
APM 351: Differential Equations in Mathematical Physics
Assignment 16, due March 1, 2012

Summary:
We are considering eigenvalue problems of the form −∆u + V (x)u = λu for x ∈ Rn. Here, the
linear operator −∆ + V (x) is called a Schrödinger operator with potential V . In all examples
that we consider, V takes its minimum at x = 0 and increases radially from there.

• Harmonic oscillator −∆u + |x|2u = λu.

In dimension n = 1, the eigenfunctions and eigenvalues are given by

uk(x) = Hk(x)e−
x2

2 , λk = 2k + 1 (k = 0, 1, . . . ) ,

where Hk is a polynomial of degree k. These are the Hermite polynomials. The family
{uk} forms an orthogonal basis for L2(R).

The eigenfunctions and eigenvalues in dimension n > 1 are given by

u =
n∏

j=1

Hkj
(xj)e

− |x|2
2 , λ =

n∑
j=1

(2kj + 1)

(this follows by separation of variables). Although the Hermite polynomials do not have an
explicit formula, they can be computed in many different ways, using recursion relations,
Gram-Schmidt orthogonalization, or generating functions.

• Hydrogen atom −∆u− 2
|x|u = λu, where x ∈ R3.

We split the eigenvalue problem into a radial and an angular part, using separation of vari-
ables. We will later see that the eigenfunctions of the full problem are given by u(x) =
v(r)Y (φ, θ), where Y is a spherical harmonic. In the specal case where the eigenfunction
is radial (i.e., if Y is constant) then we have −v′′ − 2

r
v′ − 2

r
v = λv, and obtain for the

eigenfunctions and eigenvalues

vk(r) = wk(r)e
− r

k , λk = − 1

k2
(k = 1, 2, . . . ) ,

where wk is a polynomial of degree k. The coefficients of these polynomials are determined
by a recursion.

It turns out that these eigenfunctions do not form an orthogonal basis for the radial functions
in L2 — eigenfunctions for distinct eigenvalues are orthogonal, but their span is a subspace
that is not dense in L2.
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• Dirichlet problem −∆u = λu for |x| < 1, with boundary conditions u(x) = 0 for |x| = 1.
We again separate variables.

In two dimensions, the angular part of an eigenfunction is sin(nθ) or cos(nθ) for some
integer n, and the radial part satisfies

v′′ +
1

r
v′ +

(
λ− n2

r2

)
v ,

where γ is an eigenvalue of the angular part. If we rescale the problem so that λ = 1, this
becomes Bessel’s equation of order n, and its solution is given by the corresponding Bessel
function Jn. This is again a special function that does not have an explicit formula. But there
are recursion formulas for its Taylor series, and precise asymptotic expansions as r → ∞.
The eigenvalue is determined by the requirement that Jn(

√
λ) = 0, i.e., λ is the square of a

zero of a Bessel function.

In dimension three and above, the angular part of an eigenfunction is a spherical harmonic.
The basic strategy is the same but the radial equation becomes (after some change of vari-
ables) a Bessel equation of non-integer order. Specifically, in three dimensions, we set
v(r) = r−

1
2 w(r) and obtain

w′′ +
1

r
w′ +

(
λ−

γ + 1
4

r2

)
w = 0 .

Assignments:
Read Chapter 10 of Strauss and remind yourself of harmonic polynomials and spherical harmonics.

1. (a) Starting from the zeroth Hermite polynomial H0(x) = 1, derive the first four Hermite
polynomials from the recursion formula for the coefficients.

(b) Show that all Hermite polynomials are given by Hk(x) = (−1)kex2 dk

dxk e−x2 .

2. (a) Verify that the Hermite polynomials have the orthogonality property∫
Hk(x)H`(x) e−|x|2 dx = 0 , k 6= ` .

Hint: Start from Hermite’s differential equation v′′ + (λ− x2)v = 0.

(b) Explain how to use the Gram-Schmidt method to determine the Hermite polynomials re-
cursively. (The integrals arising from the orthogonal projections can be computed explicitly,
but you’re not asked to do that here.)

3. Find all solutions of the two-dimensional wave equation that have the form u = e−iωtf(|x|)
that are finite at x = 0.
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