
ON A FAMILY OF DISTRIBUTIONS OBTAINED 
FROM EISENSTEIN SERIES I: APPLICATION OF THE 

PALEY-WIENER THEOREM 

Introduction. This is the first of two papers aimed at finding ex- 
plicit formulas for certain distributions. The distributions are obtained 
from Eisenstein series and are important ingredients in the trace formula. 
In this paper we shall resolve some analytic difficulties that center around 
an interchange of two limits. The next paper will be devoted to the 
calculations which will culminate in the formulas. 

Let G be a reductive algebraic group defined over Q. As usual, we 
will write G(A)' for the intersection of the kernels of the maps 

in which ranges over the group X(G)o of characters of G defined over Q. 
The trace formula is an identity 

between distributions on G(A)'. The distributions on the left are 
parametrized by semisimple conjugacy classes in G(Q) and are closely 
related to weighted orbital integrals on G(A)'. Although they need to be 
better understood for any general applications of the trace formula, the 
remaining problems are primarily local. We will not discuss them here. 
The distributions on the right are defined in terms of truncated Eisenstein 
series. They are parametrized by the set X of Weyl group orbits of pairs 
(Mp, rp), where My is the Levi component of a standard parabolic 
subgroup B and rp is an irreducible cuspidal automorphic representation 
of M ~ ( A ) ' .  Here the situation is worse. It does not seem to be possible to 
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apply the trace formula without explicit formulas for these distributions. 
The problem is a global one. 

Let us recall how Jx( f )  was defined. The convolution on Z~(G(Q)\G(A)) 
by a function f ? C?(G(A)') is an integral operator with a kernel K(x, y).  
The theory of Eisenstein series gives a natural formula for K(x, y )  as a 
(continuous) sum of certain components, which we indexed in [l(a)] by 
the standard parabolic subgroups P of G and the irreducible unitary rep- 
resentations of Mp(A). (The component associated to a given representa- 
tion of Mp(A) was defined to be zero unless the restriction of the represen- 
tation to Mp(A)' occurred discretely in L2(Mp(Q)\Mp(~) ' ) . )  Langlands' 
results in Chapter 7 of [3] allowed us to decompose the discrete spectrum 
of L ~ ( M ~ ( Q ) \ M ~ ( A ) ' )  into a direct sum of subrepresentations, indexed 
by the classes in X. This led directly to a natural decomposition 

of the kernel ([l(a), Section 41). The functions Kx(x, y )  are in general not 
integrable over the diagonal. However, we introduced a truncation 
operator AT in [l(b)] in which T was a suitably regular point in a chamber, 
a:, associated to the minimal standard parabolic subgroup. We allowed 
AT to act on each variable in Kx(x, y )  separately, and then showed that for 
suitably regular T a certain distribution J^ f )  could be expressed as the 
integral of the resulting function over the diagonal ([l(b), Theorem 3.21). 
Subsequently, in [l(c)], we found that J% f )  was a polynomial function of 
T. The distribution Jx(f)  was defined as the value of this polynomial at a 
certain point To. 

Suppose that y 6 9C is fixed. The formula we have just described 
allows us, for suitably regular T, to express J^ f )  as a (continuous) sum 
over the standard parabolic subgroups P and the irreducible unitary 
representations of Mp(A). Each such representation of Mp(A) can be 
identified with a unique pair (7, X), where TT is an irreducible unitary 
representation of Mp(A)' and X belongs to the real vector space 

ia: = i(X(Mp)n @ R). 

We will therefore have a formula 



DISTRIBUTIONS FROM EISENSTEIN SERIES I 1245 

for a certain function ^(A, f ) ,  which is defined in terms of the inner 
product of truncated Eisenstein series. In a recent paper [l(e)] we gave a 
rather explicit asymptotic formula for the inner product of truncated 
Eisenstein series. It will provide an asymptotic formula for ^(A, f ) ,  as T 
approaches infinity away from the walls in a$. We might hope to substi- 
tute this formula for *$(A, f )  in ( I) ,  and then let T approach infinity. In- 
stead of *:(A, f )  we would be left with a much more concrete function. 
We will not write it down here, but let us just say that with some version of 
the Riemann-Lebesque lemma, we might reasonably hope to then evalu- 
ate ~3 f )  as a polynomial in T. However, this is too optimistic. There are 
apparently no uniform estimates for X in iaf/ia?; that would justify such a 
use of the Riemann-Lebesque lemma. Moreover, the asymptotic formula 
for *$(A, f )  is uniform only for X in compact sets. Since X is to be in- 
tegrated over the real vector space iaf/ia?;, the substitution for *^(\, f )  in 
(1) is not valid. The purpose of this paper is to resolve these difficulties. 

The problems hinge on the fact that the multiple integral on the right 
hand side of (1) is over a noncompact domain. The sum over the standard 
parabolic subgroups P is certainly finite. As we will observe in Section 2, f 
can be taken to be a K-finite function. It then follows from the results in 
[3, Chapter 71 that the sum over IT in (1) reduces also to a finite sum. 
Therefore, only the integral over X has noncompact domain. For each e > 0 
and every representation IT we will define a function B i  in Cp(iajS/ia?;) 
such that 

is asymptotic to a polynomial pT(BE) as T approaches infinity away from 
the walls in a n .  We shall show, moreover, that 

lim pT(BE) = ~3 f) .  
E-0 

These two results will be stated together as Theorem 6.3. It is the principal 
theorem of the paper, and it provides an escape from the difficulties 
discussed above. 

The function Bk will be defined in terms of the infinitesimal charac- 
ter of IT. (By this we mean the infinitesimal character of the component of 
IT at the real valuation.) In Section 3 we will choose a Cartan subalgebra I) 
of the split real form of the Lie algebra of G(C).  It will be invariant under 
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the complex Weyl group W of G(R). There will also be natural embed- 
dings a: c lj* of the dual spaces. The infinitesimal character of v pro- 
vides a Weyl orbit of linear functions 

X. + iY., X., Y. â t)*/a$, 

on ljc. Suppose that B is a W-invariant function in Cw(i^*/ia^;) such that 
B(0) = 1. If e > 0 we will define 

and 

B m  = BE(iYT + \) = B(e(iY, + A)) ,  A â ia;/ia$. 

Then B i  is a cutoff function in the "imaginary part" of the infinitesimal 
character of a certain representation of G(A). (It is the representation in- 
duced from P(A) which is associated to the pair (v, A).) Theorem 6.3 tells 
us that for the purpose of calculating the polynomial ~3 f ), we can insert 
B i  into the formula (1). The theorem could also be interpreted as a 
justification of the interchange of limits as T approaches infinity and e ap- 
proaches zero. 

The proof of Theorem 6.3 is indirect. The main ingredients are two 
rather deep results from other papers. The first, already mentioned, is the 
fact that the right hand side of (1) is a polynomial for suitably regular T. 
Although this was actually proved in [l(c)], most of the work was done in 
[l(b)]. In the present paper it is necessary to know how the suitable regular- 
ity of T depends on the function /. We will state this quantitative version 
of the result as Proposition 2.2, and we will leave for the appendix the task 
of showing how it follows from the work of [l(b)]. Our second ingredient is 
a multiplier theorem for the Hecke algebra on G(R)' = G(R) n G(A)'. It 
was proved in [l(d), Section 111.41 as a corollary of the Paley-Wiener 
theorem. The theorem describes the multipliers in a form which is 
remarkably similar to the cutoff functions {B;(A)}. Like the families 
{BgA)}, the multipliers are parametrized by functions on the "imaginary 
parts" of infinitesimal characters, or what is the same thing, by 
W-invariant functions on ij*/ia$. Instead of being compactly supported, 
however, the functions which parametrize multipliers are taken from the 
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classical Paley-Wiener space on i3*/iaz. In Section 3 we will recall this 
result and show how it applies to the K finite functions in C;(G(A)'). 

We will combine these two results in Section 4. Taken together they 
will tell us that if 

then the expression 

is a polynomial in T, whenever the minimum distance from T to the walls 
of ag' is greater than a constant multiple of 1 + 1 1  HI1 . (Here ijl is the an- 
nihilator of a$ in 6.) On the other hand, the formula (1) can be written 

Notice that the sum on the right equals the value of (3) at H = 0. Now, 
consider a function B c C;(iij*/ia?;) as above. Then BE is the Fourier 
transform of a W-invariant Schwartz function (3, on ijl,  and the functions 
{BE: e > O} form an approximate identity on ijl. The temptation is to in- 
tegrate the function (3) against (3,. It would lead formally to something 
very close to the required Theorem 6.3. However, because of the presence 
of the real linear function X T ,  the expression (3) is not a tempered func- 
tion of H. This is serious, since (3, is not compactly supported. 

We will deal with the nontempered nature of (3) in Section 5. There 
we will prove an elementary but somewhat complicated proposition on 
polynomials. The proposition will permit us, roughly speaking, to remove 
the real functionals from the expression (3). We will then be able to in- 
tegrate against B e ,  as proposed, in Section 6. This will lead us to a proof of 
Theorem 6.3. 

Having proved Theorem 6.3, we will be able to invoke the asymptotic 
formula for *:(A, f ) .  After discussing it in Section 7, we will prove 
Theorem 7.1, the final result of the paper. It states that if ^(A, f )  is 
replaced in (2) by its asymptotic formula, the resulting expression is still 
asymptotic to the polynomial P~(B').  The way will be clear for finding ex- 
plicit formulas for P~(B ' )  and ~2 f ) ,  as we shall see in the next paper. 
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Notational Convention. If H is any locally compact group, we shall let 
II(H) denote the set of equivalence classes of irreducible unitary represen- 
tations of H. 

1. The distributions J:. Let G be a reductive algebraic group 
defined over Q. We shall fix a minimal parabolic subgroup Po of G and a 
Levi component Mo of Po, both defined over Q. In this paper a parabolic 
subgroup will mean a parabolic subgroup of G ,  defined over Q ,  which 
contains Po. Suppose that P is such a subgroup. We shall write N p  for the 
unipotent radical of P, and M p  for the unique Levi component of P which 
contains Mo. Let A p  be the split component of the center of Mp.  If 
X ( M p ) ~  is the group of characters of M p  defined over Q ,  

is a real vector space whose dimension equals that of An. Its dual space is 

We shall write An  = A p ,  a. = apo and a$ = a&,. For all of this paper, K 
will be a fixed maximal compact subgroup of the adelized group G(A) .  
We will want K to satisfy the natural conditions that were summarized in 
Section 1 of [ l (c )]  by defining K to be admissible with respect to M y .  

Suppose that P is a parabolic subgroup. Let H p  be the associated 
function from G(A)  to a p  ( [ l ( a ) ,  Section I ] ) .  The kernel, M ~ ( A ) ,  of H p  in 
Mp(A)  is a closed subgroup of Mp(A) .  We should point out that the 
representations I I ( M ~ ( A ) ' )  can be naturally identified with the orbits of 
iaf on II(Mp(A)) under the action 

Now let Q be a parabolic subgroup which contains P. Then there is a 
canonical surjection from a p  to an and a canonical injection from a$  to a:. 
The kernel, a$ ,  of the first map is a vector space whose dual space is af /az .  
Observe that H y  is just the composition of H p  with the map from ap  onto an.  

We shall fix a Euclidean norm 1 1  1 1  on the space a0 which is invariant 
under the action on an of the Weyl group of ( G ,  An).  On each space a$ ,  
P C Q ,  we take as Haar measure the Euclidean measure associated to the 
restriction of 1 1  . 1 1  to a f  . The real vector space ia;/iaz is isomorphic to the 
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character group of af ,  so we can take the Haar measure which is dual to 
the one on a9. We can then normalize the Haar measures on the groups 
K, G(A), Np(A), Mp(A), A~(R) '  (the identity component of Ap(R)), 
M~(A) '  etc. by following the prescription in Section 1 of [l(a)]. 

Suppose that P is a parabolic subgroup. We shall write @(P) for the 
space of automorphic forms on Np(A)Mp(Q)\G(A) which are square in- 
tegrable on M ~ ( Q ) \ M ~ ( A ) '  X K .  It is the space of functions 

which satisfy the following two conditions. 
(i) The set of functions 

indexed by the left and right invariant differential operators z on G(R), 
and the elements k ? K ,  spans a finite dimensional space. 

For any 4 ? @(P) there is the Eisenstein series 

It converges for Re(\) in a certain chamber and continues analytically to a 
meromorphic function of \ ? a$,c. (See [3]). As always, pp is the vector in 
a$ such that e2^*p(')) is the modular function on P(A).) 

In [l(a)] we introduced a decomposition 

indexed by a certain set X. (Recall that X is the set of orbits, under the 
Weyl group of (G, Ag), of pairs (My, rp),  where B is a parabolic subgroup 
and YB is an irreducible cuspidal automorphic representation of M~(A) ' . )  
Suppose that \ ? X and that IT ? II(Mp(A)). Let %,=(P) be the subspace 
of functions 4 in G^(P) such that for each x ? G(A), the function 
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transforms under Mp(A) according to the representation TT and in addi- 
tion, the restriction of & to M ~ ( A ) '  belongs to L ~ ( M ~ ( Q ) \ M ~ ( A ) ' ) .  The 
inner product 

is positive definite on Q.̂ (P). Let ~ ; , J P )  be the Hilbert space completion 
of %,̂ (P). For each X 6 a;,c we have an induced representation pXT(P,  X) 
of G(A) on ( S ~ ( P )  defined by 

for elements x ,  y ? G(A) and 4 6 (Â£tT(p) It is unitary if X is purely imagi- 
nary. (In [l(a)] we denoted the space Q.;,~(P) by X .p (~ )x  and the represen- 
tation P ~ , ~ ( P ,  A) by I p ( ~ ) x . )  

The distribution 

was introduced in Section 3 of [l(b)]. It depends on a class x ? X, which 
will remain fixed for the rest of this paper. It also depends on a suitably 
regular point T in a:. Recall that if An is the set of simple roots of (Po, An), 
and 

then suitably regular means that the number d p ( T )  is sufficiently large. 
For any such T we expressed J% f )  in [l(b)] by two different formulas. The 
formula which actually served as the definition for J% f )  will not be needed 
here. It was exploited in Proposition 2.3 of [l(c)] to show that 

is a polynomial function of T. This is the case, a priori, only when ~3 f )  is 
defined; that is, whenever T is suitably regular in a:. However, the 
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polynomial certainly extends uniquely to all T. Thus, J^f) is defined as a 
polynomial function of T for all T 6 an. 

The second formula for J:[( f )  is the one we will use here. It is given in 
terms of the truncation operator AT introduced in Section 1 of [l(b)]. 
Recall that AT operates on functions on G(Q)\G(A) and is defined for 
suitably regular points T in a$. Given P, TT 6 II(Mp(A)) and X 6 i a f ,  
define an operator Q^^P, X) on %,̂ (P) by setting (Q^iP, X)4, 4') equal 
to 

for each pair of vectors 4 and <f)' in fi&(P). (In [l(b)], the operator o:,~(P, X) 
was denoted by M ~ T I - ~ ) ~ . )  If 1 (P(Mp) 1 denotes the number of chambers in 
ap, set 

for any f ? C;(G(A)'). Then the second formula for our distribution is 

(The domain of ^(A, f ) ,  as a function of TT, is actually H(Mp(A)). How- 
ever the integral over X in (1.3) depends only on the orbit of TT, so it does 
represent a function on I I (M~(A) ) . )  Formula (1.3) is just Theorem 3.2 of 
[l(b)]. It is valid whenever T is a suitably regular point in a$. The con- 
vergence of (1.3), as well as the existence of the trace in (1.2), is a conse- 
quence of Theorem 3.1 of [l(b)]. 

2. Three important properties. The distribution J^ f) ,  as given by 
formula (1.3), is our main object of study. It has three properties, all 
related to formula (1.3), which will be crucial to this paper. Each of them 
is implicit in the paper [l(b)]. Unfortunately we did not keep track ol the 
dependence on T of many of our earlier results. For example, in [l(a)] and 
[l(b)] we simply agreed at the beginning to let T be a suitably regular 
point in a$. We did not say how the "suitable regularity" of T, required 
for results on J% f ) ,  actually depended on f .  We didn't really need to, for f 
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was fixed throughout most of [l(a)] and [l(b)]. In this paper, however, we 
must allow f to vary and this necessitates a re-examination of some 
arguments from [l(b)]. We shall save the details for an appendix, being 
content here to just state the properties in the form we shall use. 

PROPOSITION 2.1. W e  can find positive integers Co and do  such that 
for any f ? C ~ G ( A ) ' ) ,  any n 2 0 and any T ? a. for which dpo(T) > Co,  
the expression 

is bounded by 

where cn,f depends on n and f, but not on T. (Here \\ \\ is the norm on 
iaflia*; which is dual to the one on a:.) 

If it were not for the dependence on T, this proposition would be an 
immediate consequence of Theorem 3.1 of [l(b)]. For a proof of the prop- 
osition, see the appendix. 

The proposition tells us that 

converges for all T in the translate of a: by a point which is independent 
off. By (1.3), this function equals J% f) ,  and is in particular a polynomial 
in T, for all T in some other translate of a:. However, this second 
translate may well depend on f. It turns out to depend only on the support 
off. 

To keep track of the support off we need to define a suitable function 
1 1 on G(A). In Section 1 of [l(a)] we discussed height functions 

associated to rational representations 
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defined over Q. We then selected a A and wrote the corresponding height 
function as 

(As is usual in products of this form, we let v range over the valuations of 
Q and write xV for the component of x 6 G(A) in G(Qv).) In this paper we 
will not single out A. We will instead fix any function 1 1  1 1  on G(A) of the 
form (2.1) which satisfies the following three properties. 

(i) 1x11 2 1, x 6 G i A ) .  
(ii) For any rational representation A there are constants c ,  and nl  

such that 

(iii) There exists a rational representation A. and constants c0 and 
no such that 

In the next section we shall impose more conditions on 1 1  1 1  *, the compo- 
nent of 1 1  1 1  at infinity. It is not hard to show that for any positive number 
N the set 

is compact. 
If N is any positive number, let CG (G(A)') be the space of smooth 

functions on G(A)l which are supported on G(A)' f l  G(A, N). The second 
key property is given by 

PROPOSITION 2.2. There is a positive number CD with the following 
property. For any N > 0 and any f 6 C^(G(A)), the function 

equals J^ f ), and is in particular a polynomial in T, whenever 
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For a proof, see the appendix. 

The third property of J% f )  will allow us to restrict our attention to K 
finite functions. Iff belongs to C ~ ( G ( A ) ~ )  and and 7 2  are irreducible 
representations in I'I(K), the function 

is also in Cr(G(A)). 

PROPOSITION 2.3. 

For a proof, see the appendix. 

Let c~(G(A) ' ,  K )  be the space of functions in c~(G(A) ' )  whose left 
and right translates by K each span a finite dimensional space. Set 

for any N. Any finite sum of functions fwr2 belongs to C:(G(A)l, K) .  The 
last proposition tells us that the value of JF at an arbitrary function can be 
approximated by its value at a K finite function. We will therefore be able 
to assume that f is K finite. If this is the case, the operators p T ( P ,  A, f )  
are all of finite rank. The subspace of functions in 

which are A ~ ( R )  invariant and transform under K according to a fixed 
finite set r of irreducible representations, is finite dimensional. (This 
subspace was denoted by Q'pv,r in [l(e)] .) It follows that when/ is K finite, 
the sum over TT in (1.3) reduces to a finite sum. (In a future paper we will 
actually show that (1.3) is a finite sum even when f is not K finite.) 

3. The multiplier theorem. Included in our assumptions is a 
decomposition of K as IIvKv, where K v  is a maximal compact subgroup of 
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G(Qy) for each valuation v. Let & be a fixed Cartan subalgebra of the Lie 
algebra of KR 17 Mo(R). Let Ijo be the Lie algebra of a fixed maximal real 
split torus in Mo(R), and set 

If g is the Lie algebra of G(R), Ijc is a Cartan subalgebra of gc. The real 
subspace I) C Ijc is invariant under the Weyl group W of (gc,  I),-). Observe 
that for any parabolic subgroup P there is a natural surjective map 

which is trivial on i& and which is given by 

on ao. The dual of this map gives us an embedding of a; into I)*. We shall 
denote the kernel of hG by t ) .  It is a subspace of I) which is also invariant 
under W. 

Let us fix a positive definite inner product ( , ) on I) which is invariant 
under the Weyl group W. Let 1 1  . 1 1  be the associated Euclidean norm on I). 
We already have Euclidean norms on the spaces a p ;  we can certainly 
choose ( , ) so that each of the maps h p  is a partial isometry. We will take 
the Euclidean measure associated to 1 1  1 1  for our Haar measure on I). If x is 
any element in G(R), write 

x = k~  exp X k 2 ,  k h  k 2  c KR,  X 6 G o ,  

and define 

Then 1 1  1 1  is a function from G(R) to {t 6 R :  t > I}. We assume from 
now on that the "norm" (2.1) on G(A) has this function as its component 
at infinity. This assumption is made only for convenience, so that our 
notation is consistent with that of [l(d)]. 

We are going to use Theorem 111.4.2 of [l(d)], a result which pertains 
to the subalgebra Cr(G(R), KR)  of left and right KR finite functions in 
C>G(R)). Let 8 ( t ) )  be the algebra of compactly supported distributions 
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on Ij which are invariant under W. The theorem states that for every 7 6 

s ( I ~ ) ~  and f R  6 CT(G(R), KR) there is a unique function f R  in Cr(G(R), 
KR) with the following property. If IIR is any representation in II(G(R)) 
then 

where { v n }  is the W-orbit in ljz associated to the infinitesimal character 
of IIR and 7 is the Fourier-Laplace transform of -y. 

Returning to the global situation, we suppose that f is a function in 
c~(G(A) ' ,  K). Then f is the restriction to G(A)' of a function on G(A) 
which is a finite sum 

where each fR  6 Cr(G(R), KR), and each f,, 6 CZG(Q,,)). Suppose that 7 
belongs to the subspace, E , ( ^ ' ) ~ ,  of distributions in g(Ij)^ which are sup- 
ported on I)'. Define /., to be the restriction to G(A)' of the finite sum 

We shall show that it depends only on f .  Any representation 11 6 II(G(A)) 
is a restricted tensor product 

(See [2].) Define 

It is clear that 

for each point A 6 iaE. Since 7 is supported on I)', we have 

In other words, fin) depends only on the restriction of II to G(A)'. 
Therefore 
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Since 11 is arbitrary, f,, does depend only on f. 
If 7 belongs to ~ ( I j l ) ~ ,  let N,, be any positive number such that 7 is 

supported on the set 

It follows from Corollary 111.4.3 of [l(d)] and our definitions that i f f  
belongs to c;(G(A)', K )  then f y  belongs to C;+~(G(A)', K) .  We there- 
fore have 

PROPOSITION 3.1. For any -y ? 8(Ij1) there is a map 

from C;(G(A)', K )  to C;+^(G(A)l, K )  such that 

for every II ? ~ ( G ( A ) ' ) .  

Suppose that P is a parabolic subgroup and that TT ? II(Mp(A)). By 
the definition above we have an orbit {v-} of the complex Weyl group of 
Mn(R) in t):. Let X be a point in i a f .  Then a well known formula for the 
infinitesimal character of an induced representation gives an equality 

of W-orbits in 88. We obtain 

COROLLARY 3.2. Iff and 7 are as in the proposition and *:(A, .) is 
the function defined by (1.2), then 
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4. The main step. We are now ready to unveil the central calcula- 
tion of the paper. It is really quite simple. Take any function f ? C"G(A)', K). 
We will keep f fixed for the rest of the paper (except for the appendix) so 
we might as well write 

for the function defined by (1.2). We shall look at the formula for 

By (1.3) and Corollary 3.2, J:( f~ equals 

Treating 7 in our notation as if it were a function, we write the last expres- 
sion as 

where 

for TT ? II(Mp(A)) and H ? f)'. These manipulations make sense so long as 
Proposition 2.1 applies; that is, whenever d p P )  > Co. We shall assume 
that this is the case. Then $7' is a smooth function on f)'. In fact for every 
differential operator D with constant coefficients on Ijl there is a constant 
cn such that 
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provided, of course, that d p ( T )  > C,,. Notice also that is constant on 
the cosets of the kernel of h p  in I ) ' .  

There is certainly a number Nf > 0 such that f belongs to C^(G(A)', K). 
We define a constant 

for use in the following discussion. The definitions and estimates we have 
just made are certainly all valid if Co is replaced by C. Now, we fix H ? I)', 
and let -yH be the discrete measure in I )  at the point H .  Define 

Then J ^ f )  equals 

We can take Ny = 1 1  HI1 , so by Proposition 3.1 the function f belongs to 
C&+ \\ul (G(A)', K ) .  It follows from Proposition 2.2 that this last expres- 
sion is a polynomial in T whenever 

If H is taken to be the origin in I ) ' ,  then 7 is just the Dirac measure on bl .  
The function f,, equals f .  This gives us 

again provided that d p ( T )  > C. 
It follows from what we have just seen that there is a unique function 

which is a polynomial in T ,  and such that 
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whenever 

Since each ^(H) is a smooth function of H ,  pT(H) must also be smooth in 
H. From the estimate (4.2) (with D = 1) we see that the total degree of 
pT(H), as a polynomial in T, is at most do .  Finally, the formula for J% f )  
becomes 

for d(T) > C, and hence for all T 6 ao. 
The point of this discussion has been to embed the polynomial 

in a family 

of polynomials. Our plan is to extract information about pT(0) from the 
average behaviour of the polynomialspT(~) near H = 0. Ideally we would 
like to integrate pT(H) against an arbitrary Schwartz function on ljl. Un- 
fortunately this is not possible, forpT(H) is not a tempered function of H. 
We shall change our notation slightly to highlight the difficulty. 

Given P and TT ? II(Mp(A)), let 

v, = X, + Y,,  X., Y,  6 I)*, 

be the decomposition of v, into real and imaginary parts. These points ac- 
tually stand for orbits in $* of the Weyl group of Mp, but from now on we 
shall take them to be fixed representatives of the corresponding orbits. 
Suppose that TT is identified with its restriction to the group M~(A) ' .  Then 
v, is determined only n~odulo ia;. The real part, X,, is uniquely deter- 
mined in $*, but the imaginary part, Y,, becomes only a point in $*/a;. 
Now the right hand side of (4.3) is a sum over pairs 
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s ,  T ) ,  s  e W ,  a- e I I ( M ~ ( A ) ' ) ,  P 3 Po. 

Only finitely many summands are nonzero. Let us define two pairs 

(s,,  a-,I, S ,  c w, a-, T I ( M ~ ( A ) ~ ) ,  = 1, 2,  

to be equivalent if 

Let 8 denote the set of equivalence classes of pairs. For any class r' ? 8 we 
shall write Xy for the common point 

s X x ,  ( s ,  7 r )  â r'. 

Then (4.3) can be written 

where 

a smooth function of H. As in (4.2), we can choose a constant cn for every 
D such that 

for all I', IY and all T such that d p o ( T )  > C. In particular, $F(H) is a 
tempered function of H. 

Suppose that r' is an element in S such that Xr # 0 and such that $; 
does not vanish. Is it possible for 

the contribution of r' to (4.3') ,  to be a tempered function of H? Could 
^ ( H )  decrease sufficiently to compensate for the exponential increase of 
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eXrW? The answer is no! To see this let Hp be the unique vector in i)' such 
that 

for each H 6 0 .  Suppose that 

belongs to F. Then 

It follows readily that s l H r  belongs to the kernel of hp in I)'. Since Ĵ, is 
invariant under translations from the kernel of h p ,  

Thus as t ranges over the real numbers, ^(tHr + H )  spans a finite 
dimensional space Vp of functions of H and T .  In fact as a finite linear 
combination in Vp, ̂ Wy + H )  has coefficients of the form ei'^, f iT 6 R. 
Therefore \j/^(tHr + H )  cannot approach zero as t approaches infinity. 
The function $F(H)ex^lH) cannot be tempered in the direction of Hr .  
Thus (4.3') gives a rather precise description of the failure of pT(H)  to be 
tempered. 

5. More polynomials. In this section we will construct a family of 
functions { p F ( ~ ) :  F 6 8 }  which are polynomials in T and tempered func- 
tions of H.  The construction does not require anything further from 
Eisenstein series or the trace formula. It is an exercise in real variables, 
which requires nothing more than elementary analysis and the formal 
properties of the collection {^ (H)} .  We shall recapitulate these proper- 
ties in such a way as to display the elementary nature of the construction, 
and also to allow for induction arguments. To simplify our notation, we 
shall denote the function d p ( T )  by d ( T )  in this section. 

We are given a finite set 
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of functions on a product I)' X an of two Euclidean spaces. The domain of 
each function is 

the product of b1 with a translate of a certain chamber in an. We are also 
given a finite set 

of distinct linear functions on I)'. If Xp is a nonzero function from this set 
and HT is the point in I)' such that 

then the set 

spans a finite dimensional space of functions of H and T. Finally, we are 
given a function p T ( ~ ) ,  which is smooth in H and a polynomial in T of 
degree at most d o ,  as well as positive constants C and e,  which satisfy the 
following property: for every differential operator D with constant coeffi- 
cients on I )  there is a constant C D  such that 

for all H and T with d ( T )  > C(1 + 11 H 11 1, and 

for all I?, H a n d  all T with d ( T )  > C. (We saw in Section 4 that the first ine- 
quality held with cn = 0. We have stated it this way to allow for induction 
arguments. The second inequality is just (4.2').) 

PROPOSITION 5.1. We can find a collection 
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of functions which are smooth in H a n d  are polynomials in T of total degree 
at most do  such that 

and such that for positive constants C and e the following condition is 
satisfied: for every differential operator D with constant coefficients on b1 
there is a constant C D  such that 

for all l7, H and all T with d ( T )  > C(1 + 11 HI1 ), and 

for all H and T .  
Notice that (5.4) determines the polynomial p?(H) uniquely. Before 

beginning the proof of the proposition we will also observe that the in- 
equality (5.5) follows from (5.4) and (5.2). For if d ( T )  > C ( l  + 11 H 11 ), 
then \ D p f ( H )  \ will be bounded by a constant multiple of ( 1  + 11 T 11 )do.  
The following lemma tells us that we can choose en so that (5.5) is valid. 

LEMMA 5.2. Given do we can choose constants a l  and a2 with the 
following property. Let q ( T )  be a polynomial on a. of degree at most do  
such tha t for  numbers A > 0 and B > 1, 

for all T with d ( T )  > B. Then each coefficient of q ( T )  is bounded by 
a, AB"~,  and 

for all T .  
The first estimate of the lemma follows from an interpolation argu- 

ment. One solves for the coefficients of q in terms of the values of q at a 
finite number of points T with d ( T )  > B. We leave the details to the 
reader. The second estimate of the lemma follows from the first. 
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Proof of Proposition 5.1. We shall prove the proposition by induc- 
tion on the number of elements in 8. Suppose first of all that there is no 
element F ? 8 with X r  # 0. The functionals { X r }  are distinct, so if 8 is 
not empty it will consist of one element F, with X r  = 0. In this case we set 

Then (5.3) is trivial and (5.4) becomes the same estimate as (5.1). As we 
have observed, (5.5) is a consequence of (5.2) and (5.4). 

We can therefore suppose that there are elements F ? S with X r  7'- 0. 
Choose F' â 8 that \\Hr, 11 is as large as possible. It follows from the defini- 
tion of H r ,  that if F â 8 is distinct from F', the number 

is strictly positive. Now, consider the function 

It equals 

This last expression is a sum of terms, each of which is a product of an ex- 
ponential with a second function of H (which is enclosed in the square 
brackets). The result of letting a differential operator D act on one of the 
terms is the product of the exponential with the derivative of the second 
function with respect to some other differential operator. We may 
therefore use (5.1) and (5.2) to estimate the expression 

There is a constant c n  such that it is bounded by 

whenever d ( T )  > C(l + 11 H 11 ). Our next step is to replace the variable H 
in the estimate by tHr' + H. In the resulting expressions, H ? t ) ,  T ? a0 
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and t 6 R will be subjected to the constraints t > C l ( l  + 1 1  H 1 1  ) and 
d(T) > C2t, for constants Cl and Ci. We will take Cl and C2 to be ar- 
bitrarily large. Then d(T) will be larger than C(1 + \\ tHr-  + H\\ ), so the 
estimate will remain in force. In addition, there will be a positive constant 
6 '  such that 

and 

It follows that for every D there is a constant c b  such that 

for H, T and t constrained as above. (In this expression, D can act either 
through the argument tHy + H or just through H.) 

Let t l  = 0, ty ,  . . . , t,Ã be fixed real numbers such that 

{^,(~,HT- + H ) :  1 <: i <s 4 

is a basis of the space Vr- spanned by 

{ $ ; , ( t ~ ~  + H ) : t  6 R}. 

We shall let W T ,  H) and P(T, H )  be the vectors in Cn whose i l h  compo- 
nents are 

respectively. Now translation by tHy , t 6 R, is a representation of the real 
numbers on Vr,. It follows that there is an (m X m)-matrix R such that 
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* ( T ,  t H y  + H )  = e t R * ( ~ ,  H ) ,  t ? R. 

Combined with (5.2), this equation yields the fact that all the eigenvalues 
of R are purely imaginary. In particular there is a constant C R  such that 

for all t  ? R. (The operator norm here is that associated to the standard 
Hermitian inner product on Cn.) We would like to estimate 

It is bounded by 

which is in turn bounded by 

This last expression contains the norm of a vector in Cn,  each of whose 
components can be estimated by (5.6). It follows that we may choose the 
positive constants C l  , C 2 ,  e '  and c b  so that 

(5.7) llD(*(T, H )  - e C t R p ( ~ ,  t H r ,  + H ) )  1 1  <s c b e - ^ ( l  + 1 1  T } } ) ^ ,  

whenever t  > C l ( l  + IlHIl) and d ( T )  > C2t.  
Set 

Pn(T ,  H )  = e - n R ~ ( ~ ,  nHr ,  + H ) ,  

for each positive integer n .  Then by (5.7), 

whenever n > C l ( l  + IlHIl) and d ( T )  > C2(n + 1). Now 
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is a polynomial in T  of degree at most do .  We can apply Lemma 5.2. We 
have 

for n > C i ( l  + 1 1  H  1 1  ) and for all T .  Observe that 

is bounded by a constant multiple of e ( " " ' .  In particular the sequence 

converges uniformly for H  in compact sets. Therefore there is a C" valued 
function P m ( T ,  H), which is smooth in H  and is a polynomial in T  of 
degree at most do ,  such that for any D, H ,  n and T ,  with n > C l ( l  + \\ H  \\ ), 

is bounded by a constant multiple of 

For our final estimate, we will combine this last inequality with (5.7). We 
will require that d ( T )  be greater than C'(1 + 1 1  HI1 ), where C' is the con- 
stant C2(1 + C i ) .  Given T ,  set both n and t equal to the greatest integer in 
c ? ~ ( T ) .  Then the constraints d ( T )  > C2t ,  t > C i ( l  + IlHIl) and 
n > C i ( l  + IlHIl) all hold. Moreover, 

It follows that we can find absolute constants C' and e ' ,  and a constant c b  

for every D, such that 

whenever d ( T )  > C f ( l  + IlHIl). The projection of the vector * ( T ,  H )  
onto the first component in Cn is just the function &(H). We define the 
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function p?(H) demanded by the proposition to be simply the projection 
of Poa(t,  H )  onto the first component in C n .  Then 

for all H and T with d ( T )  > C f ( l  + 1 1  HI1 ). This is just the required in- 
equality (5.4). We have already observed that (5.5) is a consequence of 
(5.2) and (5.4). 

Let 8 be the complement of Y in 8. To complete the induction step 
we must define the function ^ ( H )  associated to the set c. We set 

The function is smooth in H and a polynomial in T of degree at most do.  
Our last task is to verify (5.1) for the set 8. The function we must estimate, 

is bounded by the sum of 

and 

Suppose that C is a constant which is greater than both C and C', and that 
d ( T )  > C ( l  + 1 1  HI1 ). Then (5.8) is bounded by a constant multiple of 

If C is large enough, there will be a positive number F so that for H and T 
as above, 

If Cis also taken to be no greater than e, there will be a constant such 
that (5.8) is bounded by 



for all H and t with d ( T )  > C ( l  + 11 HI1 ). This establishes (5.1) for the 
smaller set 8. By induction, the proposition holds for 8. In particular, 
(5.3) is valid. In view of the definition of p T ( ~ ) ,  (5.3) is also valid for 8. 
Thus, all the assertions of the proposition hold also for the original set 8. 

The bottom step of the induction is when Â contains only one ele- 
ment, F. The case that Xr = 0 was dispatched at the beginning. If Xr # 0 
we can take F' = F and proceed as above. Then the sum over F in (5.8) is 
empty, and we have a strong inequality for the polynomial (̂H). So 
strong, in fact, that it force sf(^) to vanish. In other words, 

This is just (5.3). We have completed the proof of the proposition in case S 
contains one element, and hence for all 8. 

6. New test functions. Our ultimate goal is to calculate J ; ( f ) .  In 
view of formulas (5.3) and (4.4), we have 

for all T in 00. We have just seen that p ^ ( ~ )  is a tempered function of H ,  
so if (3 belongs to the Schwartz space 8(fj1) of f j l  we can define 

It is a polynomial in T of degree at most do. To approximate p r ( ~ )  we will 
replace (3 by 

and let e approach zero. 

LEMMA 6.1. Suppose that (3 is a function in 8(fj1) such that 
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Then for each T ? 0.0, 

Proof. Results of this kind are well known. Following the usual 
argument we observe that 

since Ot also has integral equal to 1. To estimate \p^(H) - p?(0) 1 we com- 
bine the mean value theorem with the inequality (5.5) for \ D~?(H)  \ . (In 
this case D will be a first order differential operator.) There will be a con- 
stant c such that 

With a change of variable the integral 

becomes 

which as long as e 5 1, is certainly bounded by 

This last expression approaches 0 with e .  The lemma follows. 
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The integralp@) cannot be calculated directly since p F ( ~ )  is, after 
all, not given explicitly. It is only \!/^(H) for which we have some sem- 
blance of a formula. We need a lemma to relate p?(@) with this function. 

As in [l(e)] we shall say that T approaches infinity strongly in a$ if 
11 T 11 approaches infinity but T remains within a region 

for some fixed positive constant 5. 

LEMMA 6.2. For any fS ? ~ ( 6 )  the expression 

approaches zero as T approaches infinity strongly in a$. 

Proof. The given expression has absolute value bounded by 

By (5.4) there are constants C, e and c such that 

whenever dpo(T) > C(1 + 1 1  H 1 1  ). However, we are letting T approach in- 
finity strongly in a$, so 11 TI1 will be bounded by a constant multiple of 
dpo(T). We can therefore choose the constants C, e and c so that 

whenever 1 1  T 11 > C(1 + 1 1  H 1 1  ). It follows that the contribution to the in- 
tegral (6.1) from the set of H with 1 1  T 11 > C(1 + 1 1  H 1 1  ) is bounded by a con- 
stant multiple of e-'Il T l l  . 

To deal with the remaining contribution to (6.1) we appeal to (5.2) and 
(5.5). These inequalities tell us that 1 \!/{'(H) - p{ ' (~)  1 is bounded by a con- 
stant multiple of (1 + 11 H 11 )'Â¥'('( + 11 T 11 )'Â¥'( for all H and T (as long as 
dpo(T) is greater than some absolute constant). We are now assuming that 
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Then there is a constant c1 such that 

Choose any n > 0. The remaining contribution to (6.1) is bounded by the 
product of 

and the integral of 

Since f3 is a Schwartz function, the integral of this last expression is finite. 
We have shown that for any n ,  (6.1) is bounded by a constant multiple 

of 1 1  TI1 " .  In particular, it does approach zero as T approaches infinity 
strongly in a$. 

We are now ready for the main result of this paper. It concerns test 
functions in s(i@*/iaE)^, the space of Schwartz functions on the real vec- 
tor space i@*/iaE which are symmetric under W. In the present context 
the space s(if)*/iaZ)ly has a natural representation theoretic interpreta- 
tion. As we saw in Section 3, there is associated to any II ? II(G(A)) a 
W-orbit {vn} in @?j. Each vn has a decomposition 

If II is identified with its restriction to G(A)l, the imaginary part, iYn is 
only determined modulo iaE. It becomes a W-orbit in i@*/ia& Thus the 
"imaginary part" of the infinitesimal character gives a fibering of 
II(G(A)l) over the space of W-orbits in i@*/ia?;. Our test functions will 
then come from the space of Schwartz functions on the base space of this 
fibration. 

Suppose that B ? ~ ( i ~ * / i a E ) ~ .  For any TT ? II(Mp(A)) we shall write 
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It is a Schwartz function on iaÂ¤/ia$ We shall also write 

for every positive number e. 

THEOREM 6.3. (i) For every function B 6 ~ ( i t ) * / i a g ) ~  there is a 
unique polynomial P ~ ( B )  in T such that 

approaches zero as T approaches infinity strongly in a n .  
(ii) If B(0)  = 1 then 

~ ^ f )  = lim P T ( ~ ' ) .  
f - 0  

Proof. Fix B 6 S(zy / ia$)^ .  There is a unique function /3 in ~ ( l ) ' )  
such that 

It is symmetric under W. We shall define 

This is certainly a polynomial in T. According to Lemma 6.2, PT(B)  dif- 
fers from 

by a function which approaches zero as T approaches infinity strongly in 
a $ .  However, (6.2) equals 
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by the definition (4.5) of $?. Since /3 is symmetric, this can be written 

Recalling the definition (4.1) of $:, we see that this last expression equals 

which is the same as 

Therefore the difference between (6.3) and pT(B) approaches zero as T 
approaches infinity strongly in a$, as required. The polynomial pT(B)  is 
clearly uniquely determined by this property. 

We still have to prove (ii). Suppose that B and /3 are related as above 
and that B(0) = 1. Then 

Moreover, 

for any e > 0. It follows from Lemma 6.1 that 

lim P ~ ( B â ‚  
f - 0  

= lim E 
E-o re& 
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We have already seen that p F ( ~ )  equals J\(f). The theorem is 
proved. 0 

Suppose that B(0) = 1 as in part (ii) of the theorem. Set 

B W  = (Be)&) = B(e(iY, + A)), A 6 iaf / iag.  

Then the dominated convergence theorem tells us that 

equals 

This equals Jgf) for all points T which are suitably 
Therefore the last theorem is the assertion of the equality 

regular in a$. 
of 

and 

where in each case the limit in T is interpreted as the polynomial which is 
asymptotic to the given function as T approaches infinity strongly in a$. 
Thus Theorem 6.3, which is the principal result of this paper, really does 
concern the interchange of two limits. 

7. Towards an explicit formula. The last theorem is an important 
step in the direction of an explicit formula for J\( f ). This may not be ap- 
parent to the reader. Indeed, the only formula we have at the moment for 
~3 f )  is in terms of Q^^P, A). This operator is defined by the inner pro- 
duct of truncated Eisenstein series, for which, to be sure, there is no ex- 
plicit formula. However, if we combine Theorem 6.3 with the main result 



DISTRIBUTIONS FROM EISENSTEIN SERIES I 1277 

of a previous paper [l(e)], we will be able to replace Q^^P, X) by 
something more transparent. 

Suppose that P is a parabolic subgroup. Recall that II(MP(A)l) is 
canonically identified with the set of orbits of ia; in H(Mp(A)). We can, 
and from now on will, further identify II(MP(A)l) with a certain set of rep- 
resentatives in II(Mp(A)) of these orbits. Since Mp(A) is the direct product 
of MP(A)l and Ap(R)O, any representation of Mp(A)l corresponds to a 
representation of Mp(A) which is trivial on Ap(R)O. We identify these two 
representations, thereby embedding II(Mp(A)I) in H(Mp(A)). This allows 
us to speak properly of % ( P )  for any TT c I I ( M ~ ( A ) ~ ) .  It is a space of 
functions on N~(A)M~(Q)A~(R)O\G(A). The direct sum 

is just the space we denoted by QpsX in [l(e)]. 
Let Wo be the Weyl group of (G, An). If Pi is another parabolic 

subgroup, we define the Weyl set W(ap, a p )  and the functions 

as in [l(e)l. M(t, X) is an analytic function of X ? ia; which for any 
TT C I I ( M ~ ( A ) ~ )  takes values in the space of linear maps from G,^(P) to 
@ Ã ˆ , f 7 r ( ~  ). Finally, also following [l(e)], we define 

where A n  is the set of simple roots of (PI ,  A p )  and Z(A:) is the lattice in 
a; generated by the co-roots 

Let T be a suitably regular point in a$ and consider the expression 
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for X ,  X '  ? ia;. It is an operator which for any TT ? II(Mp(A)l)  maps 
fi$,,(P) to itself. Evaluate the operator at a vector <^>I ? @$,,(P) and then 
take the inner product with another vector 4> ? CC$,(P). Since M(t ,  A) is 
unitary, the result is 

This is just the function we denoted by ^ ( A ' ,  X ,  <^>I ,  0)  in [ l (e )] .  We 
observed in Section 9 of that paper that it was regular for purely imaginary 
A' and X .  It follows that the operator (7.1) is regular at X' = X .  We will 
denote its value at A' = \ by u~,,(P,  A) .  

Let ~ ' ; c ( z ? j * / i a E ) ~  be the space of smooth, compactly supported func- 
tions on il)*/iaE which are symmetric under W. If B belongs to 
C x v / i a V ,  it is also contained in ~ ( i l ) * / i a p ,  and by Theorem 6.3 
has an associated polynomial P ~ ( B ) .  In this case the functions B T ,  TT ? 

II(Mp(A)), all belong to C';c(iaj! /iaE). 

THEOREM 7.1. Suppose that B ? ~ ^ ^ y / i a v .  Then P ~ ( B )  is the 
unique polynomial which differs from 

by an expression which approaches zero as T approaches infinity strongly 
+ in a. . 

Proof. The expression 

of Theorem 6.3 equals 
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We have only to show that the difference between (7.2) and (7.3) 
approaches zero as T approaches infinity strongly in a$. Remember 
that f belongs to the space C;(G(A)l, K). Therefore the two operators 
~ L ( P ,  X)pv(P, X ,  f )  and &(P, X)pm(P, X ,  f) act through a finite 
dimensional subspace of WP). Moreover, they both vanish for all but 
finitely many TT. We need only estimate the integral of the function obtained 
by multiplying BT(\) with the difference between 

and 

for any i f  â < , T ( ~ ) .  By definition, the first inner product equals 

while the second one is just 

According to Corollary 9.2 of [5(e)], the difference between the two is 
bounded in absolute value by 

where e is a positive number, r(X) is a locally bounded function on i a i  and 
T remains within a region 

When the difference is multiplied by B,(X) and then integrated over X ,  the 
result certainly approaches zero as T approaches infinity strongly in a$. 
The theorem follows. 0 

The theorem tells us that in calculating the polynomial P ~ ( B )  we may 
work with (7.1) instead of the inner product of truncated Eisenstein series. 
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However, the situation is not yet under control, for it is not so easy to see 
what happens to (7.1) as A '  approaches A. Then it is necessary to integrate 
the result against a smooth, compactly supported function of A,  and deter- 
mine the behaviour as T approaches infinity strongly in a:. These ques- 
tions have a combinatorial flavour, and will be tackled in the next paper. 

Appendix. We must derive the three propositions of Section 2 from 
the results of [l(b)]. Unfortunately the paper [l(b)] is quite difficult to 
read, partly because the exposition is too brief, and also because there are 
a large number of proof-reading errors. However, there are no serious er- 
rors, and it is our hope that the paper can still be understood by a suffi- 
ciently tolerant reader. 

Proof of Proposition 2.2. The assertion of Proposition 2.2 is just the 
formula (1.3), but with the domain for T described quantitatively in terms 
of the support of f .  The formula is essentially Lemma 2.4 of [l(b)]. 
Although we cited [l(b), Theorem 3.21 in Section 1 as our justification of 
(1.3), the main ingredient of the theorem is just this lemma. In fact, a 
glance at the proof of Theorem 3.2 of [l(b)] reveals that it is valid for any 
T for which Lemma 2.4 holds. Our task, then, is to find conditions on T 
for which the lemma is valid. 

Referring to the proof of Lemma 2.4 of [l(b)], we see that the lemma, 
and hence formula (1.3), is valid for any T such that 

vanishes for each pair Pi c P2 of distinct (standard) parabolic subgroups. 
The symbols here are all defined in [l(b)]. It does not matter exactly what 
they are. The main point is that the expression (A.l), as a double integral 
over x and 7, is absolutely convergent. This was established in the proof of 
Theorem 2.1 of [l(b)]. An inspection of the proof of this theorem reveals 
that T can be any point for which the properties of the truncation 
operator, derived in Section 1 of [l(b)], hold. In particular, for the ab- 
solute convergence of (A.l), T does not depend on f .  

The support off intervenes in the proof of the lemma through a con- 
stant C, introduced on page 106 of [l(b)]. We shall write C = C ' o  denote 
the dependence on f. The constant has its origins in the proof of Theorem 
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2.1 of [l(b)]. It is characterized as follows. For each a in A D ,  the basis of 
(a:, )* dual to 

let A be a fixed rational representation of G with highest weight da, for 
some d > 0. Choose a height function 1 1  . 1 1  for A, as in [l(a)], and let v be 
a highest weight vector. Then Cf is any constant which for each a is 
greater than the supremum, as x ranges over the support off in G(A)', of 

Now we can choose constants c1 and nl  such that for each a, 

Suppose that f belongs to C^(G(A)'). Then if x lies in the support off, 

for each a and the associated A. It follows that there is a constant Co, in- 
dependent of f ,  for which we can set 

Cf = Co(l + N), 

for any f ? C^(G(A)') and N > 0. 
It is shown on page 107 of [l(b)] how to choose T in order to make the 

expression (A.1) vanish. T need only be chosen so that for every element s 

in O(Pl, P2) there is a function a in A>2 such that 

As in [l(b)], Q(Pl, P-,) is a certain set of elements in the complement of the 
Weyl group of (Mpp Ao) in the Weyl group of (Mp2, Ao). It is easy to 
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check that this condition on T will hold for all Pi 5 P2 whenever a(T) > Cf 
for every a in Ao; that is, whenever 

dpo(T) > Cf = Co(l + N). 

It is for these T that the formula (1.3) holds. This gives Proposition 2.2. 0 

Remarks. 1. This proof does not require that f be infinitely differen- 
tiable. As in Lemma 2.4 of [l(b)], f need only be differentiable of suffi- 
ciently high order. 

2. Nowhere did the proof depend on the class x ? X. Therefore the 
constant Co in Proposition 2.2 can be chosen independently of x. 

The other propositions of Section 2 will follow from a quantitative 
version of Theorem 3.1 of [l(b)]. Suppose that KO is a subgroup of finite 
index in 

Suppose also that W is an irreducible representation in H(Kv). Given 
P 3 Po and TT ? II(M~(A)'), let @ L ( P ) ~ ~  be the space of KO invariant 
functions in @^^(P), and let G ( P ) ~ ~ , ~  be the subspace of functions in 
Q ~ , ~ ( P ) ~ ~  which transform under K R  according to W. This second space is 
finite dimensional. If A is any operator on @^ (̂P) for which Q . : ,~ (P )~~  
(resp. @:,T(~)Ko, w) is an invariant subspace, let A K  (resp. A K  w) denote 
the restriction of A to Q^ ,~ (P )K~  (resp. < a w ) .  Now, choose a left in- 
variant differential operator A on 

as on pages 108 and 109 of [l(b)]. Then A acts on G ( P )  through each of 
the representations pXT(P,  A). The operators 

have Q. : ,~(P)~~ and @iT(~)Ko,w as invariant subspaces. If &(PI Ko,w is 
not zero, p&, X, is the product of the identity with a real 
number greater than 1. 

Up to this point, x has been a fixed class in X. For the next lemma x 
will not be fixed, but will instead index a sum over all the elements of X. 
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LEMMA A.I. W e  can find positive integers Cn, do and m which 
satisfy the following property. For any subgroup K O  C Kf of finite index 
and any T ? 0.0 with dpo(T) > Co, the expression 

is bounded by 

where C K  is a constant which depends only on KO and \\ 1 1  1 denotes the 
trace class norm. 

Proof. Except for the dependence on T, this lemma is just Theorem 
3.1 of [l(b)]. We shall combine the proof of this theorem with an argument 
that was used in Section 4 of [l(a)]. 

The operator 

is positive definite. It leaves the spaces CT^(P)~,  invariant, and com- 
mutes with pv(P, A, A). Consequently, each operator 

is positive definite. It follows that the expression (A.2) equals the sum over x 
â X, P 3 Po, IT â II(M~(A)') and W 6 n(KR), of the integral over A 6 

ia;/ia?;, of the product of 1 (P(Mp) \ ' with 

Define functionsg, andg2 on G(N1  as on page 111 of [l(b)]. Then 

equals the product of the Dirac distribution at 1 in G(R)', with the 
characteristic function of K O  in G(Af) divided by the volume of KO in G(Af). 
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(Am acts through the Archimedean valuation as a left invariant differential 
operator.) The functions g1 and g2 are both invariant under conjugation by 
Kv. The support in G(A)' of each function is bounded independently of KO. 
Moreover, by taking m to be large, we can insure that the functions are dif- 
ferentiable of high order. For simplicity set 

and 

with x, v, P, W and X being as in (A.3). Then 

The expression (A.3) equals tr(QD), which is bounded by 

Since D is a positive scalar which is less than 1, this is in turn bounded by 

According to Corollary 4.2 of [l(a)], g l  and 81 can each be expressed 
as a finite sum of convolutions h * h' ,  where h and h' are functions on 
G(A)' which are differentiable of high order, are bi-invariant under KO, 
and whose supports are bounded independently of KO. Then (A.3) is 
bounded by a finite sum 

in which 

and 
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Let 0 '  be the positive definite square root of Q. We have 

by the Schwartz inequality. Applying the Schwarz inequality again we see 
that (A.2) is bounded by a finite sum, each term of which is the product of 
the square root of 

with the square root of the corresponding expression in (hl)* * h' .  Now 
(A.4) equals the sum over x ? X of 

This last expression is just 

an expression to which we can apply Proposition 2.2. (See the two remarks 
following the proof of the proposition.) We obtain a constant Co such that 
(A.4) equals 

whenever dpo(T) > Co. 
We have shown that m and Co can be chosen such that (A.2) is 

bounded by a finite sum of functions of the form 
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l 2  E ~ " ( ( h  T * h '))ll2 E J^h  *h*)\ IXCX Lit 
for all T with d p o ( T )  > Co. However, ~ " ( h  * h*)  and J"((h')* * h ') are 
polynomials in T whose degrees are independent of x. Moreover, the sums 
over x converge. The required estimate for (A.2) follows. 

We return to the setting prior to the lemma, in which the class x 6 X 
was fixed. Suppose for a moment that P 3 Po and IT 6 II(M^(A)') are also 
fixed, and that <f) is a vector in %,,(P). There is certainly a K O  such that <f) 

belongs to O^(P)~ , , .  Moreover, we can find integers fly and co such that 

for all \ 6 ia;. It follows from the lemma that there is a constant c$ such that 

for all T with dp,,(T) > Co. This estimate is a weaker version of the lemma 
and will be used in a subsequent paper. 

Proof of Proposition 2.1. The constants Co and do required by the 
proposition will be those given by Lemma A.I.  Fix f 6 c>G(A)'). There 
is certainly a K O  such that 

for each P, IT and A. We have 
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Suppose that n is a positive integer. It is certainly possible to find a con- 
stant c,',f such that 

for a\\P 3 Po, -IT 6 II(M~(A)') and X 6 ia;. Proposition 2.1 follows from 
Lemma A.1 with 

Proof of Proposition 2.3. Fix f 6 C?(G(A)'). The functions 

have uniformly bounded support. Therefore, by Proposition 2.2 there is 
an integer C (depending on f )  such that 

for all T I ,  r2 6 II(K) and all T with dpo(T) > C. The formula 

then follows from Lemma A.l  by an argument which is similar to the proof 
of Proposition 2.1. This completes the proof of the last of the propositions 
of Section 2. 
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