APM 351: Differential Equations in Mathematical Physics
Assignment 16, due March 1, 2012

Summary:

We are considering eigenvalue problems of the form —Au + V(z)u = Au for x € R". Here, the
linear operator —A + V() is called a Schrodinger operator with potential V. In all examples
that we consider, V' takes its minimum at x = 0 and increases radially from there.

e Harmonic oscillator —Au + |z]*u = M.

In dimension n = 1, the eigenfunctions and eigenvalues are given by
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up(r) = Hp(x)em 2z, M =2k+1 (k=0,1,...),

where Hj is a polynomial of degree k. These are the Hermite polynomials. The family
{uy.} forms an orthogonal basis for L?(R).

The eigenfunctions and eigenvalues in dimension n > 1 are given by
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(this follows by separation of variables). Although the Hermite polynomials do not have an
explicit formula, they can be computed in many different ways, using recursion relations,
Gram-Schmidt orthogonalization, or generating functions.

¢ Hydrogen atom —Au — 2u = \u, where v € R3.
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We split the eigenvalue problem into a radial and an angular part, using separation of vari-
ables. We will later see that the eigenfunctions of the full problem are given by u(z) =
v(r)Y (¢,0), where Y is a spherical harmonic. In the specal case where the eigenfunction
is radial (i.e., if Y is constant) then we have —v” — 20/ — 2v = \v, and obtain for the

eigenfunctions and eigenvalues
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up(r) = wi(r)e®, A =
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(k=1,2,...),

where wy, is a polynomial of degree k. The coefficients of these polynomials are determined
by a recursion.

It turns out that these eigenfunctions do not form an orthogonal basis for the radial functions
in L? — eigenfunctions for distinct eigenvalues are orthogonal, but their span is a subspace
that is not dense in L.



e Dirichlet problem —Au = \u for |z| < 1, with boundary conditions u(x) = 0 for |z| = 1.

We again separate variables.

In two dimensions, the angular part of an eigenfunction is sin(nf) or cos(n#) for some
integer n, and the radial part satisfies
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where v is an eigenvalue of the angular part. If we rescale the problem so that A = 1, this
becomes Bessel’s equation of order n, and its solution is given by the corresponding Bessel
function .J,,. This is again a special function that does not have an explicit formula. But there
are recursion formulas for its Taylor series, and precise asymptotic expansions as 7 — 00.
The eigenvalue is determined by the requirement that Jn(\/X) = 0, i.e., A is the square of a
zero of a Bessel function.

In dimension three and above, the angular part of an eigenfunction is a spherical harmonic.
The basic strategy is the same but the radial equation becomes (after some change of vari-
ables) a Bessel equation of non-integer order. Specifically, in three dimensions, we set
v(r) = r~2w(r) and obtain

Assignments:

Read Chapter 10 of Strauss and remind yourself of harmonic polynomials and spherical harmonics.

1.

(a) Starting from the zeroth Hermite polynomial Hy(z) = 1, derive the first four Hermite
polynomials from the recursion formula for the coefficients.

(b) Show that all Hermite polynomials are given by Hy(z) = (—1)ker” & o

dxk
(a) Verify that the Hermite polynomials have the orthogonality property
/Hk($)H@(l’) e P dr =0, k+#£¢.

Hint: Start from Hermite’s differential equation v” + (A — 2?)v = 0.

(b) Explain how to use the Gram-Schmidt method to determine the Hermite polynomials re-
cursively. (The integrals arising from the orthogonal projections can be computed explicitly,
but you’re not asked to do that here.)

. Find all solutions of the two-dimensional wave equation that have the form v = e~ f(|z|)

that are finite at x = 0.



