MAT 377: Probability Midterm Assessment, Nov. 22 2021

(Four problems, 80 points in total. Time: 1 hour 50 minutes

- 1. (20pts) Suppose we throw n balls into m boxes at random. Let N be the number of boxes with exactly three balls in them.
 - (a) Compute its expectation, EN.
 - (b) Find the limit $\lim_{n\to\infty} EN/n$ when $m = \alpha n$ for fixed $\alpha > 0$.
 - (c) What does Azuma's inequality say about |N EN|? (Remember to verify the hypotheses!)
- 2. (20pts) Let $X \sim \text{Geo}(p)$ be a random variable with geometric distribution.
 - (a) Write down the distribution, mean, and variance of X.
 - (b) Prove that $EX^{10} < \infty$ but $Ee^{X^2} = \infty$.
 - (c) Prove the *memoryless property*: For any pair of integers $k, \ell \ge 1$,

$$\mathbb{P}(X > k + \ell | X > k) = \mathbb{P}(X > \ell) .$$

3. (20pts) On $\Omega = [0, \pi] \times [0, 2\pi]$, consider the probability measure

$$\mathbb{P}(E) = \int_0^{2\pi} \int_0^{\pi} I_E(\phi, \theta) \sin \phi \, d\phi d\theta \,, \quad \text{for } E \subset \Omega \,.$$

Define three random variables on Ω by $X = \sin \phi \cos \theta$, $Y = \sin \phi \sin \theta$, $Z = \cos \phi$.

- (a) Find the probability density p_Z of Z (formula and name).
- (b) Argue that the vector-valued random variable (X, Y, Z) is *uniformly distributed* on the unit sphere $S^2 \subset \mathbb{R}^3$, that is,

$$\mathbb{P}((X, Y, Z) \in A) = \frac{\operatorname{Area}(A)}{4\pi}, \text{ for } A \subset S^2.$$

Conclude that Y and Z have the same distribution as X.

(c) With as little computation as possible, find the means, variances, and covariances of X, Y, and Z. Please explain! (Use that $X^2 + Y^2 + Z^2 = 1$.)

4. (20pts) The goal in this problem is to adapt the proof of Azuma's inequality so that it yields a bound on the variance of a random variable $f(X_1, \ldots, X_n)$,

Assume that f satisfies the stability condition for Azuma's inequality, with stability constants $a_1 = \ldots = a_n = a$ (for simplicity). Let X_1, \ldots, X_n be independent.

For $i = 0, \ldots, n$, and any choice of x_1, \ldots, x_n , let

$$E_i f(x_1,\ldots,x_i) := E(x_1,\ldots,x_i,X_{i+1},\ldots,X_n)$$

(Here, x_1, \ldots, x_n are fixed while X_{i+1}, \ldots, X_n are random variables.) Set

$$Y_i := E_i f(X_1, \dots, X_n) - E_{i-1}(X_1, \dots, X_n)$$

- (a) Argue that $Y_1 + \dots + Y_n = f(X_1, \dots, X_n) Ef(X_1, \dots, X_n)$.
- (b) Prove that Var(f(X₁,...,X_n)) ≤ na².
 Hint: Show that Y_i and Y_j are uncorrelated for i ≠ j, and Var(Y_i) ≤ a².
- (c) *Discuss:* What does Chebyshev's inequality say about $\mathbb{P}(|f Ef| \ge t)$? How does it compare with the conclusion of Azuma's inequality in this case?

Remark: In Part (b), the best estimate is $Var(Y_i) \leq \frac{1}{4}a^2$ (you are not asked to show this).