MAT 351: Partial Differential Equations Test 3, March 15 2017

(Four problems; 20 points each.)

- 1. For the wave equation $u_t t = c^2 \Delta u$ on \mathbb{R}^d :
 - (a) Define the terms *finite speed of propagation* and *domain of dependence*.
 - (b) State **Huygens' principle** in three dimensions, and justify it in terms of Kirchhoff's formula.
 - (c) Explain why Huygens' principle fails in dimension one and two.
- 2. Let $D \subset \mathbb{R}^d$ a smooth bounded connected domain.
 - (a) Write down the **Rayleigh principle** for the lowest eigenvalue λ_1 of the Laplacian with Dirichlet boundary conditions. How does it determine the corresponding eigenfunction, v_1 ?
 - (b) State the min-max principle for the higher eigenvalues λ_n , n > 1.
 - (c) It is known that $v_1 > 0$ on D. Show that all higher eigenfunctions v_n change sign.
 - (d) Define the subdomain A = {x ∈ D | v₂(x) > 0}. Show that its lowest Dirichlet eigenvalue λ₁(A) is given by λ₂, the second-lowest Dirichlet eigenvalue of D. (*Hint:* What is the corresponding eigenfunction?)
 - (e) If E, F is any pair of disjoint subdomains of D with $\lambda_1(E) = \lambda_1(F)$, argue that

$$\lambda_1(E) \ge \lambda_2$$
.

(*Hint:* Construct a suitable trial function for the variational principle that defines λ_2 . Make sure your function is continuous but ignore differentiability issues.)

3. Consider Legendre's differential equation

$$((1 - x^2)u')' + \gamma u = 0, \quad x \in (-1, 1)$$

(a) Assuming that u is a power series,

$$u(x) = \sum_{k \ge 1} a_k x^k \,,$$

find a recursion formula for the coefficients.

(b) For what values of γ is the solution a polynomial? Of which degree?

- (c) If the solution is not a polynomial, show that the power series diverges at $x = \pm 1$.
- (d) Let $(\gamma_n)_{n\geq 0}$ be the values of γ you found in Part (b). Show that the corresponding polynomials (u_n) satisfy the orthogonality relation

$$\int_{-1}^{1} u_n(x) u_m(x) (1 - x^2) \, dx = 0 \qquad n \neq m \, .$$

- (e) Conclude $(u_n)_{n\geq 0}$ (suitably normalized) form an orthonormal basis for $L^2(-1,1)$.
- 4. Consider the Dirichlet eigenvalue problem for the Laplacian on the unit disc

$$-\Delta u = \lambda u$$
 for $x^2 + y^2 < 1$, $u\Big|_{x^2 + y^2 = 1} = 0$.

- (a) Express the eigenvalues in terms of the **Bessel functions** J_n .
- (b) Give the corresponding description for the Neumann problem.
- (c) Let $N(\lambda)$ be the number of eigenvalues up to λ , with the respective boundary conditions. Use Parts (a) and (b) to show that

$$N_{Dirichlet}(\lambda) \ge N_{Neumann}(\lambda)$$

for all $\lambda > 0$. Please support your argument with a sketch of the J_n .

Useful formulas