 ) + �2(j f∗

2 ))∗ − j: (38)

On the one hand, the left side of (38) is a conjugate function, hence it is convex and
lower semicontinuous. On the other hand, the right side of (38) is just f. Altogether,
f is convex, lower semicontinuous, and (as observed in (34)) proper.

It remains to establish the identity regarding the proximal map of f. The de<nitions
and a further dose of convex calculus now yield

f = (g1 + g2)∗ − j⇔ j + f = (g1 + g2)∗

⇔ (j + f)∗ = g1 + g2

⇔ j f∗ = g1 + g2

⇔ j f∗ = �1h1 + �2h2 (39)



H.H. Bauschke et al. / Nonlinear Analysis 56 (2004) 715–738 729

Therefore, Prox(f) =∇(j f∗) =∇(�1h1 +�2h2) =�1∇(h1) +�2∇(h2) =�1∇(j f∗
1 ) +

�2∇(j f∗
2 ) = �1 Prox(f1) + �2 Prox(f2).

Now suppose fi = –Ci , for each i∈{1; 2}, and <x x∈X . Using (35), we obtain

f(x) = (g∗1 g∗2)(x)− j(x)
= inf

x1+x2=x
g∗1 (x1) + g∗2 (x2)− j(x)

= inf
x1+x2=x

�1

(
1
2

∥∥∥∥ x1

�1

∥∥∥∥
2

+ –C1

(
x1

�1

))

+ �2

(
1
2

∥∥∥∥ x2

�2

∥∥∥∥
2

+ –C2

(
x2

�2

))
− 1

2‖x1 + x2‖2

= inf
x1+x2=x and each xi=�i∈Ci

�1
1
2

∥∥∥∥ x1

�1

∥∥∥∥
2

+ �2
1
2

∥∥∥∥ x2

�2

∥∥∥∥
2

− 1
2‖x1 + x2‖2

= inf
�1c1+�2c2=x and each ci∈Ci

�1
1
2 ‖c1‖2 + �2

1
2‖c2‖2 − 1

2‖�1c1 + �2c2‖2

= inf
�1c1+�2c2=x and each ci∈Ci

1
2 �1�2‖c1 − c2‖2; (40)

which establishes the <rst equality in (32). If each ci belongs to Ci and x=�1c1 +�2c2,
then c2 ∈ (x− �1C1)=�2, c1 ∈ (x− �2C2)=�1, and ‖c2 − c1‖= ‖x− c1‖=�2 = ‖x− c2‖=�1.
This implies that

f(x) =
1
2
�1�2

1
�2

2
d2(x; C1 ∩ ((x − �2C2)=�1))

=
1
2
�1

�2
d2(0; (C1 − x) ∩ ((x − �1x − �2C2)=�1))

=
1
2
�1

�2
d2(0; (C1 − x) ∩ ((�2=�1)(x − C2)))

=
1
2
�1

�2

1
�2

1
d2(0; (�1(C1 − x)) ∩ (�2(x − C2))): (41)

Therefore, the second equality of (32) is veri<ed.

Remark 6.2. Theorem 6.1 implies that the proximal maps form a convex set, an ob-
servation originally due to Moreau [41, Proposition 9.d]. The present proof appears
to be more straightforward and it also provides an explicit formula of the function
corresponding to the convex combination of the proximal maps. This will aid us in the
derivation of the function f in Corollary 7.1 below.
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7. Proximal point algorithm

We are now in a position to derive a new counterexample to the norm convergence
of the proximal point algorithm =a la G@uler.

Corollary 7.1 (A new proximal point iteration that fails to converge in norm). Let
K , L, and z0 be as in Theorem 5.1, and set f(x) = 1

2 d
2(0; (K − x) ∩ (x − L)), for

every x∈X . Then f is convex, lower semicontinuous, proper, and its proximal map is
Prox(f) = 1

2 PK + 1
2 PL. Moreover, the sequence ((Prox(f))nz0)n∈N converges weakly

to 0, but not in norm.

Proof. Combine Corollary 5.2 and Theorem 6.1 (where �1 = �2 = 1
2 ).

Remark 7.2 (Proximal point algorithm): Let f :X → ] − ∞;+∞] be convex, lower
semicontinuous, and proper. Recall that (see the classical papers by Martinet [38] and
by Rockafellar [49]) given a sequence of strictly positive parameters (7n)n∈N and a
starting point x0 ∈X , the inductive update rule of the proximal point algorithm for
minimizing f is

xn+1 = argmin
x∈X

(
f(x) +

1
27n
‖x − xn‖2

)

= (I + 7n@f)−1(xn)

=
(
∇( 1

2 ‖ · ‖2 + 7nf
)∗)

(xn)

= (Prox(7nf))(xn) (42)

for all n∈N. Br0ezis and Lions [17] show that if f has minimizers and
∑

n∈N 7n=+∞,
then the sequence generated by (42) converges weakly to a minimizer of f.

The question whether norm convergence always holds remained open until 1991,
when G@uler [32] constructed a whole family of counterexamples for all strictly positive
parameter sequences (7n)n∈N such that

∑
n 7n = +∞.

In [10], Fact 4.1 has been interpreted as a simple counterexample to norm conver-
gence of the proximal point algorithm with 7n → 0. We now realize that Corollary 7.1
provides another counterexample of this type, for the case when 7n ≡ 1.

8. String-averaging projection methods

Let C1, C2, and C3 be closed convex sets in X with corresponding projectors P1,
P2, and P3, respectively. Suppose further that C = C1 ∩ C2 ∩ C3 �= ∅ and de<ne

T = 1
2P1P2 + 1

4P2 + 1
4P3: (43)

Note that T is neither a composition nor an average of the given projectors. However,
the iterates of the operator T can be analyzed within the very Oexible string-averaging
algorithmic structure proposed recently by Censor et al. [21] (see also [20,22,26]).
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Roughly speaking, a string corresponds to a point obtained through the sequential ap-
plication of operators to the current point, and the update step consists of averaging
the resulting strings. This framework is clearly inspired by parallel computing architec-
tures, where each processor can work independently on its string. Thus, the application
of the operator T can be viewed as a string-averaging algorithm, where P1P2; P2; P3

are three strings that are averaged by the weights 1
2 , 1

4 , 1
4 , respectively.

We now provide a prototypical convergence result for the iterates of the operator T .

Theorem 8.1. Let T be deBned by (43) and <x x0 ∈X . Then the sequence (Tnx0)n∈N
converges weakly to some point in C. If each set Ci is symmetric (i.e., Ci = −Ci),
then (Tnx0)n∈N converges in norm.

Proof. Each projector is <rmly nonexpansive hence strongly nonexpansive
(Fact 2.11(i)). Repeated use of Fact 2.8 shows that the map T is strongly non-
expansive as well, and its <xed point set is C. Fact 2.13(ii) now implies that (Tnx0)n∈N
converges weakly to a point in C.

Assume that each set Ci is symmetric. Then C is symmetric as well. Also, [45,
Lemma 2.2] implies that each Pi is odd (Pi(−x)=−Pix, for all x∈X ). Thus T is odd.
The norm convergence of (Tnx0)n∈N now follows from Fact 2.13(iii).

Remark 8.2. It is clear that the convergence proof of Theorem 8.1 will also work
for iterations of various other maps as long as they are assembled from projectors by
averaging and by composition. (See [8, Examples 2.14 and 2.20] for another example
of a string-averaging method.) For convergence results in <nite-dimensional spaces, see
[20–22,26].

Remark 8.3 (Extensions to Banach spaces): A closer inspection of its proof reveals that
Theorem 8.1 holds true under the following more general conditions: X is a Banach
space such that both X and its dual X ∗ are uniformly convex, and each Ci is the
<xed point set of a strongly nonexpansive map Pi. The norm convergence requires
additionally that each Pi be odd.

We now combine Theorem 8.1 with Theorem 5.1 to obtain a counterexample to
norm convergence for string-averaging projection methods.

Corollary 8.4. Let H , K , y0 be Hundal’s hyperplane, cone, and starting point, re-
spectively. Further, deBne L= RH (K) and

T = 1
2PHPK + 1

4PK + 1
4PL: (44)

Then the sequence (TnPHy0)n∈N converges weakly to 0, but not in norm.

Proof. By Fact 4.1, H ∩ K ∩ L= {0}. Hence, Theorem 8.1 implies that (TnPHy0)n∈N
converges weakly to 0. Suppose x∈H . By Corollary 2.6(iii), PHPKx = 1

2PKx + 1
2PLx

and thus Tx = PHPK . Using induction, it follows that (TnPHy0)n∈N is equal to the
sequence (zn)n∈N of Theorem 5.1; consequently, it does not converge in norm.
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Remark 8.5. In fact, a second glance at the proof of Corollary 8.4 reveals that the
conclusion of this result holds whenever

T = !1(PHPK) + !2(PHPL) + !3
(

1
2 PK + 1

2 PL
)
; (45)

where !1; !2; !3 belong to [0; 1] and !1 + !2 + !3 = 1.

9. The Hilbert ball

Throughout this last section, we let Y be a complex Hilbert space with inner product
〈· ; ·〉 and induced norm ‖ · ‖. Suppose that X = {x∈Y : ‖x‖¡ 1} is the open unit ball
of Y and de<ne

(∀x∈X )(∀y∈X ) :(x; y) =
(1− ‖x‖2)(1− ‖y‖2)
|1− 〈x; y〉|2

and

;(x; y) = arctanh
√

1− :(x; y): (46)

Then (X; ;) is a complete metric space, commonly referred to as the Hilbert ball
(see [31, p. 91 and Section 2.15]; for further background material on this and on what
follows, see [31, Chapter 2].

Given x and y in X , and �∈ [0; 1], the results in [31, Section 2.17] show that there
exists a unique point z ∈X such that ;(x; z)=�;(x; y) and ;(z; y)=(1−�);(x; y); this
point is denoted by

(1− �)x ⊕ �y (47)

and it is a ;-convex combination of x and y. A set S in X is called ;-convex (re-
spectively, ;-closed), if it contains all its ;-convex combinations (respectively, if it is
closed in (X; ;)).

Given T :X → X , let us de<ne

(∀x∈X )(∀y∈X )

�x;y : [0; 1]→ [0;+∞[:� �→ ;((1− �)x ⊕ �Tx; (1− �)y ⊕ �Ty): (48)

Analogously to (5), one says that T is Brmly ;-nonexpansive of the Brst kind (respec-
tively, ;-nonexpansive), if �x;y is decreasing (respectively, �x;y(0)¿�x;y(1)) for all
x and y in C (see [31, pp. 73, 124]). As in the Hilbert space case (6), T :X → X is
;-nonexpansive if and only if

(∀x∈X )(∀y∈X ) ;(Tx; Ty)6 ;(x; y); (49)

in which case Fix T is ;-closed and ;-convex [31, Theorem 2.23.2].

Fact 9.1 (Projectors in the Hilbert ball). Suppose C is a ;-closed and ;-convex set
in X . Then for every x∈X , there exists a unique point in C, denoted P̃Cx, such that
;(x; P̃Cx) = inf y∈C ;(x; y). The induced map P̃C :X → C is Brmly ;-nonexpansive of
the Brst kind.
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Proof. See [31, Section 2.19].

Given y∈X and s¿ 0, the set {x∈X : ;(x; y)¡s} is the open ;-ball of radius
s centered at y (see also [31, Section 15] for characterizations). A set S in X is
;-bounded, if it is contained in some open ;-ball. A sequence (xn)n∈N in X is
;-bounded, if its orbit {xn : n∈N} is.

A map T :X → X is called para-strongly ;-nonexpansive (see [47], where this
was called strongly nonexpansive for brevity), if T is ;-nonexpansive, Fix T �= ∅, and
for every ;-bounded sequence (xn)n∈N and every y∈Fix T , the condition ;(xn; y) −
;(Txn; y)→ 0 implies ;(xn; Txn)→ 0.

Analogously to De<nition 2.9, a map T :X → C ⊂ X is called a ;-retraction onto
C, if T is continuous in (X; ;) and Fix T = C.

The following basic results on para-strongly ;-nonexpansive maps are due to
Reich [47].

Fact 9.2. Let T; T1; T2 be maps from X to X with Bxed point sets F; F1; F2,
respectively.

(i) If T is Brmly ;-nonexpansive of the Brst kind and F �= ∅, then T is para-strongly
;-nonexpansive.

(ii) If T is para-strongly ;-nonexpansive, then the map

X → F : x �→ weak lim
n
T nx (50)

is a well-deBned ;-nonexpansive ;-retraction onto F .
(iii) If each Ti is para-strongly ;-nonexpansive and F1 ∩ F2 �= ∅, then T2T1 is

para-strongly ;-nonexpansive and F = F1 ∩ F2.

Proof. (i): [47, Lemma 2]. (ii): [47, Lemmata 5 and 6]. (iii): [47, Lemmata 3
and 4].

Corollary 9.3. Suppose A and B are ;-closed ;-convex sets in X such that A∩B �= ∅.
Then for every x∈X , the sequence ((P̃BP̃A)nx)n∈N converges weakly to some point
in A ∩ B.

Proof. (See also [47].) The projectors P̃A and P̃B are <rmly ;-nonexpansive of the
<rst kind (Fact 9.1), hence para-strongly ;-nonexpansive (Fact 9.2(i)). By Fact 9.2(iii),
T = P̃BP̃A is para-strongly ;-nonexpansive and Fix T = A ∩ B. The weak convergence
statement now follows from Fact 9.2(ii).

Remark 9.4. Reich asks at the end of [47] whether the convergence in Corollary 9.3
is actually strong. While Hundal settled the corresponding question in Hilbert space
(Fact 4.1), the problem posed by Reich remains open in the Hilbert ball.

The next result exhibits two analogues of Fact 2.8(ii).
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Theorem 9.5. Let T1; T2 be para-strongly ;-nonexpansive maps from X to X such
that Fix (T1) ∩ Fix (T2) �= ∅. Suppose �1; �2 are in ]0; 1[ and �1 + �2 = 1. Now deBne
T in one of the following two ways.
(i) T :X → X : x �→ �1T1x ⊕ �2T2x;
(ii) T :X → X : x �→ �1T1x + �2T2x.

Then T is para-strongly ;-nonexpansive with Fix T = Fix (T1) ∩ Fix (T2).

Proof. (i). Fact 2.8(ii) states that the corresponding Hilbert (and even Banach) space
statement is true. It turns out that the corresponding proofs of [47, Lemmata 3 and 4]
carry over if we utilize [31, Lemma 2.17.1] at the appropriate places.

(ii). Clearly, Fix (T1) ∩ Fix (T2) ⊂ Fix T . Conversely, <x y∈Fix (T1) ∩ Fix (T2) and
pick x∈Fix T . By [36, Lemma 3.3(i)], ;(x; y)=;(Tx; Ty)=;(Tx; y)6max{;(T1x; y);
;(T2x; y)}. Without loss of generality, assume that max{;(T1x; y); ;(T2x; y)} =
;(T1x; y). Since T1 is para-strongly ;-nonexpansive, we obtain ;(x; y)6 ;(T1x; y)6
;(x; y) and hence T1x = x. Since x = Tx, this implies T2x = x. We conclude that
Fix T ⊂ Fix (T1) ∩ Fix (T2). Next, pick a ;-bounded sequence (xn)n∈N such that

;(xn; y)− ;(Txn; y)→ 0: (51)

We have to show that ;(xn; Txn) → 0. Assume to the contrary this were false. Using
[36, Lemma 3.3(i)] again, and after repeatedly passing to subsequences and relabelling
if necessary, we obtain <¿ 0 and M¿ 0 such that

(∀n∈N) <6 ;(xn; Txn); max{;(Txn; y); ;(T2xn; y)}6 ;(T1xn; y);

and ;(xn; y)→ M: (52)

Hence 0← ;(Txn; y)− ;(xn; y)6 ;(T1xn; y)− ;(xn; y)6 0 and thus

;(T1xn; y)− ;(xn; y)→ 0: (53)

Since T1 is para-strongly ;-nonexpansive, it follows that

;(T1xn; xn)→ 0: (54)

Moreover, (51)–(53) imply that

;(T1xn; y)→ M; lim sup ;(T2xn; y)6M and ;(Txn; y)→ M: (55)

Now let (un)n∈N and (vn)n∈N be the two sequences in X that are uniquely de<ned by
the following properties:

(∀n∈N)

{
un ∈ conv{T1xn; Txn}; vn ∈ conv{Txn; T2xn} and

‖un−Txn‖=‖vn−Txn‖=min{‖T1xn−Txn‖; ‖T2xn−Txn‖}:
(56)

Then, by construction,

(∀n∈N) 1
2 un + 1

2 vn = Txn and ‖T1xn − T2xn‖=
‖un − vn‖

2 min{�1; �2} : (57)



H.H. Bauschke et al. / Nonlinear Analysis 56 (2004) 715–738 735

Using [36, Lemma 3.3(i)] and (52), we obtain ;(un; y)6max{;(T1xn; y); ;(Txn; y)}=
;(T1xn; y) and ;(vn; y)6max{;(Txn; y); ;(T2xn; y)}6 ;(T1xn; y), for every n∈N.
Combining these inequalities with (55) and (57), we see that

lim sup ;(un; y)6M; lim sup ;(vn; y)6M and

lim ;
(

1
2 un + 1

2 vn; y
)

=M: (58)

Now (58) and [46, Lemma 4] result in un − vn → 0; equivalently (see (57)), T1xn −
T2xn → 0. By (55), the sequences (T1xn)n∈N and (T2xn)n∈N are both ;-bounded;
therefore, using [36, Theorem 3.4], we conclude that ;(T1xn; T2xn) → 0. The triangle
inequality and (54) yield

;(T2xn; xn)→ 0: (59)

Finally, (52), (54), (59), and [36, Lemma 3.3(i)] imply the contradiction <6 ;(Txn; xn)
6max{;(T1xn; xn); ;(T2xn; xn)} → 0.

Corollary 9.6. Suppose A and B are ;-closed ;-convex sets in X such that A∩B �= ∅.
Then for every x∈X , the sequences((

1
2 P̃A ⊕ 1

2 P̃B
)n
x
)
n∈N

and
((

1
2 P̃A + 1

2 P̃B
)n
x
)
n∈N

(60)

both converge weakly to some point in A ∩ B.

Proof. Combine Theorem 9.5 with Fact 9.2(ii).

Remark 9.7. Whether the convergence in Corollary 9.6 is actually strong is an inter-
esting open problem. Theorem 5.1 illustrates the failure of norm convergence in the
corresponding Hilbert space setting.

Remark 9.8. A map T :X → X is ;-averaged (respectively, ;-averaged of the second
kind), if it is of the form T = (1− �)I ⊕ �T ′ (respectively, T = (1− �)I + T ′), where
T ′ is ;-nonexpansive and �∈ [0; 1[; see [46]—if furthermore � = 1

2 , we say that the
map is ;-midpoint averaged. It is known that if T is ;-averaged of either kind with
Fix T �= ∅ and x∈X , then (Tnx)n∈N converges weakly to some point in Fix T (see
[46, Theorems 3 and 5]).

Remark 9.9. Kuczumow and Stachura [37] (see also [36, Example 10.6 p. 475]) con-
structed ;-midpoint averaged maps of both types such that some sequence of iterates
fails to converge in norm—these counterexamples are similar to (and their construc-
tion is based upon) the corresponding counterexample by Genel and Lindenstrauss in
Hilbert space [29]. We do not know whether the Kuczumow–Stachura maps can be
expressed as either 1

2 P̃A ⊕ 1
2 P̃B or 1

2 P̃A + 1
2 P̃B, for some ;-closed ;-convex sets A;

B in X .
We conclude with the following striking diPerence between Hilbert space and the

Hilbert ball. If C is a closed convex nonempty set in a Hilbert space, then (Fact 2.4)
RC is nonexpansive and thus PC= 1

2 I+
1
2 RC is (even midpoint) averaged. In the Hilbert

ball, the corresponding statement is known to be false; see [31, Example 2.22.1].
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