MAT 377: Probability Midterm Assessment, Oct. 28 2020

(Four problems, 80 points in total. Time: 2 hours, plus 20 minutes for logistics. If you have questions, email or text me (416 262 5535).

- 1. (20pts) Let N_3 be the number of triangles in the Erdős-Rényi graph G(n, p). Compute ...
 - (a) ... the expectation $\mathbb{E}N_3$,
 - (b) ... the variance $Var(N_3)$.

Please explain your method!

- 2. (20pts) Let X be a random variable with Poisson (μ) distribution.
 - (a) Describe a situation that can be modeled by such a random variable. What are crucial assumptions? How should μ be chosen? What determines the error in the approximation? Please justify your answer in a sentence or two (using results we proved in class).
 - (b) Set $\mu = 1$. Find the moment-generating function $M(\lambda) := \mathbb{E}e^{\lambda X}$.
 - (c) Use Markov's inequality to derive a bound on $\mathbb{P}(X \ge t)$. (Remember to optimize over λ !)
- 3. (20pts) Consider a sequence of independent tosses of a coin that shows Heads with probability p, and Tails with probability q = 1 p. Let X_i be the indicator that the *i*-th toss comes up Heads, and let T_k be the toss on which Heads appears for the *k*-th time.
 - (a) (Geometric distribution) Find the distribution $\mathbb{P}(T_1 = t)$. What is its expectation?
 - (b) Express $\mathbb{P}(T_k = t)$ in terms of suitable Binomial (n, p) random variables. (Do not try to simplify the result, but please explain briefly).
 - (c) Let A be the event that $T_5 = 10$. Find the conditional probability $\mathbb{P}(X_i = 1 | A)$ for i = 1, 2, ... (The answer depends on how large *i* is compared to 10).

4. (20pts) (A maximal inequality) Suppose that the random variables X_1, X_2, \ldots are i.i.d. and nonnegative. Assuming that $\mathbb{E}X_1^2 < \infty$, show that

$$\lim_{n \to \infty} \mathbb{P}\left(\max_{i=1,\dots,n} X_i \ge t\sqrt{n}\right) = 0$$

for every t > 0.

Hint: Use the union bound, and the improved version of Chebyshev's inequality

$$\mathbb{P}(X \ge x) \le \frac{1}{x} \mathbb{E} X I_{X \ge x}, \quad (x > 0).$$