
APM 351: Differential Equations in Mathematical Physics
Last Handout, April 3, 2012

Summary:
We’ve spend most of the year studying linear PDE that can be written as Lu = f , where L is a
differential operator, the right hand side f a given function, and u the unknown solution. Laplace’s
equation, the diffusion equation, the wave equation, and Schrödinger’s equation are all examples of
second order linear equations. We’ve constantly relied on the superposition principle to construct
integral representations of solutions (such as (Poisson’s formula for Laplace’s equation, and Duhamel’s
formula for the inhomogeneous diffusion equation). We’ve used that all these equations have constant
coefficients (not depending on x) to introduce methods the Fourier transform and other methods related
to the spectrum of L.

We now turn (very briefly) to nonlinear equations, a vast area. Here, we will discuss only first order
equations. A first order PDE is

• linear, if it has the form
∑n

i=1 ai(x)uxi
= f(x)

and nonlinear otherwise. The method of characteristics works beautifully for linear equations, although
well-posedness can fail for various reasons. For instance, the initial data may fail the transversality
condition, or the characteristic curves may fal to cover the space in a nice way (e.g., there could be
critical points, closed loops, or other global obstacles).

It is useful to further classify nonlinear equations, according to how far away they are from linear
equations: A first order PDE is

• semilinear, if we can write it as
∑n

i=1 ai(x)uxi
= f(x, u),

i.e., the right hand may depend on the unknown function (and its lower-order derivatives), but the
coefficients must not. Linearization and linear methods, such as the method of characteristics and
(for equations involving time) the Duhamel formula work well here. Higher-order semilinear equa-
tions include reaction-diffusion equations, nonlinear Schrödinger equations, and the Korteveg-de Vries
equation. Distributions and Fourier transform remain an important tools.

A first order PDE is

• quasilinear, if we can write it as
∑n

i=1 ai(x, u)uxi
= f(x, u),

i.e., the coefficients and the right hand side may both depend on the unknown function. Quasilinear
equations are much harder to analyze — the method of characteristics works in principle, but will break
down if characteristics cross. In that case, the solution develops shocks, and it becomes necessary to
consider weak solutions. An important example class of examples are

• scalar conservation laws ut + a(u)ux = 0.

The special case with a(u) = u is called Burger’s equation. Weak solutions are determined uniquely
by two principles:
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1. The Rankine-Hugoniot condition determines the speed of the shock as s′(t) = A(uL)−A(uR)
uL−uR

,
where A is the anti-derivative of a. For Burger’s eequation, s′(t) = 1

2
(uL + uR);

2. Lax’ entropy condition says that a shock forms only where characteristics collide, i.e., if
a(uL) > a(uR). For Burger’s equation, the condition is that uL > uR. Otherwise, a rarefaction
wave will form. Note that the entropy condition distinguishes the future from the past!

Higher-order quasilinear PDE include the porous-medium and thin-film equations, and many examples
from the Calculus of Variations, such as the minimal surface equation, harmonics maps, and wave
maps.

All bets are off, if the equation is

• fully nonlinear , F (x, u,∇u) = 0.

The method of characteristics (together with the Implicit Function Theorem) can be adapted to solve
first order fully nonlinear equations locally, i.e., in a neighborhood of the initial data (provided a
transversality condition holds). Examples of fully nonlinear first order equations are the eikonal equa-
tion |∇u| = 1 (which describes characteristic surfaces for the wave equation), and the Hamilton-
Jacoby equations ut + H(u,∇u) = 0 (which appear in Classical Mechanics). The most famous fully
nonlinear equation is the Monge-Ampère equation det D2u = f . Fully nonlinear equations cannot be
analyzed by linearization; instead each requires special methods adapted to its geometric and physical
meaning.

Assignments:
Read the part of Strauss’ Chapter 14 that pertains to Burger’s equation. Prepare for the final exam !

Some Problems (no hand-in):
1. Compute explicitly the solution of Burger’s equation

ut + uux = 0 , u(x, 0) = φ(x) (1)

with initial values

φ(x) =


1 if x < −1
0 if − 1 < x < 0
2 if 0 < x < 1
0 if x > 1

that satisfies both the Rankine-Hugoniot jump condition and the entropy condition. Please draw
a sketch of the characteristics and the shocks.

2. For f ∈ C∞
c (Rn), prove that its Fourier transform f̂ is also C∞. (In fact, f̂ is analytic, but you

are not asked to show this.) Show also that | |k|af̂(k)| is a bounded function for each integer
a > 0.

Remark: Your calculation relates the smoothness of f to the decay of f̂ , and vice versa. The
Paley-Wiener theorem describes this relationship precisely.
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