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MULTIPLIERS AND A PALEY-WIENER THEOREM
FOR REAL REDUCTIVE GROUPS

James Arthur

The classical Paley-Wiener theorem is a description of the image
of Cc(OR) under Fourier transform. The Fourier transform

f(A) = f(x)eAX dx
-00

is defined a priori for purely imaginary numbers A, but if f has

compact support f will extend to an entire function on the complex
plane. The image of C((R) under this map is the space of entirec
functions F with the following property - there exists a constant
N such that

supflF(A) e-NIRe Al(1 + lIm A)n] <
AeC

for every integer n. (There is a similar theorem which characterizes
the image of the space of compactly supported distributions.)

Our purpose is to describe an analogous result for a reductive
Lie group. We shall also discuss a closely related theorem on

multipliers, a result whose statement is especially simple. Both
results were proved in detail in the paper [1]. We will be content
here to just describe some of the main ideas. In the case of groups
of real rank 1, the theorems were proved by Campoli [2]. The new

ingredients for higher rank are (a) a scheme for keeping track of

multi-dimensional residues, reminiscent of Langlands' work on

Eisenstein series [9(b), Chapter 7], [9(a), 10], and (b) a theorem
of Casselman on partial matrix coefficients of induced representations.

A number of mathematicians have proved Paley-Wiener theorems
for particular classes of groups. We mention the papers of Ephrenpreis
and Mautner ([4(a)], [4(b)]), Helgason ([7(a)], [7(b)], [7(c)], [7(d)]),
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Gangolli ([5]), Zelobenko ([10]), Delorme ([3]), and Kawazoe
([8(a)], [8(b)]) in addition to the thesis of Campoli cited above.

1. A MULTIPLIER THEOREM

Let G be a reductive Lie group, with Iwasawa decomposition

G = NoAoK.

We shall assume that G satisfies the general axioms of Harish-Chandra
in [6(a)]. We shall denote the Lie algebras of Lie groups by lower
case German script letters, and we will add a subscript C to denote

complexification. Thus,

g = no0 a0E k.

Let

H = C7(G,K)c

be the Hecke algebra. It is the space of functions in Cc(G) whose
left and right translates by K span a finite dimensional space; it

becomes an algebra under convolution. We are interested in multipliers
of H. By this, we mean linear maps

C: H+ H

such that

C(f * g) = C(f) * g = f * C(g),

for every f and g in H. (This condition is equivalent to saying
that C commutes with the left and right action on H of the

universal enveloping algebra of gB.)
Suppose that C is such a multiplier and that T belongs to

II(G), the set of irreducible admissible representations of G. Then

IT(C(f)) = C TT(f), f E H,
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for a complex number C which is independent of f. The multiplier
will be completely determined by the map

1r C

Because of Harish-Chandra's subquotient theorem, we can actually
restrict our attention to the principal series. Recall that if M0
is the centralizer of A0 in K, the principal series

I(a,A), a E HI(M), A E aOT

can be defined to act on a Hilbert space U which is independent of
A. It is irreducible for almost all A, so that CI(,A) is defined.
As a function of A, CI(U,A) is analytic and extends to an entire

function on aO,. If i is equivalent to a subquotient of I(a,A),

C = CI(a , )

Thus,

(a,A) + C( A), a 11(Mo), A aO,*,I(aA)' 0 A£ TC

is an entire function in A which completely determines C. It

provides a very concrete way to realize any multiplier.
As an example, consider the center s of the universal

enveloping algebra of BE. If z E Z, then

C(f) = zf, f fH,

is a multiplier of H. To represent it as above, let aK be a Cartan

subalgebra of m0. Then

h = iaKK a0

is a real vector space, and is a Cartan subalgebra of the split real

form of g'. Its interest comes from the fact that it is invariant
under the complex Weyl group W of (gS,h). Let yz be the

W-invariant differential operator on h obtained from z by the
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Harish-Chandra map. We shall regard yZ as a W-invariant distribu-
tion on h which is compactly supported. (It is in fact supported
at the origin.) Its Fourier transform

Yz(V), v h*,
*

is a W-invariant polynomial on hc. If tJ is the linear functional
*nlaKwhich defines the If ioin iaK which defines the infinitesimal character of a representation

CE II(Mo),

CI(oA) = Yz(l~ + A), a,.
The multipliers from this last example are of course well known.

They extend to the full convolution algebra Cc(G). Since they are
defined directly for any function f, it is not really necessary to

look at the function CI(,A). It turns out, however, that there is

a richer family of multipliers for H which do not in general extend
to Cc(G). These multipliers are intrinsically more algebraic, and
can only be described by the functions CI( A).

THEOREM 1. Let y be any compactly supported, W-invariant
distribution on h. Then there is a unique multiplier C of H

such that

C(A) = Y( + A)

for all a II(M0) and AG a0 (

2. THE PALEY-WIENER THEOREM

Theorem 1 describes multipliers in terms of the Fourier transform
on H. In order to prove it, we must characterize the image of H

under Fourier transform. For any f E Ht, set

f(a,A) = I(a,A,f) = f(x)I(a,A,x)dx,
G

with a E H(MO) and A E aoa. Then f(o,A) is an entire function
of A which, for any a, takes values in the space of operators on
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Uo. It is K-finite, in the sense that the space spanned by the
functions

(o,A) + I(a,A,kl)f(a,A)I(a,A,k2),
indexed by k1 and k2 in K, is finite dimensional. There is a
constant N, which depends in a simple way on the support of f, such
that for every n,

sup (11 f(,A)lleNlRe ll(1 + Im All)n) <
(a,A)

The function has another property, which comes from the various

intertwining maps between principal series. Suppose there is a
relation

Xk=l Dk(I(k, Ak, x)uk, vk)) = 0 (2.1)
valid for all x E G, in which each Dk is a differential operator
on ao, acting through Ak, and uk, vk are vectors in U .

Integrating this against the function f(x), we see that

Xk=l Dk(f(k, Ak)uk, vk) = 0.

Relations of this form are common, but are not easy to characterize
explicitly. For example, there will be such a relation any time an
irreducible representation occurs in two different ways as a
composition factor of the principal series.

Let PW(G,K) be the space of functions

F: (a,A) -+ End(Ua), a E II(MO), Xao,¢,

such that

(i) F(o,A) is entire in A.

(ii) F is K finite.

(iii) There is a constant N such that for any n,

sup (II F(o,A)ll e- l' Re All (1 + IIIm All )n) <
(u,A)
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(iv) Whenever a relation of the form (2.1) holds, we have

Xk=1 Dk(F(ak Ak)uk Vk) = (2.2)

There are natural topologies which turn both H and PW(G,K)
into Frechet spaces. Our Paley-Wiener theorem is

THEOREM 2. The map

f - f

is a topological isomorphism for H onto PW(G,K).

As we shall see in the next section, Theorem 1 is an easy
consequence of Theorem 2. However, the proof of Theorem 2 is

considerably harder.

3. PROOF OF THEOREM 1

Following an argument of Campoli, we shall derive the multiplier
theorem as a corollary of Theorem 2. Suppose that y is a compactly
supported, W-invariant distribution on h, and that f belongs to H.
Theorem 1 amounts to showing that

(a,A) -+ y(ia + A)f(a,A) (3.1)

is the Fourier transform of some other function in H. By Theorem 2,
we need only show that this function belongs to PW(G,K). The first

three conditions in the definition of PW(G,K) clearly hold. We

must establish the less obvious fourth condition.
Now y is an entire, W-invariant function on h~. Its Taylor

series converges everywhere, and consists of polynomials on ha
which are W-invariant. It follows that

jy()= =l yz (v), v E he,
for a sequence {z}3 of elements in 2. Butfor a sequence
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Y^ (Vc + A)f(a,A) = (zjf)'^(a,).j

If we have a relation (2.1), we can integrate it against (zjf)(x)
to obtain

k l Dk(z N(p + Xk)f(ak Ak)Uk Vk) = 0.
Jk

D k(z
Since a convergent Taylor series can be differentiated term by term,
the relation holds also for the function (3.1). So the function does

belong to PW(G,K) and y does define a multiplier.

4. EISENSTEIN INTEGRALS

In the rest of this paper we shall try to give an idea of the

proof of Theorem 2. It is almost immediate that the Fourier transform

maps H into PW(G,K). The problem is to show that the map is

surjective. This amounts to being able to construct the inverse

map from PW(G,K) to H.

It is convenient to work within Harish Chandra's framework of
Eisenstein integrals. Let T be a unitary two-sided representation
of K on a finite dimensional Hilbert space V . Theorem 2 has an

equivalent formulation in this context. The Hecke algebra is replaced
by the space Cc(G,T) of smooth, compactly supported functions from
G to V which are T spherical. The original Paley-Wiener space
is replaced by a space PW(G,T) of entire functions from a0,i to

the finite dimensional vector space

A = Cc(Mo,).

If f e Cc(G,T), let f be the function in PW(G,T) such that

(f(A), ) = j (f(x), Ep (x,q, -A))dx,JG '0

for any A E a0g and q e AO. Here, Ep (.,-,) is the Eisenstein

integral associated to the minimal parabolic subgroup

PO = NoAoM.
It is essentially a matrix coefficient of the representation I(a,A).
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Theorem 2 is equivalent to the assertion that for any T,

f-* f

is a topological isomorphism from C®(G,T) onto PW(G,T).c *
Suppose that for j = 0, 1, ..., n, A. is a point in a. and

Sj is a finite dimensional subspace of the symmetric algebra on aO,.
Suppose that F is a function in PW(G,T). For any j, let

dS F(A )
J. J

be the vector in

Hom(Sj,A0)
whose value at any p Sj is the derivative

2(p)F(Aj).
After a little thought the reader will believe the following.

LEMMA 1. There is a function g E C (G,T) such that

dS F(Aj) = dSg(Aj)
for j = 0, 1, ..., n.

See Lemma III.2.1 of [1].
This lemma is actually equivalent to the analogue of the condition

(2.2) for PW(G,T). It asserts that a function F in PW(G,T) is

locally the Fourier transform of a function in Cc(G,T). The result
we are trying to prove is that F is a Fourier transform globally
(i.e., for all A).

5. CHANGE OF CONTOUR

The function F E PW(G,T) will be fixed from now on. We are

attempting to construct a function f E Cc(G,-) whose Fourier
c
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transform is F. From Harish Chandra's Plancherel formula ([6(b)])
we know that any such f can be written uniquely as a sum of T

spherical Schwartz functions, indexed by the associativity classes of

cuspidal parabolic subgroups. The only one of these functions which
we can write down at the moment is the one which corresponds to the
minimal parabolic subgroup. It equals

Fp (x) = i EP (x, p(A)F(A),A)dA,
O iaO 0

where p(A) is the Plancherel density. We must somehow obtain from
this a function of compact support.

Let a be a point in

Ao = exp a0,

the positive chamber in A0. Then

Ep (a, p(A)F(A), A) = I ~(a, p(sA)F(sA), sA), (5.1)
0 sEW0

where W0 is the restricted Weyl group, and >(a, iu(A)F(A), A)
is a function defined by a convergent asymptotic series whose leading
term is

(i(A)F(A))(1)e(A-p)(1og a)

As a function of A, '(a, p(A)F(A), A) is meromorphic. Its poles
can be shown to lie along hyperplanes of the form

<B,A> = r, r E R,

for roots B of (g,aO). Only finitely many of these singular
hyperplanes intersect the negative chamber -(a*) in a0.

+ 0
Thus, for fixed a E AO, Fp (a) is given by the integral over
* 0

A ia0 of a function which is asymptotic to

I (u(sA)F(sA))(1)e(sA-p)(log a)
seW0

The proof of the classical Paley-Wiener theorem suggests that we
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should change the contour of integration to X + ia*, where X is
some large vector in a*. However, there is an immediate complication.
While some of the terms in the integrand will be seen to be small
after such a change of the contour, other terms will only blow up.
It is necessary to first change variables. Let c be a very small
vector in -(a) . Then0

Fp (a) = J Ep (a, i(A)F(A), A)dA
0 iaO 0

=c+ia ( i 0(a, p(sA)F(sA), sA))dA.
c+ia* sEW

With a change of variables we then see that Fp (a) equals
'0

s sE+i*(a, p(A)F(A), A)dA. (5.2)
sk SE+ ia*0 0

Now, each integrand will be asymptotic to

((A)F(A) ) ()e(A-p)(l0og a).

If each contour of integration is replaced by X + ia*, where X is

a point in the negative chamber -(a*) which is far from the walls,
we might expect the result to vanish for large a E A. Incidentally,
C was introduced because the summands on the right of (5.1) could

have singularities which meet iaO, even though their sum is regular
on ia*

If X is any point in -(a)+ which is far from the walls, the

integrand in (5.2) is analytic on X + ia*. Define

F (a) = W0O1 X ~(a, ip(A)F(A), A), a E A+.

LEMMA 2. There is a number N such that r(a) = 0 whenever

Illog all > N.

See Theorem II.1.1 of [1].
Set G = KAoK. It is an open dense subset of G. If



x = klak2

is any point in G_, define

f(x) = T(kl)r(a)T(k2).
The last lemma states that the function f has bounded support. It
is our candidate for the inverse Fourier transform of F. It is not

yet clear that f extends to a smooth function on G. However, we
do know that F'(a) differs from (5.2) by a finite sum of residues.
The main difficulty in the proof of Theorem 2 is to interpret these
residues.

6. THE CASE OF REAL RANK 1

In order to get a feeling for what is required in general, we

should recall Campoli's argument if G has real rank 1. This simply
means that the integrals in (5.2) are over one dimensional spaces.
The resulting residues will be evaluated at a finite number of points,
AA ,A ... An, in the closure of -(a) . Then F+(a) equals the
sum of FY (a) and a function

0
n

F u(a) := Res ~(a,i(A)F(A),A), (6.1)cusp j=O A=A.

on A. (Of course, it is understood that the residues are taken with

respect to some isomorphism of a* with ]R.)
Let us illustrate the process with a diagram, in which a* is

represented by a broken vertical line.
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(at)+
EO-£ ?

origin

A 1

\ 0

n

X 1

Each large dot stands for an integral over an imaginary space, of

dimension 0 or 1, which lies above the dot. With the arrows, we
have shown how to move the contour over the point E to the contour
over X. The contour over -c is moved the same way, except that
there might also be a contribution from a residue at the origin.

We would like to show that Fv extends to a r sphericalcusp
function on G which is a sum of matrix coefficients of discrete
series. Consider (6.1) as a function of F. For each j there is

a finite dimensional subspace Sj of the symmetric algebra on a*O,
such that (6.1) depends only on the vector

n
= dS F(Aj).
j=0 j J

It follows from Lemma 1 that there is a function g E Cc(G,r) such

that (6.1) equals
n

X Res ~(a,J(A)g(A),A).
j=O A=Aj

Now apply what we have shown so far to the function

G(A) = g(A)

in PW(G,T). Then
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G'(a) G (a) + G (a)cusp P(
= Fcusp'(a) + Gp (a).

On the other hand, g is a Schwartz function, so that

g(x) = gsp(x) + G (x), xE G,

for a uniquely determined function gcusp which is a sum of matrix
coefficients of discrete series. It follows that

F c (a) - G(a) = g (a) - g(a)cusp cusp

for each a e AO. However, both G'(a) and g(a) are of bounded

support on AO. This means that Fc (a) equals g (a) outside01 cusp cusp
a bounded set. Since both functions are analytic, Fc extends to

cusp
a smooth, T spherical function on G which is a sum of matrix
coefficients of discrete series.

By its definition, Fp (x) is a smooth, T spherical function on
G. Therefore the function

f(a) = F'(a),

which we know equals

Fc sp(a) + Fv (a),cusp Po

extends to a smooth, T spherical function on G. Since it has bounded

support on AO, it belongs to Cc(G,T). Moreover,

f(x) = Fusp() + F (x)

must be the decomposition of f according to associativity classes
of cuspidal parabolic subgroups. (If G is not cuspidal - that is,
G has no discrete series - the function Fc will of course be

cusp
zero.) It follows without difficulty that

f(A) = F(A).
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This gives the proof of Theorem 2.

7. HIGHER RANK

If the real rank of G is greater than 1, it is considerably
more difficult to interpret the residues. We will do nothing more
than try to get a feeling for the main ideas by looking at the case
of SL(3, R).

For G = SL(3, ]R), the space a* has dimension 2. For

simplicity we will assume that for each positive root, the function

<,(a, tJ(A)F(A), A)

has exactly one associated singular hyperplane which meets the negative
chamber -(a*). This leaves three singular hyperplanes to contend

with, which we will represent in the diagram below by unbroken lines

The broken lines stand for the walls of the chambers in a*. Each

large dot stands for an integral over an imaginary space of dimension

0, 1 or 2, which lies above the dot.

\ \ /
/

1 lo\ / (0)
\ '\/

___ __ _ __ _ _/_ ___

2
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The diagram again illustrates what happens when we move the contour
of integration from c + ian to X + ia*. As we cross each of the
three singular hyperplanes, we pick up a residue consisting of an

integral over a space of dimension 1. We would expect these terms
to give the contribution from induced discrete series (induced, that

is, from maximal parabolic subgroups). Such representations are of
course tempered, and can correspond only to the points on the singular
hyperplanes which are closest to the origin. We must therefore move
the contours of the 1-dimensional integrals to 1-dimensional imaginary
spaces over these points. In so doing, we pick up further residues,
at points on the diagram labelled with O. We would expect the sum
of these to give the contribution from the discrete series. Since
G = SL(3, IR) has no discrete series, the sum should vanish.

It is clear that there will be some bookkeeping problems for

general groups. However, it is possible to handle them with an

induction hypothesis. Consider the 1-dimensional residues on the
horizontal singular hyperplanes (of which there is just one in our

diagram). Such residues are eventually moved over to the vertical
line which passes through the origin. This vertical line corresponds
to the Levi component of a maximal parabolic subgroup. In fact, the

geometry of the. 1-dimensional residues on the horizontal singular
hyperplanes will be identical to the geometry of the O-dimensional
residues for the Paley-Wiener theorem for the Levi subgroup.

We assume inductively that Theorem 2 is true for the Levi

component M of any proper parabolic subgroup of G. To exploit
this, however, we need something more. We require a natural

procedure for lifting functions from M_ to functions on G_ which

generalizes the Eisenstein integral. Such a procedure is provided
by a theorem of a Casselman.

8. THE THEOREM OF CASSELMAN

Suppose that J is a meromorphic function from a*, to A0
such that the function

+(a, J(A), A)

is analytic at A = Ao. Let D = DA be any differential operator on
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aOG. Define

T(x) = T(kl)(DA0 (a,J(Ao), AO))T(k2)

for any point

x = kl a k2, a E A+, kl, k2 K,

in G_. Then V is a Z finite, T spherical function from G to
V . Let A(G_,T) be the space spanned by all functions obtained in
this way. We would expect A(G_,T) to be the space of alZ Z finite,
T spherical functions from G to V . However, I have not thought
about this question. Let A(G,T) be the subspace of functions in

A(G_,T) which extend to smooth functions on G. Again, we would

expect A(G,T) to be the space of all Z finite, T spherical
functions from G to V .

Suppose that

P = NAM

is a parabolic subgroup of G. The Levi component M is reductive,
so we can define the space A(M_,T) as above. (It consists of
functions from M to V which are spherical with respect to the

restriction of T to Kn M.) If d belongs to the subspace A(M,r)
of A(M_,T), and

x = nmak, n N, me M, a e A, kE K,

is any point in G, define

Xp(x) = 4(m)T(k).

We also write, as usual,

Hp(x) = log a,

an element in the Lie algebra a of A. Then the Eisenstein integral
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fr~ . (X+p) (Hp)kx))
Ep(x,,) = (k) p(kx)e dk,

as a function of x, belongs to A(G,T). It depends analytically on

X E a.

THEOREM 3. (Casselman) The Eisenstein integral can be extended
in a natural way to a linear map from A(M_,T) to A(G_ ,T), which

depends meromorphialZZy on a point X E a*.

The theorem seems quite remarkable to me. The map certainly
cannot be defined by an integral as above, for the integral in general
will not converge. However, the map turns out to be just what is
needed. It allows one to identify the sum of 1-dimensional residues
in§7 with a wave packet of Eisenstein integrals associated to the
maximal parabolic subgroups. One can then identify the O-dimensional
residues with the discrete series of G by following the argument of
§6.

This paper is an exposition of the results in [1]. The work was

supported by an NSERC operating grant.
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