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Introduction

An important tool for the study of automorphic forms is a non-
abelian analogue of the Poisson summation formula, generally known as
the Selberg trace formula. There have been a number of publications on
the subject following Selberg’s original paper [10], the most recent being
[2] and [7, §16]. With the exception of Selberg’s brief account [11], how-
ever, most authors have restricted themselves to the groups SL(2) and
GL(2). In this paper we develop the formula for a wider class of groups.

We shall work in an adélic framework so our group G will be a reduc-
tive algebraic group defined over a number field . We require that the
F-rank of the semisimple component of G be one. To simplify our intro-
duction, let us assume that G itself is semisimple. If A is the adéle ring of
F,let » be the regular representation of G4 on L (GA/Gr). It is important to
try to decompose ) into irreducible representations. '

To begin with, A splits into a sum of two representions )\, and A, such
that ), is a direct sum of irreducible representations while \, decomposes
continuously. The theory of Eisenstein series provides us with a fairly
good understanding of the decomposition of »,. However, virtually nothing
is known about how to pick out the irreducible components of \,. It is at
this problem that the Selberg trace formula is aimed.

X may be regarded as a representation of L'(G4). Our first aim will be
to prove that the operator \,(f) is of trace class when f is a suitably regular
funetion on G4. Besides imposing the usual conditions on f we shall be
forced to make an additional assumption. If G, is a product of groups of
real rank one this assumption is harmless, but in general it is unsatisfactory.
After two preliminary sections, we state our assumptions in § 3, where we
also establish the desired properties of \(f)-

Once we have proved that the operator A,(f) is of trace class, we can go
about calculating its trace. To do this we must take the kernel, K,, of A,(f),
and integrate it over the diagonal. K, can be expressed as the difference
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of the kernels K and K, of M(f) and \,(f) respectively. To study K, we
shall need to quote a number of results from the theory of Eisenstein
series. The basic references are [5], [8], and [9] where the results are
proved for discrete subgroups of real Lie groups. This covers our situation
because any automorphic form on G,/Gr can be regarded as a finite sum
of functions, each of which is an automorphic form on the quotient of G.,
by some arithmetic subgroup.

In Sections 4 through 8 we analyze the functions K(z, ) and K,(z, x),
breaking each one up into a number of components. Although neither of
these functions is integrable, we find in § 6 that the non-integrable com-
ponents of each function cancel. All the remaining terms turn out to be
integrable, although in § 8 we need to appeal to the integrability of K, (x, %)
itself to verify this. We integrate each term as we go along, leaving the
results to be collected in § 9 in our final formula. The treatment of these
last five sections is strongly motivated by [7, pp. 526-546].

Most of the methods used in this paper originate with Selberg (see [11]),
including the ideas behind the proof of Theorem 3.2 and the convergence
of the integrals in § 8. These were described to me by Robert Langlands
whom I would like to thank for his encouragement. I am also grateful
for the comments of Stephen Gelbart, who read through the original
manuscript.
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1. Preliminaries

Let G be a connected reductive algebraic matrix group defined over a
number field F. For any place v of F we shall write G, for G, the group
of F,-rational points of G. We shall denote the adéles of F by A, and we
write G4 for the corresponding adélized group. If - and f stand for the
set of infinite and finite places of F respectively, we can write

GA - G“,Gf .

Our concern will be the study of certain complex-valued functions on
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Ga. If H is any F-subgroup of G, we write C*(H,) for the space of linear
combinations of functions

f=1L.7%
that satisfy the following conditions:
(i) If v is infinite, f, € C°(H.,);
(ii) If v is finite, f, is locally constant and has compact support;
(i) For almost all finite places v, f,is the characteristic function of G,,.
We shall also sometimes write C=(H,) for the space of linear combina-
tions of functions of the form

f=rtr
where f.. is a differentiable function H,, and £, is a locally constant function
on H;.
The radical of G is a torus which is defined over F. Let Z be its F-

split component. Let X(G) be the group of rational characters on G, and
let X(G)r be those characters in X(G) which are defined over F. Define

3 = Hom (X(G)s, R) ,

7 =XG)r®R.

Then
dim Z = dim§ = dim3* .
We define a map
H:Gr—3
by
g™ = | ¥ (2) |, x e X(@)p, v€ Gy .

Let G4 be the kernel of H.

We shall define a subgroup Z7 of Z... Fix a basis yx,, +--, %, of X(G)-.
The restriction of these characters defines an F-homomorphism ¢ from Z to
GL()". This in turn defines a homomorphism ¢, from the identity com-
ponent of Z_ onto the identity component of GL (1, «)". For any positive
real number \ we let &(\) be the idele such that &), = 1 for every finite
place v of F' and £(\), = A for every infinite place w of F. The collection
{6(x): X > 0} defines a subgroup, GL* (1, <), of the identity component of
GL (1, ). Let Z} be the inverse image of GL* (1, )" under ¢...

The restriction of H, maps ZJ bijectively onto 3. Therefore G, is the
direct product of Z: and Gi. The group Z. is independent of the basis
Kis =% pax
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We would like to specify Haar measures on certain subgroups of Ga.
On any discrete group we will use the Haar measure that assigns to any
point the measure 1. On any quotient of unimodular groups to which we
have assigned Haar measures we will use the corresponding quotient measure.

Let dx be the Tamagawa measure on Gs. We recall the definition.
The representation o of the Galois group g(#/F') on the vector space X(G) Q F
defines an Euler product

L(s, 0) =TI, L.(s, 0) .
The order of the pole of L(s, ¢) at 1 equals the multiplicity of the identity
representation in ¢, which is

dim (X(G)r Q F) = 7.

Let v be a nontrivial character on A which is trivial on F. At each place
v of F', v+ defines a nontrivial character +, of F,. Let d&, be the measure
on F,, self-dual with respect to +,, and let d¢ =[], dé,. Let w be a left
invariant form of highest degree on G, defined over F. For each v define
the measure dx, on G, to be

L1, o)l

where |®@ ], is the measure defined by the form w and d&,. If Ar is the
discriminant of F, dx is the Haar measure on G4 which equals

AF —dim@/e 1‘ ot 1 d"r .
A e Ty L

This measure is independent of the choice of +r and ®.

Any basis 7, -+, %, of X(G)r defines an isomorphism between Z. and
(R*)". We take as measure on Z.; that which corresponds to the Euclidean
measure on (R*)". This measure is independent of the choice of ¥, ---, 7,.

Our measures on G, and Z: define a measure on G4 which we also denote
by dx. It is well known that the number
t(G):S1 da::g dx

GAlGF GAIGFZos

is finite. (@) is the Tamagawa number of G.

Let P be a parabolic subgroup of G defined over F. Let N be the
unipotent radical of P. N is connected and defined over F. Fix a Levi
component, M, of P. M is connected. It is known that M is defined over F
and that P is the semi-direct product of M and N. In particular the maps

MxN—P,
NxM—P,
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regarded as morphisms of algebraic sets, are isomorphisms defined over F'.
It follows that
P, = M;N, = N;M; .

Let A be the F-split component of the radical of M. A contains Z. If
we replace (G, Z) by (M, A) we can define the vector space a, the map Hy,
the groups M} and AZ, and the measures on Ma, A% and M} as above.

There is an isomorphism of affine varieties

exp:nt— N
defined over F, from 1, the Lie algebra of N, onto N. On 1 choose the
Haar measure dX that makes the measure of ns/n, equal to 1. Let dn be

the Haar measure on N, which is the image of dX under the above map.
We define left and right Haar measures on P, by

SPA ¢(p)dp = SMA S‘VA ¢(mmn) dn dm

LA ¢(p)d,p = SMA SNA é(nm) dn dm , se C=(Py) .

There is a homomorphism, 6,: Py — R?%, such that

d,p = ox(p)d.p .

We shall write P} for the group MiNs. Pi is unimodular and a Haar
measure dp on Pj is defined by our choices of Haar measures on Mj and Na.
P, is a discrete subgroup of Pi, and the volume of Pi/P: is t(M), the
Tamagawa number of M. Finally, it is obvious that the group Py is a semi-
direct product of A% and Pi.

Suppose that °P is a fixed minimal parabolic subgroup defined over F.
It is known ([1, Theorem 4.13]) that °P is unique up to conjugation under
F. Now for any finite place v, G,, is an open compact subgroup of G,. Itis
known ([3, p. 10]) that the double coset space

(1., Go)\Gs/°P;
is finite. It follows that for almost all finite v, G, = G,,-°P.,.

A recent unpublished theorem of Bruhat and Tits states that for any
finite place v there is an open compact subgroup K, of G, which, among
other things, has the property that
(1.1) G, = K,-°P, .

For a statement of this theorem see [6, Theorem 5].
At any finite place v we shall define K, to be G, if G, = G,,-°P,. For
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the other finite places we take K, to be any open compact subgroup of G,
that satisfies (1.1). At each infinite place v, we take K, to be any maximal
compact subgroup of G, such that the Lie algebras of K, and A, are
orthogonal under the Killing form. If we define

K=T1], K.
then
GA = K'OPA .

Let dk be the normalized Haar measure on K. There is a positive
constant ¢, such that for all fe C(Ga)

|, s@iw =c | {  sepirpdk =e.{ | rlpdpdk.

We shall assume from now on that the F-rank of G/Z is 1, and we shall
write P for the minimal parabolic subgroup °P. The dimension of 4/Z is 1,
and Mi/M, is compact. We fix for once and for all an isomorphism

t—h, , teR

from R onto a subgroup 7 of AL such that A} is the direct product of Z7
and T and for any ¢ ¢ C*(A4.),

| _sdaz = |7 stnyaedz .

co oo

Any element of x € G, has the decomposition
x = kmhmnz,

for ke K, me M}, tcR, ne N,, and z¢ Z:. The number ¢ is uniquely
determined. We shall denote it by H(x). There is a real number p such
that

05(p) = €7, pePy.
We can assume that o is positive. For any fe Co(G./Z:) we have the
formula

F@de = e

SGAIZ:; ¢

S . S S“’ Flkmhm)etdt dn dm dk .
MAIZL, INA J—

Let us agree upon some additional notation that we shall later need.
Suppose that 7e G, and that His a connected F-subgroup of G. We shall
write H*(7) for the centralizer of v in H. It is clear that H*(7) is defined
over F. It is also obvious that H*(7), is the centralizer of v in H;. We
reserve the notation H(v) for the identity component of H*(v). H(7) is
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also defined over F and it is a normal subgroup of finite index in (7). In
particular, the group of rational points, H(7)r, has finite index in the group
H+(7)r. We shall write n, , for this latter index.

We will be interested primarily in the case where the group H is
reductive, and < is a semisimple element in H,. Then it is known ([1,
p. 70]) that H(v) is reductive.

An important tool in analyzing the elements of G, is the Bruhat de-
composition. N(A), the normalizer of A in G, is defined over F. N(A4)/M is
a group of order 2, and the nontrivial coset of N(A)/M has a representative
w which is rational over F'. w normalizes M, and for a € A,,

1 -1

waw T = a

Then according to the Bruhat decomposition, G, is the disjoint union of P,
and N, -w-P;.

We shall need to appeal to some results from reduction theory. We
refer to [3] where the results are proved for the case ¥/ = Q. The results
can be applied to our situation by restriction of the ground field F to Q.

For any number ¢ > 0, let

S(c) = {ze G, H(zx) = logc} .
LEMMA 1.1, There is a constant ¢ > 0 such that G, = S(c)-Gr.

For a proof see [3, p. 16]. ]
From [3, Theorem 9] we also have

LEMMA 1.2. For any ¢ > 0 the set of all v in Gy such that
S(e) N S(eyy = @
18 finite modulo Pr. ]

We write As(c) for S(¢) N AL. If w is a relatively compact subset of
P; the set

8(c) = K-Ai(e)-w
is called a Siegel domain for G,. By Lemma 1.2 we may choose a Siegel
domain 3(c) such that
Gy = 3(c)-Gr .
In order to prove the above results one employs a strongly F-rational
representation o of G. For a general account of such representations see

[1, § 12]. We shall also need to use a strongly F-rational representation,
which we now describe.
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Let 4 be a maximal torus of G which is contained in M. Let B bea
Borel subgroup of G such that

AcBcP.
If A is the set of simple roots of (G, A) associated to Blet {A, ae A} be
the corresponding set of fundamental weights. These are elements in

X(4) ® Q which lie in X(4) if G happens to be simply connected.
Any linear combination

A=Y  cd, e =0,c,eZ

such that A lies in X(A) is the highest weight of an irreducible representa-
tion of G. This representation is strongly rational if and only if A is the
restriction to A of a character in X(M).

We shall now take A to be any fixed character that satisfies this property.
Let o be the strongly F-rational representation of G whose highest weight
is A and let p act on the vector space V defined over F. If pe X(A4) is the
simple F-root of (G, A), then the restriction of the character 2A to A equals
ns+ 3 for a positive integer n;. We have a decomposition

V=V'@®V .. - PV
of Vinto a direct sum of subspaces defined over F such that for 0 <j < n,
ola)v; = a7, , v;e Vi, acA.
The spaces V° and V*: are one dimensional and V° is stable under the
restriction of o to P.
o defines a representation of G, on V,. There is a positive rational
number b such that
[Ala) ]| = e*®iv ac A .
Fix a basis {¢, +-*, ¢;} of V. such that
(i) each basis element lies in one of the spaces V7,
(i) e, e V° e,e Vs, and
(iil) o(w)e, = e..
If v is any finite place and &, ¢ V., define
W&, = max, [ &1,
where (&}) are the co-ordinates of &, with respect to the above basis. If v
is any infinite place, we make V, into a Hilbert space over F’, by demanding
that {e,, ---, ¢,} be an orthonormal basis. An element ¢ V, is said to be
primitive if || &, ||, equals 1 for almost all v, in which case we write

et =1L 10
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The function || -] is called the height function associated to the basis

{601 %y ed}'
It is easy to verify thatif ve V, is primitive then p(z)v is also primitive
for any z e G,. The map

x— p(x)v, re G,
is continuous with respect to the topology defined by || - ||. It is also clear
that for any x € G and pe P,,

[ o(@pe, [l = e || o(@)es |l -
LEMMA 1.3, There is a positive number g, = 1 such that
e > g ne N, .
Proof. Define ¢ to be the supremum over k¢ K of || o(k)e,||. For ne N,
we may write
nw = kp , ke K, peP,.
Then
| o(nw)e, || = e[| p(k)e, ||
so that
P 2 e p(nw)e, | -
On the other hand
I o(nw)e, | =[] p(n)e,s ||
Now ¢, is a lowest weight vector for o, and
o(n)e, — ey
is contained in the span of {e, -+, ¢,_,}. From the definition of our height
function,
o(n)es]l = lle.ll =1 .
The lemma follows for ¢, equal to (s,) 7' . O
LEMMA 1.4, If &, is the constant of the last lemma, suppose that
e @ < g, for some x€ Gy Fiw ve€Gp. Then H(zv) < 1if and only if v is
in Prp.
Proof. For ve P, it is obvious that
" = e g, 1.

On the other hand, suppose that v is not in P,. By the Bruhat decomposition

¥ =ywr, ve Ny, we P, .
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We can write
x =knmh,iz, ke K, ne Ny, me Mi, teR and ze Z7 .
Then
ow = kenw-wtmwhi'z,
where
n, = nemhYhi'm™
lies in N,. It follows that
eH e = gl — gHimwg=t |
Now
et = e MW >t
while by the last lemma
eHim® > g
Therefore e > 1. O
COROLLARY 1.5. For any ¢ > 0 there is an ¢ with 0 < e < &, such that
if veGrand
SE) N Se)yy = @
then v lies in Pp.
Proof. The corollary follows from Lemmas 1.2 and 1.4. O

Suppose that 8 is a Siegel domain. A function f on G, is said to be
slowly increasing on 8 if there are constants C and N such that

[f(e)] = Cem¥Ht=), res8.
fis sald to be rapidly decreasing on Bif for every N there is a constant Cy
such that

[ f(x)] = Cye¥ ™, res.

Suppose that % is a continuous function on G,/G,ZZ. The function

defined on G./P;Z. by
ho(e) = 8 h(zm)dn
NAINp

is called the constant term of h.

Let = be the center of the universal enveloping algebra of the Lie
algebra of G.. It is clear how to define the action of Z on C=(G.). A func-
tion k in C=(G./GrZ2) is called an automorphic form if
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(i) h is left K-finite,

(ii) h is Z-finite,

(iii) % is slowly increasing on any Siegel domain.

The following well-known principle is basic to the theory of automorphie
forms.

LEMMA 1.6. Suppose that h is an automorphic form on G./G;Z;. Then
the function h — hp 1s rapidly decreasing on any Siegel domain.

A proof of this lemma can be extracted from [5, Lemma 10]. |

2. The spectral decomposition

The left regular representation, \, of G. on the Hilbert space
LYG,/G-Z2) is unitary. A fundamental problem in the theory of auto-
morphic forms is to decompose this representation into a direct integral of
irreducible representation of G,.

Let L*({G}) be the space of functions & in L¥G./G,Zz) such that for
almost all x

g flen)dn =0 .
NAlINp

It is clear that L*({G}) is a closed r-invariant subspace of LYG./G;Z.). It
is called the space of cusp forms. Analysis of this space is the deepest part
of the above problem.

The theory of Eisenstein series provides an intertwining operator
between the restriction of X\ to the orthogonal complement of L*{G}) in
LY G./G:Z) and a direct integral of certain induced representations. In
this section we describe this intertwining operator.

Let =, be the center of the universal enveloping algebra of the Lie
algebra of M... Suppose that 7 is an irreducible representation of K and
that y is a homomorphism of Z, into C. Let L be the vector space of
funetions ¢ in C=(G./M ALN,) such that for any x€ G,,

1) 8(w; 2) = %(2)e(x), z€ Z,
and

(ii) the function B(k) = ¢(k'z) is contained in a subspace of L*(K) on
which the right regular representation of K is equivalent to 7.

It is known that L is finite-dimensional. We define an inner product
on L by

Goo)=c| | slmaEmdm dk .

¢ JMAIMpAT

We shall refer to L as the simple (K, Z,)-type asociated to (7, x). We
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write V(P) for the collection of all simple (K, =) types.

For any complex homomorphism y of 3, let V(P, %) be the collection
of simple (K, Z,) types associated to . It is easy to see that V(P, x) is not
empty for only countably many y. We fix for once and for all an indexing
of these homomorphisms by the natural numbers. Then

V(P) = U V(P 1) -
Let JC(n) and JC be the orthogonal direct sums defined by
H(n) = Brevirry L,
H = @5 H(n) .
Then K may be identified with the space of measurable functions
¢: G /M AZN,— C
such that

e li* = CGS S | g(kem) fdm dk < <= .
K JMylMpd],

For any z ¢ C there is a representation 7(2) of G,/Z. on X defined by
(7(z: W9)(w) = gly~w)ers=rv g m

for ¢¢ JC and z, ye G4/Z2. 7(z) is just an induced representation. Each
space J(n) is invariant under 7(z).

For f a measurable function of compact support on G,/Z:, define as
usual

) = r@reE iy

7(z: ) is a bounded operator on K.

LEMMA 2.1. For 2€ C and y e G., the adjoint operator m(z: y)* equals
T(—Z:y7).

Proof. Let Q be the group M,-AZ-N,. Our earlier normalization of
Haar measures defines a left Haar measure d,q on Q. Since G,/Q is compact,
we can find a real valued function 8¢ C(G,) such that

|, seada =1, 2eG, .
Then it is clear that for ¢, v € 7,
6, %) =, e B@pE i@

In particular, (7(z: )9, vr) equals



338 JAMES ARTHUR

S e (1) g(y " w)e O H W TINgm (rm H ix) V(x)dx
GA

Changing variables we can see that this expression also equals

(¢, T(—Z: y™)p). O

COROLLARY 2.2. For any compactly supported measurable function f
on G.JZ1,

Tz f)* = n(=F: £7)
where f*(y) = fy™), y € GA/Z. N
For any fe C(G,/Z%) and z € C, the function

P(z:f: X, y) — e(—z+p>H<x)e(z+p)H(u>EuGMFS S f(x#htnyﬂ)e(—z;p)tdt dn
: NpJ—oo

is continuous on the compact space (G./M,ALIN,) x (G./M;ALN,). For fixed
x, ¥ and f it is a Schwartz function of z in R.

LEMMA 2.3. For fe C(G,/Z2), z€ C, and ¢ € I, (7(z: f)¢)(x) equals

ccg g P(z: £ @, km)e(em)dm dk .
K Jualupal

Proof. (xR = |, (F)mte: ng)@y
= |, S ey
= S oz @Y TSl e dy
=l S e |, iy
o= otdn dt e(‘“m*”(“}gﬁ(km)dm dk
= ¢ SK SWHFA;P(z: £, km)g(em)dm d . O

COROLLARY 2.4. The operator n(z: f) of the lemma is of Hilbert-Sechmidt
class.

Proof. This is clear, since the kernel of 7(z: f) is square-integrable over
(K-M,/M,A.) x (K-M,/M:Az). O

We shall later come across some functions
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R(z: 1 x, Y), @,y G /M ALN, ,
such that for every ¢ ¢ J the integral

cGS g R(z: ft w, km)g(lem)dm dik
K JMAlMpA

equals (7(z: f)¢)(x) for almost all . We will be able to conclude from the
last lemma that R(z: f: z, ) and P(z: f: x, y) are equal for almost all » and
y. If R(z: f: x, y) happens to be continuous separately in © and y the two
functions will be equal for all 2 and .
Fix L in V(P). For ¢ L it is known ([5, Lemma 23, Cor. 3]) that the
series
E(g: 21 2) = S_DMGF/PF P(ao)erHd

converges uniformly for 2z in compact subsets of G,/Z: and z in compact
subsets of D, = {z: Rez < —p}. In fact it can be shown ([5, Lemma 24])
that for any Siegel domain 3 there is a locally bounded function ¢ on
(— =, —p) and an integer N such that for x€ 8 and z in D,,

e piry | BED)E TN | < ¢ (Re g)el =R

E(¢: z: 2) is called the Eisenstein series associated to ¢. Let us review its

basic properties.
First of all, E(¢: z: z) is a left K-finite eigenfunction of Z on G,/G,Z.t,

so it is an automorphic form. The constant term, E.(¢: 2: x), equals

B@)e 1 + (MEP)@)e ),
where M(z) is a uniquely defined analytic function which maps D, into the
space of linear operators on L ({5, Theorem 5]). M(z)*, the adjoint of M(z),
equals M(%) ([5, Lemma 48]).

For any z ¢ G, and ¢ ¢ L, E(¢: z: ) and M(z)¢ can be continued to mero-
morphic functions on C which are regular on the imaginary axis. Any
poles which lie to the left of the imaginary axis are simple, and must occur
on the interval [—p, 0). All poles must occur simultaneously for E(¢: z: x)
and M(z2)¢. If Dis the set of points in C where M (z) is holomorphic, E(¢: z: )
is continuous on D x G,. In addition, for any Siegel domain 8, any compact
subset @ of D, and any ¢ in L, there are numbers C and N such that

2.1) |E(g:z:2)| < Cllg]|le ¥, zew, xed.
Finally E(g: z: ) and M(z) satisfy the following functional equations:
MEM(—2)¢ = ¢,
E(¢: z: ) = E(M(2)¢: —2: ), oe L .
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(See [5, Theorem 7].)
There is a useful formula for M(z). For me M,, let m*¥ = wimw.
LEMMA 2.5. Fix Le V(P)and ¢€ L. Then for ke K, me M., and for
Re z < —p, the integral

g o(knwm®)e ="y,
Na

18 absolutely convergent. It equals
(M(z)¢)(fem) .

Proof. For xe G, we have

E(¢: z: an)dn = S ] Eye,,.F,PF olany)e e emidy, |

Nalxp

S‘VA/Z\'F

By the Bruhat decomposition, {¢} U{N,cw} is a set of representatives for
G:/P,. Therefore the above integral equals

. (z—p)Hian) L (2—p) I (2my 1w
Sn e é(xn)e ¢ dn + S Z;ye_\vF o(xnvw)e dn

NAlNF

= o(x)e o 4+ S o(wmw)e*—rHEM Iy, |
N

Suppose that
x = kmhmnz, ke K, meM,,neN,,zeZ..
Then

SV ¢(xnw)e(z—p>11{xnw)dn — SV Q'(knmhtw)e(z—pﬁll{knm}ztu'>e~‘.’ptdn
YA YA
= e“"“’”g\. dlhknwm®)e e dy |
YA
Since ¢t = H(x), the integral
S dlknwm®)e gy,
Na

must equal (M(z)¢)(km). The absolute convergence of this integral is an
immediate consequence of the absolute convergence of the Eisenstein
series. ]

For any L e V(P) let J((L) be the space of entire functions with values
in L which are Fourier-Laplace tranforms of functionsin C*(¢{R) X L. Then
on any vertical strip, functions in J(L) decrease at infinity faster than any
polynomial. For any a € H(L) define
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E.(x) = ? SRM:Z[ E(a(z): z:z)d| 2],

where z, is any real number smaller than —p. By an estimate quoted
earlier the integral is absolutely convergent, and it is independent of z,. It
is known ([5, Lemma 26, Cor. 1 and Lemma 40]) that for a and b in J((L),
E,and F, are in LG ,/G-Zz) and that

e2) | = E@EWd =L (@@ bi-2) + M@, @)z,

GAGpZ

for any z, < —p.
Let L¥{P}, {L}) be the closure in L¥G,/G;Z.) of the vector space

(E.:aeIC(L)}.

If L¥{P}) is the orthogonal complement of L*{G}) in L¥G./G,Z.), it is
known that L*({P}) is the orthogonal direct sum

@Ler'iP.‘ LZ({P}y {L}) .
Fix L in V(P). For a, be F(L) we shall examine the integral

L (@@, o-p) + (ME@ae), W@ |2 -
27 JRez=zg
The integrand is clearly meromorphic in z. Now it is known ([5, Lemma
101]) that the norm of M(z) is bounded at infinity in the strip {z:2, =
Rez < 0}. Therefore we can use the residue theorem to shift our contour
of integration to the imaginary axis.

For ze[—p, 0) let 2(z2) be the residue of —272M({) at L =2 (4z)
vanishes for all but a finite number of z. Our integral becomes

L5 (HR)alz), b(2)

2T

- 41,': Si‘, (a(z) + M(—2)a(—2), b(z) + M(—2)b(—2))d |z] .

The expression defines a positive semi-definite inner product on F((L). It
follows from a simple approximation argument, which we leave to the reader,
that the linear operators

1(z), ze [—p, 0),
are all positive semi-definite.

Let V be the vector space of functions from [—p, 0) to L. Define a
positive semi-definite inner product on V to be
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1
E Eze[—p,ﬂ) (ao(z), f"t(z)bo(z)) ’ a, b,e V.

Factoring out by the space of null vectors, we obtain a finite-dimensional
Hilbert space which we denote by Li({P}, (L}).

Let Li({P}, (L}) be the space of square integrable functions a, from iR
to L such that

a(—z2) = M(?)a.(?), zciR .

We define our inner product on this space to be

L (@, b@)z, a, b, e LA(P), (L)) .

Let L¥({P}, (L}) be the orthogonal direct sum of Li({P}, {L}) and Li({P}, {L}).
Any function a in F (L) obviously defines a vector a, in ﬁﬁ({P}, {
We define a function a, in L¥({P}, {L}) by

a(z) = %(a(z) + M(—2)a(—2)), zeiR .
Then the correspondence
(a, a,) — E,, a € J(L)

is a linear isometry between dense subspaces of L*({P}, (L}) and L*({P}, (L}).
We extend this isometry to an isomorphism

E: L¥({P)}, {L)) — LX({P}, {L}) .

Let us denote the restrictions of & to Li({P}, {L}) and Li({P}, {L}) by E,
and E, respectively and we will write Li({P}, {L}) and L¥{P}, {L}) ‘for the
corresponding ranges in L¥({P}, {L}). For i =0 or1 and a,e LY{P}, {L}) we
need a formula for the function

(Ea:) (), reG, .

For ¢e L, ze [—p, 0), and x € G,, define E(¢: z: x) to be the residue,

—2n-Res._, E(¢: C: ),
of E(¢: L:xyat {=12. E(¢: 2: x) is clearly an automorphic form. Itsconstant

term equals

—27-Res,_, S E(¢: & an)dn ,

A\‘A/NF
which is

(1(z)¢)(x)e -0 H @
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This latter function is square-integrable over any Siegel domain so it follows
from Lemma 1.6 that E,(¢: 2: x) is square-integrable on G,/G-Z..

Another poperty of E(¢: 2: x) is that it is orthogonal to L({G}). To see
this, choose any automorphic form 4 in L*({G}). By Lemma 1.6 the function

E(C: ¢ 2)h(x)

is integrable for e C. If { < —p, its integral equals

(¢(x)e<:—p>mx>)mdx .

SGA/PFZ;

This expression vanishes, since

S h(zm)dn = 0, veG,.
NaolNp
By analytic continuation,

S  E(z: ¢t 2)h(z)dx =0 .

GAlGpZ

Our assertion then follows from the well-known fact that there is an
orthonormal basis of L¥({G}) consisting of automorphic forms.

LEMMA 2.6. Suppose that we are given a pair (a,, a,) such that
() ave Li((P), (L), )
(i) a, is a function of compact support in Li({P}, {L}).
Then for almost all x the function
(anfo)(x) + (Ela/l)(x)
equals

2.3) 2_177 S B an(2): 2 2) + 2—17? Sw Ba.(2): 2: w)d| 2] -

Proof. Let f(x) be the function defined by (2.3). Its constant term,
f»(), equals

LT (@@ e+ L1 (@ @)@errd 2]

This formula, together with a strengthened version of Lemma 1.6 ([8,
Lemma 3.4]), insures that f is square-integrable. It is clear that f is
orthogonal to L*({G}).

Choose a sequence {b"} of functions in JF (L) such that as n approaches
eo, (b7, b7) approaches (a,, a.) in L¥{P}, {L}). The constant term of Ej.
equals
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1 S S E(b"(2) z: an)d|z|dn
27 JNAINp JRez=zg
for any 2z, < —p. Changing the order of integration we obtain

o S {("@)@e " + (M@ (@) (@e 7" )d 2|,

which equals

é Z:z . ([u(z)bn(z))(m)e{—z—mlﬂx)

+ L e@@er e + (MEP@)@e Yl 2]

by the residue theorem. We rewrite this formula as

L (@R @)@ + L (pr@)aer a2

27T Rez=0

By choosing the sequence {b"} suitably we can force this last expression
to approach fr(x) for all x, as » approaches infinity. On the other hand, since
E,. converges to Ea, + E,a, in the mean, the constant terms of E,a, + F.a,
and f are equal almost everywhere. Now the function

f— Ewa, — Ea,

lies in L¥G,/G;Z%) and is orthogonal to L*{G}). Since its constant term
equals 0 almost everywhere, the function itself must vanish almost every-
where. |

Fix 7 = 0, 1. Define
I:Z({P}) = ®Lew1’> IAJ'%({P}, {L}) ’
Lt({P}) =@rerir L%({P}, {L}) .
By taking the direct sums over V(P) of the maps
E;: L{{P}, {L}) — L¥G./G:22) , Le V(P),

we obtain a map from I:Z({P}) into LYG,/G.Z3) which we denote again by
E,. The image of this map is L{{P}). Consider the adjoint map

E#*: LXG,/GZ5) — LY{P)) .

Then the map E,EF is the orthogonal projection of L¥G./G.Z:) onto
Li{P}). The space L:({P}), which is the orthogonal complement of L*({G})
in LYG,/G;Z2), equals

LY(P)) ® LY(P)) .

For any L, and ze [—p, 0), define an operator »(z) on L to equal zero
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on the kernel of /4(z) and to equal /4(z)~* on the orthogonal complement in L
of the kernel of /4(z).

LeEMMA 2.7 Suppose that Le V(P) and éc L. Then for any
he Co(GL/GZY),

() (Brh)(z), ¢) = SGA/GFZ+ W) Ey(r(2)¢: 22 x)da, for ze [—0, 0), and

() (B, 9) = W/2) |

Jor almost all z in iR.

W) E(¢: 2t w)da

GAIGEZ

Proof. These formulas follow easily from the last lemma. Let us prove
only (ii).

Let a, be any continuous function of compact support in L({P}, {L}).
Form the inner product of E*h and a,. On the one hand this equals

L™ (@n@, a@)izl,
T J—iew
while on the other hand we obtain
\, . MoEa)@de,
GA'GpZ

which is the same as

LS”" S (@) B(a(2): 2 w)dw d| 2],
2T J—iee JGAlGFZ_
by Lemma 2.6. Since q, is arbitrary, we get the required formula. a

Our final task for this section is to verify the intertwining property of
the operators E, and E..

LEmMMA 2.8. Suppose that f is a left and right K-finite function in
CAG./Z2Z). Fix Le V(P) and ¢ L. Then
M) E(¢: 2 w) = E(n(z: f)g: 2t )
as meromorphic functions of z.

Proof. For Rez < —p the formula is a direct consequence of the
definitions of 7(z: f) and E(¢:2:x). The lemma follows in general by analytic
continuation. O

COROLLARY 2.9. For f as above,
m(z: f)M(z) = M(z)n(—z: f)

as meromorphic functions in z.
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Proof. Fix L and ¢. Using the functional equation for E(¢: z: x)
we observe that

E(M(z)n(—z: f)¢: 2: ) = E(n(—z: f)g: —z: x)

= M) E(¢: —z: ) = M) E(M(2)4: 2: x)
= E(n(z: )M2)$: z: @) .

However, for +» = 0, vr€ L, E(y:z:x) is not identically 0 in z and w.
Therefore

M)7(f: —2)p — n(f:2)M(z)¢ =0,
which proves the required result. |

COROLLARY 2.10. Li({P}) and Li({P}) are  -invariant subspaces of
LNGA|GrZ2).

Proof. This is obvious. O

We shall sometimes write L¥(G,/G.Z2) for LY{({P}). We shall denote
the direct sum

Li({G}) & Li({P})

by L{(G./G:Zz). (This notation is different from [5] and [9] where the symbol
L is used for the space of cusp forms.) For any & in G,/Z.} we denote the
restrictions of M) to LX{G}), L{{P}), LXG./G;Z%), and L¥G./G,Z%) by
A({G): ), M({P): @), Mi(x), and \(w) respectively. For fe C(G,/ZS) we can
define the operators M\({G}: f), M({P}: f), M(F), and N(f). No(F) is the
operator we shall be most interested in. It is the sum of \,({G}: f) and
\((PY: 7):

It should be noted that the results of this section are but special cases
of [8, § 7], where the spectral decomposition is carried out for groups of
arbitrary rank.

3. The operator \(f)

Suppose that f is a complex-valued function on G,/Z. which is the
convolution over G,/Z2 of two left and right K-finite functions /" and f”
in C2(GL/Z2). N(f) is a bounded operator on L¥(G./G:Z7). It seems likely
that A, (f) is of trace class. Our objective will be to prove this fact under
an additional assumption on f and then to find a formula for the trace.

In calculating the trace of A(f) we shall integrate its kernel over the
diagonal. This necessitates finding the integral kernels of M(f) and M.(f).
While we are at it, we may as well find a formula for the kernel of X,({P}: f).
This will perhaps have to be studied to prove that ),(f) is of trace class
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without using the additional condition (Assumption 3.5) that we shall impose.
For any function & in C2(G,/G-Z2)

(MANE = Femeady = |

Al Z A

- L@y )y)dy

D, e, L@y M)Ay -

- SGA/GFZ°°
The series
K@, y) =5, .., F@y™

is finite for » and y lying in fixed compact subsets of G,/Z5. Therefore
M) is an integral operator with kernel K.

It is clear that K is a smooth function. Inaddition K is slowly increasing.
In fact, given any Siegel domain &, and a K-finite function ¢ in C(G,/Z2),
it is known ([5, Lemma 9]) that there are constants C and M such that

(3.1) b

In studying the operators A,({P}: f) and \(f) we must examine certain
\-invariant subspaces of L({P}) and L¥{P}). For any positive integer N
define

g@yy™)| £ CeM#= z,yes.

yeGFr

I:Z(N) = @;\;:1 @Lev’(l’,zn) Ef({P}, {L}) ’ Z = O’ 1 :

For T > 0 let L¥N, T) be the subspace of elements a, in L¥N) such that
the projection of a, onto any of the direct summands
{L:({P), {L}): Le U,_, V(P, 1)}
is a function supported on the interval [—4T, ¢T]. Let LYN) and Li(N, T)
be the images of LiN) and LXN, T) under the maps E, and E,. L{N) and
LN, T) are \-invariant subspaces of L*G./GrZ2). Let X\(N:f) and
M(N, T: f) be the compositions of \(f) with the projections of L¥(G,/G;Zx5)
onto these subspaces.
In order to get a formula for the integral kernels of these operators
we shall fix for once and for all an orthonormal basis

{6.: e I}

of H. We may assume that each basis vector lies in some space L e V(P).
For each positive integer » let I, be the set of indices a for which
there is an L€ V(P, ¥,) such that ¢, lies in L. Then

I=U,_ 1.
For a, B e I define
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Tos(2: ) = (T(2: )85, Sa)
Then for any positive integer n we define functions on (G,/GZ%) X (G,/GZY)
by

Kz fr2,9)
= LEZX”;EM Tas(20 ) Eo(at 21 W)Eo(T(z)@ﬁ: z: 2/) , ze[—p,0),

27

and
K(n:z: fro,y) = %TEMM Tos(2t [)E($a: 2 2)E(o:: 21 ) » zeiR .

Since f is left and right K-finite, 7,;(2: f) vanishes for all but finitely many
«a and B in I,. It follows that the above sums are finite. Ky (n:z: f: @, y)
vanishes for all but finitely many z in [—p, 0).

LEMMA 3.1. N(N: /) and N(N, T: f) are integral operators whose
kernels are

E',?:l 2ze[~p,0) KO(%: (2 f; Ty y)

and
. T
S, S_iT K(n:z: f:o 9)d|z]
respectively.

Proof. The result follows from a routine use of Lemmas 2.6, 2.7, and
2.8. L]

We remark that the kernels defined by this lemma are both continuous
functions on (G/G,Z%) X (G./GFZ2) .

THEOREM 3.2. Given any Siegel domain 8 we can choose constants C
and M such that for all x and y in Bthe expressions

(3.2) > Eze[—~p,o} | Ky(n:2: fra, vl
and
(3.3) T 1K £ 0 dl]

are both bounded by Ce ¥H @ AW,

Proof. Recall that f = f'+f"" where /" and " are both K-finite. For
any n we fix a finite-dimensional subspace F/(n) of F(n) which contains
the ranges, and the orthogonal complements of the kernels, of the restric-
tions of both x(z:f’) and w(z: f”) to J((n). For xe G,/ZL and z¢[—p, 0),
define a vector E{(z: x) in J/(n) by
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(6, E{(z: x)) = E(¢: 2 w), 6 € IC/(n) .
Then
| Ki(n:z: fra, )| = LIEM, Tas(z: [)E($at 22 ) Ey(r(2)65: 22 9) |

1

%]Eimn E(m(z: f)gs: 22 w)E(r(2)¢;: 21 v) |

Il

T, (B ), 1@)0:)(7 G g, Eile: w) |

?17_:| (r(2)E{(z: y), w(z: f)* E{(z: v))]
= ?17;1 (TT(Z: I r(RYE(z: y), 7(z: f)*Ei(z: @)) I )

We have used the facts that »(z) is self-adjoint and that
Rz ) = mle: fraf") = 7 £UY eaz £
It is readily seen from Corollary 2.9 that
w(z: f)r(2) = r@m(—2: 1) .
Since z is real, we have
m(—2: f") = 2(z (F7))*
by Corollary 2.2. Therefore | Ky(n: 2: f: 2, y) | equals

(3.4) 217 |(r@)m(z: (F)*)* Bl (2 y), m(z: f1)* Ei(z: ) .

4

If we apply Schwarz’ inequality to the positive semi-definite form

8, 1> = (r(2)3, %) » 8, 1€ I'(n),
we see that (3.4) is bounded by the product of

1/127(?‘(2)”(21 (f")) B (z: y), wlz: (f7)") Ei(2: 9))

and

ﬁ(vﬁ(z)ﬂ(z: Bz w), 7z £ Bz 2))

Define
F=f=(N =" =",
Then the above product equals

K (n:z: %y, )P K (n: 20 'fr 2, 2)V2 .
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Applying Schwarz’ inequality to the sum over n and z in (3.2), we observe
that it is only necessary to establish the bound for (3.2) in the case that

f='%andy = 2.
Now we have

[K(n:z:'fre, )| = Ky(n:z: e, ).
By Lemma 3.1
E;‘:v=12ze[~p,o} KO(%: z: If; &, {U)
is the value on the diagonal of the kernel of \(X, 'f). But A\ (d, ) is the
restriction of the positive, semi-definite operator \(f) to the invariant
subspace LAN). Therefore its kernel, which is continuous, can be bounded
on the diagonal by K(x, ). However, according to (3.1) this last function

can in turn be bounded on a Siegel domain by a function Ce”#'*), But this
function is independent of N. Consequently it majorizes

E::ZIEze[—p,O} KO(n; & lf: +, '%) forall &

We deal with (3.3) in exactly the same manner. First of all we show
that for z imaginary,

| Ki(n: 22 fra, y)l
is bounded by
K. (n:z:'f: w, ) 2K (n: 2: 3y, y)* .

Consequently, it is enough to establish the theorem when f is replaced by
‘fand y = . We then resort to Lemma 3.1, verifying the required result
as above. |

COROLLARY 3.3. The functions
K({Pyw,y) =350 3. oo, Kt 2t fr o, )

and

K(1P)io,9) = Ko, ) =00, | Kz fiw, 9)d)z)
are the integral kernels of N({P}: f) and M(f) respectively.
Proof. This follows from Lemma 3.1 and Theorem 3.2. ]
It follows from the corollary that the kernel of A\,(f) equals
K(z, y) = K(z, y) — Ki(w, v) .

Now we turn to the task of proving that \,(f) is of trace class. Let
&, be the set equivalence classes of irreducible unitary representations of
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M,/Az. Let n, be the regular representation of M,/AL on L3 (M,/M:AL).
It is a well known that there is a \y-decomposition

LM M,AL) = B,es,, V(0)

where for each ¢ in &, the representation of M,/AZ obtained by restricting
Ay to V(o) belongs to a nonnegative integral multiple of the class 0. Let
F (o) be the space of functions ¢ in JC such that for any » € G, the function

¢x(m) = ;ﬁ(mm) ’ me MA/MFA:; ’
lies in V(o). It is clear that
IH = B,eq,, H(o) -

We assume from now on that the basis {.}..;, chosen earlier, is compatible
with this decomposition.

The element w, representing the nontrivial Weyl group element,
defines a coset in the group of automorphisms of M, modulo the group of
inner automorphisms. In this way w defines an involution on &,. We say
that a class g € &, is unramified if 0¥ = o, and ramified if 6¥ = 0.

LEMMA 3.4. Suppose that o€ &, is unramified. For any Le V(P)
let L(o) = LN3JC(c). Then for any z € C the space L(o) + L(c*) is invariant
under M(2). Furthermore the restriction of M(2) to this space is regular
Jor ze[—p, 0).

Proof. It is clear from the formula in Lemma 2.5 that M(z) maps L(o)
into L(c*). Of course the formula is only true for Rez < —p, but our
assertion follows by analytic continuation. Similarly M(z) maps L(c*) into
L(o), so that L(o) + L(o®) is an invariant subspace of M(z).

For ze [—p, 0) let () be the residue of —27M({) at { = 2. Let I, be
the subset of indices in I such that {¢;;., is an orthonormal basis for
L(o) + L(c®). The trace of the restriction of /4z) to L(o) + L(c*) equals

3o (1R85 65)

We have assumed that each ¢; is either in L(o) or in L(c¥), so since L(0) is
orthogonal to L(o®), this expression equals 0. On the other hand, we saw
in §2 that ¢#(z) was positive semi-definite. Therefore 24(z) =0, so M is
regular at z. a

If 0 € &, and g is any function in C(G,/Z.), we shall denote the restric-
tion of 7(z: g) to JC(0) by «(o: z: g). At this point it is necessary to place an
additional restriction on our function f. We summarize all the requirements
in the following:
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ASSUMPTION 3.5. f is the convolution of two functions f' and f” in

C2(G,/Z2). ' and f" are left and right K-finite and in addition
w(o:z f) ==a(o:z: f") =0, zeC,

for almost all ramified classes 0 € &y.

We remark that this last condition is always true if the Lie group
M_/A. is compact.

THEOREM 3.6. Suppose that f satisfies Assumption 3.5. Then N(f) s
of trace class.

Proof. \(f) is the sum of N\({G}: f) and \({P}: f). No({G}): f) equals

MG): FIINIGY: £7) -

It is known ([5, p. 14]) that the operators \,({G}: f') and \,({G}: f"') are of
Hilbert-Schmidt class. Therefore \({G}: f) is of trace class.

Since f’ and f” are left and right K-finite, the operators w(c: z: f7)
and w(o: 2z: f") are of finite rank for any ze C and o € &,. Therefore, by
Assumption 3.5 and Lemma 3.4, both A({P}: /') and N\({P}: f"') are of finite
rank. It follows that n({P}: f) is of trace class. d

Now that we have proved that \,(f) is of trace class, we would like to
be able to say that Kz, y) is integrable over the diagonal, and that its
integral yields the trace of )\,(f). However, we have not shown that the
kernel K, (x, y) is continuous, so we must proceed cautiously.

LEMMA 3.7. The function Kz, y) is continuous in each vartable
separately.

Proof. Following the notation of the proof of Theorem 3.2, we know
that

| Ki(n: 2 fra,9)]
is bounded by
K(n: z: ' o, ) 2K, (n: 223y, y)'* .
Then for any N and T the integral

=N

170, 0=, | 1K@z e n)ld)z]

iz 2T

is no greater than
107 3, 2) FICF: v, )™

For y lying in any Siegel domain this last expression can be bounded by
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CI('f: », x)Pe 7w |
by Theorem 3.2. It follows that for any fixed = the integral defining

K,(», y) converges uniformly for y in compact subsets of G./G,Z5. There-
fore K\(x, v) is eontinuous in y. Since K(z, y) is continuous,

K(z, y) = K(z, y) — Ki(z, v)
is also continuous in y. Similarly, K,(z, ¥) is continuous in . |

Our operator \,(f) is the product of the two Hilbert-Schmidt operators
No(f") and A (f"). Recall that for any Siegel domain 8 we may choose con-
stants C and M such that for « and v in §,

IE yely f’(aﬂv_l) I =< CeMH® |
If follows that for any « there is a unique function A}(v) in Li(G./G:Z2),
such that for any ¢ e LiG./G:Z.L),
EyeGFf(mA/v_l)é(’U)d’U = SG-/

AlGF

R (v)g(v)dv .

+
SGA/GFZ°°

Combining the dominated convergence theorem with the above inequality
we see that for any ¢ € Li(G./G.Z%) the function

|

- h,(v)p(v)dv

GAIGF
is continuous. Let

H'(z, v) = hi(v) .
Then H'(x, v) is a Hilbert-Schmidt kernel for x\,(f”).

Suppose that H”(v, ) is a fixed Hilbert-Schmidt kernel for our second
operator \,(f"”). We may assume that for every y, H"(v, y) is square-
integrable in v. Then

H(z, y) = S
Gal

AlGER

L H' (e, )H" (v, y)dv

is well defined for each x and y. It is a Hilbert-Schmidt kernel for x,(f),
and for any fixed ¥ it is continuous in «.

LEMMA 3.8. The kernel H is integrable over the diagonal and its
integral equals the trace of N(f).

Proof. The integrability follows from Schwarz’ inequality. Now
suppose that {v.} is an orthonormal basis for LYG,/G-Z.).
Define
e = (N(F sy V)
and



354 JAMES ARTHUR

h,,’é = (’\*o(f”)”‘/'fay “/’r) .
Then

S H(z, x)dx
equals

(S i) T, i (07w de

where the convergence of the infinite sums is in the mean. We may
interpret this integral as as the inner product on L¥G,/G-Z5 < G./GrZ3).
Since the inner product is continuous on any Hilbert space we may inter-
change the integral and summation signs. The result is

5, Rl
which is just the trace of \,(f). d

THEOREM 3.9. The kernel K,(x, y) is tntegrable over the diagonal and
its integral equals the trace of N,(f).

Proof. The functions H(x, y) and K,(z, y) are both Hilbert-Schmidt
kernels for \,(f) so they must be equal almost everywhere on (G,/GZ%) X
(G./G:Z%). For any positive integer n let S, be the set of points y such
that the measure of the set

T, = {x: Ki(z, y) = H(z, y)}
is greater than 1/n. Then measure of S, is 0. Therefore the measure of
S = U::1 S”

is also zero.

For any y not in S, H(z, y) equals K,(x, y) for almost all z. But these
two functions are continuous in ®», so they must be equal for all . In
particular, the set of points y such that

H(y, v) # Ky, v)
has measure 0. Our theorem now follows from Lemma 3.8, ]

4. An arrangement of the terms in the kernel

From now on we require that f satisfy Assumption 3.5. We have just
shown that

K, ) = K(z, ») — K\(%, ®)
is integrable and that
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tr A(f) = S Ky, o)ds .
GAlGRZ,

Before we calculate this integral, we must group the terms in the integrand
in a suitable manner.
Recall that K(z, x) equals

DI A I

An element in G, is said to be elliptic if it is not G,-conjugate to any
element in P,. Any such element is semisimple. Let G, be the collection
of elliptic elements in G,. Before classifying the remaining elements of
G- we shall first prove a few simple lemmas.

Suppose e M,. Then ¢ is semisimple. Recall that G*(#), P*(),
M~(#), and N () are the centralizers of ¢ in G, P, M, and N respectively.

LEMMA 4.1. For any tte M-
Py = M (ION~() .
Proof. It is obvious that M*(#)N*(z) is contained in P7(). Suppose
that
» =mn, meM, ne N,
is in P*(#). Then
mn = MpHt.
Since # normalizes both M and N,
pmptt =m oand prpt =n . ]
For any such p, G(#) is reductive, and P() is a minimal parabolic
subgroup defined over F. From the lemma,
P(1) = M(1HN(1)

is a Levi decomposition for P(#). In the discussion of §1 we may replace
(G, P, M, N) by (G(), P(zr), M(z*), N(t2)) and make all the corresponding
definitions. We use them without further comment.

It is known ([1, § 11]) that N*(p) is connected. It follows that N(t)s
is the centralizer of ¢ in N,.

LEMMA 4.2. Fix prte M., Suppose that ¢ is a compactly supported
Sunction on N,. Then

EBeA\'F/.'\‘(;z‘»F Epe;\'(#;}- ‘o'(‘!,!_léﬂva_l) = ZZ’EA'F 9(77) .
Proof. Suppose that 5(t) is the simple F-root of (G(#), A) relative to
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our ordering on X(A4)® Q. Fixj =1, 2. Let n(t)’ be the set of all X in
n(), the Lie algebra of N(z), such that

Ad (0)X = a* X, acA.

n(#)’ is a subspace of n(z), defined over F. Let us write n’ for n(e)’. Then
Ad (#7') is a semisimple linear operator on n? which is defined over F. Let

1/1'(75" be a complementary subspace of n(z)’ in n’ which is invariant under
o~
Ad (#7%). n(z) is also defined over F. Notice that the linear operator
Ad () —id
o~
is invertible on n(g)?. It is clear that
N(# = exp n(py!
and
o~ ~.
N(¢y = exp n(py
are F-closed subsets of N.
Define
N =expn, ji=12,
A~ v Vo o
Then N(#9)r N()%, and N():-N(1): are sets of representatives for
Nr/N()r- NE, Ni/N()i and N/N(#), respectively.
We have
Ea :-:NF/N(#)FE»ex(#)F 9)'(/1_15#1)5_1)
= E(al,azm:%}xﬁj})zwl,»z)e(.\'(m}x.\wm;) ¢(#_15152#v1”252_151_1)
= D sy ST 0,07 170,107 )
since N} and N2 commute. This in turn equals
D v ST . o(p0, 1,07 exp (Ad (79T — T)w,)
= E Bl,pl,vzzl"em)% ¢(#_151#v151—1 exp (F)vZ)
= 20y Donsend, S(70.L10.077):)
= 2 ore i v evilinent ¢ (XD (Ad (#7)T — T)v,7,)
= Er,vl,v2 54 (eXp (F)vﬂ]z)
= ZneNF ¢(77) * |:l
COROLLARY 4.3. Suppose that {N}. is any set of representatives of
N/ N(tt)r in Ny, Then the map
(9, v) — p7'opwo, 0e{N}., ve N(r,
18 a bijection from {N}, x N(#)y onto N.
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This corollary is just a restatement of the lemma. O

While we are at it, we may as well state an adélic version of the last
lemma.

LEvMMA 4.4, For any compactly supported measurable function ¢ on
N, we have

g S S(1 0 Y dn* :S s(n)dn .
NAIN(#YA JN() Na

Proof. Fixj =1,2. Our Haar measures on 1tj and n(#)] define a Haar

o~ SN .
measure dX’ on n()i. It is an easy consequence of the product formula
for F' that

n{)y

SN ¢/ (exp (Ad (£ )X — X9))d X = SN ¢ (exp X)d X!
4 n(/i)‘?A

for any compactly supported measurable function ¢/ on Z(f(\/z/)f;.

To prove our lemma we just repeat the argument of Lemma 4.2,
replacing each sum over a set of F-rational points with an integral over the
corresponding adéle space. O

LEMMA 4.5. Any element in Py is Pr-conjugate to an element ty with
reM, and ye N(tH)5.

Proof. Any element in P, can be written as ¢ for pe M, and 7€ N;.
By Corollary 4.3 there are elements 6 € N, and v e N(%), such that

N = pPopvet .,
In other words
1y = opet . O
Let M, be the set of elements £ in M, such that N(g) is trivial. Let
M, be the complement of M, in M.

Reecall that M is a subgroup of index 2 in N(A4), the normalizer of A.
M, and M, are both stable under conjugation by elements in N(A);.

LEMmA 4.6, Suppose that 6, and o, are elements in G, and that
81/’5151—1 = 82#28;1
for two elements M, and Y, in M,. Then 8, is in the same N(A)-coset as 0,.

Proof. Let ¢ = 6;'9,. Then p;'et, —¢. Either ¢ is in P, or it is in
Ng-w-Pr. In the first case

e =y, reM,, ve Ny,
and
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Hy = f"z—lﬂvﬂx = #2_1##1#1_11)#1 .

It follows that v € N(t4)s, so that v = ¢. Therefore 8, = d,/1.
On the other hand, suppose that

€ = ywrw, veN,, tc P, .

Then
VWTT = Y VWRY = VW wT W,
By the Bruhat decomposition,
Hrv, =Y
and
wow Y, =,
Since N(t,), = {e}, v must equal ¢, so that
0, = 0,WwT .
However, by the same argument as above 7 must belong to M. O
LeMMA 4.7. Suppose that 6, and 6, are elements in Gy and that
O, 4,07 = 0,449,075
for t, (e M, and v, and v, nontrivial elements in N(t)r and N(tt)p
respectively. Then 6, and 8, are in the same Py-conjugacy class.
Proof. Let e = 67'5,. Then
v ey, = ¢,

If ¢ is not in P,,

¢ = yuwrw, veN,, 7cP;.
Then

VWTT = Yy iy e vwme (Y, = VUV w e w T U W LY,
By the Bruhat decomposition, we have
vy, = v,

This implies that v, = z¢;'vy~'. By Corollary 4.3, v, equals the identity

element. This is a contradiction, since we assumed that v, was nontrivial.
Therefore 6;'6, € Py. |

We shall write {G.} for a fixed set of representatives of G,-conjugacy
classes in G,. Let {M,} and {}M,} denote fixed sets of representatives of
M, -conjugacy classes in M, and M, respectively. Finally, fix a set {{M.}} of
representatives in {M,} of those G ,-conjugacy classes in G, which intersect
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M,. It is clear that the contribution to K(w, x) from elements which are
G -conjugate to an element in M, is

I'(fio) = E#e((ﬂ[s)) (nH'G)—]ZrieGF/G(#)F Slxopro™a™) .

In this formula we have had to include the integer =, which, as we recall,
is the index of G(1) in G*(4)r. The contribution from the elliptic elementsis

Ie(f; iU) = ZTE(GQ) (nT,G)_IEc?eGF/G(r)F f(ma’)’a_lx_l) .

Lemmas 4.6 and 4.7 account for the contribution from the remaing elements.
K(zx, x) becomes the sum of

I(f o) + IY(f )
together with

(4.1) EEEGF/N(A)FZ:#ejl,rf(xaﬂs_lx_l)
and
4.2) Escorior Dvenr, Dovgin, FEOMO07) .

Suppose that ¢, is the positive number defined by Lemma 1.3. Fix a
number ¢ between 0 and ¢,. Let y. be the characteristic function of the
set S(¢). Since M, is stable under conjugation by w, the term (4.1) equals

';— EEGGF/MF Eyeyrf(a«'5#5‘]x‘])

= = Ty () S F10707)
which we decompose into the sum of
I 06) = — Dy ()™ Do F@ 0707 (. (w0) + 7. (ww))
and
IP(f:aie) = %2 o ()™ e p F@0 10707 ) (1 — 2.(00) — 7.(w0w)) .

The term (4.2) equals
Er”eh‘ls) ()™ 25EGF/P(.U)FE':;‘Z(/”Ff(msﬂva_lx—])
which we decompose into the sum of
JE(fr 2 9)
= e )™ Dseyrrinng Sosevon s @570, 0)

and



360 JAMES ARTHUR

IE(f: a0 e)
= E#e(Mg) (n‘“u‘l)_l EaeGﬂP(#Ur Evvjé\;(#)F f(:céyvﬁ—lx‘l)(l - X(aﬁ)) *
We have used the equality of the integers =, and n,, which follows
from Lemma 4.1 and the fact that N*(%) is connected.
Next we shall break up the function K,(x, ). Suppose that ¢ belongs

to some Le V(P). Recall that E.(¢: 2t ), the constant term of E(¢: z: %),

equals
¢(x)e(l—p>H(w) + (M(z)fﬁ)(x)e(_’_"m‘“ .

For any number ¢ between 0 and ¢, we define El(g: z: %) to be

2 scappp Br(gt 20 w0)Y(20) ,

where, as before, . is the characteristic function of the set S(¢). For any
« the sum is finite by Lemma. 1.2. We set E/(¢: 2: ©) equal to E(s: z:2) —
El(¢: z: ).

For convenience, set Hp(n: 2! f: x) equal to

1 , —_——
LT er, Tt DBt 2 ) B 7 0)

Now E,(¢: z: x) is obtained by integrating the function
hin) = E(¢: 2t an) , ne N,

over the compact set N,/N-. Therefore by Torelli’s theorem and Theorem
3.2 we can associate constants C and N to any Siegel domain 8 such that the
inequality

4.3) 2o Siw | Hp(n:z: frw)| d|z| £ CeVH®

holds for all « in 8.
We define K'(f: x: ¢) to be

BRI Dl S_m Ho(n: 2: f: 0d)g.(wd)d| 2| .
It is easy to see from Lemma 1.4 that K'(f: 2: ¢) also equals
ﬁ EWSIS_M Tas(2: F)E! (602 2: X)El(65: 2: )| 2] .

LEMMA 4.8. Given any Stegel domain & there are constants C and N
such that for all x € 8 the expression

L S il DB 2 ) EG 2 0) |l 2

18 bounded by Ce="#™,
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Proof. 1t is clear from Lemma 1.4 that our expression equals

Soeorter o |V Holni 2 f200) | 2.08)d 2] .

By Lemma 1.2 the number of terms in the sum over G /P, is no greater
than some integer which is independent of ¢ 8. The lemma then follows
from (4.3) and Corollary 1.5. O

Let us define K”(f: z: €) to be
K, x) — K'(f:2: ).

Then we may write K(z, ) — K.(x, ) as the sum of the following five
terms:

L(f ),
I"(f:2),
JE(fraie) + JE(frxie) — K'(fr2:€),
IF(frare) + IF(fraie),
and
—K"(f:x:¢) .

We shall refer to these terms respectively as the elliptic, singular, and
Jirst, second, and third parabolic terms.

We would like to evaluate the integrals over G./G.Z% of each of these
five terms. However, integrals arise in the third parabolic term whose
convergence is not at all obvious. One way to surmount this difficulty is to
prove that each of the first four terms is integrable over G,/G:Z%. This
would verify the integrability of the fifth term.

It will be sufficient to prove a weaker result. Let us say that a funetion
h is weakly integrable over G,/G.Z% if

(i) it is locally integrable,
and

(ii) for some ¢ > 0 the integral

Slogo
is finite.
When we come to the first parabolic term it will be easier to prove
only that it is weakly integrable. Of course this will weaken our conclusion
on the integrability of the third parabolic term, but that will not matter.

S g h(kh,p)dp dk | érdt
& JPiIPp
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5. The elliptic and singular terms
QOur first concern will be to prove that the elliptic term is integrable
over (,/GrZ%5. The integral

SGA/GFZ+- | L(f: %) | do

is bounded by the integral over G,/G.Z. of
(5.1) e, | FE@YET)]
Choose ¢ > 0 and a Siegel domain
8(c) = K-Al(o)-w
such that
G, =8(¢c):Gr .
 is a relatively compact subset of P:. It is a simple matter to check that
w, = {hohi i ve w, t < log e}
is also a relatively compact subset of Pj.

Suppose that S< G, is the support of f. S is compact modulo Z5. Let
C be the closure in G, of the set

w;'K-S-kw, .
C is compact modulo ZZ.

LEMMA 5.1. Suppose that C is a compact subset of G, modulo ZZ.
Then there is o number ¢ > 0 such that if ve G, and h,ohi' lies in C for
some t < log ¢, then v is in Pj.

Proof. Let p be the strongly F-rational representation of G on the
vector space V defined in §1. We use the basis {e, +-+, ¢;} and the
height function on V introduced in §1. Now p is trivial Z;. It follows
that

sup, ¢ || p(@)e, ||

is finite. We set this supremum equal to ¢%, where b is the positive rational
number defined in § 1.
If v is not in Py,

v = ywr, ve N, me P,

by the Bruhat decomposition. Then
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[ o(hahi e, [l = €700 || p(hv)eq || Z 67700 e, || = €7 .
If h,vh7t lies in C,
e B < g
so that ¢ = log . The lemma is proved. |

It follows from this lemma that the function on G,/G.Z%; defined by
(5.1) has compact support. Therefore the elliptic term is integrable over
G./GZ%5. Its integral equals

> o) S i dazlg Fleve)de .
GAlG(T)A

Grialei pz?

oo

Now for ve{G.}, Z is the split component of the radical of G(v). We
have agreed to use the Tamagawa measure on G(v),. However, we cannot
immediately insert the Tamagawa number of G(v) in the above formula be-
cause our measure on Z. does not define the appropriate quotient measure.
We must correct by a factor T, ;, which we define to be the index in X(G(v))r
of the group obtained by restricting the characters in X(G), to G(v). If
we write 7(v, G) for the number

(n;.6)(Tr.0) ' 2(GM))
the integral of the elliptic term becomes

T 20, G)S L P

GAlG(Y)A
Before discussing the singular term we shall prove two more lemmas.

LEMMA 5.2. Let C be a subset of G, which is compact modulo Z%. Then
there is only a finite number of elements ft in {M,} U {M,} such that there
s an x in G, and an n in N, for which xuna™ lies tn C.

Proof. Let C, = {kck™":ceC, ke K}. Since P, is closed in G,, C,n P,
is compact modulo Z.. We can choose a subset C, of M, which is compact
modulo Z£ such that

C.NnP,=CyN,.
Suppose that zyne™" lies in C. Then if
x=kp, ke K, pe P,
punp~ lies in C,,N,.

Let w be a relatively compact set of representatives in P, for the
compact double coset space AZ\P,/P,. If

p» = avT, ac AL, vew, me Py,
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then the element v7- n-w~v"" lies in the set

(1,‘1°CMNA'CL = C)[NA .
Choose a subset C, of M,, compact modulo ZZ, such that w 'eCyN,ow is
contained in C,N,. Then mpnz~* lies in C;N,. In particular # is M-
conjugate to an element in C;. However, the projection of M, onto M,/Z%

is a discrete subgroup of M,/Z% so that M, n C4 is finite. Certainly only
finitely many M,-conjugacy classes in M, meet C};. The lemma is proved. []

LEMMA 5.3. Fix pee {M,} U{M,}. Suppose that C is a compact subset
of Pi. Then there 1s a compact subset C, of Px/P(#)i such that if p € Pi/P(#)i
and

(p-tN(,p)NC =2,
then p ltes in C..

Proof. Let @ be a relatively compact fundamental set in P} for P}/P;.
Denote the closure in P of @ 'Cw by C’. Let ¥ be the collection of cosets
0 in P,/P(¢)r such that

(3-UN(.07)NC" = @ .
The main point of the lemma is to show that & is finite. Assuming this
fact for the moment, we let C/ be the closure in P}/P(#4); of the set
Useq w0 .
Then if

(p-N(Wu-p™)NC# O
for some pe Pi/P(¢),, p must liein C/. If C, is the projection of C/ onto
PL/P(p),, then C, is the required set.

It remains to show that F is finite. For 5 = 1, 2, define N(%), l(f(\[t/)",
and N7 as in the proof of Lemma 4.2. If {M}, is a set of representatives
of M/M(t)). in M,, it is clear that

S~ /\./2
{M},.« N(t9)r - N(19)%
is a set of representatives of P,/P(t)r in Py’
Now there is a compact subset C,, of M} such that
C, g CJ[.NA .

Let 5, be the set of all elements 6 in {M}, such that dpo~" lies in Cjy.
Keeping in mind that M(y), is of finite index in M*(#),, and using the fact
that M, N C, is finite, we conclude that F, is finite. It follows that the
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union over all 6 e F, of the sets §7'C’d is a compact subset of P! and is
certainly contained in

M;-Cy- N(p)k-N;

for some compact subset C of J/\m;.
o 4
Let F% be the set of all elements », in N(¢); such that

v e Cy- N()i- NE
Yy is finite. The union over all 6e€F, and 7,€ F} of the sets 1n7'67'C'on,
is compact and is certainly contained in
M;-Ni-Ci-N(wi

for some compact subset C% of N(z)i. Let F% be the finite set of elements
7, € N(¢)% such that

prinpnte i N(;
Then the finite set
F o FL- T
contains a set of representatives of our collection & of cosets. ]

Let us now deal with the singular term. The integral
S (o) | do
GAIGRZ.,

is bounded by

(5.1) E/le(()[s)} (’npz,a)_lg " | flepa™) | de .

GAlGU) pZ

The function f is compactly supported on G,/Z% so by Lemma 5.2 the sum
over x is finite.

For any pe{lM,}, G(#) is a reductive group defined over F. G(p)
contains 4, but since z lies in M,, A is not contained in the center of G(%).
Therefore the F-split component of the radical of G(z) is Z. In particular,
the volume of G(),/G(#);Z% with respect to the Tamagawa measure on
G(p) is the quotient of (G()) and T, ;, the correction factor introduced in
our discussion of the elliptic term.

The integral (5.1) equals

Serra £t O

It follows from Lemma 5.3 that for a fixed g the function on P,/P(1),
defined by

| flepa™) [ da .

Galcis
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p—\ | Fkpep~k) | dk, pe Py/P(s,

is of compact support. We conclude that the singular term is integrable
over G,/G.Z;. Its integral equals

E;Ae((}[s)} f(ﬂ’ G)S " f(xﬂxil)dﬂ/' .

N
6. The first parabolic term
The first parabolic term equals
JE(frwie) - JE(frwie) — K'(fraie).
In this section we shall prove that this term is weakly integrable over
G./G.Z% and that its integral approaches 0 as ¢ approaches 0.

JE(f:a: e) equals
-;— 2ovetny (o) " Dlseopinin, F@opd s 1(20) + y.(xdw)) .

Now

';‘ 2 e () (nfl.J[)ilzaeaF/y(/z)F F@ops~'w Yy (@ow)
= % 2iscapinpapen, S @OHOTET Y (wow)
= ';“ EseGF/JIF E,le,u, S@opo e )y .(x0)
= '%‘ Eye{}m (%%M)_]Eaegﬂm,l)l, flxopo ey (xd) .

Therefore J(f: x: ¢) equals
Y e et ) ™ Do L@0220 0 (w0)

For pe {M,}, the group N(y) is trivial. It follows from Lemma 4.2 that
JE(f: x: €) equals

E/ze(}[,r) (7?’#‘}[)7125eGF/J[(/L)FNFEpeNF f(xb\#us_lel)xs(xa) .

Now JI(f: x: €) equals the difference between

(61) E/!e (g} (nﬂxﬂ)7125eGF/P(mFEveN([z)F f(xﬁ#v5‘lx‘1)xs(x5)
and
(6'2) E#ews) (n!‘vﬂl)_lz:aeGF/P(#)F f(xaﬂa_lx_l)xf(xa) *

The integral over G,/G-Z% of the absolute value of (6.2) is bounded by
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2 (3} (nﬂ_‘,,)“g

which we may write as the produet of

N flepa™) | x(z)de
GAIP(MpZ

loge
[ o
with

CGE;.reUzs) (nf””)ilz-(M(#))SK SP‘ 1P

A

N Fleppp™ k™) [ dp dk .
My

It follows directly from Lemmas 5.2 and 5.3 that this last expression is
finite. The integral

log:
S eidt

—oo

is obviously finite and approaches 0 as ¢ approaches 0.
By Lemmas 4.1 and 4.2 the term (6.1) equals

ety O ) v porg Doy L@105 7277 (w0) .
Since {M,} U {M.} is a set of representatives of the conjugacy classes in M,
we have shown that
JE(frare) - JE(fr e e)
equals the sum of

(6.3) Seopirr ey Dverp £ 01205757, (0)

and an expression whose integral over G,/G.Z. approaches 0 as ¢ ap-
proaches 0.

The space 1, is a locally compact abelian group under addition which
contains 1, as a discrete subgroup. Let X, be the unitary dual group of
1, and let X, be the subgroup of characters in X, which are trivial on ;.

Let || - || be the height function on X, associated to some fixed basis of
X,. It is easy to verify that there is an N such that

EsexF NEN < oo
0

For £¢ X, and t¢ R, define

&(Y) =¢Ad (r)Y), Yen, .
It is clear that there is a number d > 0 such that if & is primitive and ¢ =0,
el = e €] -

For fixed y€ G, and ¢t e M, the function
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fy-rrexp Y-y, Yen,
is of Schwartz-Bruhat type on n,. For {¢ X,, define

VG 1 0) = || f@emexp Yoy )i(DAY

Then by the Poisson summation formula,
S, S@d67 0y ()

' is the sum of

(6.4) W(0, ¢, wd)y.(x0)
and
(65) Egié’lp \P(E’ #’ xa)Xe(xa) .

If we sum the absolute value of (6.5) over pte M, and 6 € G;/P, and
then integrate over G,/G Z., the result is bounded by

Sy Digare | Y 14 9) [ 2.@)da .

SGA/P FZo

If w is a relatively compact fundamental domain for Pi/P. in P, this
integral equals

logs
o] || Deser o [, 11, K)o dv dt de

We may assume that h,wh;* is contained in w for every ¢t < 0. Then the
above integral is bounded by

loge
6.6) CGSwa S_m s e | Y, 2, kohy) | dt dv de .

Notice that
\P(S, #, kvht) = e_zpt\y(é_t, #, k’U) .

Keep in mind that ¥(., g, kv) is the Fourier transform of a Schwartz-Bruhat
function and is continuous in kv. We observe by a slight restatement of
Lemma 5.2 that there are only finitely many e M such that

Y(E, ¢, kv) # 0

for some &¢ X, and some kve K X w. Therefore, for any N there is a
constant I'y such that for any primitive ¢ X,

E/AeJ[FI\P(E’ #, k/U)I § I-11\’ ”SH_N, kve K % @ .
It follows that for every N, (6.6) is bounded by
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loge
S I DA [ [ 7

which is in turn majorized by

CGFNT(M)S et S, 1217

loge _
For sufficiently large N this last expression is finite and approaches 0 as ¢

approaches 0.

If we sum (6.4) over ¢ and 0 we arrive at the expression

(6.7) 2 venpdaseapry YO, 1 30)).(x0) .

For fixed x there are only finitely many 6 € G,/P, such that y,(x0d) = 0.
Therefore the inner sum is finite. From this fact it is easily seen that the
outer sum is also finite.

To summarize what we have shown so far, the expression

JE(frare) + JE(frate)

equals the sum of (6.7) and a function whose integral over G,/G,Z. ap-
proaches 0 as ¢ approaches 0. The function (6.7) is not integrable. We leave
it for the moment.

In the first parabolic term we still have to consider the contribution
from — K'(f: x: ¢). The function K'(f: x: ¢) equals

1
—Eza eGplPp
S\ A er, Bl 1o 2 00) Btz av)ld |2 | () -

We may formally write this expression as the sum of the following four
terms:

1
AT EdeGF/PF

(6.8)
S| AT, (7l Do) w05 2] e )
S D | S er, (M@ P @M @) w0)
(¢ d|z]esrmy (i)
1
sy 2 seaplpy
(6.10)

2 (S, M@ DNEEEDe ] 2| 1)
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and

1 o
AT EaeGF/PF n=1

(6.11) .
| {7 o)) (MR ED)e ") | 2| o= w0, ()
In order to justify this step we need to prove the following,

LEMMA 6.1. For any y<c G, the expressions

612 |7 TS, (@ Ne)wE@ | dlz],

(6.13) | T S, MGG N @5 | 4 21,
619 |7 TS, (M@RE D)@ a2,

and

615 | T, (36 N8 @86 4|

are all finite.

Proof. Fix a positive integer n and an imaginary number z. It is
clear that the function

R(n:z: fry,v) = Eﬁezn (”(Z5 f)¢ﬂ)(y)¢ﬁ(v) )
which is continuous in y and v, is the kernel of the restriction of z(2: f) to
J(n). Therefore, if we define 'f and *f as in the proof of Theorem 3.2, the
absolute value
| R(n:z: [y, y) |

is bounded by
| B(n: 22 fry, ) [ R(n: 2%y, y) 12
By Schwartz’ inequality we need only show that (6.12) is finite when f is
replaced by 'f.
Now
Rn:z'fry,y)=0.
Therefore, for every N,

Y| Rmzfy, )l

is bounded by the function P(z:'f:y, y) defined in § 2. It follows that the
series
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o R(nizi'fiy, v)
is absolutely convergent and defines a function R(z:'f:y, v) which is the
kernel of m(z:'f). By an argument similar to that used in the proof of
Lemma 3.7, R(z: if: ¥, v) is continuous in y and v separately. Therefore, as
we remarked in § 2, R(z:'f: y, v) equals P(z:'f: y, v) for all ¥y and v. The
formula for P(z: 'f: v, ¥) is given in § 2. It is clear that the integral

S_: P(z:fry, y)d|z]

is finite. Therefore the expression (6.12) is finite.
For any z and =, the set

{M(z)¢ﬂ}ﬂ el,

is an orthonormal basis for J((n). It follows that the function

Zser, (M@m(z: )gs) N M(2)$5)(v)

is the kernel of the restriction of 7(—=z: f) to H(n). The finiteness of (6.13)
follows by the above argument.
The function

(6.16) Yser, (MR £)g:)()$:(v)

is the kernel of the restriction of M(z)7(z: f) to H(n). We recall that
7z ) = 7(z: fm(z: ). We have

M(z)z(z: Y M)7(z: f1))* = M2)m(z: f)m(z: (f)*) M(z)™
= M(x)z(z: )M = z(—z:f) .

Therefore the absolute value of the function (6.16) at v = y is bounded by
|R(n: —2:'fry, y) [ R(nt 2 3y, ) 2

It follows that (6.14) is finite. Similarly (6.15) is also finite. ]
The term (6.8) equals

L Seapien | Pl b, w)d 2] e (w0)
for all x. This expression is just
4% D scepirs S (Emw SM glf(xﬁﬂhmﬁ‘lx‘l)e("”tdt dn)d[ A ACHY
which in turn can be written as

(6.17) % 2 seapipy Dune iy SNA F@dpnd e~ )dn 3. (%0)

100

—too

by the Fourier inversion formula. Similarly, the term (6.9) equals
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400

- P(—z2 frwo, x0)d | z|-e” "=y (w0)

1
E EaeGF/PF S

for all . This expression also equals (6.17).

Therefore, the contribution to — K'(f: @: ¢) from the terms (6.8) and (6.9)
is the product of (6.17) with (—2). The resultf exactly cancels out the term
6.7).

LEMMA 6.2. The functions defined by (6.10) and (6.11) are weakly
integrable over G./G,Z%, and their integrals approach 0 as ¢ approaches 0.

Proof. It is easily seen from the proof of the last lemma that these
functions are locally integrable. Let ¢ be any positive number smaller than
g, and let A(x) be the function on G,/G,Z% defined by (6.10). Then

loge
co|

—oo

e*rdt

(1., nhodpde
K JPYIPp

equals

1 glogs
AT

L St £ros ) i)
Qur use of Fubini’s theorem is justified by the compactness of K and
P;i/P,.. By Assumption 3.5 and the proof of Lemma 3.4 the function

(M(2)7(z: £)$s ¢5) 5 ze iR
is zero for all but finitely many ge I.
Therefore, in the above integral over z, we can change the contour to
a line {z: Re z = 0}, for 6 < 0. The assertions of the lemma for the function
(6.10) follow immediately. The result for (6.11) is proved the same way. []
This lemma accounts for the last of the components in the first
parabolic term. We have completed the proof promised at the beginning
of this section.

o4

7. The second parabolic term

The second parabolic term equals the sum of I7(f: «: ¢) and I7(f: x:¢).
In this section we shall prove that both these functions are integrable over
G./GrZ%. We shall then calculate their integrals.

The function I7(f: x: ¢) equals

%Eye(y) (n#.JI)—dEaeGF/;[(y)Ff(waya_lxkl)(l - Xs(xa) - Zs(xau])) M

The integral



SELBERG TRACE FORMULA 373

NI w9 do

SGA/GFZO‘O

is bounded by the expression

-};_ E#e(}{r} (n#,ﬂ)_lg Z+ ] f(x#xfl) l (1 - Xs(x) - Xz(xw))dx ’

GAlM ()

which may be written as
MGG

— Mop,ar
g cypeli,) ATH ) K JPalaimpad, J-

(1 = 7.ph)) — 1 (Phaw))dt d.p dk .

For any fte My let T', ,, be the index in X(M(r)), of the group obtained
by restricting the characters in X(M); to M(x). We define

Fey, M) = ()™ (L) ™ T(M(p)) -

The above integral becomes

e, B DY Y ek |

PalMp
'S_m (1 — x.(ph,) — xAphw))dt d,p dk .

By Lemma 5.2 the sum over g is finite. Since the function

i) =\ _soewkyan, peP,,

has compact support on P,/Z., the integral over P,/M(y), can be taken
over a compact set, by Lemma 5.3. Finally, it is clear that for any p the
function

t—— 1 — Xs(pht) - Xe(phtw) ’ te (—oo, OO) ’
has compact support. Therefore I7(f: x: ¢) is integrable over G,/GrZ7%. Its

integral equals

UNEION
S: (1 — y.(knmhy) — y.(knmhaw))dt dm dn dis .
For fixed m and =,
(1 = ylkemnmh,) — y(knmh,w))
is the characteristic function of the interval

[log ¢ — H(m), H(nw) — log e — H(m)] .
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Our integral is therefore the sum of

EE!‘G(JIT)%’(#, M)S S . S ‘ f(knﬂlﬂm_lfn—lk—l)
(71) 2 K JNg Jualmn,
- Hnw)dm dn dk ,
and
(72) —log E.CGEHEU[T) (e, M)

S S S Flenmpm ™ n k™ ")dm dn dk .
K JNA Jualmuna

After changing the variable of integration on N, we may appeal to Lemma
4.4, rewriting (7.2) as

—log -3, o, E(1 M)SK S Flemprnm=k™)

oM dm dk .

MAIM(#)A SNA

This in turn equals

—logeesd iy, (ny,;[)‘ng S fEmpnm™k™)

e dn dm dk ,

dalMippal SI\"A

which is the same as

L EFEM»f SNA f(km#?’lszlk—l)

MAlMpd_

—log s-cGSKS

7.3
(7.3) s mMdn dm dk .

We now consider the function IZ(f:x:¢). Our discussion will include
integrals over the groups P(x), and P(x)4, for elements ¢ in {M,}. We note
that according to our understanding on the choice of Haar measures, the
product measure on P(g)y X A% is a multiple of our right Haar measure on
P(), by T', . Define

Opi(p) = Wi peP(t),,
to be the modular function of P(z),.
LEMMA 7.1. For pre {M,} and ¢ € C7(P,),
[, swpnodip =Tus , | 6@ Dor)dip dp*,
Py PRIP(n, JPUmA

where dp* is the imvariant measure on Pi/P(1)s defined by our Haar
measures on Py and P(t)i.
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Proof. | s = | swiap ={ | swatezdp

A

- SPA/p SpmgSA #(p*pac)daz dp dp®
=Tl 0 Do) 0]

Recall that I7(f: x: ¢) equals
2 ey (m,,u)“E.;eaF/prEue\ » f@opwo— a1 -y (xd)) .
The integral

S(,A/GF II7(f: w2 ¢) | das

is bounded by

Eye(}[s) (n#,)l)_lg E»eN - | flopye™) | (1 — X (x))

GalPipZ]

This expression can be written as

—1
ng:/ze (M} (/n[l’ﬂ) SK SPA/P(A‘”FZ‘Dt

(1 — 7.0))3-()d.p d

which by the last lemma equals

Ez;zj[ﬂ)p { f(kpf’w'p_lkxl) ‘

Ty () | §
7.4 i AP E
(@4 -Em o FEp*  ppwp™ p* k™) (1 — %(9))0r (D)0 dp* d .

By Lemma 5.3 the integral over Pi/P(t)} can be taken over a compact
subset C, of Pi/P(¢)i or equivalently, over a fixed compact set C() of
representatives of C, in P}.

For fre {M} and n € N(t),, define ®.(f: n) to be

(1.5 o)™ |\ Flkppnp idp di

The support, U(#), of this function is a compact subset of N(%),. The ex-
pression (7.4) equals

Seveg | Deyin, @l £ hppp~hip dt
s Jloge Pl /P p vte

Let w(z) be a relatively compact set of representatives of P(1),P(#), in
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P(1)i. We can choose a positive number ¢, large enough so that the inter-
section of the set

{v7'h i ve w(), t = t, ne U}
with N(g), is just {¢}. Then our integral equals

to
Eye (MS)S

loge

et | vy @I o hidv dt

It follows that IZ(f: x: ¢) is integrable over G,/G ,Z2.
For any z¢€ C we define I.(?) to be

E/le {31} S

LEMMA 7.2. For any ze C the integral defining I.(2) is absolutely
convergent. I.(z) is an entire function whose value at z = 0 equals the
integral

ca

e(2p(#)t)(1+2)g Eii‘y(m‘v@#(f: h.pyo~thiYdp dt .

loge Puny /P g

S IF(f: @2 &)da
Galepzl

Proof. All statements of the lemma are obvious conseqences of the
above discussion. [

It remains to calculate I.,(0). Specifically, we shall express I,(0) as a
sum of an expression which is independent of ¢ and a term whose de-
pendence on ¢ is quite transparent. The idea, which we take from [7], is to
replace the integral over {t = log ¢} which appears in the definition of I.(z)
by the difference of an integral over R and an integral over {t < log ¢}.

Fix pe{M,}. Let X(1), be the unitary dual group of n(t), and let
X(#)r be those characters in X(#), which are trivial on n(g),. For any
pe P(), and £e X(1), define

V.(§ p) = S . O (f:p-exp Y-pHY)Y .

nly

By the Poisson summation formula,
E;;ﬁva D.(f: pyp™Y)
equals
Zg;g(mF Vu(§, p) + V0, p) — Ou(fre) .

s

By choosing a height function on X(£f), we can repeat the argument of
§ 6 to show that for any z € C the expression
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logs N . ,
L Teewins [Vl hp) || e dp d
—e JP(),/PU R S7e

is finite and approaches 0 as ¢ approaches 0.
The integral

loge
UL o gerentinap s
P /PR

—o0

is absolutely convergent for Rez > —1. It equals

8(2"(">”“’“(2‘0(#))71(1 + 2)7 (M) Du(f: €) .

At z = 0 this function approaches 0 as ¢ approaches 0.

Finally, the integral
loge
S g S (0, h,pe* e dp di
—e JP(mi /P p
is absolutely convergent for Re z > 0. It equals

& (20()) " =(M()- | @uf:m)dn

N{p)
For Re z > 0 we define (1 2: f) to be
S S 2 vexin Lu(f1 hopyp hit)e® i p dt
—w PP T e T

LEMMA 7.3. The integral defining 6(t: z: f) is absolutely convergent
for Rez > 0. It can be analytically continued to a meromorphic function
on C whose only singularities are simple poles at 2 =0 and z = —1.
Finally, modulo a term which approaches 0 as ¢ approaches 0, I1.(0) equals
the limit as z aporoaches 0 of

Eye (3 4} {5(#; 21 f) — 82"’”‘”(2[0(#)@71-T(M(/Z))-S W D.(f: %)dn} .

N (g}

Proof. This lemma follows from the above discussion and Lemma
7.2, O

The constant term of the Laurent expansion about z = 0 of the function

2 e, O 22 f)

we write simply as
(7.6) e e, lim %{zﬁ(y: 2 )} .

The constant term of the Laurent expansion of
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ey (200022 (M(@)- | @l mdn

equals

(1.7) ~log e X, (M) | @l mdn .

Ny

It is clear that
S O.(f: n)dn
N(ma
equals

Ca(m,.n)_ISK S . fkp-pn-p %k dn dp dis .

PLIP( SZ\'(#

If we write the integral over Pi/P(#), as an iterated integral over
Pi/P(1)i N, and P()iN,/P(t), we arrive at the expression

ca(n.u,y)*SK S . Flempnm=k™") dn dm dk ,

1 1 g
MalMin, J2

by virtue of Lemmas 4.1 and 4.4. It follows that (7.7) may be written as
—log e.cgg S Yo S Flempmm="k)dn dm dk ,
K Juilup Tslaa

which is the same as

(7.8) —log e-cgg S

K Jaainpal]

mpynm- Kk )e*r ™M an am .
ver, \ S Ee T M dn dm d
8 Na

Qur discussion of the second parabolic term is now complete. We have
shown that the integral over G,/G.Z5 of this term equals the sum of the
expressions (7.1) and (7.6), the term

7.9)  —log e-cGS S ;E#GMFS Flempman ke ™ dn dm di
K NA

MA/MpAD

obtained by combining (7.8) with (7.3), and an expression which approaches
0 as ¢ approaches 0.

8. The third parabolic term

We have proved that the first four terms in the kernel of \,(f) are
weakly integrable. It follows that the final term, — K" (f::¢), is also
weakly integrable over G,/G,Z%. In this section we shall calculate its
integral.

For convenience we set H(n: z: f:x) equal to



SELBERG TRACE FORMULA 379
1 ——
e 2w ser, Tes(@ L) E(ot 22 0)E (851 21 @)

We also define H!(n: z: f: w) and H/ (n: z: f: ) by replacing all the functions
E(¢: z: ) in this definition by F!(¢: #z: x) and E!(¢: z: x) respectively. Then
K"(f: x: e) equals

=

oo S C(Hn:z: fre) — H(n:z: fra))dlz] .

—iea

By Theorem 3.2 and Lemma 4.8 we can associate to any Siegel domain 3
constants C and N such that for all z € 3 the inequality

(8.1) >, S:@ |H(n: 2 fr0) — Hi(n:z: fra)]dlz] £ CeVE®

is valid.

For 0 < t < ¢, let S() be the projection of S(f) onto G,/GZ:. Let G(t)
be the closure of the complement of S(¢t) in G,/G.Zi. G(t) is a compact
subset of G,/G;ZZ and our integral

—S CK'(frxe)de

CAlOpZa
equals
—lim,., Sm) K"(f:x: ¢)dx .
By (8.1) and Fubini’s theorem this second expression equals
8.2) im0 S: S) (H(n: z: f12) — Hi(n: 2 f10))dw d| 2] .
The integrand is the sum of
H!'(n:z: f:a)
and
= Dser, Tosles OB 6o 22 ) BTGy 220) + B (9 22 o) Bt 22 )} -
LEvMMmA 8.1. For any «, B€ I,
SG(” E!(Sq: 22 2)E (65 2: 2)de = 0
Proof. By Lemma 1.4,
El(¢p 2 0) = Eplgs 2 2)

whenever z € S(e). Since E(g;: 2: ¢) is an automorphic form, E.'(8;: z: ) is
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rapidly decreasing on any Siegel domain, by Lemma 1.6. But E/(¢,.: 2: @) is
slowly increasing on any Siegel domain, so that the function

El(o: 2t 0)E! (65 22 @)
is integrable over G,/G,Z.. Its integral equals

Ep(g.: 2t ) B (850 22 w)).(w)dw

SGA/PFZ;

which in turn can be written

| _Bylpe 50|16

GAIPpNAZ o

B 2 xn)dn}dx .
/N

NAlNp
The expression in the brackets equals zero identically in x.
On the other hand, since ¢ < ¢, the integral

SN E!(o,: z: @) B! (g5 22 v)dw

8.t
equals
S Eo (3 22 2)E! (652 2 w)y(w)dw ,
St

by Lemma 1.4. This second integral is equal to

S Eo(0,: 2 x){xe(x)g E! (650 2t xn)dnldw ,
St INp )

Nl

an expression which equals 0. Since G(¢) is the complement of é?t/) in

G./G . Z:, our lemma follows. O

It follows from the lemma that (8.2) equals
(8.3) —lim,, 37 Sm S ( H'(n:z: fro)dad|z]|.

—io0 JG(E)

LEMMA 8.2. The integral

(8.4) 2 S , S LI H (niz fra) | dad] 2]
—ieo JGAIGFZ],

18 finite.

Proof. The proof follows the same idea as that of Theorem 3.2. For
'f and *f as in the proof of Theorem 3.2, we can easily see that when z is
imaginary
| H! (n: 2z f:a)|
is bounded by
| H!(n: 22 'fr ) M2 H (n: 22 3 2) 2
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By Schwartz’ inequality we need only prove the lemma when fis replaced
by Y. From the fact that the operator =(z: 'f) is positive semi-definite it
follows that

H'(n:z:'fr2) =0.
On the other hand 'f also satisfies Assumption 3.5, so that

Hm,, 37 Sm S H!'(n: 22} 20)de < oo,
—ico JG(E)
by (8.3). It follows that
oo Emsnde < -
—iee JGA/GRZ]

which completes the proof. |

This lemma enables us to conclude that the integral over G,/G,ZZ of
—K"(f:a:¢) equals
1
CONEESD 2R

- Tos(Z IE! (64t 2: 0)E! (651 22 )de d| 2] .

—‘inGA/G]:Z:;

LEMMA 8.3. For a, 8¢ Iand z a nonzero tmaginary number, the inner
product

El'(6, 22 0)E! (650 20 ®)dw

SGA/GFZ;

18 the sum of the following three terms:

(8.6) —2log &+ (3e, 95) »
67 —2{(M-a-L M@, 6:) + (5 M2 M@}
and

8.8) L{e (5, M(e:) — < (M@3a, 64)} -

T2zl
Proof. First of all, suppose that \ and ¢ are distinet complex numbers

whose real parts are both less than —p. Then it is known that

8.9) g B\ )BT (or 1 m)de

GAlGpZeo
equals the sum of
(8.10) (O + B) e (g, 65) — €T M(N)ga, M(9)95)}

and
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(8.11) O — B e 9 (gay, M()65) — €4 F(M(N)Gay D)} «

This formula is stated in [8] and proved in [9]. It follows from a straight-
forward argument, which we will not reproduce, based on the formula (2.2).

The functions defined by (8.9), (8.10), and (8.11) are all meromorphic in
X and Z. We set ¢ equal to z and let \ approach z. The limit of (8.11)
equals (8.8). The limit of (8.10) is the limit as ¢ approaches 0 of

{60 8 — (M + 255, MDs5)}

which is the sum of (8.6) and (8.7). On the other hand, the limit of (8.9)
is the required inner product, so the lemma follows from analytic
continuation. O

LEMMA 8.4. For z imaginary the operator
M(—2)—L Mez)
dz

18 self-adjoint.

Proof. The adjoint of this operator equals
d N—2* = —( L)\ —2) = — (L pr(—
(L m@ )" = ~(-LM@))M(~2) = —(-M(=2)) M),
since z is imaginary. On the other hand
d = M(—2).2L
~(LM(=2) ) M) = M(~2)--M2)

by virtue of the fact that M(—=z)M(z) equals the identity. O

Let us write w(n: 2: f) for the restriction of the operator z=(z: f) to
I (n).
LEMMA 8.5. The integral

4% Sijm‘tr {M(_z)(%M(z))-rc(n: z: f) 1 dlz|

18 finite.
Proof. For any ¢ between 0 and ¢, the given integral is bounded by
the sum of (8.4) and the expression

(8.12) 12;_5 “S_: ltr 7(n: 2 £) | d| 2]

together with the integral over the imaginary axis of
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1
(8.13) s S ier

Z—Z(M(—z)fr(z: Fgs 65) — 82—_;(M(z)7r(z: £)és 65)] -

The expression (8.4) is of course finite by Lemma 8.2. (8.12) is bounded
by

1/2

1_(1%_?(81.1 tr 7(z: \f)d | 2 I)lﬂ(Sim tr w(z: f)d | 2 |>

27 —1

where *f and f are defined in the proof of Theorem 3.2. A glance at Lemma
2.3 and the formula preceding it confirms that this expression is also finite.

Finally, by Assumption 3.5 and the proof of Lemma 3.4, the sum over
(3 in (8.13) is finite. For any £ the function

_‘Zi;(M(—z)fr(z: e 65) — %:(M(z)ﬂ(z: )én 65)

is regular at z = 0, and is in fact integrable over the imaginary axis. This
concludes the proof. O

To complete our calculation we substitute each of the three terms of
Lemma 8.3 into the expression (8.5). The first one yields

loﬁsw tr 7(e: F)d| 2]

7 —1

which equals

calogegi“ SKS P fikm, km)dm dkd)z]|

2T J—iee MAIMpAD
since our kernel P is continuous. After inserting the formula for P given
in § 2 and applying the Fourier inversion formula we obtain

¢s log eg S e g Fllempmm—k)e* " dn dm dk .
K JMAIMpA] Na

This expression cancels (7.9).
The contribution of (8.7) to the formula (8.5) is

1 - {F ( d v
8.13) Ly S_m tr -{M(—z)-<%M(z)>-ﬂ(n. 2 f)}d 2],
The contribution of (8.8) equals the sum of
L5 {7 e (-2t 16 80) — (M@ N oMz 1,
and

D = VO IR PR

In both these terms the sum over g is finite. As & approaches 0 the first
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expression approaches 0 by the Riemann-Lebesgue lemma, while the second
term approaches

(8.14) —% tr {M(O)z(0: £)} .

9. Concluding remarks

Our computation is now complete. We have shown that the trace of
Ao(f) is the sum of a certain number of terms, each of which is independent
of ¢, and an expression which approaches 0 as ¢ approaches 0. Since we
started off by letting ¢ be any number between 0 and ¢, this latter expres-

sion must vanish.
The remaining terms are scattered throughout the earlier sections.

They are
(1) The elliptic term,

Teiea 20 6
(i) The singular term,

E;Le ((J[S)) %(#’ G)S

flaveY)da ;
JA

aalatr

o flepe™de

GAlGu

and
(iii) The total parabolic term, which is the sum of
Ce F —1,, =171
on S DI 0 Va1 W W W LY
- Hinw)dm dn dk ,
9.2) el ;z (e 2 )}
1y (7 d .
(9.3) EE’H S_iw tr {M(—z)-(Tz—M(z))n'(n. 2 f)}dlz [
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(9.4) —% tr {M(0)(0: £)} .

We need hardly remark that our formula is not yet in a reasonable
form. Considerably more work is required in several directions before we
might hope to obtain information about the space of cusp forms.

In the first place we have left the term (9.2) in an unsatisfactory
state. What is needed is some sort of analysis on the orbit structure of
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P(y) in N(z), for elements /¢ in M..

Once (9.2) has been put into a more tractable form we can start
analyzing the various terms of the trace formula as distributions on G,.
In view of Harish-Chandra’s work on the Schwartz space, it makes sense
to ask whether a distribution on any of the local groups G, is tempered.
Every term in the trace formulza is, in all probability, a linear combination
of products of tempered distributions on the groups G,. The problem
would be to calculate the Fourier transforms of these distributions.

If v is a place of F, a distribution 7, on G, is said to be invariant if
for any pair of functions fand g in C2(G,)

T.(f+9) = T(g*f) .

The distributions defined by the elliptic and singular terms are all invariant,
as are those defined by (9.4). On the other hand, the distributions defined
by the remaining terms are not invariant. This complicates the problem
of calculating the Fourier transforms. Of course the sum of the terms
(9.1), (9.2), and (9.3) defines an invariant linear functional on f. However,
it will not be possible to see how the noninvariant components of these
terms cancel without calculating the appropriate Fourier transforms.

YALE UNIVERSITY
BIBLIOGRAPHY

[1] A. BoreEL and J. TiTs, Groupes réductifs, Pub. Math., I.H.E.S., 27 (1965), 55-151.

[2] M. DurLo and J.P. Labesse, Sur la formule des traces de Selberg, Ann. Scient. Ec.
Norm. Sup., (4) 4 (1971), 193-284.

[3] R. GODEMENT, Domains fondamentaux des groupes arithmétiques, Séminaire Bourbaki,
257 (1963).

[4] ————, Introduction a la theorie de Langlands, Séminaire Bourbaki, 321 (1966).

[5] HARISH-CHANDRA, Automorphic forms on semisimple Lie groups, Springer-Verlag, 1968.

[6] ———, Harmonic analysis on reductive p-adic groups, Springer-Verlag, 1970.

[7] H. JacQuET and R. P. LANGLANDS, Automorphic forms on GL(2), Springer-Verlag,
1970.

[8] R. P. LANGLANDS, On the functional equations satisfied by Eisenstein series, Mimeo-
graphed notes.

[9] ———, Eisenstein series, in Algebraic Groups and Discontinuous Subgroups, Amer.
Math. Soc. (1966), 235-252.

[10] A. SELBERG, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian
spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.

[11] A. SELBERG, Discontinuous groups and harmonic analysis, Proc. Int. Cong. Math. 1962,
177-189.

(Received December 4, 1972)
(Revised September, 17, 1973)





