
Assigning Real-Time Tasks to HomogeneousMultiprocessor SystemsAlmut Burchard �J�org Liebeherr ��Yingfeng Oh ��Sang H. Son ��� School of MathematicsGeorgia Institute of TechnologyAtlanta, GA 30332�� Computer Science DepartmentUniversity of VirginiaCharlottesville, VA 22903January 6, 1994AbstractOptimal scheduling of real-time tasks on multiprocessor systems is known to be computationallyintractable for large task sets. Any practical scheduling algorithm for assigning real-time tasks toa multiprocessor system presents a trade-o� between its computational complexity and its perfor-mance. The performance of a scheduling algorithm is measured in terms of the additional numberof processors required to arrive at a schedule without deadline violations as compared to an optimalalgorithm. In this study, new schedulability conditions are presented for homogeneous multipro-cessor systems where individual processors execute the rate-monotonic scheduling algorithm. Theconditions are used to develop new strategies for assigning real-time tasks to processors. The per-formance of the new strategies is shown to be signi�cantly better than suggested by the existingliterature. Under the (realistic) assumption that the load of each real-time task is small comparedto the processing speed of each processor, it is shown that all processors can be almost fully utilized.Task assignment strategies are proposed for scenarios where the task set is known a priori (o�-lineschemes), and where the real-time task set can change dynamically (on-line schemes).Key Words: Hard Real-Time Systems, Multiprocessor Systems, Rate-Monotonic Scheduling, Peri-odic Tasks, Task Assignment Scheme.

1 IntroductionThe distinguishing feature of real-time computer systems is their attempt to achieve both logicaland temporal correctness of computations. A computation is temporally correct if it �nishes withina speci�ed time frame. In this sense, all time-constrained computer applications require a real-time computer system. Commonly, however, real-time computer systems are used if violations oftemporal correctness may result in drastic consequences as, for example, in power plants, hospitals,or manufacturing and transportation systems.In most real-time applications, the computer system is subject to arrivals of messages con-taining monitor and control information from many di�erent sources. These messages can arriveat any time, however, the minimal distance between consecutive arrivals from the same source isconstrained. Each message arrival initiates the request for executing a computational task. Thetask must be completed before the arrival of the subsequent message from the same source. Thus,the earliest arrival time of the next message from the same source is the deadline for executingthe task. In the worst case, each task is requested periodically, where the period is given by theminimum time interval between consecutive message arrivals from a particular source. We refer totasks that are requested at most periodically and must �nish execution before the end of the nextperiod as (periodic) real-time tasks.To maximize the number of real-time tasks that can be processed without timing violations, real-time computer systems use sophisticated scheduling algorithms to decide the order in which tasksare executed. The performance of a scheduling algorithm is measured by its ability to generatea feasible schedule for a set of real-time tasks. A schedule for assigning tasks to one or moreprocessors is said to be feasible if the execution of each task can be completed before its deadline.A feasible schedule is said to be minimal if there is no feasible schedule utilizing less processors.A scheduling algorithm is said to be optimal if for any set of tasks the algorithm �nds a minimalschedule.Scheduling algorithms can be divided into �xed priority and dynamic priority algorithms. In�xed priority algorithms, the priority of a task remains constant at all times, whereas in dynamicpriority algorithms, the priority of a task may change during its execution.In their seminal work, Liu and Layland [8] showed that in single processor systems the dynamicpriority earliest-deadline-due (EDD) algorithm which assigns the highest priority to the task closestto the end of its period is optimal among all scheduling algorithms. They also showed that the rate-monotonic (RM) algorithm which assigns higher priority to tasks with shorter periods is optimalamong all �xed priority scheduling algorithms. For both the EDD and RM algorithms, Liu andLayland derived su�cient conditions under which the respective algorithms yield feasible schedules.

Such conditions are referred to as schedulability conditions. Recently, necessary and su�cientschedulability conditions were stated for both the RM algorithm [6] and the EDD algorithm [12].Due to its low computational overhead the RM algorithm is widely regarded as an appropriatealgorithm for scheduling real-time tasks on uniprocessor systems. Recently proposed extensions tothe RM algorithm have increased its practical relevance [10, 11].Even though real-time computer systems are expected to greatly bene�t from multiprocessortechnology, employing multiprocessor systems for real-time applications has shown to be di�cult.A major obstacle is that scheduling algorithms for real-time multiprocessor systems are signi�cantlymore complex than for uniprocessor systems. In multiprocessor systems, the scheduling algorithmmust not only specify an ordering of tasks, but also must determine the speci�c processor to beused. Leung and Whitehead [7] proved that �nding a minimal schedule for a given set of real-time tasks in a multiprocessor system is NP-hard. Therefore, research e�orts have focused on thedevelopment of suitable heuristic algorithms which can be e�ciently implemented, yet, require onlya limited number of additional processors as compared to an optimal algorithm.There are two strategies for scheduling real-time tasks on a multiprocessor system. In a globalscheme each occurrence of a real-time task may be executed on a di�erent processor. In contrast,a partitioning scheme enforces that all occurrences of a particular task are executed on the sameprocessor. A partitioning scheme has several advantages over a global scheme. First, partition-ing schemes are less complex since the overhead of multiprocessor scheduling merely consists inassigning tasks to processors. Note that the assignment is performed only once for each task, i.e.,before the task is executed for the �rst time. Secondly, if the assignment of tasks to processors iscompleted, well-known uniprocessor scheduling algorithms can be used for each processor.The performance of an partitioning scheme is determined by two factors; the task assignmentalgorithm which distributes tasks to the processors, and the scheduling algorithm which determinesthe order of task executions on each processor. For a given scheduling algorithm, an optimaltask assignment algorithm achieves a feasible schedule for each processor with the least numberof processors. However, the problem of �nding an optimal assignment of tasks to processors for�xed priority scheduling algorithms, in particular the RM algorithm, as well as for dynamic priorityscheduling algorithms, in particular EDD, was shown to be NP-hard [7].In this study, we are concerned with task assignment schemes for homogeneous multiprocessorsystems where each processor executes the RM scheduling algorithm. This problem has beenaddressed in a number of studies [1, 2, 4, 9]. Typically, the task assignment schemes apply variants ofwell-known heuristic bin-packing algorithms where the set of processors is regarded as a set of bins 1.1The bin-packing problem is concerned with packing di�erent-sized items into �xed-sized bins using the leastnumber of bins [5]. 3

The decision whether a processor is full is determined by a schedulability condition. All existing taskassignment schemes are based on the su�cient schedulability conditions for uniprocessor systemsderived in [8] and variants of this condition [3]. Thus, the existing assignment schemes di�er mainlyin the choice of the bin-packing heuristic.In [4], two heuristic assignment schemes are proposed, referred to as Rate-Monotonic Next-Fit(RMNF) and Rate-Monotonic First-Fit (RMFF). The schemes are based on the next-�t and �rst-�tbin-packing heuristic, respectively. In both schemes, tasks are sorted in decreasing order of theirperiods before the assignment is started. Tasks are assigned to a so-called current processor untilthe schedulability condition is violated, in which case the current processor is marked full and anew processor is selected. RMFF �rst tries to accommodate a task in a processor marked as fullbefore assigning it to the current processor. The First-Fit Decreasing-Utilization Factor (FFDUF)method is a variation of the �rst-�t heuristic scheme. Here, tasks are sorted in the order of theirload factor [1]. In [9], a best-�t bin-packing heuristic is used as the basis for the Rate-MonotonicBest-Fit (RMBF) scheme. Similarly to RMFF, RMBF attempts to assign tasks to processors thathave been marked as full. However, in RMBF, the full processors are inspected in a speci�c order.As in [4], tasks are assumed to be sorted by their period.Since the above schemes require that the entire task set is known before starting the taskassignment they are referred to as o�-line schemes. In contrast, on-line schemes allow the taskset to change dynamically, that is, tasks can be added to or deleted from the task set. On-linetask assignment schemes can be implemented with lower computational complexity than o�-lineschemes, but may require more processors for a feasible schedule. An on-line task assignmentscheme based on the next-�t bin-packing heuristics and referred to as Next-Fit-M is describedin [2]. In Next-Fit-M, M is a parameter denoting the maximal number of processors which isconsidered for assigning a new task.In all studies, the performance of task assignment schemes is evaluated by providing worst casebounds for N=Nopt, where N is the number of processors required to schedule a task set with agiven heuristic method, and Nopt is the number of processors needed by an optimal assignment.Unfortunately, bounds for the existing schemes are only available as asymptotic bounds, that is, aslimNopt!1N=Nopt.In Table 1(a), we summarize the heuristic methods from the literature with their performancebounds. The measure O(K) denotes the upper bound of the computational complexity for schedul-ing a set of K real-time tasks.Our approach for developing task assignment schemes for multiprocessor systems is di�erentfrom previous work. Rather than increasing the level of sophistication of the bin-packing heuristic,we focus on developing tighter schedulability conditions that allow to assign more tasks to each4

AsymptoticScheme Upper Bound: Complexity TypelimNopt!1N=NoptRMNF [4] 2.67 O(K logK) o�-lineRMFF [4] 2.33 O(K logK) o�-lineFFDUF [1] 2 O(K logK) o�-lineRMBF [9] 2.33 O(K logK) o�-lineNext-Fit-M [2] 2.28+O(1=M) O(K) on-line(a) Existing Task Assignment Schemes.RMST 1=(1� �) O(K logK) o�-lineRMGT 1.75 O(K logK) o�-lineRMGT/M 1=(1� �) + O(1=M) O(K) on-line(b) Proposed Task Assignment Schemes.Table 1: Comparison of Task Assignment Schemes.processor. We show that the maximum achievable load on each processor is signi�cantly higher thansuggested by previous work. If the load factor of each task is small compared to the processingpower of a processor { a very realistic assumption considering the state-of-the-art of hardwaretechnology { we will show that each processor can be almost fully utilized. More precisely, theRate-Monotonic Small-Tasks (RMST) scheme proposed in this study achieves an asymptotic boundof limNopt!1N=Nopt � 1=(1� �), where � is the maximal load factor of an individual task. Forgeneral task sets we propose the Rate-Monotonic General-Tasks (RMGT) scheme which yields anasymptotic bound of limNopt!1N=Nopt � 1:75. Di�erent from previous work we also derive boundsof the performance parameter N=Nopt for N < 1. In addition to the o�-line schemes RMST andRMGT we propose an on-line task assignment scheme for general task sets. The scheme is referredto as Rate-Monotonic General-Tasks/M (RMGT/M) scheme, where M is a parameter denotingthe number of processors to which a new task can be assigned. In Table 1(b) we summarize theperformance characteristics of the assignment schemes proposed in this study.The remainder of this study is structured as follows. In Section 2 we present our model for5

real-time tasks and multiprocessor systems. In Section 3 we derive a tight schedulability conditionfor the RM scheduling algorithm in a uniprocessor system that improves on the results presented in[8]. We also prove a scheduling result for multiprocessor systems which can be interpreted as dualresult to our uniprocessor scheduling condition. In Section 4 we construct two simple assignmentschemes, referred to as RMST and RMGT. With our theoretical results from Section 3 we canprove bounds for the number of processors required with these schemes. The on-line assignmentscheme RMGT/M is presented in Section 5. Again, we use the results from Section 3 to deriveperformance bounds. In Section 6, we conclude the study with a short discussion of our results.2 Model DescriptionWe assume that the real-time computer system consists of a homogeneous multiprocessor systemand a set of K real-time tasks. The multiprocessor and the task set are characterized as follows.� A real-time task is denoted by �i = (Ci; Ti) (i = 1; : : : ; K). Ti denotes the shortest timebetween two requests of task �i, and is also referred to as the period of �i. Ci denotes themaximum execution time of task �i. Since we assume that the multiprocessor system ishomogeneous the execution time is identical on each processor. Each real-time task mustcomplete execution before the next request of the same task. Thus, in the worst case, theexecution of �i must be completed after Ti time units.� The period and the maximum execution time of task �i satisfyTi > 0; 0 � Ci � Ti; i = 1; : : : ; kWe will refer to Ui = Ci=Ti as the load factor of the i-th task, and toU = KXi=1Uias the total load of the task set. �n denotes the utilization of the n-th processor, that is, thesum of the load factors of the tasks assigned to processor n.� Throughout this paper, we assume that the rate-monotonic (RM) algorithm is used to sched-ule tasks on each processor. That is, task �i has precedence over task �j , if Ti < Tj . We assumethat scheduling of tasks is preemptive, and that task execution can be resumed without lossafter interruptions. 6

3 Schedulability ConditionsIn this section we derive two su�cient schedulability conditions for processors which schedule taskswith the RM algorithm. The �rst result, presented in Theorem 1, is a simple modi�cation of theresult for uniprocessor systems by Liu and Layland [8]. Our result yields a higher utilization ofthe processor if the task periods satisfy certain constraints. On uniprocessor system, Theorem1 does not provide a signi�cant improvement for scheduling real-time tasks. For multiprocessorscheduling, however, we can divide a large tasks set into subsets in such a way that we can makeuse of the sharpened condition on all but possibly one processor.In our second result, stated in Theorem 2, we present a schedulability condition for the RMalgorithm in multiprocessor systems. Theorem 2 uses exactly the same parameters, i.e., the totalload U and the number of tasks K, as the uniprocessor result by Liu and Layland [8]. In fact,Theorem 2 can be interpreted as as a dual result to the schedulability conditions given in [8] formultiprocessor system. Both results coincide for the special case K = 2.A result similar to our Theorem 2 was conjectured in [4], but not proven. A partial proof, yetincomplete and needing additional assumptions was given in [3].3.1 Rate-Monotonic Scheduling in Uniprocessor SystemsThe schedulability condition presented in the following theorem takes advantage of a special prop-erty of the RM scheduling algorithm. We show that we can increase the processor utilization if allperiods in a task set have values that are close to each other.Theorem 1 Given a real-time task set �1; : : : ; �K. De�neSi := log2 Ti � blog2 Tic i = 1; : : : ; K (1)and � := max1�i�K Si � min1�i�K Si (2)(a) If � < 1� 1=K, and the total load satis�esU � (K � 1) �2�=(K�1)� 1�+ 21�� � 1 (3)then the task set is schedulable on one processor with the RM algorithm.(b) If � � 1� 1=K, and the total load satis�esU � K �21=K � 1� (4)then the task set is schedulable on one processor with the RM algorithm.Both conditions are tight. 7

Note that Inequality (4) is exactly the schedulability condition given by Liu and Layland [8].Theorem 1 improves upon [8] when � < 1� 1=K, since the strict convexity of the function f(x) =x(21=x � 1) implies that(K � 1) �2�=(K�1) � 1�+ 21�� � 1 > K(21=K � 1) : (5)Throughout the paper, we will use a simpler version of Theorem 1. The simpli�ed schedulabilitycondition is given in the following corollary.Corollary 1 Given a set of real-time tasks �1; : : : ; �K, and de�ne � as in (2). If the total loadsatis�es U � max fln 2; 1� � ln 2g (6)then the task set can be scheduled on one processor.Proof. Because both schedulability conditions (3) and (4) of Theorem 1 are strictly decreasingwith respect to K, we have thatK(21=K � 1) > limK!1K(21=K � 1) = ln 2 (7)and (K � 1) �2�=(K�1)� 1�+ 21�� � 1 > limK!1(K � 1) �2�=(K�1) � 1�+ 21�� � 1 (8)= � ln 2 + 21�� � 1 (9)> 1� � ln 2 (10)Schedulability now follows from Theorem 1. 2The remainder of this subsection contains the proof of Theorem 1. For the proof, we will needthree lemmas. Lemma 1, due to Lehoczky [6], gives the necessary and su�cient schedulability forthe RM algorithm in a uniprocessor system.Lemma 1 Given a set of real-time tasks �1; �2; : : : ; �K. Assume the tasks are ordered with increas-ing period, T1 � � � � � TK. Then, a task �k always meets its deadline Tk under rate-monotonicscheduling, if and only if there exists a time 0 < t � Tk such thatt � kXi=1 � tTi�Ci (11)8

We will need the following special cases of Lemma 1. If TK � 2T1, then condition (11) reduces to9j � k : Tj � j�1Xi=1 2Cj + kXi=j Ci : (12)If the task set consists of only two tasks, (11) reduces to�T2T1� (T1 � C1) � C2 or T2 � �T2T1�C1 + C2 (13)The next lemma states that the RM algorithm is distinguished by a special property, which alsoholds for EDD, however, not for any other �xed-priority or dynamic scheduling algorithm. Theproof is a simple application of Lemma 1, but the result is surprisingly powerful. We will applyLemma 2 to obtain su�cient schedulability conditions for general task sets from schedulabilityconditions for task sets where the longest period is at most twice as long as the shortest period.Lemma 2 implies that it is not necessary to assume that a task set is ordered by periods in orderto apply the schedulability conditions in [4, 9], a fact overlooked in both references.Lemma 2 Given a task set �1; �2; : : : ; �K, and a task � = (C; T) with T � Ti for i = 1; : : : ; K. If� and �1; : : : ; �K cannot be scheduled together on one processor with the RM scheduling algorithm,then also (2C; 2T); �1; : : : ; �K cannot be scheduled.Proof. We assume that the tasks are ordered such that T1 � � � � � TK . Denote by k the smallestindex, such that (C; T) together with (C1; T1); : : :(Ck; Tk) is not schedulable.There are two possible cases. If 2T > Tk, then we can use schedulability condition (12) for bothtask sets in question. But clearly, the condition2C + j�1Xi=1 2Ci + kXi=j Ci > Tj (14)for all j � k is equivalent to j�1Xi=1 2Ci + kXi=j Ci + 2C > Tj (15)for all j. Also C + kXi=1Ci > T (16)is equivalent to kXi=1 2Ci + 2C > 2T (17)9

which shows the claim that (2C; 2T); (C1; T1); : : : ; (Ck; Tk) cannot be scheduled. If, on the otherhand, 2T � Tk, then Lemma 1 implies that for all 0 � t � Tkt < � tT �C + kXi=1 � tTi�Ci (18)� � t2T � 2C + kXi=1 � tTi�Ci (19)Again we have shown that (2C; 2T); (C1; T1); : : : ; (Ck; Tk) is not schedulable. 2Lemma 3 is a corollary of Lemma 2 which applies to multiprocessor systems.Lemma 3 Assume that the task set �1; : : : ; �K cannot be scheduled on N processors. Then the taskset � 01; : : : ; � 0K given by C0i = UiT 0i ; T 0i = 2Si (20)cannot be scheduled on N processors.Proof. For all tasks �i with Ti > 2Si we replace (Ci; Ti) by (2�mCi; 2�mTi), where m is selectedsuch that 2�mTi < 2Si . It is easy to see that by scaling t in the Lehoczky schedulability conditions(11), the replacement does not change the schedulability of the task set. Also, the values for Uiand Si remain unchanged. So, we may assume that Ti � 2Si for all i. If Ti = 2Si for all i, we aredone. Otherwise, we select �k such that Tk = mini (Ti) and replace (Ck; Tk) by (2Ck; 2Tk). Clearly,this does not change the load factor Uk. Lemma 2 implies that the resulting task set cannot bescheduled on N processors. We repeat this procedure until we arrive at a task set with Ti = 2Sifor all tasks. 2Proof of Theorem 1. We will show that any set of K tasks that cannot be scheduled on a singleprocessor violates condition (3), if � < 1�1=K, and violates condition (4), if � � 1�1=K. To showthat the bounds from Theorem 1 are tight we will construct a task set that cannot be scheduledon one processor, but whose total load is arbitrarily close to the bounds in (3) or (4). The proofwill proceed in four steps.(1) Formulate Theorem 1 in terms of a problem of minimizing U as a func-tion of its variables C = (C1; C2; : : : ; CK) and T = (T1; T2; : : : ; TK).(2) Fix the periods T = (T1; T2; : : : ; TK) and minimize U over the executiontimes C = (C1; C2; : : : ; CK). Use the result to express the executiontimes as functions of the periods.(3) Transform the reduced minimization problem into a convex problem.(4) Solve the convex minimization problem.10

(1) Assume that the task set (C1; T1); : : : ; (CK; TK) cannot be scheduled on one processor. Sincethe conditions given by (3) and (4) are strictly decreasing with K, they are certainly violatedfor a task set if they are violated for a subset. Hence, we may assume without loss of generalitythat all proper subsets of the task set can be scheduled on one processor. By Lemma 3 wecan assume that T1 � : : : � TK � 2�T1 (21)Since, by assumption, the proper subset �1; : : : ; �K�1 can , but the complete task set �1; : : : ; �Kcannot be scheduled on a single processor, task �K , which has the lowest priority, misses itsdeadline. By the schedulability condition in (12), this is equivalent toj�1Xi=1 2Ci + KXi=j Ci > Tj j = 1; : : : ; K (22)We will minimize the total load U as a function of the execution times and the periods of alltasks. Thus, we have to solve the following problem.minimize U(C; T) = KXi=1 CiTi (23)subject to j�1Xi=1 2Ci + KXi=j Ci � Tj j = 1; : : : ; K (24)0 � Ci � Ti i = 1; : : : ; K (25)T1 � � � � � TK � 2�T1 � � 1 (26)We replaced \>" by \�" in (24) and (25) to ensure that the minimum is attained at somepoint. Since the functional is continuous, this does not a�ect the minimal value of U . Notethat U(C; T) in (23) is not a convex function of its arguments. Hence, standard (nonlinear)optimization methods cannot be applied.(2) We will show that U(C; T) takes its minimal value in a point where conditions (24) holdswith equality. Suppose that we have found the minimum, say U�, for the objective functionwith C� = (C�1 ; C�2 ; : : : ; C�K), and T � = (T �1 ; T �2 ; : : : ; T �K). If for some j > 1, inequality (24) isstrict, we set ~Ci = 8>>><>>>: C�j�1 � " if i = j � 1C�j + " if i = jC�i otherwise (27)where " is de�ned by " := j�1Xi=1 2C�i + KXi=j C�i � Tj > 0 (28)11

Then side condition (24) is unchanged for i 6= j, and holds with equality for i = j. The totalload at this point satis�es U(~C; T�) = U� � " 1T �j�1 � 1T �j ! � U� (29)where we have used inequality (21). So we found a new minimum of the functional.Similarly, if there is strict inequality in condition (24) for j = 1, we set~Ci = 8>>><>>>: C�1 + " if i = 1C�K � 2" if i = KC�i otherwise (30)where " := KXi=1C�i � T �1 > 0 (31)The total load satis�es U(~C; T�) = U� � "� 2T �n � 1T �1 � � U� ; (32)where we have used inequality (21). Again we found a new minimum of the functional.Summarizing, we have shown that U takes its minimum in a point withj�1Xi=1 2C�i + KXi=j C�i = T �j for j = 1; : : : ; K (33)Subtracting equations in (33) for consecutive indices, and subtracting (33) for j = 1 from(33) for j = K, we obtain the following identitiesC�j = T �j+1 � T �j for j = 1; : : : ; K � 1 (34)C�K = 2T �1 � T �K (35)Note that the side conditions in (25) are satis�ed automatically. Thus, we have reduced theproblem to minimize U(T) = K�1Xi=1 Ti+1 � TiTi + 2T1 � TKTK (36)subject to T1 � � � � � TK � 2�T1 (37)12

(3) Substituting xi := log2 Ti+1Ti i = 1; : : : ; K � 1 (38)xK := log2 2T1TK (39)we rewrite the minimization problem in (36) and (37) asminimize U(x) = KXi=1 (2xi � 1) (40)subject to xi � 0; i = 1; : : : ; K (41)xK � 1� � (42)KXi=1 xi = 1 (43)Relation (43) is a consequence of the de�nitions in (38) and in (39).(4) The minimization problem in (40) - (43) is a (strictly) convex problem, since the functionalis a sum of convex functions and the side conditions describe a convex set. At this point, theminimization can be completed with a Lagrange multiplier method.More directly, it follows from the strict convexity of the problem that there is a uniquecritical point which is the absolute minimum. This critical point must be symmetric underany symmetry of the problem. If we disregard condition (42), the problem is completelysymmetric under permutation of the indices. Hence, in the minimum, all x�i must be equal,and side condition (43) demands thatx�i = 1=K; for i = 1; : : : ; K (44)Note that for � � 1 � 1=K, condition (42) is satis�ed automatically. Reversing the trans-formations in (34) { (35) and (38) { (39), we obtain the following solution of the originalproblem in (23) { (26).C�i = a 2i=K(21=K � 1); T �i = a 2i=K; for i = 1; : : : ; K (45)where a > 0 is any number. On this task set, U(C; T) takes the minimal valueU� = K �21=K � 1� (46)given on the right hand side of (4). Note that the task set given in (45) can be scheduled ona single processor. However, if any of the execution times C�i is replaced by ~Ci > C�i , thenthe resulting task set is not schedulable. 13

If � � 1� 1=K, the minimum satis�es x�K = 1� � (47)Problem (40) { (43) is symmetric under permutation of x1; : : : ; xK�1. Hence, in the minimum,all values for xi (i 6= K) must be equal. From (43) and (47) we obtain the solutionx�i = �K � 1 i = 1; : : : ; K � 1 (48)Transforming back with equations (34) { (35) and (38) { (39) gives the �nal solutionC�i = a 2�i=(K�1)(2�=(K�1)� 1) T �i = a 2�i=(K�1) i = 1; : : : ; K � 1 (49)C�K = a 2�K=(K�1)(21�� � 1) T �K = a 2�K=(K�1) (50)where a > 0 is any number. For this task set, U(C; T) takes the minimal valueU� = (K � 1) �2�=(K�1)� 1�+ 21�� � 1 ; (51)The task set given in (49) and (50) can be scheduled on one processor. But if any of theexecution times C�i is replaced by ~Ci > C�i , then the resulting task set cannot be scheduled.This completes the proof. 23.2 Rate-Monotonic Scheduling in Multiprocessor SystemsIn the previous subsection we were concerned with scheduling real-time tasks on a uniprocessorsystem that employs the RM scheduling algorithm. Theorem 1 addresses the question: When cana set of tasks be scheduled on one processor? For the answer we found the worst case task set whichcan still be scheduled on a single processor. For the corresponding result in multiprocessor systemswe have to �nd the minimal number of processors that is needed to �nd a feasible assignment of atask set to a multiprocessor system. Obviously, in the worst case, only one task can be assigned toeach processor. Therefore, we have to be concerned with the question: When can a set of tasks bescheduled on less than one processor for each task?The answer to this question is given in Theorem 2. Roughly, Theorem 2 says, that if Kprocessors are needed to schedule a set of K tasks, then the load on each processor cannot be muchless than 1=2.Theorem 2 If the total load of a set of K real-time tasks satis�esU � K21=K + 1 (52)then the task set can be scheduled with the RM algorithm on less than K processors. The conditionis tight. 14

The following example shows that Theorem 2 is a true multiprocessor result, and cannot be obtainedas a corollary of Theorem 1. We select an an integer K � 3, and setCi = 2i=K Ti = 2i=K(21=K + 1) for i = 1; : : : ; K (53)Since U = K21=K+1 the task set can be scheduled on less than K processors by Theorem 2. However,since 1=(21=K + 1) > p2� 1 the schedulability conditions in Theorem 1 fail for any pair of tasks.As a result, assignment schemes based on Theorems 2 can achieve a better processor utilizationthan schemes based on uniprocessor results alone.The following corollary provides a good approximation of Theorem 2. The statement is asymp-totically exact for K !1, and never di�ers by more than 0:07 from the exact value.Corollary 2 If the total load U of a set of K real-time tasks satis�esU � K2 � ln 24 (54)then the task set can be scheduled with the RM algorithm on less than K processors.Proof. The proof follows from the following inequalities.K2 � ln 24 < K21=K + 1 � K2 � 16 (55)2Next we present the proof of Theorem 2. For the proof we will need a technical lemma, given inLemma 4. We will use the lemma to show that for the task set which satis�es the inequality ofTheorem 2 with the lowest value for the total load, the execution times Ci satisfy the same orderingrelations C1 � � � � � Ck � 2C1 as the periods.Lemma 4 Assume that a set of K nonnegative numbers C1; : : : ; CK has the following property.For every 1 � j � K there exists at least one index i such thatCj = mi := minf2C1; : : : ; 2Ci�1; Ci+1; : : : ; CKg or 2Cj = mi (56)For such a set, either C1 � � � � � CK � 2C1 (57)or there exists an index 1 � j � K and numbers a > b � 0 such thatCi = 8>>><>>>: a if i < jb if i = j2a if i > j (58)15

Proof. For K � 2 the statement is trivially correct. For K > 2, consider a task set that satis�esthe assumption but violates equation (57). We have to distinguish two cases. Either, Cj�1 > Cjfor some index 1 < j � K, or CK > 2C1. We will only prove the �rst case, since the proof for thesecond case is completely analogous.Assume that there exists an index 1 < j � K with Cj�1 > Cj . Then we obtain by de�nition ofmi, that for all i < j � 1, mi � Cj < Cj�1 (59)and for all i > j, mi � 2Cj < 2Cj�1 (60)But with the assumption in (56) we must have that mj = 2Cj�1. By de�nition of mj , this means2Cj < 2Cj�1 � 8<: 2Ci if i < j � 1Ci if i > j (61)Using (56), we have mi = 8>>><>>>: 2Cj if i < j2Cj�1 if i = jCj if i > j (62)It follows that (58) holds with a = Cj�1 and b = Cj. 2Proof of Theorem 2. We want to �nd the smallest value of U for a set of K tasks that cannotbe scheduled on less than K processors. Since for K = 1 there is nothing to show, we will assumeK � 2. The proof will proceed in �ve steps.(1) Formulate Theorem 2 in terms of a problem of minimizing Uas a function of its variables (Ci; Ti).(2) Fix the execution times C = (C1; C2; : : : ; CK) and minimize Uover the periods T = (T1; T2; : : : ; TK). Use the result to expressthe periods as functions of the execution times.(3) Transform the minimization problem into a convex minimizationproblem.(4) Solve the minimization problem with standard methods.(1) Assume that the tasks (C1; T1); : : : ; (CK; TK) cannot be scheduled on less than K processors.We want to show that the total load U violates (52). With Lemma 3 we can assume thatT1 � � � � � TK � 2T1 (63)16

The assumption that the K tasks cannot be scheduled on less than K processors is equivalentto the statement that no two tasks can be scheduled on one processor. By (13) this isequivalent to 8<: Ti < Ci + Cj if i < jTi < Ci + 2Cj if i > j (64)So we have to solve the following minimization problem.minimize U(C; T) = KXi=1 CiTi (65)subject to Ti < Ci + Cj i < j (66)Ti < Ci + 2Cj i > j (67)0 � Ci � Ti i = 1; : : : ; K (68)T1 � � � � � Tk � 2T1 (69)As in the proof of Theorem 1, we replace \<" by \�" to enforce that the minimum is attainedat some point.(2) Since the partial derivatives of U(C; T)@U@Ti (C; T) = �CiT 2i < 0 (70)are negative, U(C; T) is minimal if we we choose the Ti as large as possible. We enforce the�rst two side conditions, (66) and (67), by settingTi = Ci +minf2C1; : : : ; 2Ci�1; Ci+1; : : : ; Ckg (71)To simplify (71), we will show that in the absolute minimum of U(C; T), conclusion (57) ofLemma 4 holds. To this end, we �rst have to show that the assumptions of Lemma 4 hold.Assume that (56) is not satis�ed, that is, for some index j there exists neither i < j such thatmi = Cj , nor i > j such that mi = 2Cj . With (71), the objective function can be phrasedexclusively in terms of C. Since the total derivativedUdCj (C) = mj(Cj +mj)2 > 0 (72)is positive, we can lower the value of the functional U(C) by lowering the values for Cj. Thus,condition (56) of Lemma 3 is satis�ed in any critical point of the functional.17

Next we show that the second outcome of Lemma 4 is not feasible in a minimum of thefunctional. If the task execution times satisfy (58) thenCi = 8>>><>>>: a if i < jb if i = j2a if i > j (73)with 0 � b < a. At such a point the periods of the tasks are given byTi = 8>>><>>>: a + b if i < jb+ 2a if i = j2b+ 2a if i > j (74)We obtain for the total load factorU(C; T) = (K � 1) aa+ b + b2a+ b (75)Setting t = ba (76)equation (75) reads U(t) = (K � 1) 11 + t + t2 + t (77)which is nonincreasing with t. Consequently, for 0 � t � 1, U assumes its minimum at t = 1,that is a = b. Hence, condition (57) holds.Since we showed that in a minimum the Ci satisfy condition (57), we obtain with (71) thatTi = Ci + Ci+1 i = 1; : : : ; K � 1 (78)TK = CK + 2C1 (79)Note that the side condition in (69) is always satis�ed.Summarizing, we have reduced the problem tominimize U(C) = K�1Xi=1 CiCi + Ci+1 + CKCK + 2C1 (80)subject to Ci � 0 i = 1; : : : ; K (81)(3) We perform a transformation of variables. De�nexi := log2 Ci+1Ci if i < KxK := log2 2C1CK (82)18

Then the optimization problem of (80) and (81) readsminimize U(x) = KXi=1 11 + 2xi (83)subject to xi � 0 i = 1; : : : ; K (84)KXi=1xi = 1 (85)where equation (85) is a consequence of de�nition (82).(4) Since the optimization problem in (83) - (85) is strictly convex, and since both the functionaland the side conditions are symmetric under permutation of the indices, the unique minimumis also symmetric under permutations of indices. From the side condition in (85), we directlyobtain that the solution must bex�i = 1=K i = 1; : : : ; K (86)Transforming back to the original variables we obtain the following solution in terms ofexecution times and periods: C�i = a 2i=K (87)T �i = a 2i=K(21=K + 1) (88)where a > 0 can be any number. For this task set, U has the minimal valueU� = K=(21=K + 1) (89)The task set with parameters as in (87) and (88) can be scheduled on less than K processors.But if all C�i are replaced by ~Ci > C�i , then the resulting task can only be scheduled on Kprocessors. This completes the proof. 2
19

4 Assignment Schemes for Multiprocessor SystemsIn this section, we show how to use our theoretical results from Section 3 to design a new classof o�-line assignment schemes for distributing a set of real-time tasks to a set of processors. Wewill compare our assignment schemes with an optimal scheme which always utilizes the minimumnumber of processors. For a given task set, we denote by Nopt the number of processors needed byan optimal assignment scheme.We will propose two assignment schemes. The �rst scheme, referred to as Rate-MonotonicSmall-Task or RMST scheme, is intended for task sets where the load factor Ui of each real-timetask is small compared to the processing speed of each processor. The second scheme, referred toas Rate-Monotonic General-Task or RMGT scheme, applies to general task sets.Previously proposed assignment schemes only consider the load factors of the tasks [1, 2, 4,9]. Our schemes gain superiority by additionally taking into account the task periods. Beforewe present the schemes, let us review the maximum performance that can be achieved with atask assignment scheme using information on the load factors only. In this case, the su�cientschedulability conditions given in [8] and it variants [4, 9] are the best available schedulabilityconditions. If these conditions are used then the load assigned to any pair of processors exceedsln 2. So, if N processors are used, then U > ln 22 N (90)This bound cannot be improved beyond (p2 � 1)N . For example, a set with K real-time taskswhere Ui = p2 � 1 + " for each task cannot be scheduled onto K processors with this condition.Thus, all task assignment schemes that use the scheduling condition of [8] are strictly limited inthe performance they can achieve.Similar arguments show that if the load factor of every task is less than �, then a next-�t taskassignment scheme based on [8] will ensure that the load on all but one processor is at least ln 2��.This shows that U > (ln 2� �)N (91)For � < 1=2 this bound is best possible. More sophisticated bin-packing heuristics, such as �rst-�tor best-�t, can improve the average performance a lot, but one can construct task sets such thatU � N ln 2. Consequently, in the worst case, N=Nopt � 1= ln 2.A moment's consideration shows, that the bounds given in inequalities in (90) and (91) are farbelow the bounds that can be achieved with an optimal assignment scheme. By Theorem 2, any setof K real-time tasks with Ui � 1=2�" for all tasks can be scheduled on less than K processors if thenumber of tasks is su�ciently large. And we can certainly assign task sets with small load factors20

to processors in such a way that the load on all but one processor exceeds 1=2. This argumentsuggests that the best bound for an optimal assignment scheme is of the formU > N2 � const: (92)Similarly, if the load factor of every task is bounded above by �, one might hope to prove thatU > (1� �)N � const: (93)Note that these inequalities have the same form as corresponding inequalities for periodic taskswithout deadline constraints. In particular, the leading terms N=2 and (1� �)N are best possible.The RMST and RMGT assignment schemes proposed here create task assignments that satisfybounds of the form (93) and (92). In the following we discuss both schemes and prove theirproperties.4.1 RMST { An Assignment Scheme for Small TasksWe �rst consider the problem of scheduling a set of tasks with small load factors. Denote by� := maxi=1;:::;K Ui (94)the maximal load factor of any single real-time task. For all practical purposes, we may assumethat a task set contains only \small" tasks if � � 1=2.Recall that by Corollary 1 the minimal achievable load on a single processor is larger than1� � ln 2 where � is de�ned as in (2). The main idea of RMST is to partition the tasks in such away that on each processor, � has a small value.It is convenient to visualize the values of Si for a given task set as points on a circle withcircumference one. Starting at any point on the circle and proceeding clockwise, we assign tasks toprocessors, using the schedulability condition of Theorem 1. Then, the value of � at each processoris given by the length of the arc spanned by the tasks that are assigned to that processor.The RMST scheme is summarized in Algorithm 1. It can be easily veri�ed that the compu-tational complexity of Algorithm 1 is determined by the sorting of tasks in Step 1. Thus, thecomplexity of RMST is O(K logK) where K is the size of the task set.
21

(1) Order the task set such that 0 � S1 � � � � � SK < 1 and set SK+1 := S1 + 1.Set the task index to i := 1, and the processor index to n = 0.(2) Select an empty processor with index n := n + 1. Assign task �i to processor n,that is �n := Ui. Set S := Si, and ~�n := 0.(3) Increase the task index, i := i+ 1, and set ~�n := Si � S. If the schedulability condition (6)Ui + �n � maxfln 2; 1� ~� ln 2gis satis�ed, assign task �i to processor n by setting �n := �n+Ui, and continue with step (3).Otherwise, continue with step (2).(4) When all tasks have been assigned set ~�n := SK+1 � S and terminate.Algorithm 1. Rate-Monotonic Small Task (RMST).Let us illustrate the RMST scheme with an example. In Table 1 we show the parameters fora set of 10 tasks, also including the values of Si. The task set is already ordered according to Si.Note that for the parameter set in Table 1 we obtain � = 0:3167. In Figure 1, we depict the valuesfor Si on a circle with circumference one. The shaded areas indicate the assignment of tasks toprocessors as obtained by RMST. The areas are labeled with the value of � as de�ned in (2) fora particular processor 2. Thus, three processors are required to schedule the set of tasks of Table1, where tasks �1; �2; �3; �4 are assigned to the �rst processor, �5; �6; �7 to the second processor, and�8; �9; �10 to the third processor. Note that any assignment scheme proposed in the literature wouldutilize four processors.Next we will show that the RMST scheme satis�es performance bounds of the form given in (92).Theorem 3 For any given task set �1; : : : ; �K, the RMST scheme arrives at a feasible assignmentof tasks to processors. If the maximal load factor of any single task is� := maxi=1;:::K CiTi < 1 (95)then the number N of processors needed by RMST satis�es the inequalityN < U1� � + 2� 1� ln 21� � : (96)2Note that � is slightly di�erent from ~�n in Algorithm 1; ~�n also contains the value of Si of the �rst task �i notassigned to processor n. 22

i = 1 2 3 4 5 6 7 8 9 10Ti = 65 280 36 150 20 45 400 7 230 60Ci = 16 27 11 31 3 14 113 2 70 19Ui = 0.2461 0.964 0.3055 0.2067 0.15 0.3111 0.2825 0.2857 0.3043 0.3167Si = 0.0223 0.1292 0.1699 0.2288 0.3219 0.4918 0.6438 0.8073 0.8454 0.9068Figure 1: Example Parameter Set.
1n

4S

S 1

S

S

S

S

S

S

S

S

2

3

5

6

7

8

9

10

0.75 0.25

0

0.5

β

ββ

2

13

Figure 2: Processor Assignment for Algorithm 1.The inequality in (96) is not tight, however, one can construct task sets for which RMST requiresat least U=(1� �) processors. For � � 1=2, the bounds obtained with the RMST scheme improveupon any previously proposed assignment scheme. For � > 1=2, the RMGT scheme presented inthe next subsection will give better bounds than RMST. Since in most practical real time systemsthe load imposed by individual real-time tasks is small compared to the power of the processors,the result of Theorem 3 shows to be highly relevant for practical real-time applications.Proof of Theorem 3. Denote by Kn the number of tasks assigned to the n-th processor, andby �n the load on the processor due to these tasks. De�ne ~�n as ~�n = Sin+1 � Sin , where in isthe index of the �rst task assigned to processor n. We also set SiN+1 = 1 + S1. Note that these23

de�nitions are identical to the values of ~�n after Algorithm 1 has terminated.The task assignment resulting from Algorithm 1 is feasible by Corollary 1. We now estimate N ,the number of processors needed by Algorithm 1 to schedule a given task set. By our schedulabilitycondition in (6), the loads on the processors satisfy�n > 1� ~�n ln 2� � n = 1; : : :N � 1 (97)�N�1 + �N > 1� ~�N�1 ln 2 (98)Adding (97) and (98), and using that by constructionNXn=1 ~�n = 1 (99)we obtain U = NXn=1 �N (100)> N�2Xn=1 (1� ~�n ln 2� �) + 1� ~�N�1 ln 2 (101)� (N � 2)(1� �) + 1� ln 2 (102)Solving for N yields assertion (96). 2In the following corollaries we compare the number of processors required to schedule a taskset using RMST with the number of processors required for an optimal assignment scheme. Corol-lary 3 gives the bound of the performance parameter N=Nopt for any number N of processors. InCorollary 4 we present the asymptotic limit which is included in Table 1.Corollary 3 For any task set, the number N of processors needed by RMST satis�esNNopt < 11� � + 2Nopt (103)Nopt denotes the number of processors utilized by an optimal assignment scheme.Proof. For any schedule, we must have Nopt � U . With (96) we obtainN < Nopt1� � + 2� 1� ln 21� � (104)Dividing by Nopt gives the claim. 224

Corollary 4 Let f�i j i = 1; 2; : : :g be a given in�nite task set. Assume that the load factor of anysingle task does not exceed �. Denote by U(k) the total load factor of tasks �1; : : : ; �k. Denote byN(k) the number of processors used by RMST to schedule �1; : : : ; �k, and by Nopt(k) the number ofprocessors needed in an optimal assignment. Iflimk!1U(k) =1 (105)then limk!1 U(k)N(k) � 1� � (106)limk!1 N(k)Nopt(k) � 11� � (107)The bounds are tight.Proof. We obtain (106) by dividing by N in equation (96) of Theorem 3 and passing to the limit.For equation (107) we pass to the limit in inequality (103) of Corollary 3. 24.2 RMGT { An Assignment Scheme for General Task SetsThe RMST scheme from the previous subsection provides excellent bounds for task sets where themaximal load factor of the tasks is limited by Ui � 1=2. Next we propose a simple task assignmentscheme, referred to as Rate-Monotonic General-Task (RMGT) scheme which is applicable to unre-stricted task sets. We show that RMGT is able to �nd a feasible task assignment with less thanN < 2U + 2 processors.For the RMGT scheme we partition the task set into two groups, such that the load factors oftasks in the �rst and second group, respectively, satisfy Ui � 1=3 and Ui > 1=3. Tasks in the �rstgroup are assigned to processors with the RMST scheme in Algorithm 1. Tasks from the secondgroup are assigned to processors with a �rst-�t heuristic. The heuristic assigns at most two tasksto one processor using the exact schedulability condition from (13). The complete RMGT schemeis summarized in Algorithm 2.Partitioning the task set in Algorithm 2 involves a computational complexity of O(K) whereK is the total number of tasks. Recall from subsection 4.1 that Algorithm 1 has a complexity ofO(jG1j log jG1j). Since a �rst �t bin-packing algorithm for tasks in G2 can be implemented with acomplexity of O(jG2j log jG1j) [5], the worst case computational complexity of the RMGT scheme isgiven by O(K logK).In the following theorem, Theorem 4, we show that the number of processors needed by RMGT forscheduling an arbitrary set of real-time tasks satis�es a bound similar to (92). In Theorem 5 andCorollary 5 we prove bounds for the performance of the RMGT scheme.25

(1) Partition the set of tasks into two groups:G1 = f�i j Ui � 1=3gG2 = f�i j Ui > 1=3g(2) Use the RMST scheme in Algorithm 1 to assign the task set G1.(3) Assign tasks in G2 as follows:(3.1) Set the task index to i := 1 and assign �1 to an empty processor with index 1. Set�1 := U1.(3.2) Increase the task index to i := i+1 and consider task �i. Use a �rst-�t heuristic to �nda processor n that contains a task �j such that�TjTi � (Tj � Ci) � Cj or Tj � �TjTi �Ci + Cjif Ti < Tj, and $TiTj % (Ti � Cj) � Ci or Ti � &TiTj 'Cj + Ciif Ti � Tj . If such a processor exists, assign task �i to processor n by setting �n := �n+Ui,otherwise, assign task �i to an empty processor with indexm, and set �m := Ui. Continuewith step (3.2).(3.3) Terminate when all tasks in G2 have been assigned.Algorithm 2. Rate-Monotonic General Task (RMGT).26

Theorem 4 For any task set �1; : : : ; �K, the RMGT algorithm arrives at a feasible processor as-signment. The number N of processors utilized by RMGT to schedule the task set satis�esN < 2U + 52 ln 2� 13 � 2U + 1:42 (108)Proof. Given a task set �1; �2; : : : ; �K. With Theorem 3 and Lemma 1, RMGT arrives at a feasibleprocessor assignment. Next we estimate the number of processors used by RMGT. Assume thatAlgorithm 2 assigns to n1 processors each two tasks from G2, and to n2 processors each one taskfrom G2. Also assume that Algorithm 1 utilizes n3 processors for tasks in G1. Denote the total loadfactors assigned to the three groups of processors by U (1), U (2), and U (3), respectively. Then weobtain: U (1) > 2n13 � n12 (109)U (2) > n22 � ln 24 (110)U (3) > 2n33 � 13 � ln 2 � n32 � ln 2 + 16 (111)Inequality (109) holds, because each processor in this group has been assigned two tasks, each witha load larger than 1=3. Inequality (110) follows from Corollary 2. Inequality (111) follows fromTheorem 3 provided that n3 � 3. Because the joint load on any two processors exceeds ln 2 byconstruction, (111) holds also if n3 < 3. Adding the three inequalities and solving for N yields theclaim in (108). 2Theorem 5 The number of processors utilized by RMGT to assign a task set satis�esNNopt � 74 + 15 ln 2� 48Nopt � 74 + 0:79Nopt (112)where Nopt is the number of processors utilized by an optimal assignment. The inequality becomesfalse, if the right hand side is replaced by anything less than 7=4.Proof. As in the proof of Theorem 4, we denote by n2 the number of processors that have beenassigned one task from G2. Then, from inequalities (109), (110), and (111), we obtainNopt � U > 23(N � n2) + n22 � 13 � ln 2� ln 24 (113)= 23N � n26 � 13 � 54 ln 2 (114)27

Moreover, since we used exact schedulability conditions to schedule class G2, we have thatNopt � n2 (115)We obtain Nopt � min0�n�N max fU; n2g (116)� 47N + 27 � 1514 ln 2 (117)which proves (112).To show that the inequality in (112) is tight we will construct a task set such thatN=Nopt = 7=4.The task set consists of 13m (m > 0) tasks. For the construction of the tasks we select two smallpositive numbers " and � with " ln 2 � � < 32" ln 2 (118)We label the tasks by �i;j , where 1 � i � m, and 1 � j � 13. The tasks are given byCi;j = Ui;jTi;j ; Ti;j = 2Si;j (119)Then the values for Ui;j and Si;j are given byUi;j = 8>>><>>>: 1=2� � if j = 2; 5; 8; 111=3 if j = 1; 6; 101=6� � if j = 3; 4; 7; 9; 12; 13 (120)and Si;j = 8<: (12i+ j)" if 1 � j � 12(12i+ 11)" if j = 13 (121)An optimal assignment will require exactly 4m processors to schedule the given task set. In par-ticular, the optimal assignment distributes the following groups of tasks to one processor each.f�i;1; �i;2; �i;3g ; f�i;4; �i;5; �i;6g ; f�i;7; �i;8; �i;9; �i;13g ; f�i;10; �i;11; �i;12g for i = 1; : : : ; m : (122)Since the total load of the task set is given by U � (1� 4�)(4m), the given assignment is optimal,if " and � are chosen su�ciently small. The assignment is feasible by Corollary 1.RMGT as given in Algorithm 2 �rst divides the task set into two groups. In the �rst group wehave for each i G1 = f�i;j j j = 1; 3; 4; 7; 9; 10; 12; 13; i = 1; : : : m g (123)These tasks are assigned with Algorithm 1, which results in the following processor assignment.f�i;1; �i;3; �i;4g ; f�i;6; �i;7; �i;9g ; f�i;10; �i;13; �i;12g for i = 1; : : : ; m (124)28

The second group is given byG2 = f�i;j j j = 2; 5; 8; 11; i = 1; : : : m g (125)The load factor of each task in G2 is given by 1=2� �. Thus, according to equation (13), no twotasks from G2 can be scheduled on the same processor. So, RMGT needs 7m processors for thesame task set. 2Corollary 5 Let f�i j i = 1; 2; : : :g be a given in�nite task set. Denote by U(k) the sum of the loadfactors of tasks �1; : : : ; �k. Denote by N(k) the number of processors used by RMGT to schedule�1; : : : ; �k, and by Nopt(k) the number needed in an optimal assignment. Iflimk!1U(k) =1 (126)then limk!1 �(k)N(k) � 12 (127)limk!1 N(k)Nopt(k) � 74 = 1:75 (128)Both bounds are tight.Proof. Inequality (127) is obtained by dividing (108) of Theorem 4 by 2N , and passing to thelimit. Inequality (128) follows by passing to the limit in (112) of Theorem 5. 25 RMGT/M { An On-Line Task Assignment SchemeIn this section we propose an on-line version of the task assignment schemes presented in section 4.Recall that on-line task assignment schemes do not require that the entire task set is known apriori. Rather, on-line schemes provide procedures for dynamically adding new tasks and deletingexisting tasks at any time. We assume that the number of processors in the real-time computersystem is not constrained. Thus, new tasks can always be added to the processor system.We refer to the new scheme as Rate-Monotonic General-Tasks/M (RMGT/M) scheme, whereMis a parameter denoting the number of processors to which a new task can be assigned. RMGT/Mhas the following properties. If a task is dynamically added to a processor, the assignments ofexisting tasks remain unchanged. However, if a task is deleted from a particular processor, possiblyall tasks on this processor are moved to other processors.29

The RMGT/M scheme is based on the schedulability conditions used for the o�-line RMSTscheme discussed from subsection 4.1. In RMGT/M, each task is assigned to one of a �xed numberof M classes. The class membership, say m, of a task � is determined by the following expression:m = jM(log2 (T)� blog2 (T)c)k+ 1 (129)Each processor is assigned tasks from only one class. Thus, at each processor the value of � asde�ned in (2) is bounded above by 1 � ln 2=M . For each class, the RMGT/M scheme keeps oneso-called current processor. If a new task from class m is added to the task set, RMGT/M �rstattempts to accommodate the task to the current processor for class m. A complete description ofthe procedures for adding and deleting a task � = (C; T) is given in Algorithm 3.In Algorithm 3, adding and deleting of a task � = (C; T) are performed by procedures AddTask()and DeleteTask(). AddTask() �rst determines the class membership, say m, of the new task �(Step 1). If � can be added to the current processor of class m without violating the schedulabilitycondition it is assigned to this processor. Otherwise, � is assigned to an empty processor. If theload factor of � is su�ciently small (Step 4), the processor to which � is assigned becomes thecurrent processor of class m (Steps 5 and 6). If the load factor of � is large, no other task will beassigned to this processor (Steps 8 and 9).Similarly to AddTask(), procedure DeleteTask() �rst determines the class membership of thetask to be deleted (Step 1). If the task, say � , is assigned to the current processor of its class,it is merely canceled (Step 3). Otherwise, all tasks at this processor (except �i) are assigned todi�erent processors with procedure AddTask() (Steps 5 and 6), and the processor is labeled asempty (Step 8).The performance bounds of the RMGT/M scheme are given in Theorem 6 and Corollary 6.Corollary 6 states the asymptotic bound of RMGT/M. The bounds given in Table 1 can be obtainedfrom the corollary.Theorem 6 If a dynamically changing task set is scheduled with RMGT/M then the number ofprocessors needed satis�es N < U1� ln 2=M � � +M (130)The bound is tight if � � (1� ln 2=M)=2. We also haveN < 2U1� ln 2=M +M (131)which is a tight bound if � � (1� ln 2=M)=2. 30

Global functions:curr(m) { Returns the current processor for class m.proc(�) { Returns the processor index assigned to task � .newproc() { Returns the index of an empty processor.empty(n) { Labels processor n as empty processor.AddTask (� = (C; T))begin1. m := jM (log2 (T)� blog2 (T)c)k+ 1;2. if (�curr(m) + C=T � 1� ln 2=M) then3. �curr(m) := �curr(m) + C=T ;4. else if (�curr(m) < C=T) then5. curr(m) := newproc();6. �curr(m) := C=T ;7. else8. x := newproc();9. �x := C=T ;10. endifendDeleteTask (� = (C; T))begin1. m := jM(log2 (T)� blog2 (T)c)k+ 1;2. if (proc(�) = curr(m)) then3. �proc(�) := �proc(�)� C=T ;4. else5. for each f~� j proc(~�) = proc(�); ~� 6= �g do6. AddTask(~�);7. endfor8. empty(proc(�));9. endifendAlgorithm 3. Rate-Monotonic General Task/M (RMGT/M).31

Proof. The schedulability condition used for Algorithm 3 in Step 2 of procedure AddTask() enforcesthat at any instant, the load on all processors but theM current processors exceeds both 1�ln 2=M�� and (1� ln 2=M)=2. 2Corollary 6 Let f�i j i = 1; 2; : : :g be a given in�nite task set. Denote by U(k) the sum of the loadfactors of the �rst k tasks. Denote by NM(k) the number of processors used by Algorithm 3, andby Nopt(k) the number of processors used by an optimal scheme. Iflimk!1U(k) =1 (132)then we have the asymptotic boundslimk!1 U(k)NM(k) � max�1� ln 2=M � � ; 1� ln 2=M2 � (133)limk!1 NM(k)Nopt(k) � min� 11� ln 2=M � � ; 21� ln 2=M � (134)The bounds are tight.Proof. We obtain both (133) and (134) by passing to the limit in (130) and (131). 2From the derived bounds we see that the performance of RMGT/M is sensitive to the selection ofM , the number of task classes. The asymptotic bounds in (133) and (134) improve for large valuesof M . However, M also determines the number of current processors, i.e., processors which are notfully utilized. Next we present a method for selecting an appropriate value of M .Assume that the total load of the task set is known. To �nd the value of M that gives the bestworst-case bound for the number of processors used, we �x the value of U in (131). Since the righthand side of (131) is a strictly convex function of M , we can calculate the unique minimum whichis denoted by M�: M� = p2U ln 2 + ln 2 (135)This suggests that we should choose M � pU . Then we obtainUN � (1� ln 2=M � �)(1�M=N) = 12 �O(1=pU) (136)and hence NNopt � 2 +O(1=pU) (137)Similarly, if � < 1=2, we can minimize the right hand side of (130) over M and obtain that theoptimal choice for M should be as close as possible toM� = pU ln 2 + ln 21� � (138)32

If we choose M � pU , we obtain with (130) the following bound for the average utilization at eachprocessor. UN � (1� ln 2=M � �)(1�M=N) = 1� �� O(1=pU) : (139)and N=Nopt is given by NNopt � 11� � + O(1=pU) (140)6 ConclusionsWe derived new schedulability conditions for scheduling (periodic) real-time tasks on uniprocessorand multiprocessor systems. Each processor was assumed to use the rate-monotonic schedulingalgorithm. Based on the schedulability conditions we developed three assignment schemes, calledRMST, RMGT, and RMGT/M, for assigning tasks to the processors. Both RMST and RMGT areso-called o�-line task assignment schemes, that is, the entire set of real-time tasks is assumed tobe known. The on-line scheme RMGT/M allows that real-time tasks are dynamically added to ordeleted from the task set.For each of the schemes, we obtained upper bounds for the performance parameter N=Nopt,where N is the number of processors required to schedule a task set with RMST or RMGT, andNopt is the number of processors needed in an optimal assignment. We also obtained lower boundsfor the average processor utilization. We provided asymptotic limits of the bounds. For RMST,the asymptotic bound for N=Nopt was proven to be 1=(1� �) where � is the maximal load factorof the tasks in the given task set. For the RMGT scheme we proved an asymptotic bound of 7=4.In RMGT/M, the asymptotic bound was shown to be at most 1=(1� �) +O(1=M), where M is aparameter.The improvement of the performance bounds compared to previous existing results were achievedwith rather simple assignment algorithms. The strength of the presented schemes resulted fromnovel schedulability conditions. We conjecture that both the RMST and RMGT scheme leave am-ple space for improvements. For example, the following modi�cations to our assignment schemesmay result in better performance bounds.� For RMST one can use tighter schedulability conditions than the one we applied. Withoutadditional computational cost one could use the following more precise condition which canbe obtained from Theorem 1.Uj + �n � 8<: � ln 2 + 21�� � 1 if � � 1=2ln 2 if � > 1=233

This will lower the number of processors used, however, the asymptotic limit for N=Nopt willnot change. RMST can be further improved by using the exact schedulability condition inTheorem 1 which contains the number of tasks, K, as a parameter. Then the schedulabilitycondition in Algorithm 1 takes the formUj + �n � 8<: (K � 1)(2�=(K�1)� 1) + 21�� � 1 if � � 1� 1=Kln 2 if � > 1� 1=K� Note that RMGT never assigns `large' tasks (with Ui > 1=3) and `small' tasks (with Ui � 1=3)to the same processor. However, it is very likely, that processors that are assigned `large'tasks can accommodate some additional `small' tasks. This will increase the average load perprocessor signi�cantly, and may also improve the worst case bound for N=Nopt.

34

References[1] S. Davari and S. K. Dhall. An On Line Algorithm for Real-Time Allocation. In 19th AnnualHawaii International Conference on System Sciences, pages 194{200, 1986.[2] S. Davari and S. K. Dhall. An On Line Algorithm for Real-Time Allocation. In IEEE Real-Time Systems Symposium, pages 194{200, 1986.[3] S. K. Dhall. Scheduling Periodic-Time-Critical Jobs on Single Processor and MultiprocessorComputing Systems. PhD thesis, University of Illinois at Urbana-Champaign, 1977.[4] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research, 26(1):127{140, January/February 1978.[5] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst Case Perfor-mance Bounds for Simple One-dimensional Packing Algorithms. SIAM Journal of Computing,3:299{325, 1974.[6] J. P. Lehoczky, L. Sha, and Y. Ding. The Rate-Monotonic Scheduling Algorithm: ExactCharacterization and Average Behavior. In IEEE Real-Time Systems Symposium, pages 166{171, 1989.[7] J. Y.-T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of Periodic,Real-Time Tasks. Performance Evaluation, 2:237{250, 1982.[8] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard RealTime Environment. Journal of the ACM, 20(1):46{61, January 1973.[9] Y. Oh and S. H. Son. Tight Performance Bounds of Heuristics for a Real-Time SchedulingProblem. Submitted for Publication.[10] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for Some Practical Problems in PrioritizedPreemptive Scheduling. In IEEE Real-Time Systems Symposium, pages 181{191, 1986.[11] J. A. Stankovic and K. Ramamritham (editors). Hard Real-Time Systems. IEEE ComputerSociety Press, 1988.[12] Q. Z. Zheng and K. G. Shin. On the Ability of Establishing Real-Time Channels in Point-to-Point Packet Switched Networks. to appear: IEEE Transactions on Communications.35

A Average-Case Performance Evaluation of RMST and RMGTIn this study, the performance bounds of the new assignment schemes, RMST and RMGT, werederived under worst-case assumptions. While a worst-case analysis assures that the performancebounds are satis�ed for any task set, it does not provide insight into the average behavior of theassignment schemes. To obtain the average-case performance of the RMST and RMGT schemes,one can analyze the schemes with probabilistic assumptions, or conduct simulation experimentsto empirically study the average performance. Since a probabilistic analysis of our algorithms isbeyond the scope of this study, we resort to simulation to gain insight into the average-case behaviorof RMST and RMGT.We present simulation experiments for large task sets with 100 � K � 1000 tasks. In eachexperiment, we vary the value of parameter � = maxi=1;:::;K Ui, the maximal load factor of anytask in the set. The task periods are assumed to be uniformly distributed with values 1 � Ti � 500.The execution times of the tasks are also taken from a uniform distribution with range 1 � Ci � �Ti.The performance metric in all experiments is the number of processors required to assign a giventask set. We compare the RMST and RMGT schemes with several existing assignment schemes. Allassignment schemes are executed on identical task sets. The following o�-line assignment schemesare considered:� Rate-Monotonic Small-Tasks (RMST) (section 4.1),� Rate-Monotonic General-Tasks (RMGT) (section 4.2),� Rate-Monotonic-Next-Fit (RMNF) [4],� Rate-Monotonic-First-Fit (RMFF) [4],� Rate-Monotonic-Best-Fit (RMBF) [9] 3Since an optimal task assignment cannot be calculated for large task sets, we use the total load(U =PKi=1 Ui) to obtain a lower bound for the number of processors required.The outcome of the simulation experiments is shown in Figures A.1 { A.3. The maximum loadof a task is set to � = 0:2 in Figure A.1, to � = 0:5 in Figure A.2, and to � = 0:8 in Figure A.3. Inthe Figures, each data point depicts the average value of 15 independently generated task sets withidentical parameters. Note that the RMGT scheme gives the best performance in all experiments.In Figure A.1, the performance of RMST and RMGT cannot be distinguished since RMST andRMGT are identical if � < 0:3. As we increase the value of �, we observe that the performance ofRMST decreases.The graphs in Figures Figures A.1 { A.3 show that in all schemes, the number of processorsrequired for the respective schemes, increases proportionally to the total load. In Table A.1 we3In all simulations, the results obtained with RMFF and RMBF were identical.36

show the range of values of N=U := Number of Processors UsedTotal Loadas obtained for the di�erent assignment schemes in all task sets. The data in Table A.1 was collectedfrom the same simulation experiments used for Figures A.1 { A.3.N=U RMNF RMFF RMST RMGT� = 0:2 [1.42, 1.55] [1.30, 1.45] [1.06, 1.20] [1.06, 1.20]� = 0:5 [1.50, 1.64] [1.29, 1.36] [1.15, 1.26] [1.14, 1.22]� = 0:8 [1.50, 1.67] [1.27, 1.38] [1.30, 1.44) [1.18, 1.33]Table A.1: Simulation Results for N=U .[a,b] denotes that a � N=U � b in all simulations.

Figure A.1: Task Sets with � = 0:2.37

Figure A.2: Task Sets with � = 0:5.
Figure A.3: Task Sets with � = 0:8.38

