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Abstract. We discuss a system of ordinary differential equations that can be used
to model the interspecies hydrogen transfer common in anaerobic degradation of
organic matter. The mutualistic character of the interaction is not modeled explicitly
but emerges as a consequence of the kinetics of nutrient uptake. Using monotonicity
assumptions on the reaction terms, we characterise the equilibria and their stability
and demonstrate two-parameter bifurcation of periodic solutions near singularities
of the Bogdanov-Takens type. We have persistence and extinction results in a wide
range of parameter values. Finally, we give some conditions for equivalence and
non-cquivalence to a cooperative system and compare to related models.
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1 Introduction

Methane is a common final product in the anaerobic degradation of organic mat-
ter [2, 18, 32]. Not much was known about the mechanism of methane production
and the physiology of methane producing bacteria before Bryant et al. [4] proved
that methanobacterium omelianskii is in fact an association of two species which
are strongly mutualistic under natural conditions and happen to look alike under
the microscope. The first species, the S-organism, degrades ethanol to acetate and
hydrogen. The reaction has an unfavorable entropy balance unless hydrogen partial
pressures are kept extremely low, so molecular hydrogen is not observed in any
significant quantities in natural ecosystems. The second species, methanobacterium
. bryantii, produces methane and water from hydrogen and carbon dioxide; it uses
acetate when offered but does not depend on it.

This interspecies hydrogen transfer plays an important role in anaerobic food
chains [15, 22, 23]. Depending on environmental conditions, other hydrogen con-
sumers like sulfate-reducing bacteria may compete with methanobacteria for the
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hydrogen, replace them or coexist with them. For all these species, hydrogen is typ-
ically the limiting substrate. Hydrogen is produced by a variety of bacterial species
degrading fatty acids [22], alcohols or aromates [23]. If no hydrogen consumers are
present, they cannot oxidize their substrates completely and cannot grow well,

Another example of this type of interaction was observed between lactate pro-
ducing and lactate consuming bacteria by Otto et al, [25]. Similar in structure is an
association observed by Pollock [26] (see [24]), where a metabolic product that is
toxic for the producer is consumed by a second species.

Many of these associations have been studied experimentally in continuous cul-
ture as well as m batch culture [e.g. 16,29]. In their chapter of Wimpenny’s book
on laboratory model systems [11] Gottschal and Dijkhuizen argue that compared
to more complex representations of ecosystems in the laboratory the simplicity of
chemostat systems results in better experimental control and simpler analysis. Com-
pared to batch cultures, on the other hand, the chemostat admits exponential growth
in a steady state typically determined by one limiting substrate, as opposed to a
succession of a growth period followed by a period of stagnation. Specifically for
the interspecies hydrogen transfer, in the chemostat as well as in natural systems,
hydrogen partial pressures remain low, whereas in the batch culture, accumulation
occurs in a transient phase.

Spatial homogeneity is ensured by continuous mixing. This is a major restric-
tion for the use of laboratory chemostats as models for natural ecosystems, but it
also makes them easy to represent mathematically. Neglecting the time required for
absorption, transportation and metabolic processes, and also neglecting variations of
the interior state of the microorganisms, one naturally arrives at a system of ordinary
differential equations.

Experimenting with two species exchanging methanol in the chemostat, Wilkin-
son et al. [30] also introduced model equations for such an interaction. Following
ideas by Powell [27], Kreikenbohm and Bohl [17] constructed a model for the in-
terspecies hydrogen transfer with a different expression for the kinetics of nutrient
uptake.

It seemed to us an interesting model system to study mutualism in some detail.
We are specifically interested in how the long-term behaviour is influenced by the
experimentally controlled variables, influx substrate concentration and dilution rate,
and by the kinetics of nutrient uptake. The characteristic growth rates as functions
of the substrate concentrations can be determined in pure cultures. The state of
the system at a given time is described by concentrations and population densities,
which are measured during an experiment. No direct coupling terms are introduced.
Mutualism emerges as a system property that may depend on the experimental
parameters and also on the state of the system. The model equations are introduced
in §2.

The Kreikenbohm-Bohl model will be generalized in two respects. First, consid-
ering the different expressions given by Kreikenbohm and Bohl and Wilkinson, the
kinetics of nutrient uptake and growth will not be restricted to Michaelis-Menten
type. In fact, for arbitrary monotonic uptake functions we completely analyse the
dynamics. Using mass balances, we approximate the long-time behaviour with the
solutions of a pair of differential equations (§§ 2, 6). These equations coincide with
standard models for two mutualists as presented for example in May [21]. In particu-
lar, linear uptake functions lead to Volterra-type equations. They form a cooperative
system, with coupling terms determined by the uptake functions and the experimen-
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tal parameters. Using the work on cooperative systems by Hirsch [13] and Matano
[20], we prove that the system always tends to equilibrium (Proposition 3 in §3);
this equilibrium is determined in terms of parameters and initial values. We thus
confirm the numerical results from Kreikenbohm and Bohl [17].

Second, to include the example observed by Pollock [24, 26], we allow for
a death rate of the first species caused by toxic effects of its product. Existence
and stability of the equilibria are discussed in §3 and summarised in a bifurcation
diagram. Numerical solutions of initial value problems presented in [5] suggest that
for monotonic uptake functions still all solutions approach equilibria; analytically,
global results about long-time behaviour are difficult to obtain because even after
reduction the system consists of three equations, so qualitative methods from the
theory of planar flows cannot be applied. The main results are Proposition 1 on
extinction and Proposition 2 on uniform persistence in §5.

In both cases, non-monotonic uptake functions lead to multiple stable equilibria.
In §4 we use methods from two-parameter bifurcation theory to prove existence of
periodic solutions for suitable right hand sides. We show that periodic solutions may
be stable or unstable depending on the shape of the uptake functions.

In the final section §7 we summarise the results. We discuss the relation to
direct-interaction models depending on monotonicity properties of the kinetics of
nutrient uptake. We return to the question, when and in which sense the model
describes a system of mutualists.

2 The model equations

We will describe the state of the system in the chemostat at any time by four
quantities, the population densities # and v of the two species (“producer” and
“consumer”), and the concentrations s and ¢ of the substrate and metabolic product
of the first species (“substrate” and “product™). In the case of methanobacterium
omelianskii, the substrate is ethanol, the product, as always for the interspecies hy-
drogen transfer, is hydrogen, the producer is the S-organism, and the consumer
methanobacterium bryantii. The first species is inhibited by its metabolic product.
The second species uses this metabolic product as a substrate. We distinguish di-
lution rate, D, and the concentration of the limiting substrate in the influx, S9,
as experimental variables. We fix all the other parameters like temperature, light,
or non-limiting substrates, incorporating their effects into the characteristic growth
rates. This should give a useful description of the laboratory model if the chemostat
is well stirred and all metabolic processes are fast compared to the doubling times
of the bacteria and the reciprocal of the dilution rate.
We arrive at the system of equations

s =D%—5) —Kf(s, cu

u = —Du +f (s, c)u —Ecu
¢ =—-Dc +K2f (s, yu  —g(c)v

v =—Dv +K;3g(c)v.

The first equation describes how substrate flows into the vessel at concentration §°
with a dilution rate D. It is consumed and metabolised by the first species at a rate
K f (s, ¢} depending on the concentrations of both substrate and product. The third
equation describes the conversion of substrate into product, the washout at rate D
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and the consumption of the product by the second species at rate g(c) depending
on the product concentration. In the second and fourth equation, we assume that
the growth of the population densities # and v, respectively, is instantaneous and
proportional to substrate intake. There is no direct interaction between the species.
Ec in the equation for the producer represents a death rate induced by toxic effects
of the product.

We assume that the functions f and g are nonnegative and satisfy

£ (s, ¢) = max{f (s, ¢), 0}
g(c) = max {g(c), 0} ,

where f :R? —-Rand §:R — R are continuously differentiable, and

£0,00=0, §©0)=0.
Product inhibition is included by

fo(s, 0) = Ef“(s, ) =0,
oc

and toxic product effects taking £ > 0, introducing a death rate of the first species
proportional to the product concentration c. If f . — E < 0, then the intermediate
product has some negative effect on the producer and the two species appear mu-
tualistic. If f = f(s) and E = 0, the two species are merely commensal, and the
system reduces to a food chain. K|, K;, K3 are characteristic conversion constants
of substrate into biomass and metabolic product.

We will generally assume that the uptake functions are unimodal in the following
sense. The functions

c+— g(c), CH];(I—C,C)“—EC,

and for fixed c, N

s f(s, ¢
have at most one critical point, a local maximum, and nonzero derivatives every-
where else. In particular,

£(0,0) >0, ge.(0) > 0.

We also assume £(S°, 0) > 0 and § (%SO) > 0. Kinetics will be called monotone,
if B
fs(s,0) >0, G.(c) >0 forallse [0,5°, ce [0, I?ZS"] ,
1

and non-monotone otherwise.
Examples. The standard example for monotone kinetics is Michaelis-Menten

As N Bc
, gle)=
w+s

where 4 and B represent the turnover rates at saturation with substrate, ¢ and A
the half-saturation constants. Kreikenbohm and Bohl [17] and Wilkinson [30] both
assume Michaelis-Menten kinetics for §, and for f the modified expressions

fs)= . AB Lu>0,
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~ As
s, C) = , A, u,v>0 Wilkinson) ,
. A(s —
o= A=%D v >0 (Kreikenbohm and Bohl).
u+s+ve

Linearising / and § at zero, we obtain

~

Fis, ¢) = ‘E(s—ac), jO="5e

where the constants 4, B, A, u, and « are as above, with o = 0 for Michaelis-Menten
kinetics and the Wilkinson model. In the special case £ = 0 (no toxic effects of the
product), the system can be reduced to a Volterra-type model (see §§6, 7).

The model equations generate a flow on R*, which depends continuously on
initial values, time and parameters. As state space we use the set

X:={(s,u, c, ) ER* | u, v20}

which is invariant under the flow generated by the equations. The meaningful non-
negative states form a positively invariant subset.

Scaling. Fix a unit of time T > 0 and define

Snew:=STl()"Sold unew::%'uold
Lhew - = 71" “Lold
Chew - = ]TI;}G *Cold Vpew <« — %36 * Uold
to obtain )
s =D(1—-s5) —f(s, c)u
u=—Du +f (s, c)u —Ecu
¢ = —Dc +f (s, c)u —g(c)v
v =—Dv +g(c)v
where
K,S°
Dpew =T - Dyy fnew(ss c)=T'fold (SO'Sa IZ< 'C)
1
TK,S® K,S°
Em::w:K——1 'Eold gnew(c)=T * Jold ( 12<] 'C)-

The scaled equations are dimensionless.

Remark. . Varying D in the original system corresponds to varying D in the scaled
system. If we simultaneously replace D and S° with AD and AS® and rescale time
with A7!'T, then in the scaled equations, D is unchanged, while f (s, ¢) and g(c)
are changed to A~ 'f(As, Ac) and A~!'g(lc). By unimodality, the functions will
become monotone for s, ¢ < 1 when A is sufficiently small, and converge to their
linearisations at zero in the limit 4 — 0. Together with the uniform asymptotic
bounds which we show below, this means that we can force the kinetics to be
monotone or even approximately linear by choosing D and S° small enough. It is
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interesting to note that for the Wilkinsson model, the inhibitory effect of the product
vanishes as / becomes small, whereas « in the Kreikenbohm-Bohl model and the
toxicity parameter E are not affected.

There are two natural mass balances. The first relates consumption of substrate
with conversion into the metabolic product and with the biomass of the consumer.
This leads to a differential equation. The second relates consumption of the substrate
with increase in biomass of the producer. Unless the toxicity parameter E is zero,
this balance is imperfect, leading only to a differential inequality. We use them in
the following lemma to reduce the dimension of the system.

Lemma (Attracting subspaces) The hyperplane
{ssu,c,v)eX | s+c+v=1}

Is invariant and globally exponentially attracting in X. The closed positive cone
corresponds to
{.c.)eR | u, 020, c+v1} .

Moreover, the set
{(, e, ) eR 0=, c,vSc+v< 1}

is positively invariant and contains the global attractor for the positive cone.
If E =0, the plane

{s,u,c,)eX | s+c+v=1, s+u=0}

is invariant and globally exponentially attracting. The intersection with the positive
cone corresponds to the triangle

{(w, ) eR? | 0=Zv<u<1} .

Proof. For a solution x(7) = (s(2), u(¢), c(2), U(I)):eRg in X define

z(t) i=s(t) +c(t) + v(t)
w(t) :=s(t)+u(@).
These satisfy the differential equations
Z() =D (1 —z(1)
w(t) =Dl —w(t)) — Ec(t)u(t) .
Integration gives
z() =14 (z(0) — 1) ™D,

and for £ =0
w(t) =1+ (z(0)— 1) e P,

If E is positive, then for ¢(0) nonnegative, ¢(f) will be nonnegative for positive
times. Integrating the differential inequality we obtain

w()Z1+(z(0)— 1) e P .

The following lemma will be used to prove extinction and persistence results in
§5.
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Lemma (Positivity and bounds) For every solution x(t)= (s(t), u(t),
c(), v(t))er in X which does not converge to (1, 0, 0, 0) there is a positive time
T, such that for t > T:

a) s(t) >0
b) c(t) >0
c) s(t) <1
d) fs(t),c(®) >0
e) s +u() <1
f) c(t)+v(t)—u(t) > 0.

In particular, solutions are uniformly asymptotically bounded for positive time.
Moreover the attractor for the positive cone is in fact the global attractor for

X, and for all considerations of w-limit sets we may replace f and g by f and g
whenever it seems convenient.

Proof. Take x(t) = (s(t), u(t), c(t), v(f)),cr as above.

a) As long as s(¢) <0, it satisfies

s(t)=D(1 —s(2)) .
b) If ¢(¥) <0 for all positive times, then g(c(¢)) = 0 by the positivity assumptions,

* &6y = =De(t) +1 (s, c(®)u(®)Z - De()
v(t) = —Duv(t)
and c(¢) and v(¢) converge (¢t — o0) to zero, s(f) to one. Because c(f) converges

monotonically, ¢(f) goes to zero as well, so ¥ has to become eventually negative
unless u = 0.

c) From
$@O2D(1 - (1))

it follows that lim, ,..s()<1. If always s(¢)=1, then because of a) lim,_,.os(¢)
+c(®+v() =1, b) im, ,oc(¢)=0, so necessarily c¢(t) — 0 and v(¢) — 0. Con-
vergence of u follows an in b).

d) So long as f'(s(¢), c(#)) =0, s(¢), u(t), and c(¥) satisfy
$(t) =D(1 —s(1)
c(y=—Dc(1).

Integrating we obtain s(f) — 1 and c(f) — 0. For ¢ large enough, u and v satisfy

the differential inequalities
u(t)Y< — D/2u(t)

oY — D/2v(t) .

For a solution not approaching the trivial equilibrium, 1 — s(¢) and c(¢) will even-
tually become positive, so the solution must enter the set

{s,u,c,)eX|0<s <1, ¢c>0 f(s,¢) >0}

which is positively invariant because of a)—c) and since, for s < 1, ¢ > 0,
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F6.0=0= 976 0 =f 50 - DO -9 +7.050) - (-De) > 0

e) and f) are proved similarly to a)—c). [

3 The equilibria

For the discussion of the equilibria we restrict to the exponentially attracting hyper-
plane {(s, u, ¢, v) | s + ¢+ v = 1}. The flow is given by

u =u(-D +f(1—-c—vc) —-Ec)
¢ =—-Dc +f(l—-c—v,c)u —g(c)v
v =v(-D +g(c)) .

Equilibria are nonnegative solutions of

u(-D+f(l—c—v,c)—Ec)=0
—De+f(l—c—v,Qu—g(c)v =0
v(-=D +g(c))=0.

We will use D as bifurcation parameter and keep everything else fixed.

There are three types of critical points: The ‘empty’ chemostat, boundary equi-
libria in which only the first species survives, and positive equilibria where both
species Coexist.

The trivial equilibrium (0, 0, 0) exists for all parameter values. The matrix of
the linearisation

-D+f(1,0) O 0
J(, 0, O):( f(,0) -D 0 )
0 0 -D

has the eigenvalues —D (double) and —D + f (1, 0) (simple), so decreasing D sta-
bility is lost to a branch of boundary equilibria at D = f (1, 0).
Boundary equilibria are positive solutions of

f(l—c,c)—Ec=D

C

" 1+ E/Dc

with v = 0. The linearization matrix 1s
0 —(fs = fe + E)u *
J=fA-c,¢) —D—{f—f)u * .
0 0 —-D + g{c)

There are two branches. The first has f; — /. + E > 0. It exists for 0 < D < D? :=
max .o, 1)f (1 — ¢, ¢) — Ec. It is always locally stable within the u-c-plane, since

Dc
D+ Ec

h—fetBEyu=(fi —fJu+E =(fs—fut+D,

so the determinant of the restriction is positive, the trace negative. The second branch
has f; — f. — E < 0. It exists for f(1,0) <D < DY which is a nonempty interval
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only if f 1s not monotonic. It is unstable, because the determinant of the restriction
1S negative.

Boundary equilibria bifurcate from the trivial equilibrium at D = f'(1, 0). If /" is
not monotonic the two branches join in a saddle-node bifurcation at D = D®. When-
ever g(c) — D changes sign, a branch of positive equilibria ends. Periodic solutions
can never bifurcate from boundary equilibria because the linearisation cannot have
purely imaginary eigenvalues.

Positive equilibria are positive solutions of

gc)=D
f(l—c—-v,c)=D+Ec
o ctu
"T1YEDe

For unimodal kinetics there is at most one solution for each sign combination of
£, and g.. The characteristic polynomial y(4) = ag/A® + a14?> + a; A + a3 of the lin-
earization matrix

0 —(fs —fe +E)u —fsu
J={f(l=c—-v,¢) -D-(fi—flu—g.v —D—fiu
0 ge¥ 0
has coefficients
aozl

ar =D+ (i —fu+g.v
ay =gcv(D+fsu) +f (fs —fe + E)u

as = f fsug.v.

Using the Routh-Hurwitz criterion the number of eigenvalues with positive real part
is zero, if f; and g. are both positive, one or three, if they have different signs,
and zero or two, if they are both negative. If there are positive equilibria, one of
them has both f; and g. positive; it is always stable, and both populations reach
the maximal densities possible in an equilibrium. Positive equilibria bifurcate from
boundary equilibria when v = 0 in a solution of the above equations. Two branches
join in a saddle-node bifurcation when f; or g, changes sign. A pair of eigenvalues
crosses the imaginary axis when a;a; — a3 changes sign and a;as is positive; this
can happen only on branches where at least one of f; and g. is negative. We will
discuss bifurcation of periodic solutions in the next section.

The bifurcation diagram for monotone kinetics is given by Fig. 1. For each
parameter value there is at most one equilibrium of each type, exactly one of which
is stable. The positive equilibrium exists for D < D*, defined by

f(l—c¢*, ¢*Y—Ec*=g(c*)=:D",

and it is always asymptotically -stable. The boundary equilibrium exists for D <
f(1, 0) and is always stable within the u — ¢ plane; the transversal direction is
stable for D > D*, unstable otherwise.

4 Periodic solutions

If the kinetics of nutrient uptake is not monotone, then periodic solution may bi-
furcate from positive equilibria. One can give sufficient conditions for a pair of



474 A. Burchard

0 A‘D 0 4 D

0 Dx  fiL0)", 0 ¥ 1)

— monnegative stable equilibria
--- nonnegative unstable equilibria
®  bifurcation points

""" negative equilibria

Fig. 1. Bifurcation diagram of equilibria for monotone kinetics (E > 0). For large D, there is
complete washout. Lowering D, stability is lost to a boundary equilibrium at D = f (1, 0), and in
secondary bifurcation to a positive equilibrium at D*

eigenvalues to cross the imaginary axis along a branch of equilibria as D is varied
(see [5]). We will show, that Hopf bifurcation does take place for some choices of
the uptake functions, and that the bifurcating periodic solutions may be stable or
unstable. '

There are at least four ways to show bifurcation of periodic solutions. First, there
are the methods of global bifurcation theory. Under a nondegeneracy condition, a
pair of eigenvalues crossing the imaginary axis implies the existence of a continuum
of periodic solutions which is unbounded in either amplitude or period (see Fiedler
[9, 10]). Unfortunately, although the transversality condition is generically satisfied
for general right hand sides, it is not obvious that this is true in the restricted class
of right hand sides cotresponding to our model. As the condition involves Floquet
multiplyers of periodic solutions, there is no hope we can calculate it for our system.
No statement is made about stability.

Second, local analysis of the Hopf bifurcation proves difficult for our example.
Stability and transversality are determined by third order terms in the Taylor ex-
pansions around the bifurcation point (Marsden and McCracken [19]), that is, In
our case, by third derivatives of the uptake functions at a point which is defined
implicitly as the solution to a system of nonlinear equations.
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Third, reformulating the question as “For what kinds of right hand sides will
there be Hopf bifurcation when D is varied?” we think of it as a two-parameter
problem. One parameter is D, as before; the second parametrises smoothly a family
of uptake functions / and g, also the toxicity parameter £ may depend on it. We
will formulate transversality conditions later. We will restrict our discussion to a
neighborhood of Bogdanov-Takens singularities which show up in our model for
special right hand sides.

Finally, Hopf Bifurcation and periodic solutions can be found by numerical
methods. The Bogdanov-Takens singularities we find here give an indication in
which regions of the state and parameter space one can expect to find periodic so-
lutions. In [5] we give some geometric criteria on the graphs of /* and g for Hopf
bifurcation and Bogdanov-Taken singularities in the case that /' = f (s).

In two-parameter families, Bogdanov-Takens singularities arise naturally as the
endpoints of curves of Hopfs bifurcation points. For a detailed discussion of
Bogdanov-Takens singularities in general we refer to Bogdanov [3], Takens [28]
or [1, 8, 12]. We will follow Bogdanov’s presentation and in particular use his
normal form.

For our present purposes, Bogdanov’s results can be paraphrased as follows.
Given a sufficiently smooth two-parameter family of differential equations in the
plane. Assume that for the parameters both zero, the origin is an equilibrium such
that the linearisation has a geometrically double, algebraically simple cigenvalue
zero. By linear transformation, we can assume that the equation has the form

. 1 1
X=y+ ‘2-H11x2 + Hppxy + ;szyz + 0()(2 +y2)

1 1
y = £K11x2 + Kipxy + 5Kzzyz +o(x* +3%). (1)

Theorem (Bogdanov [3]) (see [5]) If the right hand side of the differential equation
(1) is four times continuously differentiable and the coefficient Ky #0, then there
is a transformation (C* in x and y, depending continuously on the parameters)
such that the second order terms take the normal form

x=y+0(x2+y2)
=01 +n2x + x>+ gxy+ o +37) 2)

uniformly for the parameters near (0, 0), where q = (Hy + Ki2)/Kn1 and n is a
continuous function of the original parameters.

Theorem (Bogdanov [3] The bifurcation diagram for the system in the normal
form

X=y
y=n1+n2x+x>+qxy (3)

with q+0 is given by Fig. 2. Crossing the fold from right to left, a pair of equi-
libria is generated in a saddle-node bifurcation. Periodic solutions exist for ny < 0
between the curves marking Hopf bifurcation and homoclinic loops. They are
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n2 vl

Hopf

nl
fold

. homoclinic point n2<0
old fixed

Fig. 2. Bifurcation diagram for Bogdanov-Takens singularity in normal form. Lowering >, a saddle-
node bifurcation takes place when crossing the fold. A unique periodic solution is generated in the
Hopf bifurcation and ends in the homoclinic loop

ho‘r‘noclinic loop

Hopf bifurcation

unique and stable, if ¢ < 0, and unstable, if ¢ > 0. The flow for ¢ > 0 is ob-
tained from the system for q < 0 by the time reversing transformation t—

—t, Yy =)

The bifurcation diagram and dynamics of the perturbed system (2) are equivalent
to the normal form (3) for parameter values #+(0, 0) provided g+0. The same is
true for the original system, if the new parameters are differentiable functions of the
old parameters whose derivative at (0, 0) has full rank.

Remark.(i) The theorem implies that the bifurcation diagram and dynamics near
a Bogdanov-Takens singularity are, under nondegeneracy conditions, determined by
the Taylor expansion of the vector field up to second order. In particular, the stability
condition for the periodic solutions contains only quadratic terms. These terms are
calculated from the original equation by projection onto the tangent space of the
invariant manifold. The third order terms determining transversality and stability in
the Hopf bifurcation cannot be calculated by linear projection.

(ii) The homoclinic loop is part of the local bifurcation diagram at the Bogdanov-
Takens singularity. If only one parameter is varied, the bifurcation of periodic so-
lutions from a homoclinic loop is not a local phenomenon.

In our system, the conditions for a positive equilibrium (s, u°, ¢?, v°) at parameter
values (D°, u°) to be a Bogdanov-Takens singularity are the following.

ge =0~ fs= i

a) fe+tEs=0 or b) DG’ +fu(fi+E°)=0
E°=E°—f%40 E°=E°—f%%0
iy =—(D°—E°u’)=+0 Ay = —(D°—f%° — go1°)+0.

The first two conditions ensure, that the linearisation has a double eigenvalue zero.
The third condition says that there is only one eigenvector associated with it. The
other two eigenvalues of the linearisation are

y A3 =~ —E°u) by 43 = —(D° —f2u g2’
}'4:_D0 14:_00.

Under the above assumptions, there exists a local two-dimensional center mani-
fold at the singularity, that is a locally invariant manifold tangent to the generalised
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null space (see for example Vanderbauwhede [31]). The flow on this manifold to-
gether with the signs of A3 and A4 determines the full flow for parameters and initial
values in a neighborhood up to conjugacy. The manifold is exponentially attracting
if A3 < 0.

We calculate the equation of the restriction to this manifold. The projection onto
the generalised null space along the complementary eigenspace can be written as

P(s,u,c, ) =((s, u, ¢, v), V1) D, +((5, u, ¢, v), ¥p) D, =xP, + y &,

where
__fo 3110
o —43 Ecue
__ 0,0 _ ~o
a) @1——E u fa @2— Do 4 Eye
0 —A3
f° —D° — /3
=0 o | —D° 0
b) ® =F°u 0 b, = De
—f° A3
span the generalised null space of the linearisation at zero, and
(D°)~! 0
L | —(ECu) _ 0
a) ¥ =45 1 (Dc))—)l + 43 'y, VY, = 0
(Do)—l __2'3—1
0 0
_fro,0n—1 _ oy—1 ro
I O e A B e R ol B
3
0 1

span the generalised null space of the adjoint, and the orthogonality relations
(lpi, @J) = 5,1 for l,_] = O, 1

are satished.
We calculate for the coefficients

) K =—=A5" (P EwY g
Hi+ K== A7 (fOVE W ([~ U o+ fou” — AT E w
(fOEoua — A3(D° _EOMO)) g%.1°
b) K = —A; 5D (0P (Eouy 00
Hi 4+ Ko = —(23) (D) (fOE w0V Su
_,13—1(‘fo)2£;"~ouafsocu0 F AT DOFOE w0 ()
In a), varying D for fixed p near D = g(é(n), u), saddle-node bifurcation takes

place, which is nondegenerate for g2 +0. The map D + 5(D, u°) is transversal to
the fold in Fig. 2, so we can identify D — D° with the parameter N1, and parametrise
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the fold over p. Similarly in b), if £% 40 and E° 4 ¢°+0, we can use D — D° as
parameter #; near the singularity and parametrise the fold over pu.

Identifying #, in normal form as a constant multiple of the nonzero eigenvalue
Az on the fold, we need to check that the total derivative of this eigenvalue along
the fold with respect to u is nonzero. In the fold,

a) Ay =fulfs —fo +E)
b) Ardy =Dgcv+fu(—f. +E)

using the expressions for the coefficients of the characteristic polynomial from
§3. Along the fold, all the variables including D and E and all the functions
and their partial derivatives can be written as functions of u. The total deriva-
tive dA,/dp is nonzero under a nondegeneracy condition on the partial derivatives
of £, g, f5, fo» 90, and E with respect to u.

We summarise the transversality conditions

gi. +0 s F0
Hy + K £0 b) Hiy + Ky $0

a) 4 di Fo
G 00,0 £0 i l ooy £0, E° + g7 %0

where the first two are the transversality conditions on the coefficients in the
Bogdanov-Takens singularity, the third guarantees that D and u are a set of in-
dependent parameters.

Finally, the conditions for stability of the bifurcating periodic solutions are

/13 < 0
H11 +K12 >0

where the first is the condition for the local center manifold to be exponentially
attracting. Note that this implies that the determinant of the linearisation is positive,
so the Hopf bifurcation takes place from the branch of equilibria where #; and ¢, are
both negative. By unimodality and the transversality condition from above, K;; < 0,
so the second condition is exactly what is needed to make ¢ in the normal form (3)
negative.

Hopf bifurcation and bifurcation of periodic solutions from homoclinic loops take
place varying D for right hand sides near the singularity. With the possible exception
of the flow for the parameters at the critical value D = D°, u = u° (5 = 0), the
bifurcation diagram and the dynamics are equivalent to the system in normal form
as shown in Fig, 2.

The second derivatives of /' and g enter with opposite signs into the formula for
Hii + Kiz. Consequently, periodic solutions may be stable or unstable, depending
on the shape of the uptake functions near the singularity.

If £ =0, the local center manifold coincides with the two-dimensional expo-
nentially attracting plane. No spectral projection is necessary. Using £ =0, u =
c+v=1-s on this plane, f° = D and A3 = A4 = —D° at the singularity, the
formulas for the coefficients simplify to

a) K =D’(f2u’y g2 v°
Hll +K12 = _Dof(c)uo(.fgs o zf;)c +fgc)ua +D0fguaggcvo
b) K =D°(f 2u°) fou°

Hyi+Kip = =(f ) f4u’ = D°f Lul [0 — DO(f P u " (v°) " .
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As in the general case, periodic solutions may be stable or unstable.
We will show in §6 that there are no periodic solutions for D small enough.

In the commensal case (f =f(s), E =0), where the growth of the producer
is not influenced by the consumer at all, the system decouples into two first order
equations. It is easy to show that all trajectories approach equilibrium, no matter
what f and g look like. For unimodal f/ and g, there is always exactly one stable
equilibrium attracting the solutions through almost all initial values.

5 The flow on the boundary. Persistence and extinction

In this section, we discuss the two single-species subsystems of our model, assuming
monotone kinetics. With the help of a theorem by Butler, Freedman, and Waltman
[6, 7] we find critical values of the dilution rate determining survival and extinction
of one or both species. We interprete “survival” as uniform persistence, which indi-
cates, that the population cannot become extinct by an arbitrarily small perturbation
or fluctuation.

Naturally, the consuming species cannot survive in pure culture. On trajectories
with ¥ = 0 in the initial point

§s=D(1 —ys)
¢=-Dc—g(c)v
v =—Dv+g(c)

so lim,_, s(¢) = 1, and as ¢ must become eventually positive, all solutions approach
the trivial equilibrium. This means that under the given conditions, the consumer is
an obligate mutualist. '

The producing species survives in pure culture, provided that the dilution rate is
not too large, so the association is facultative for this species. We will show later in
this section that for D > f(1, 0), all solutions converge to the trivial equilibrium.
For D < f(1, 0), the stable boundary equilibrium attracts all solutions with u(0) >
0, v(0) =0. In this boundary equilibrium, # — 0 as D — 0, if £ > 0, and to a
positive limit otherwise, showing that in the limit for dilution rates, the producer
becomes dependent on the consumer.

To prove this, consider the intersection with the exponentially attracting hyper-
plane {s +c+ v = 1}. The flow on this surface is generated by

u=—-Du+f(l—-c c)u—Ecu
¢c=-Dc+f({l-c cu.

We transform

y=logu
z=c¢
to obtain
v=—D+f(l -z 2) —-Ez

z=-Dz4+f(l—z z)expy.

As the flow induced by the first set of equations is bounded and strongly persistent
(see lemma below), all solutions of the transformed system stay bounded for positive
times, so w-limit sets of points are nonempty. The divergence of the right hand
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side is strictly negative; by the Bendixson criterion for planar flows there are no
periodic orbits and no loops. One branch of the unstable manifold of (0, 0) points
into the positive cone; applying the Poincaré-Bendixson theorem we obtain a unique
connection to the nontrivial equilibrium.

Lemma We have the following persistence results. For D < f(1, 0)

u(0) > 0= lim u(t) >0

f— o0

and for D < D*
v(0) > 0= lim v(¥) > 0.

—o0

Proof. In the given parameter ranges, the planes {u = 0} and {v =0, u > 0} are
the global stable manifolds of the trivial and boundary equilibrium, respectively. | |

In the next two propositions, we find the following threshold values for D. If
the dilution rate D is larger than f (1, 0), then both species are completely washed
out. For all smaller values of D the producing species is uniformly persistent. For
D between f (1, 0) and the next threshold value, D**, the second species always
dies out, and the producer survives in a stable equilibrium. For D less than the
critical value, D™, below which the two species coexist in an equilibrium, we prove
uniform persistence for both. If £ =0, D* = D**, we will show in the next section,
that all solutions converge to equilibrium. In general, however, D** > D* we do
not know what happens for D between these two values, and we were not able to
show convergence to equilibrium for D < D**,

Proposition 1 (Extinction of one or both species) For D= f(1, 0) the trivial equi-
librium (1, 0, 0, 0) is globally attracting in X.
If D=D** defined by
f(l o C**, C**) — g(c**) = D**
then for every solution x(t) = (s(¥), u(?), c(?), v(t)) in X

tlim v(t)=0.

So for D** <D < f(1, 0), a solution converges to the trivial equilibrium if u(0) =
0, and to the boundary equilibrium otherwise.

Proof. Take D= f (1, 0) and assume

lim x()=(1, 0, 0, 0),
—o0

this implies #(0) > 0. We showed in the positivity lemma in §2 that on such a
trajectory there exists a time 7 such that

t>T=s()<1, c(®)>0.

u(t) satisfies for t > T
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u(t) =u()(—D+f(s, c)y— Ec)
< u(t)(—D + cren[%xl]f(l —c )

<0.

By integration
lim u(¢) =0.

t—o0

The trivial equilibrium is globally attracting within the hyperplane {u = 0}, so
w(x)={(1,0,0,0)}.

Existence of D** follows with the intermediate value theorem from

fO, 1)—g) <0, f(1,0)—g(®) >0

and uniqueness from the monotonicity properties of f and g. For D= D** consider
the restriction to the exponentially attracting hyperplane

{(,u,c,v) | s+c+v=1;s5uc0v=20}.

Define the set
B:= {(u, c, neR® |0Zu,c,v<c+v=1; g(e)SD}.
B is positively invariant, because
g(cyzD > D", 0fu,c,vZc+v =1

implies

()= ~-Dc+f(l—c—v,¢c)—g(c)v
—(c+vyD—f(l—-c—v,c)
— (¢ 4+ v)(D — D*) since ¢ > ¢™*

< —c(D—=D")unless v=20.

Integration of this inequality shows that on every solution not converging to
(1, 0, 0, 0), eventually D — g(c) will become positive, so the trajectory will enter
the interior of B.

In the interior of B, v(¢) decreases strictly along solutions. By the invariance
principle, the w-limit set of any point in X is a compact, connected, nonempty
invariant subset of BN {v = 0}. If u = 0 initially, then the solution converges to the
trivial equilibrium. The maximal bounded invariant subset of the boundary consists
of the two equilibria and the connecting orbit. But the nontrivial equilibrium is

locally asymptotically stable, so it attracts all solutions not converging to the trivial
equilibrium. |

A 1A

Proposition 2 (Uniform persistence of one or both species) If the trivial equilibrium
is unstable (D < f(1,0)), then u is uniformly persistent in the sense of Butler,
Freedman, and Waltman [6, 7], that is

de > 0 : lim u(t) > ¢

— o0

for all solutions (s(t), u(t), c(t), v(£)):z0 with u(0) > 0.
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If there is coexistence in a positive equilibrium (D < D*, then u and v are uni-
formly persistent in X, that is

Im u(t) > ¢
. t—oo
35>0'{li_mu(t)>a

[aaade )

for all solutions (s(t), u(t), c(t), v(t)) =0 with u(0) > 0 and v(0) > 0.

Proof. We check the hypotheses of the theorem by Butler et al. [17].
1) Dissipativity. We proved that all trajectories approach the compact set

{s,u,c, ) eX|0=Zu,c,v=c+v=s+c+v=1}.

2} Weak persistence was proven earlier in this section.

3) The flow on the boundary is isolated, that is, the union of all w-limit sets of
points on the invariant boundary is an isolated invariant set for the full flow. In our
case, this follows from the hyperbolicity of the equilibria.

4) The flow on the boundary is acyclic, that is, the following oriented graph does
not contain cycles.

— Vertices are the connected components of the union of all w-limit sets of boundary
points;

— There is an edge connecting vertex ¥ to vertex ¥, if and only if there is a
trajectory in the boundary connecting ¥, to V>, that is if for some x in the boundary
a(xX) CE1l, o(x)C E,.

This is satisfied, because in one case, the attractor consists of a single equilibrium,
and in the other case, two equilibria are joined by a unique trajectory.

The theorem asserts that under these conditions the flow is uniformly persistent.

Remark. The result on extinction of both species holds without monotonicity as-
sumptions rteplacing f (1, 0) by the maximal value of f. Persistence of the first
species holds without change. If g is monotonic, extinction of only the consuming
species takes place for D** <D < f(1, 0) with a suitably changed definition of D**.
The persistence result for both species requires monotonicity of f* but not of g.

6 The model without toxic product effects (£ = 0)

In two of the examples from the literature we gave in the introduction, the models
by Kreikenbohm and Bohl for the interspecies hydrogen transfer, and the model by
Wilkinsson for transfer of methanol, the effect of the product on the producer is
purely inhibitory. In this case the equations simplify to

D1 -5 —f(s, cu
u(—D +£ (s, ¢))
—Dc +f (s, yu —g(c)v
v(=D +g(c)) .

<, O 8.,
I

I

Using u, v as coordinates, the flow restricted to the exponentially attracting invariant
triangle
{u,c, )eX |s+c+v=1, s+u=1}
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1s generated by
Uu=u(-D+f(1 —u, u—r))
v =v(—D+ g(u—)), u, v=0.
This means that the long-time behaviour is governed by a system of two equations,

that is, by a direct-interaction model. In particular, for linear f and ¢, we obtain a
Volterra-type model

Uu=riu(k; —u+yv)
U=rou(Ky — v+ yu)

with growth rates, carrying capacities, and coupling constants

fs—D a
ri=ft1+o K1 = 5 1= vy
Y2 =(gec "52:—9% y2=1.

Both coupling constants are positive, as expected in a system of mutualists. x; is
positive, if and only if D < f (1, 0) = f;, that is, if and only if the producer survives
in pure culture; it is a facultative mutualist. x, is always negative, indicating that
the consuming species is an obligate mutualist.

The following lemma shows that for monotonic uptake functions in general
the reduced equations have the positive coupling usually assumed in models for
mutualists.

Lemma (Cooperativity) Assume E = 0. If g is increasing and f. < 0, then the re-
stricted equations form a cooperative system. The resulting flow is strongly mono-
tone (strongly order preserving) in the sense of Hirsch [13] or Matano [20] in
the interior of the positive quadrant. This means that for any pair of distinct
solutions (u1(-), v1(-)), (2(-), v2(-)), with u1(0)Zu2(0) and v1(0)=v,(0), we have
ui(t) > ua(t) and vi(t) > vy(t) for all positive times.

If fo <0 then the system is still monotone, that is, whenever uy(0)=u,(0) and
v1(0) 2 02(0), we have ui(t) Zuy(t) and vi(t) = vy(2) for all positive times.

Proof. 1t is sufficient that in the linearisation matrix

x  —f.v
gel *
the off-diagonal terms are positive if f. < 0, and nonnegative if £, <0 [13].

Proposition 3 (Convergence) Assume again that E = 0, f. < 0, and g monotonic.
The w-limit set of any trajectory consists of a single equilibrium. The only solu-
tions remaining bounded for all (positive and negative) times are equilibria and
connections between two of them. In particular, the stable equilibria attract the
solutions through almost all initial values.

Proof. By strong monotonicity, two distinct points (u;, v1), (ua, v2) in the w-limit
sct of a solution can never be such that simultaneously u; = u; and vy = v, [13]. This
excludes periodic orbits and heteroclinic or homoclinic loops by the Jordan curve
theorem.

Now apply the Poincaré-Bendixson theorem first to arbitrary initial values and
then to points on the unstable manifolds of the equilibria to obtain the assertion.
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Corollary If E = 0 and both f and g are monotonic, then for any value of the
parameters, there is a unique stable equilibrium attracting almost all initial values.

Proof. By the results of §2, there is for each set of parameter values exactly one
locally stable equilibrium. -

Corollary  The positive equilibrium is always a node. The slow stable manifold
lies in the interior of the positive cone, the fast stable manifold in the interior of
the complement. For D < D*, the boundary equilibrium is a saddle. The unstable
manifold connects the two equilibria. It is contained in the intersection of the
positive cone attached at the boundary equilibrium with the negative cone attached
at the positive equilibrium.

Proof. The linearisation matrix at the positive equilibrium is

(—(fs —Jdu  —fu )
ge? —Ygc? .

Both off-diagonal entries are strictly positive. After adding a positive multiple of the
diagonal it becomes a positive matrix. Applying Perron-Frobenius theory, the largest
eigenvalue is simple, real and the corresponding eigenvector lies in the positive cone.
After the transformation v — —v, u — u and reversing time, we repeat the argument
to find that the eigenvector belonging to the more negative eigenvalue points into
the complement of the positive cone.

The linearisation matrix in the boundary equilibrium is

("(ﬂ —fu  —feu )
0 -D+g)

The eigenvector belonging to the eigenvalue —D 4 g(c) is (—feu, (fs —f)u
+ g — D) which is positive for D < D*. The trajectory on the unstable manifold
is initially increasing, which implies it will be increasing for all times (Hirsch

[13]).

For nonmonotone kinetics, we showed in the preceding section that the so-
lutions will in general not behave like solutions of a cooperative system at all.
With our assumption that / and g are unimodal (see §2), we see that for D <
min { £ (1, 0), g(1)} we have exactly three equilibria, a locally attractive positive
equilibrium, and the boundary and trivial equilibrium, both unstable. For D =0,
in the ‘batch’ case, both u and v are nondecreasing along trajectories, so all so-
lutions through positive initial values have to converge to the positive equilibrium.
Using invariance of the boundary curve {¢v = 0}, positive invariance of the triangle
{0£v=<u=1} and the fact that the linearisations of all equilibria for D = 0 have
simple real eigenvalues, we conclude that for D small enough, the phase portrait
from Fig. 3 is correct.
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1 +

u=0 D>0 v=0, D> f(1,0) v=0, 0 <D< f10)

Fig.3. Dynamics on the boundary — the pure cultures. When there is no producer present, the
consumer is always washed out. Without consumer, the producer is washed out if D=/ (1, 0). It
approaches a stable positive equilibrium for D < f (1, 0)

¥ v v
s ’l‘¢=0
’1' I -
/\ - —'.L——f—n— u 4
. 1 o .
N |
D> fi1,0) D* <D <f(1,0) 0 <D <D*

Fig.4. Phase portraits and linearisations near the equilibria for the pure inhibition case (£ = 0)
with monotone kinetics. Double arrows indicate the direction of the fast stable manifold

7 Discussion

We have used the interspecies hydrogen transfer as a model system for multual-
ism between two species of microorganisms. We studied associations of this kind
in a chemostat as the simplest setting allowing continuous culture in a controlled
environment. We wanted to understand how the interaction between the two species
characterised by their nutrient requirements is influenced by the two experimentally
variables dilution rate (D) and influx substrate concentration (S?).

Essentially, the two species form a food chain. One species completely depends
on a metabolic product of the other as a substrate. If the producing species is not
influenced by the concentrations of this product, we consider the consuming species
as commensal. Under the assumption however, that the product has some negative
influence on the producer, one should expect it to benefit from the activity of the
consumer, and we consider the association as mutualistic.

The model we discuss reflects the indirect and asymmetric character of this
interaction by giving equations not only for the two species but also for the two
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limiting substrates that mediate 1t. We compare our model for the commensal and
the mutualistic case with the corresponding direct-interaction models for two species.
The simplest model equations for a mutualistic or commensal association of two
species would be
u=uF(u, v)
vt=vG(u, v),

where F and G are the growth rates under the given conditions. F' and G incorporate
all experimental or environmental data. Standard assumption to make this a system
of mutualists is that the equations form a coorperative system, that is, the coupling
terms satisfy %—f > 0, %—E > (; and for commensalists, a—f; = 0. A species is called
an obligate mutualist, if it can survive in mixed culture but not in pure culture,
and facultative if it survives in pure culture but benefits from mixed culture. In this
model, the first species is a facultative mutualist, if 7 (0, u)=0 for at least some
values of u. The second species is an obligate mutualist, if always G(0, v) < 0.

This model has been discussed many times (see May [21]). Assumptions on
F and G are needed to guarantee that solutions are bounded. How should one
assess the mutual benefit of the two species, in particular in the case of an obli-
gate mutualist, when pure culture is impossible? Consider for example the simplest,
Volterra-type model

Fu,v)=ri(k; —u+yv)

G(u, U) = 7‘2(K2 — v+ qu) .
The growth rates, »|, ¥, are always positive. To make this a model for mutualism
both coupling constants, y;, y» are taken positive, for commensalism choose 7 = 0.
For the first species to be a facultative, the second species an obligate mutualist, take
the carrying capacities x; > 0, k, < 0. None of the parameters in these models
can be determined in pure cultures.

Cooperative models show very restricted dynamics. The behavior of bounded
solutions 1s dominated by the set of equilibria. Convergence to equilibria is typically
eventually monotone. Cooperative systems of two ordinary differential equations
have no nontrival periodic solutions.

We determine the coupling parameters by modeling at least partially the me-
chanics of the interaction. All parameters of our model are either experimentally
controlled variables or characteristic of the pure cultures. This becomes an impor-
tant feature, whenever one tries to use the model as a building block in a larger
picture, for example a complete food web, or a spatially heterogeneous situation. We
will see for our model, that parameters like “coupling constants” will change, when
the experimental parameters are changed, and will also differ for various regions of
the state space.

It turns out that in many cases the long-time behaviour is governed by a system
of two differential equations as above. This happens, whenever the product has
no toxic effect on the producer, in particular for the model examples given by
Kreikenbohm and Bohl [17] and by Wilkinson [30]. The parameters of the reduced
equations are determined by the kinetics of nutrient uptake according to the formulas

F(u,v)=—-D+f(S®—Ku, Kzu—K;v)
Gu,v)=-D+gKyu—Ksv).

We compare the reduced equations to the standard system.
For linear uptake functions
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fo=f-6—acy, gle)y=g.-c

(where f; and g, are positive numbers) we regain a Volterra-type model with
parameters

£8°—D

‘ ox K
ri=f(Ki +oK3) Ki = 2k 7ak) V1= Braksy
r2=g:.K; Kzz—ngc 72 = B

where K, K3, K3 are the characteristic conversion constants from §1. Note that the
second coupling term is positive, the first positive or zero (« =0), and that the second
carrying capacity «, is always negative, indicating that the consuming species is an
obligate mutualist,

More generally, if g is increasing, the sign conditions for a cooperative system
are satisfied, and we have a mutualistic system if . < 0, and a commensal one if
Je = 0. The association is facultative for the first species, obligatory for the second.
We would like to argue that also for nonmonotonic g, the equations model com-
mensalism or mutualism, respectively, although the reduced system does not have
the sign structure and of a cooperative system and shows much more complicated
dynamics.

In the commensal case, there is always one stable equilibrium attracting all
solutions with positive initial values, provided the kinetics are unimodal in the sense
of the definition in §2.

In the general case with f, < 0 consider first the species consuming the metabolic
product of the other. Under the given experimental conditions, it is completely de-
pendent on the other species. Our model reflects that, as for u = 0, complete washout
of the consuming species takes place (see §4). On the other hand it is not true, un-
less g is monotonic, that raising the population density of the producing species
always increases the growth rate of the consumer. It is true that the equilibrium, in
which « is maximal, also leads to maximal densities for v and to minimal substrate
concentration.

For the producing species, the association is profitable in the sense that the
coupling term is positive and that equilibrium population densities in mixed culture
arc higher than in pure culture. It is facultative in the sense that whenever this
species survives in mixed culture, it survives in pure culture as well. There are
even situations in which it will reach a positive equilibrium while the other species
is washed out. '

The dynamical behaviour for monotone kinetics (see definition in §2) closely
resembles the behaviour for the simple food chain. Successively lowering D, we
see for almost all initial values first complete washout, then survival of one species
in a unique stable equilibrium, then convergence to a unique equilibrium in which
both species coexist. The association is obligatory for the consumer. For the producer
it is optional, although its equilibrium population density and substrate utilisation
is higher when the other species is present than in pure culture. This advantage
becomes larger as D decreases. It is interesting to note, though, that the lowest
substrate level and the highest dilution rate allowing survival of this species are not
improved by the presence of the other species. In fact, close to these critical values,
there is survival only in pure culture.

Experimentally, the kinetics can be made monotone by simultaneously decreas-
ing dilution rate and influx substrate concentration in such a fashion, that their ratio
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remains constant, and rescaling time accordingly. In the limit of very small dilu-
tion rates and influx concentrations, we can replace the growth functions by their
linearisations at zero.

Nonmonotone kinetics of nutrient uptake lead to multiple stable equilibria and
bifurcation of periodic solutions from equilibria and from separatrix loops. With
these properties, the system cannot be equivalent to a cooperative system.

Among all positive equilibria, there is one in which both population densities
are maximal, both substrate concentrations minimal. This equilibrium is locally at-
tractive. The linearisation shows the positive coupling terms typical for cooperative
systems. In the limit for small dilution rates, in this equilibrium, the presence of
the other species becomes more advantageous for the producing species, and both
substrates are completely used.

For the more general model with toxic effects, we cannot reduce to a two-species-
interaction model. Still, the consuming species behaves like an obligate mutualist.
The producing species survives in pure culture, sometimes even when mixed culture
is not possible. We have a completely analogous bifurcation diagram. Although we
suspect that for monotone kinetics still all positive solutions should converge to the
unique stable equilibrium, we were not able to show this analytically. We obtain
critical values of the dilution rate for extinction and persistence. We also show
bifurcation of periodic solutions from equilibria near Bogdanov-Taken singularities
for nonmonotone kinetics.

In the same model, changing only the parameters S° and D proportionally, we
see a standard cooperative system if these parameters are small. If these parame-
ters are large, the association still has many features of a mutualistic system. One
species behaves as an obligate mutualist, completely dependent on the other, but
not always benefitting from growth of the other species. The other species always
benefits (in the sense that its growth rate is increased by the presence of the other)
but survives in pure culture, does not depend on the other species. There is one
maximal equilibrium, near which the system more closely resembles a traditional
mutualistic system. This equilibrium is stable. For D small enough, it is the only
stable equilibrium, and we expect it to dominate the dynamics. In general, how-
ever, our system shows complicated dynamics that can never occur in a cooperative
system.

Acknowledgement. 1 would like to thank Willi Jager for suggesting the problem to me, and for
his attention and support during my years in Heidelberg.
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