APM 351: Differential Equations in Mathematical Physics Assignment 15, due February 16, 2012

Summary:

For the wave equation $u_{tt} = c^2 \Delta u$, the heat equation $u_t = k \Delta u$, and the Schrödinger equation $iu_t = -\Delta u$, separation of variables leads to the same eigenvalue problem

$$-\Delta u = \lambda u$$
.

It turns out that this eigenvalue problem has no solutions on \mathbb{R}^n that decay at infinity or are even square integrable. (For every vector k, the function $u(x) = e^{-ik \cdot x}$ is a bounded solution with $\lambda = |k|^2$ but these don't lie in L^2 .) So we have to investigate other methods of solutions.

- The solutions of the **wave equation** in one, two, and three spatial dimensions are given by the formulas of D'Alembert, Poisson and Kirchhoff. Similar formulas can be derived in higher dimensions.
- The solution of the **heat equation** with $u(x, u) = \phi(x)$ is given by

$$u(x,t) = (4\pi kt)^{-n/2} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4kt}} \phi(y) \, dy \, .$$

The positivity of the heat kernel $(4\pi kt)^{-n/2}e^{-\frac{|x|^2}{4kt}}$ is a manifestation of the maximum principle.

This formula remains valid, if k is a complex number with positive real part, provided that we take the square root \sqrt{k} to have positive real part. The integral converges and defines a smooth function, so long as ϕ is bounded and integrable.

• By analytic continuation to k = i, we obtain for the Schrödinger equation the solution formula

$$u(x,t) = (4\pi i t)^{-n/2} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4it}} \phi(y) \, dy \, .$$

Here, the square root in the first factor should be chosen as $\sqrt{i} = \frac{1+i}{\sqrt{2}}$. Note that the integral is now oscillatory, and will diverge unless ϕ itself decays at infinity. This is related to the wave-like properties of Schrödinger's equation.

The fact that the kernel $(2\pi i t)^{-n/2} e^{-\frac{|x-y|^2}{4it}}$ never vanishes indicates infinite speed of propagation.

Assignments:

Complete Chapter 9 of Strauss and move on into Chapter 10.

1. (a) Verify that the solution formula for the heat equation in \mathbb{R}^n is valid for every product of continuous functions $\phi(x) = \prod_{i=1}^n \phi_i(x_i)$, and hence for all finite linear combinations of such products.

(b) Use an approximation argument to show that the formula holds more generally for every continuous function ϕ with compact support.

2. (a) Derive the conservation of energy for the wave equation on a domain D with Neumann boundary conditions.

(b) Solve the wave equation in the square $(0, \pi) \times (0, \pi)$ with homogeneous Neumann conditions on the boundary, and initial conditions $u(x, y, 0) = \sin^2 x$, $u_t(x, y, 0) = 0$.

- (c) Verify that conservation of energy is indeed valid for your solution.
- 3. (a) Starting from the zeroth Hermite polynomial $H_0(x) = 1$, derive the first four Hermite polynomials from the recursion formula for the coefficients.

(b) Show that all Hermite polynomials are given by $H_k(x) = (-1)^k e^{x^2} \frac{d^k}{dx^k} e^{-x^2}$.

4. (a) Verify that the Hermite polynomials have the orthogonality property

$$\int H_k(x) H_\ell(x) \, e^{-|x|^2} \, dx = 0 \, , \quad k \neq \ell \, .$$

Hint: Use that $v = e^{-\frac{x^2}{2}}H_k(x)$ satisfies the eigenvalue equation $v'' + (\lambda_k - x^2)v = 0$.

(b) Explain how to use the Gram-Schmidt method to obtain another recursion formula for the Hermite polynomials. (The resulting integrals can be computed explicitly, but you're not asked to do that here.)