APM 351: Differential Equations in Mathematical Physics Assignment 19, due March 29, 2012

Summary:

• A **test function** on a domain $U \subset \mathbb{R}^d$ is a smooth function with compact support in D.

The space of test functions on \mathbb{R}^d will be denoted by \mathcal{D} . We say that $\lim \phi_j = \phi$ in \mathcal{D} , if the functions ϕ_j converge uniformly to ϕ , and all their derivatives converge uniformly as well.

• A **distribution** is a linear transformation mapping test functions to \mathbb{R} (or \mathbb{C}).

In other words, a distribution f assigns to each $\phi \in \mathcal{D}$ a scalar $f(\phi)$. We require that this transformation is **continuous** on \mathcal{D} , in the sense that

$$\lim \phi_j = \phi \quad \Rightarrow \quad \lim f(\phi_j) = f(\phi).$$

We denote the space of distributions by \mathcal{D}' , and think of it as the dual space of \mathcal{D} .

• A sequence of distributions $\{f_j\}$ converges weakly to f, if $\lim f_j(\phi) = f(\phi)$ for all $\phi \in \mathcal{D}$.

Functions are important special cases of distributions. If f is a continuous function on \mathbb{R}^d , we can define the corresponding distribution by

$$f(\phi) = \int f(x)\phi(x) dx$$
.

We often write distributions in this form, even when they are not given by a function. For example, the Dirac δ -distribution is defined by

$$\delta(\phi) = \int \phi(x)\delta(x) dx := \phi(0).$$

The δ -distribution on \mathbb{R}^d can be obtained as the weak limit of rescaled functions $j^d f(jx)$, where f is a nonnegative integrable function with $\int f(x) dx = 1$.

• **Distributional derivatives** of f are defined by $(D_i f)(\phi) = -f(\frac{\partial}{\partial x_i}\phi)$ for all test functions ϕ .

Distributional derivatives are also called *weak derivatives*. If f is given by a differentiable function, then its distributional derivatives are given by the classical derivatives of f. To give another example, the derivative of the δ -distribution is one dimension is defined by $\delta'(\phi) = -\phi'(0)$.

When solving a linear PDE Lu=0, it is often useful to consider distributional solutions. For example, the fundamental solution of Laplace's equation $\Delta u=f$ on \mathbb{R}^d , given by

$$G_0(x) = C_d |x|^{2-d},$$

(where C_d is a specific dimension-dependent constant) solves

$$-\Delta u = \delta$$

in the sense of distributions. In this case, G_0 and ∇G_0 turn out to be functions. But note that distributional solutions make no sense for nonlinear equations, because a nonlinear function of a distribution is not a distribution. (For example, δ^2 has no meaning.)

Assignments:

Read Chapter 12 of Strauss.

1. Compute the first three distributional derivatives of the function

$$f(x) = \max\{0, 1 - x^2\}.$$

- 2. Let f be a distribution on \mathbb{R} with f' = 0.
 - (a) What does that mean?
 - (b) Prove that $f(\phi) = 0$ for all test functions ϕ with $\inf_{\mathbb{R}} \phi(x) dx = 0$.
 - (c) Conclude that f is given by a constant function f(x) = c, by showing that $f(\phi) = c \int_{\mathbb{R}} \phi(x) dx$ for all test function ϕ .
- 3. Consider Burger's equation

$$u_t + uu_x = 0, \quad u(x,0) = u_0(x)$$
 (1)

for $x \in \mathbb{R}$ and t > 0. A **integral solution** of the equation is a function u such that

$$\int_0^\infty \int_{-\infty}^\infty u\phi_t + \frac{1}{2}u^2\phi_x \,dxdt + \int_{-\infty}^\infty u_0(x)\phi(0,x) \,dx \tag{2}$$

holds for every smooth test function $\phi(x,t)$ with compact support in $\mathbb{R} \times [0,\infty)$. (Note that ϕ need not vanish on the line t=0.)

- (a) Suppose u itself is smooth. Verify that then Eq. (2) and Eq. (1) are equivalent.
- (b) Let u be a smooth solution of Burger's equation. Assume that, for each $t \ge 0$, $u(\cdot, t)$ has compact support, and define its **mass** by

$$M(t) = \int_{-\infty}^{\infty} u(x, t) \, dx \, .$$

Prove that mass is conserved, i.e., M(t) is constant in time. (*Hint:* Compute $\frac{d}{dt}M(t)$.)

(b) Suppose u is a continuous integral solution of Burger's equation, i.e., u satisfies Eq. (2). Assume furthermore that $u(\cdot,t)$ has compact support for each $t \geq 0$. Show that mass is conserved also in this case.

(*Hint*: Use test functions of the form $\phi(x,t) = a(x)b(t)$.)