APM 351: Differential Equations in Mathematical Physics
Assignment 19, due March 29, 2012

Summary:

e A test function on a domain U C R is a smooth function with compact support in D.

The space of test functions on R? will be denoted by D. We say that lim ¢; = ¢ in D, if the functions
¢; converge uniformly to ¢, and all their derivatives converge uniformly as well.

e A distribution is a linear transformation mapping test functions to R (or C).

In other words, a distribution f assigns to each ¢ € D ascalar f(¢). We require that this transformation
1s continuous on D, in the sense that

limg; =¢ = lmf(¢;) = f(¢).
We denote the space of distributions by D’, and think of it as the dual space of D.
e A sequence of distributions { f;} converges weakly to f, if lim f;(¢) = f(¢) forall ¢ € D.

Functions are important special cases of distributions. If f is a continuous function on R?, we can
define the corresponding distribution by

1(6) = / f(2)o(x) da

We often write distributions in this form, even when they are not given by a function. For example, the
Dirac ¢-distribution is defined by

5(6) = [ ola)ste) dz = 6(0).
The J-distribution on R? can be obtained as the weak limit of rescaled functions j¢f(jx), where f is a
nonnegative integrable function with [ f(z)dz = 1.
e Distributional derivatives of f are defined by (D;f)(¢) = — f (52 ¢) for all test functions ¢.

Distributional derivatives are also called weak derivatives. If f is given by a differentiable function,
then its distributional derivatives are given by the classical derivatives of f. To give another example,
the derivative of the d-distribution is one dimension is defined by ¢’(¢) = —¢'(0).

When solving a linear PDE Lu = 0, it is often useful to consider distributional solutions. For example,
the fundamental solution of Laplace’s equation Au = f on R?, given by

Go(x) = Cyla*™,
(where C}; is a specific dimension-dependent constant) solves
—Au =19

in the sense of distributions. In this case, Gy and V(G turn out to be functions. But note that distribu-
tional solutions make no sense for nonlinear equations, because a nonlinear function of a distribution
is not a distribution. (For example, 52 has no meaning.)



Assignments:

Read Chapter 12 of Strauss.

1. Compute the first three distributional derivatives of the function

f(z) = max{0,1 — 2%}.

2. Let f be a distribution on R with f’ = 0.
(a) What does that mean?
(b) Prove that f(¢) = 0 for all test functions ¢ with infg ¢(z) dx = 0.

(c) Conclude that f is given by a constant function f(x) = ¢, by showing that f(¢) = ¢ [, #(z) dx
for all test function ¢.

3. Consider Burger’s equation
w +uu, =0,  u(x,0) = () (1)

forx € R and ¢ > 0. A integral solution of the equation is a function u such that

/00 /OO upy + %u%m dxdt + /00 up(x)p(0, x) dx (2)
0 —00 —o0

holds for every smooth test function ¢(x, t) with compact support in R x [0, 00).
(Note that ¢ need not vanish on the line £ = 0.)

(a) Suppose u itself is smooth. Verify that then Eq. (2) and Eq. (1) are equivalent.

(b) Let u be a smooth solution of Burger’s equation. Assume that, for each ¢t > 0, u(-,t) has
compact support, and define its mass by

[e.9]

M(t) = / u(z,t) dz .

—00

Prove that mass is conserved, i.e., M () is constant in time.
(Hint: Compute < M (t).)

(b) Suppose u is a continuous integral solution of Burger’s equation, 1.e., u satisfies Eq. (2). As-
sume furthermore that (-, ¢) has compact support for each ¢ > 0. Show that mass is conserved
also in this case.

(Hint: Use test functions of the form ¢(x,t) = a(x)b(t).)



