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The Trace Formula for Noncompact Quotient

1. In [12] and [13] Selberg introduced a trace formula for a compact,
locally symmetric space of negative curvature. There is a natural algebra
of operators on any such space which commute with the Laplacian. The
Selberg trace formula gives the trace of these operators. Selberg also
pointed out the importance of deriving such a formula when the symmetric
space is assumed only to have finite volume. Then the Laplace operator
will have continuous as well as discrete spectrum; it is the trace of the
restriction of the operator to the discrete spectrum that is sought. Selberg
gave such a formula for the quotient of the upper half plane by SL(2, Z).
(See also [6] and [8].) Selberg also suggested how to extend the formula
to any locally symmetric space of rank 1. Spaces of rank 1 are the easiest
noncompact ones to handle for they can be compactified in a natural
way by adding a finite number of points. I have recently obtained a trace
formula for spaces of higher rank. In this article I shall illustrate the
formula by looking at a typical example.

2. Let X be the space of n by n symmetric positive definite matrices of
determinant 1. The group G = SL(n, R) acts transitively on X as iso-
metries by

g: p- gppg, pe , geG.

Since the isotropy subgroup of the identity matrix is K = SO(n, R), we
can identify X with the space of cosets G/K. Suppose that F is a discrete
subgroup of G. Then the locally symmetric space

x = r\x
can be identified with the space F\G/K of double cosets. We are inte-
rested in the spectrum of the Laplacian on L2(X). Let 'K be the space
of smooth, compactly supported functions on G which are left and right
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invariant under K. It is a commutative algebra under convolution,

(fi*f2)()= f, f(y)f(y-1u)dy, u e G.
o

For any f e AK, define the operator R(f) on L2(\G/IK) by

(R(f) )(x) = f(y)#(Xy)dy, q e L2(\GI/K).

This gives a homomorphism of the algebra . into the algebra of bounded
operators on L2(r\G/K). The corresponding representation of RK1on
L2(X) commutes with the Laplacian. Since the Laplacian can be approxi-
mated by operators R(f), the problem of the spectral decomposition
of the Laplacian on L2 (X) is included in that of the spectral decomposition
of AK on L2(r\G/K).

Suppose that f e . and 4 e L2(r\G./K). Then

(R(f)O)(x) = f (y)y(xy)dy = ff(x -y)4(y)dy
G a
I Zf($-1yy)4(Y)dy,

r\Gaer

since G is unimodular and 5 is left r invariant. Thus, R(f) is an integral
operator with a smooth kernel

K(, y) = Zf(x-yy), , y e r\G.
yer

If r\G is compact, the trace of the operator will be obtained by inte-
grating the kernel over the diagonal

f Zf(xlyx)dx = tr R(f).
r\G ver

Selberg's formula is obtained by grouping together those elements in r
with the same eigenvalues and taking the integral separately of each
such term. The result is a sum of G-invariant integrals over semisimple
conjugacy classes of G.

3. From now on, we will take r to be the discrete subgroup SL(n, Z)
of G. Then F\G has finite invariant volume, but is no longer compact.
The integral of K(x, y) over the diagonal does not converge.

However, it is possible to modify K(x, x) by some functions on r\GI/K
which are supported near infinity and which reflect the various directions
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in which the integral can diverge. The functions are parametrized by the
standard parabolic subgroups

Pa = N,,M,
indexed by partitions

== (nl, ...,X r), 91+ ... +nr = n,

of ni. The group Mn is the intersection of G with

GL(n1, R)x ... xGL(r, R),
embedded diagonally in GL(n, R), while N, is the group of matrices
which differ from the identity by a matrix with entries only above the
diagonal blocks of M,. It is easy to show (using a variant of Gram-Schmidt
orthogonalization, for example) that any x e G can be decomposed as

X == nmkc,
with c e K, n e N., and the element

m = ml... mr, mi e GL (ni, R),
belonging to M,. The decomposition is not unique, but the vector

H,(x) = (logldetmll, ..., logldetml),
which lies in the vector space

a, = i(,7 *... ER:)e R ' = 0 ,

is uniquely determined by x. Note that if no is the partition (1, ..., 1)
corresponding to the minimal parabolic subgroup, there is a natural
projection

(t, ..., tn)= At- = (t=+... +tnl tnl+ +.. +tn2 ....)
of ao onto a, such that (H,0(x)), = H,A(x).

The modified kernel depends on a truncation parameter
T = (t, ..., tn)

in aO such t - t+1 is large for each j. For any partition n let z, be the char-
acteristic function of the set of vectors (ul, ..., Ur) in a, such that

U,+ ... +Ui > u +i+ ... +Ur
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for each i = 1, ..., r-1. The modified kernel is

C(-l)'"'+l C Cr f('sz 18 lynbx)(H,(&x)- T.)d n,^(.1)131+1 Z I ^/(^r1^^^^f)-^)
n FePns\GfNn YeM

where It| = r denotes the length of a. Note that if n = (n), so that M, = G,
the function r, is identically one and the group N, is trivial. The corre-
sponding summand is K(x, x) itself. The other summands, as functions
of x, are defined on r\G and are supported only near infinity.

Let 0 be the set of equivalence classes in F = SL(n, Z) of matrices
with the same (complex) eigenvalues. The modified kernel can be written

ko(as f)
06(E

where

k(xf) (-1)1v = f)f('+ -l-yn6) ( (b)-Tx)dn.aa8ePn ha1 n coin .oa daePn NxyNeMxno
As we would hope, the function k1(x, f) is integrable. (One actually has
to prove that Z Ik\T(xf)ldx is finite [1, Theorem 7.1].) The integral

0 raG

S kT(Xf)d&,
r\G

defined a priori only if t -ti l is large for each i, turns out to be a poly-
nomial in T [3, Proposition 2.3]. We let Jo(f) denote its value at T = 0.
The left hand side of our trace formula will be

Jo(f).
oeO

It is a generalization of the formula for compact quotient. For if the class o
intersects no proper parabolic subgroup P,, as is always the case when
the quotient is compact, there are no correction terms and Jo(f) is just
a G invariant integral over a semisimple conjugacy class in G. In general,
though, Jo(f) is more complicated. If o contains only semisimple matrices,
Jo(f) will still be an integral over a semisimple conjugacy class, but some-
times with respect to a measure which is not G invariant. If o contains
matrices which are not semisimple, Jo(f) will be a sum of integrals over
several conjugacy classes.

The proof of integrability requires some knowledge of the geometry
F\G near infinity. If C is a compact fundamental domain for 2gon ri N ,,
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the set

a, 2
S-· *a,*.:a>O, aj/a+l>K-K

is an approximate fundamental domain for F in G [7]. This means that
FS = G, but only finitely many F translates of S intersect S. In par-
ticular, there are (n--1) independent co-ordinates which can approach
infinity. One studies the function k(xc, f) as x approaches infinity in the
direction of each partition a = (n, ..., r), in the sense that if

al
xa = n . . k C, keK,E

an
the co-ordinates al/an+i are each large, but all the other co-ordinates
aj/a,+ remain within a compact set.

4. The other main difficulty in the noncompact case is the existence of
continuous spectrum. This means that the right hand side of the formula
for compact quotient has also to be seriously modified. The continuous
spectrum has been completely characterized in terms of the discrete
spectrum of spaces of lower dimension. It is handled by means of Eisen-
stein series, whose study was begun by Selberg, and completed by Lan-
glands [9], [11]. If s is a partition of n, let M' be the subgroup of elements

m = m ... mr, mi e GL(ni, R),
in MX such that Idetmil = 1 for each i; let A, be the subgroup of elements
m such that each mi is a positive multiple of the identity matrix. Then
M. is the direct product of M' and A.. If K, = M,XnK, we can define
a convolution algebra Odof functions on M' exactly as above. Eisen-
stein series are associated to eigenfunctions of d'K in L2(rnM,x\M1f/K,).
Suppose that 0 is such an eigenfunction. Set

<(x) = (m,
for any element

x = mank, m E M4, a e A nt E N,, k e J.

If A belongs to a*®C, the space of complex linear functions on a, the
Eisenstein series is defined by

E(x, , A)= , X(d)e6(+e,)(,'(Z'))
5er nP'\r
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where oe is the linear functional which maps any vector u = (ul, ..., Ur)
in a, to the dot product

/n-1 n-3 n-3 n -1
22 2 22''"' ( ...

...?
'.U'v,).2l Or

The Eisenstein series actually converges only for certain A, but Lang-
lands shows that it can be analytically continued to all A as a meromor-
phic function which has no poles when A is purely imaginary. There is
a functional equation which relates E(x, 4, A) to the Eisenstein series
in which the co-ordinates of A are permuted by an element w in SlN (the
symmetric group on \In letters). For then

w-t -= (nw(l) ***., 'w(r))
is another partition to which one can associate an eigenfunction we and
a linear functional wA. One can choose an orthonormal basis S, of the
subspace of L2(FrI \MlI/KE) spanned by the eigenfunctions such
that wn-,= w,, for each w, and on which the functional equations are
especially simple. For any 0 e Er, the functional equation is just

E(x, 4, A) = m(w, 4, A)E(x, w), wA),
with m(w, a,A) a meromorphic function of A. When A is purely imagin-
ary, m(w, 4, A) has absolute value 1. It can be decomposed

m(w, , A) == (A,-
{(iJ): i<, w(i)>w(j)}

where A = (A,, ..., Ar) and m, (z) is a meromorphic function of one complex
variable. m,(z) equals the classical function

+2 +2 )(z+1)
if r= to, but is obtained from a more general L-function for arbitrary a.

(See [10].)
The importance of the function E(., 40, A) is, of course, that it is an eigen-

function of a'K. Indeed, it is not difficult to see from the definition that
for any f e OK,

R(f)E(., 4, A) = E(.,RB,(fx)A,A),
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where RB denotes the action of on n,L2(\(F X\Ml/E), and

fnA(m) f ff(man))e(A+Q3)(H'(a))dadn, m e M1.
N, an

For each i, f-+f,, is in fact a homomorphism from X'K to K . We are

assuming that 4 is an eigenfunction of Add; that is,
BR(g)& = h,(g)0, g E -xV,

for a complex valued homomorphism h, of a'K1. It follows that

h¢,. f->nh (nA)
is a complex valued homomorphism of ('K and

R(f)E(., 4, 2) - h,,A(f)E(,, t2).
If s = (n), E( , 4), 2) is just 4, which by assumption is square integrable.
However if nr (n), E(*, 4, 2) will not be square integrable, and so will
not lie in the discrete spectrum, Suppose that

= (n, t..n)
is another partition of n, which equals wnr for some permutation w. Then
if A is purely imaginary and 0 E , there is an asymptotic formula

e¢n'(Hn)E(X, (, A) Z- m(w, ,A).(wO),~,(x) 6(")(,'(x))
(W: wet=n'}

as x approaches infinity in the direction of 7'. Since the function on the
right is oscillatory and not square integrable in this direction, iE(, ),, A)
cannot be square integrable. Incidentally, from this we recognize the
functions {mr(w, , A)} as higher dimensional analogues of the classical
scattering matrix.

5. Langlands shows that as n, 4 e 9. and 2 e ia* vary, the Eisenstein series
exhaust the spectrum. This gives a second formula

X Ifh2fh ,A(f)E(x, 0, A)E(y, ), A)dA
n I-m ni3*n

for the kernel K(x, y). (It is convenient to take d2 to be the measure on
ia* which is dual to the Lebesgue measure associated to the basis

(1 -1,Poc ..., o), ..., ( ..., 1, 1)
2 Proceedings..., t. II
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of a,.) The summand with n = (n) is just the kernel of the restriction
of R(f) to the discrete spectrum.

We have already discussed how to truncate (x, y) so that it can be inte-
grated over the diagonal. The main result of [2] is that the second formula
may be truncated in an apparently different way, more suitable to cal-
culation, without changing the integral. The resulting integral is there-
fore a polynomial in the variable T of truncation. From its value at T = 0
we would hope to extract the trace of R(f) on the discrete spectrum toge-
ther with some terms. The answer turns out to be simpler than one has a

right to expect. We will do no more than quote it.
Consider a partition

a = (nil ...,r)
of n. Let A be a fixed point in ia* and let

5 (t1,.*..,),0 e MR,
be a variable point in ia*. (The co-ordinates i of $ are uniquely deter-
mined modulo diagonal vectors (o, ..., o$).) Suppose for the moment
that , is any vector in 2,. It is a simple exercise to show that

mn(w, 4, 4)-" (w, 4,, A+ f)
,sw( w(l)- ~w(2)) *... ( $w(r-1)- w(r))

is a regular function of $ e ia*-despite the apparent singularities from the
denominator. Let /z,(O, A) be its value at a = O. It is an interesting ratio-
nal expression in the functions m(w, 4,, A) and their derivatives, which re-
duces to a logarithmic derivative if r = 2. More generally, suppose that
a1 is a partition of n which is finer than a. Then ia is naturally embed-
ded in ia*nand S. = 8,l represents certain cosets in S,,, modulo the
subgroup of permutations in S1 which leave ia* pointwise fixed. Conse-
quently, the expression above makes sense if b is taken to be a vector
in 3,. It too is regular in $ eiaC, so we continue to denote its value at
a = 0 by /z(o, A). Given n, let SS (a) be the set of vectors 4 in S1, such
that woe = 4 for each w in the subgroup of S,,,I which leaves ia* pointwise
fixed. For this set to be nonempty, n, must necessarily be of the form

w/he, ec, r n,
dl' ' dl' I dr )r

where each d, is a divisor of no.
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The formula for the integral of the second truncated kernel (at T = 0)
ends up being

SSX.J r!r(d... dr)2
nl31 4I() a*ia~

with the numbers r, d1, ..., dr related to r and as above. (This formula
is a special case of the main result, Theorem 8.2, of [4].) Actually, the
terms must be grouped in a certain way to ensure convergence. This is
because one does not know that R(f) is of trace class on the discrete
spectrum. Suppose for simplicity that the complication is not present.
If nt1 equals (n) so does r, and the corresponding term is just the trace of
R(f) on the discrete spectrum. Our final formula then expresses this
trace as

VJo(fj-oeC r!(d d )2

where the sum is over petitions and with (), and vectors
where the sum is over partitions a. and XT with 7tl :/- (n), and vectors

e R= (x). We reiterate that the only terms left over from the case of
compact quotient correspond to classes o which meet no proper parabolic
subgroup. All the other terms are peculiar to the noncompact setting.

In general, though, we do not know that R(f) has a trace on the dis-
crete spectrum. The most that can be said at present is that R(f) is of
trace class on the space of cusp forms, a subspace of the discrete spectrum.
Grouping the terms slightly differently will then give a formula for the
trace of R(f) on the cusp forms.

6. The main applications of the trace formula are actually to be found
in a more general situation. WNe change notation slightly, writing KR for
SO(n, R) and G(R) for SL(n, R), with G now standing for the algebraic
group SL(n). The adele group G(A) is defined as the group of elements

(g9R g2 93g ... 9p *.. ),
with gR e G((R) and gp E G(Qp) for every prime number p, so that gp actual-
ly belongs to the compact group KY = G(Zp) for almost all p. It is a lo-
cally compact group in which G(Q) embeds diagonally as a discrete sub-
group. It is not hard to show that natural embedding of G(R) into G(A)
induces a diffeomorphism

G(Z)\G(R)IKRn^-,>G(Q)\0(A) IK,
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where
KE =-KRXK2X x ...xKx ...

The algebra EK, whose action on L2(G(Z)\G(R)/KR) we have been
looking at, is now seen to be part of a larger algebra. Let *'K be the space
of smooth, compactly supported functions on G(A) which are left and right
K invariant. It is also a commutative algebra under convolution. It acts
on the space L2(G(Q)\G(A)IK) (and hence also on L2(G(Z)\G(R)/KR)
and on L2(X)). Thus, by introducing the addles, we can see that the spec-
tral decomposition of L2(X) comes with some rich extra structure that
is not apparent at first glance. Everything we have discussed above ex-
tends and we obtain a trace formula for any function in *AK. Note that
an eigenvalue of ^K will be a formal product

h =hsah2 s... hp..
of homomorphisms. It is the relationship of these local homomorphisms
with each other that is expected to carry the interesting number theoretic
information.

More generally, there is no reason to ask that functions be invariant
under K. The associated convolution algebra will no longer be abelian,
but that does not matter. Nor does G have to be SL(n). It can be any
reductive algebraic group over Q. With arguments that follow the general
pattern outlined above one can establish a trace formula for any operator
B(f) on L (G(Q)\G(A)), withf a smooth, compactly supported function
on G(A). For more details, we refer the reader to the survey article [5].
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