APM 351: Differential Equations in Mathematical Physics Assignment 20, due April 5, 2012

Summary:

The **Fourier transform** of a smooth complex-valued function f on \mathbb{R}^n is defined by

$$\mathcal{F}(f)(k) = \hat{f}(k) = \int_{\mathbb{R}^n} e^{-2\pi i k \cdot x} f(x) \, dx.$$

This integral makes sense, provided that f is at least integrable. In that case, \hat{f} turns out to be bounded and continuous. The most important properties of the Fourier transform are its relationship with the natural symmetries of \mathbb{R}^n :

- Translation: For $v \in \mathbb{R}^n$, define $T_v f(x) = f(x-v)$. Then $\widehat{T_v f}(k) = e^{-2\pi i k \cdot v} \widehat{f}(k)$.
- **Rotation:** If $R^t R = I$, define $Rf(x) = f(R^{-1}x)$. Then $\widehat{Rf}(k) = \widehat{f}(R^{-1}k)$.
- Scaling: For $\lambda > 0$, define $S_{\lambda} f(x) = f(\frac{x}{\lambda})$. Then $\widehat{S_{\lambda} f}(k) = \lambda^n \widehat{f}(\lambda k)$.

In other words, the Fourier transform diagonalizes translations (in the sense that the translation is represented as a multiplication operator), commutes with rotations, and has a simple commutation relation with scaling.

In the theory of PDE, the Fourier transform appears as a fundamental tool for solving linear, constant-coefficient equations. The reason is that as a consequence of the translation invariance,

$$\widehat{\frac{\partial}{\partial x_i}} f(k) = 2\pi i k_j \widehat{f}(k) , \quad \widehat{f * g}(k) = \widehat{f}(k) \widehat{g}(k) .$$

More subtle are the applications of the Fourier transform to nonlinear dispersive equation, such as the nonlinear Schrödinger and the KdV equation.

By **Plancherel's theorem**, the Fourier transform can be extended as a unitary transformation from L^2 onto itself, i.e., $||f||_{L^2} = ||\hat{f}||_{L^2}$. More generally, we have

• Parseval's identity: for all $f, g \in L^2(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \bar{f}(x)g(x) dx = \int_{\mathbb{R}^n} \bar{\hat{f}}(k)\hat{g}(k) dk.$$

• Fourier inversion formula: $\mathcal{F}^{-1}(g)(x) = \check{g}(x) = \hat{g}(-x)$.

Our proof of Parseval's identity and the inversion formula was based on the fact that $G(x) = e^{-\pi|x|^2}$ is unchanged under the Fourier transform. The Fourier transform can be extended to even larger spaces of functions and distributions, most notably the **Schwarz space** \mathcal{S} of rapidly decaying functions, and its dual \mathcal{S}' consisting of tempered distributions. In the sense of distributions, $\hat{\delta}(k) = 1$.

Assignments:

Read Section 12.3 of Strauss, and look at the part of Chapter 14 that pertains to Burger's equation. Supplementary reading on the Fourier transform: Chapter 5 of Lieb & Loss.

- 1. Under what assumptions on f is its Fourier transform \hat{f} (a) real? (b) even?
- 2. Use the Fourier transform to solve the ODE $-u_{xx} + a^2u = \delta$, where δ is the delta distribution.
- 3. Let f be a continuous function on \mathbb{R} such that its Fourier transform satisfies $\hat{f}(k)=0$ for $|k|>\frac{1}{2}$. Such a function is called **band-limited**.
 - (a) Show that

$$f(x) = \sum_{\ell=-\infty}^{\infty} f(\ell) \frac{\sin[\pi(x-\ell)]}{\pi(x-\ell)}.$$

That is, f is completely determined by its values at the integers.

- (b) If $\hat{f}(k) = 1$ for $|x| \le \frac{1}{2}$ and $\hat{f}(k) = 0$ for $|k| > \frac{1}{2}$, calculate both sides of (a) directly to verify that they are equal.
- 4. "Solve" the wave equation using the Fourier transform, as follows:
 - (a) If u solves the initial-value problem

$$u_{tt} = \Delta u, \qquad x \in \mathbb{R}^n, t > 0$$

$$u(x,0) = \phi(x), u_t(x,0) = \psi(x), \qquad x \in \mathbb{R}^n, t = 0$$

write down a formula for $\hat{u}(k,t)$ in terms of the initial conditions $\hat{\phi}(k)$ and $\hat{\psi}(k)$.

- (b) Use Fourier inversion to write a "formula" for u(x,t) in terms of $\phi(x)$ and $\psi(x)$.
- (c) Suppose that n=3 and $\phi=0$. Can you see any relation between your formula and Huygens' principle? Kirchhoff's formula? Anything at all? Why not?