APM 351: Differential Equations in Mathematical Physics January 11 2012

Summary

By definition, the Green's function of a domain D can be constructed (for every fixed x) by

$$G(x, y) = \Phi(x - y) - h(y),$$

where Φ is the fundamental solution of Laplace's equation, given by

$$\Phi(x) = \begin{cases} \frac{1}{2\pi} \log |x|, & \text{dimension } n = 2, \\ -\frac{1}{4\pi |x|}, & n = 3, \end{cases}$$

and h is a harmonic function such that $h(y) = \Phi(x - y)$ whenever y lies in the boundary of D. (Of course, h depends on x as well).

There are only few domains where the Green's function can be computed explicitly. The two most important ones are the upper half-space and the unit ball in \mathbb{R}^n . For these, we can use a **reflection principle** to find the harminic function *h*.

Upper half-space: Let D = {x ∈ ℝ³ | x₃ > 0}. For x ∈ D, we define its reflection at the boundary {x₃ = 0} by x̄ = (x₁, x₂, -x₃), and set

$$h(y) = \Phi(\bar{x} - y) = \frac{1}{4\pi} \left((x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 + y_3)^2 \right)^{-\frac{1}{2}}.$$

Clearly, h is harmonic in y on the entire positive half-space (since \bar{x} lies in the negative half-space). If $y_3 = 0$, then $h(x, y) = \Phi(x - y)$, because in that case $|\bar{x} - y| = |x - y|$. So the Green's function is given by

$$G(x,y) = \frac{1}{4\pi} \left(\frac{1}{|\bar{x} - y|} - \frac{1}{|x - y|} \right), \quad x, y \in D.$$

The **Poisson kernel** for *D* is given by

$$K(x,y) = \nabla_y G(x,y) \cdot \nu(y) = \frac{1}{2\pi} \frac{x_3}{|x-y|^3}, \qquad x \in D, y \in \partial D$$

• Unit ball: Let $D = \{x \in \mathbb{R}^3 \mid |x| < 1\}$. For $x \in D$, we define its reflection at the unit sphere by $\bar{x} = \frac{x}{|x|^2}$. A quick computation shows that

$$|\bar{x} - \bar{y}|^2 = \frac{|x - y|^2}{|x|^2|y|^2}$$

in particular, if $y \in \partial D$, then $|\bar{x} - y| = \frac{|x-y|}{|x|}$. For $x \in D$, the function

$$h(y) = \Phi(|x| \cdot |\bar{x} - y|) = -\frac{1}{4\pi |x| \cdot |\bar{x} - y|}$$

is clearly harmonic in y on D (since \bar{x} lies outside D), and its boundary values agree with those of $\Phi(x - y)$. So the Green's function is given by

$$G(x,y) = \frac{1}{4\pi} \left(\frac{1}{|x| \cdot |\bar{x} - y|} - \frac{1}{|x - y|} \right)$$

For the **Poisson kernel**, we obtain (by computing the normal derivative) using that $\nu(y) = y$)

$$K(x,y) = \nabla_y G(x,y) \cdot \nu(y) = \frac{1-|x|^2}{4\pi |x-y|^3}, \qquad x \in D, y \in \partial D.$$

In both cases, we have found a formula for the solution of Poisson's equation

$$\Delta u = f$$
 for $x \in D$, $u(x) = g(x)$ for $x \in \partial D$.

It is given by

$$u(y) = \int_D G(x, y) f(y) \, dy + \int_{\partial D} K(x, y) g(y) \, dS(y) \, dS(y)$$

Note that G < 0 and K > 0, in agreement with the maximum principle.

Assignments

Read Chapter 7 of Strauss.

Hand-in (due Thursday, January 19):

- 1. Find the Green's function for the Laplacian
 - (a) for the positive quadrant in \mathbb{R}^2 ;
 - (b) for the upper half of the unit ball in \mathbb{R}^3 .

Hint: Recall the fundamental solution of the heat equation, and use reflections.

2. Let D be the unit disc in the plane, and denote by D_+ its intersection with the half-space y > 0. Let u be a harmonic function D_+ that is continuous on the closure $\overline{D_+}$. Assume that u vanishes on the flat part of the boundary $\{(x, 0) \mid -1 \le x \le 1\}$, and extend it to a function \tilde{u} on the whole disc by odd reflection,

$$\tilde{u}(x,y) = \begin{cases} u(x,y), & (x,y) \in \overline{D}, y \ge 0\\ -u(x,y) & (x,y) \in \overline{D}, y \le 0. \end{cases}$$

Prove that \tilde{u} is harmonic on *D*, in two ways:

(a) Show directly that $\Delta \tilde{u}(x, y) = 0$ when y = 0.

Note: You need to assume here that the second derivatives of u are continuous on \overline{D}_+ .

(b) Identify \tilde{u} as the solution of a suitable boundary-value problem.

Hint: What do we know about existence and uniqueness of solutions to this problem?

3. How many linearly independent polynomials of degree k are there in three variables? How many linearly independent *harmonic* polynomials of degree k are there? (*Hint:* Consider the Laplacian as a linear transformation that maps polynomials of degree k to polynomials of degree k - 2. You may assume that this map is onto.)