APM 351: Differential Equations in Mathematical Physics Assignment 9, due November 24, 2011

Summary

A Hilbert space is a vector space \mathcal{H} over \mathbb{C} with an inner product $\langle f, g \rangle$ that is

- linear in the first slot: $\langle a_1f_1 + a_2f_2, g \rangle = a_1 \langle f_1, g \rangle + a_2 \langle f_2, g \rangle$ for $a_1, a_2 \in \mathbb{C}$
- Hermitian: $\langle f, g \rangle = \overline{\langle g, f \rangle}$
- positive definite: $\langle f, f \rangle \ge 0$, with equality only for f = 0

such that \mathcal{H} is **complete** under the norm $||f|| = (\langle f, f \rangle)^{\frac{1}{2}}$, in the sense that every Cauchy sequence in \mathcal{H} converges to a limit in \mathcal{H} .

Hilbert spaces share many geometric properties of Euclidean space, such as the **Schwarz inequality** $|\langle f, g \rangle| \leq ||f|| ||g||$ and the **parallelogram identity** $||f+g||^2 + |f-g||^2 = 2(||f||^2 + ||g||^2)$. The most important examples are the finite-dimensional complex vector spaces \mathbb{C}^m with inner product $u \cdot v$, and the function space $L^2(a, b)$ with inner product $\int_a^b f(x)\overline{g}(x) dx$.

Two vectors $f, g \in \mathcal{H}$ are **orthogonal**, if $\langle f, g \rangle = 0$. In that case, we write $f \perp g$. We have

• Pythagoras: If $f \perp g$, then $||f + g||^2 = ||f||^2 + ||g||^2$,

just as in \mathbb{R}^m . If X_1, X_2, \ldots is a (finite or countable) sequence of orthogonal vectors in \mathcal{H} ,

• Bessel's inequality $||f||^2 \ge \sum_n |a_n|^2 ||X_n||^2$, where $a_n = \frac{\langle f, X_n \rangle}{||X_n||^2}$

follows from the fact that $f - \sum_n a_n X_n$ is orthogonal to $\sum_n a_n X_n$. For the partial sums

$$S_N = \sum_{n=1}^N a_n X_n, \quad ||S_N||^2 = \sum_{n=1}^N |a_n|^2 ||X_n||^2,$$

Bessel's inequality implies that $||S_N||^2$ converges to $\sum_{n=1}^{\infty} |a_n|^2 ||X_n||^2$, and by the Cauchy criterion S_N converges to $S = \sum_{n=1}^{\infty} a_n X_n$.

We say that the $\{X_n\}$ is an **orthogonal basis** for \mathcal{H} , if every $f \in \mathcal{H}$ can be written as a convergent series

$$f = \sum_{n} a_n X_n$$

In that case, we also say that the orthogonal sequence is **complete**. We will prove in Chapter 11 that $\{\sin nx\}_{n\geq 1}$ and $\{\cos nx\}_{n\geq 0}$ are orthogonal bases for $L^2(0, \pi)$, and that $\{e^{inx}\}_{n\in\mathbb{Z}}$ is an orthogonal bases for $L^2(0, 2\pi)$. In particular, each of the classical Fourier series of an L^2 -function f converges in L^2 to f. (We say that the Fourier series **represents** the function.) A more subtle question is under what conditions a Fourier series converges pointwise or even uniformly to f. There are examples of continuous 2π -periodic functions whose Fourier series diverges for every x!

Theorem Let X_1, X_2, \ldots be a sequence of orthogonal vectors. The following are equivalent:

- (1) Finite linear combinations $\sum_{n=1}^{N} b_n X_n$ are dense in \mathcal{H} ;
- (2) If $\langle f, X_n \rangle = 0$ for all n then f = 0;

(3) Parseval's identity: For each $f \in \mathcal{H}$, $||f||^2 = \sum_n |a_n|^2 ||X_n||^2$, where $a_n = \frac{\langle f, X_n \rangle}{||X_n||^2}$;

(4) $\{X_n\}_{n>1}$ is an orthogonal basis.

Proof. (1) \Rightarrow (2): Assume that f satisfies $\langle f, X_n \rangle = 0$ for all n. By (1), we can find a sequence $\{g_k\}$ converging to f, where each g_k is a finite linear combination of the X_n 's. By our assumption on f, we have $\langle f, g_k \rangle = 0$ for all k, and therefore

$$||f||^2 = \langle f, f - g_k \rangle \le ||f|| \, ||f - g_k|| \to 0 \quad (k \to \infty).$$

We conclude that f = 0.

(2)
$$\Rightarrow$$
 (3): Let $S = \sum_{n} a_n X_n$ and $S_N = \sum_{n=1}^N a_n X_N$. Since
 $\langle f - S, X_n \rangle = \lim_{N \to \infty} \langle f - S_N, X_n \rangle = a_n - a_n = 0$

for each n, we conclude from (2) that f = S. Using Pythagoras,

$$||f||^2 = ||S_N||^2 + ||f - S_n||^2 \to \sum_{n=1}^{\infty} |a_n|^2 ||X_n||^2 + ||f - S||,$$

proving Parseval's identity.

 $(3) \Rightarrow (4)$: Assuming Parseval's identity, we have by Pythagoras

$$||f - S_N||^2 = ||f||^2 - ||S_N||^2 = ||f||^2 - \sum_{n=1}^N |a_n|^2 ||X_n||^2 \to 0 \quad (N \to \infty),$$

proving that $f = \sum_{n \in \mathcal{A}} a_n X_n$.

(4) \Rightarrow (1): Let $f \in \mathcal{H}$. Since $\{X_n\}$ is an orthogonal basis, $f = \lim S_N$.

Assignments:

Read Chapter 5 of Strauss (again).

- (a) Find the Fourier sine series of the function f(x) = x on [0, π].
 (b) Apply Parseval's identity to compute ∑_{n=1}[∞] 1/n².
 (c) Integrate the sine series term by term to obtain a Fourier cosine series for the function 1/2 x². Note that the constant of integration appears as the n = 0 term in the series.
 (d) Then by setting x = 0, find the sum of the series ∑_{n=1}[∞] (-1)ⁿ⁺¹/n².
- Let γ_n be a sequence of constants with lim_{n→∞} γ_n = ∞. Define a sequence of functions on [0,1] by f_n(x) = γ_n sin (nπx) for 0 ≤ x ≤ 1/n, and f(x) = 0 otherwise.
 (a) Show that f_n → 0 pointwise, but not uniformly.
 (b) If γ_n = n^{1/3}, prove that f_n → 0 in L².
 (c) If γ_n = n^{2/3}, show that f_n does not converge in L².
- 3. Let f be a smooth 2π -periodic function with $\int_0^{2\pi} f(x) dx = 0$. Use the Fourier series representation and Parseval's identity to show that $||f|| \le ||f'||$.