Some tempered distributions on semisimple
groups of real rank one

By JAMES ARTHUR”

Introduction

The Selberg trace formula leads naturally to the study of certain
tempered distributions on reductive groups defined over local fields. An
important problem is to calculate the Fourier transforms of these distribu-
tions. We shall consider this question for the case that the local field is R
and the group G is semisimple and has real rank one. In this context the
notion of the Fourier transform of a tempered distribution has been defined
in [1(a)].

A distribution T is said to be invariant if

() = T(f)

for every fe C*(G) and y € G, where

fi@) = flysy™), veG .
The invariant distributions which appear in the trace formula have recently
been examined by Sally and Warner. However, the trace formula also
contains some interesting noninvariant distributions. In this paper we shall
calculate the Fourier transforms of the restriction of these distributions to
C(@), the space of cusp forms on G.

For the case that G = PSL(2, R) these noninvariant distributions have
already been dealt with. Here one utilizes the known formula for a matrix
coefficient of a discrete series representation of G. This enables one to
calculate the required Fourier transform (see, for example, [21]). For the
general case, however, new methods are needed.

The basic distributions that we shall consider are the ones which appear
in term (9.1) of [1(b)]. They are parametrized by the R-regular points

{oi:teR, t =0, a,e A}

of the noncompact Cartan subgroup of G, and will be denoted by T(t, a.).
In Section 5 we show that 7(t, «,) satisfies a second order nonhomogeneous
differential equation, which becomes homogeneous if we restrict T(¢, a,) to
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Cy(G). This reduces our problem to a search for boundary conditions.

At first glance, the study of the point ¢ = = might seem promising.
This in fact would work if we were to calculate the Fourier transform of
T(t, a,) on C,(G), the space of functions in C(G) that are orthogonal to C(G).
The beundary condition can be expressed by means of the constant term of
the Eisenstein integral. The Fourier transform turns out to be a sum of two
components, cne which is not invariant and invclves the derivative of the
constant term, and another which is invariant but rather complicated. We
shall give the details in another paper.

However, the asymptotic behavior of functions in €(G) is not yet well
enough understcod for us to obtain a suitable boundary condition at ¢t = =.
Instead, we take the limit as ¢ approaches 0 of a certain distribution that
involves the derivative of T(¢, a,) with respect to ¢t. As we show in Corollary
6.3, this limit defines an invariant distribution. We obtain from it a bounda-
ry condition which eventually allows us to compute our Fourier transform
on C(@) in Theorem 7.2. In the process we derive a rather curious Jacobian
formula (Theorem 6.4).

In Section 4 we introduce & distribution T'(z,) which is closely related
to T(t, a;). We obtain the Fourier transform of T(a.) in Corollary 7.3. Dis-
tributions of the form 7T(«,) also appear in the trace formula. They are the
noninvariant components of term (9.2) in [1(b)].
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1. Preliminaries

Suppose that G is a connected semisimple Lie group of real rank one, We
shall assume that G is contained in G¢, a simply connected complexification
of G. Let g be the Lie algebra of G, and let

be a fixed Cartan decomposition of G with Cartan involution 4. Let K be

the analytic subgroup of G corresponding to f. Then K is compact.
Let a be a fixed maximal abelian subspace of p. Then the dimension of
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ais one. Let A = expa. Fix an abelian subspace a, of f such that
h=a +a

is a Cartan subalgebra of gq. Let m and M be the centralizers of ain f and K
respectively. Then a, is a Cartan subalgebra of m. If A, is the centralizer
of hin K, A, is a Cartan subgroup of M.

Fix compatible ordering on the real dual spaces of a and a + ia,. Let
P be the set of positive roots of (gc, Hc) with respect to this ordering. Let
P. be the set of roots in P which do not vanish on a and let P, be the com-
plement of P_in P. P, can be regarded as a set of positive roots of (nic, a,c).

Let /¢’ be the linear functional on a which equals one half the largest
positive restricted root of (g, a). Extend the definition of 2’ to § by defining
it to be zero on a,. Let us fix an element H' in a such that #'(H') = 1. De-
compose g with respect to the adjoint action of a. Then

q = Q. @ aO @ i @ J-1 @ Jz
where if Xeg,, —2=n =2,
|[H', X] =nX.
Let
.= dimg, = dimg_, ,
r, = dimg, = dimg_, .
Let B be the Killing form of gc. The restriction of B to b is non-
degenerate, so we can lift B to the complex dual space of §c. Then
B(H', H') = B(/, /)" = 1*,
if +° = 2(r, + 4r,).
The Cartan involution # lifts to an automorphism of G which we shall
also denote by 4. Let n = g, P g, and let N = expun. Then

6(N) = exp 6(v) = exp(g_, P g-.)

For an element 7 in N we shall sometimes write # for #(n). Then

W—"n

is an isomorphism from N onto N = 4(N).
From now on we shall write

h, = exptH', teR.

This identifies the group A with the additive real numbers. We shall also
write
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Slexp H) = em™, «aeP, He Y .

¢, 1s a quasi-character on the Cartan subgroup exp bc of G¢. In particular
it defines a quasi-character on A,- A.

There are two possibilities for g. Either any Cartan subalgebra of g is
G-conjugate to § or there exists a second G-conjugacy class of Cartan sub-
algebras, which has a representative contained in f.

LEMMA 1.1. There is a Cartan subalgebra b of g with b=t if and only
if there exists a root 5 in P. which vanishes on a,.

Proof. Let ¢ = rank g — rankf. Then ¢ equals 0 or 1 depending on
whether b exists or not. By the Iwasawa decomposition

dimg —dimf=[P.] +1.
For any root & in P. define
a’'(H) = a(6H) , Hey.

Then —a’ is also a root in P.. a = —a’ if and only if « vanishes on a,.
Therefore [P.] is odd or even, depending on whether a root 8 in P. which
vanishes on a, exists or not. Since the number of roots of a reductive Lie
algebra is always even,

(dim g — rank g) — (dim f — rank f)
is an even integer. Therefore
[P]+1—¢
is an even integer. This proves the lemma. L

LEMMA 1.2. Suppose that there exists a root G im P. which vanishes
o .. Then 8 = 247,

Proof. Suppose that 5 = /¢'. Choose a root « of the form 2¢¢ + «, for
some linear functional «, on Hc which vanishes on ac. We shall show that
«, can be chosen to be zero.

Notice that

2B(ee, B) _ 2By + a,, )

B(s, 5) B¢, 1)
— 4B(A”’y /‘t,) =4 .
B(i7, 1)

Therefore

/Z + oy, &, _/'5’ + oy, _21"!, + 241
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are all roots of (gc, Hc). We also have

2B(a, ) _ 2B + o, @) _ 9
B(a, a)) B(a,, o)) )

This implies that & — «, = 24 is a root of (gc, Oc). Therefore 28 is a root
of (gc, Hc). This is a contradiction.

Let A! be the set of semi-regular elements in 4, of noncompact type;
that is, those elements a, in A, such that g(a,)’, the derived algebra of the
centralizer of a, in g, is isomorphic to sl(2, R). Then a, isin A} if and only if

(i) thereis a 8¢ P. which vanishes on q,,
and

(i) é.(a,) = 1for e P. — {B}.

Now suppose that B is a root in P, that vanishes on a,. Choose a root
vector X' for @ such that

_B(X', 0X") = %7*2 .

Let Y/ = —6X’'. Then

[H', X'] = 2X',
[H', Y] = —2Y",
(X', Y] = H'.

Since 8 is a real root, X' and Y’ are contained in g. The subalgebra [ of g
generated by {H’, X', Y’} is isomorphic to sl(2, R). Our notation is con-
sistent with [3(b), § 24]. Following Harish-Chandra’s paper, we set

Z(4) = {1, 7},

where v = exp (7(X' — Y")). Then A, = Z(A)A!, if Al is the connected
component of A,.

Fix an element a,in 4]. Let G, and g, be the centralizers of a, in G and
g respectively. Then

a4 = I@ a .
LeMMa 1.3, G, is connected.

Proof. Suppose that G7 is the connected component of the identity in
G, and let G; be any other connected component. Take v~ in GI. Notice
that

(PG = Gi

Replacing v* by one of its left Gi-translates, all of which lie in G|, we obtain
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an element in G; which normalizes a. Now there is a representative in G’
of the nontrivial element of the restricted Weyl group of (g, a). Therefore
we can find an element in G;” which leaves a pointwise fixed. In other words,
every component of G, contains some element in M. On the other hand,
since a, is semi-regular, the only elements of M which leave «, fixed belong
to A,. Therefore

G, = A-G = Z(4A)-AG) = Z(A)G) .
Since Z(A) S Gy, G, is connected. O

We remark that g, = a, @ [ is independent of the semi-regular element
@, which we chose. @, is the analytic subgroup of G corresponding to the
Lie algebra g,, so G, is also independent of «,.

In the future we shall be dealing with Haar measures on certain sub-
groups of G. We shall normalize them now for once and for all.

For any X in g, write

| X|* = —B(X, 6X) .

This defines a Euclidean norm on g and on any subspace of g. In particular
it defines a Euclidean measure dN on 1. We define a normalized Haar
measure dn on N by

S S()dn = S é(exp Ndn e C(N) .

More generally for any subspace q of n we shall define a measure on expq
from the Euclidean measure on q. Similarly, we define a measure on exp q
for any subspace g of i.

We normalize the Haar measure da on A by

S‘iqﬁ(a)da = SR,O'(ht)dt , 5e C(A).

For any compact subgroup H of K, choose the Haar measure on H which
assigns to H the volume one.

If a,is an element of A, let g(a,) and G(a,) be the centralizers of @, in g
and G respectively. Then

G(al) = K(al)'A'N(al)
is an Iwasawa decomposition for G(a,) where K(a,) = K n G(a,) and N(a,) =
N N G(a). Let do, be the Haar measure on G(a,) defined by

S o2 )da, = S o(kn.a)dk.dn,da , 6e C2(G(ay)) .
Gilags K A

fapix Niag) .

In particular, this defines a Haar measure dz on G.
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Finally suppose that H is a unimodular Lie subgroup of G with a distin-
guished Haar measure di. Let dx* be the unique G-invariant measure on
G/H defined by

Sgp'(x)da; = S

We shall normalize all measures according to these conventions without
further comment.

s(x*h)dhdx™ , 6e C(G) .
X H

G

2, A function on N

There is an important function on N whose properties we must discuss
before we define our distributions.

For any a2 e G, let 25, @y, and a, be the elements in K, N, and A respec-
tively such that » = zxv,. Put H(z) = log (z,). H(x)isin a. Define

Nn) = ' (H(R)), neN.

It is known that \(7) is a nonnegative real number. It has been computed
explicitly by Helgason ([4(b), Th. 1.14]). We describe his formula.

The map
(X, Y)——expXeexpY =exp(X +7), Xeg,, Yeg,

is a diffeomorphism of g P a. onto N. For any Z in g recall that | Z|* =
—B(Z, 0Z). Then if

n=expX-exp?Y, Xzg,, Yeuq,,

the formula is
\(77) = - log [(1 + 2 XW) + 2 Yqﬂ].
2 23" ”

Let w be a representative in K of the nontrivial element of the re-
stricted Weyl group of (g, a). Helgason has proved in [4(b), Lemma 1.15],
that w can be chosen such that w® lies in the center of . By replacing w
with an element of the form m;'wm.,, for some m, in 3, we can assume
that Ad(w) maps o, onto itself. Notice that for any X in g,

fw i Xw| =X,
Since
wogw =g, = 4(3,) , i=1,2,
we see from the above formula for \(%) that
A7) = MwTTmw) .

We shall refer to the element w later on.
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For Xeg, Yeq,
exp X-expY =exp(X +Y) =expY-exp X.
On the other hand for X, and X, both in g,
exp X,-exp X, = exp(X, + Xg)-exp<%[Xl, X2]> .
There is a constant ¢, such that
X, X = e XX X, X;eq .

LEMMA 2.1. There is a constant C such that for ne N,a, € A, and t suf-
fictently large,

NAE-ah T aThTY — AMA) = Ce
Proof. Let n = exp X-expY, Xeg, Yeg. Then
weafi, o ealr

= 0(n-ahi -0~ arthy)

= f(exp X -exp Y -exp(— X e *)-exp(— Ve %))

- 0<exp(X - e‘tX“I).exp< Y — ey — %e"[X, X])) ,
where

Z% = Ad(a)Z , Zeyg.
Therefore
Niead,-mTar et — (@)

is one-half the logarithm of

<1 + X - eXw> + 2ly ey — Loix, x|
2.1) 21 -

Replace the numerator of this expression by the sum of
2
(1+ Hixe) + Zyve
2,).2 ,).2
and a remainder R(¢, ¢, X, Y). Now,

Xu| =X[, Y2 =Y,
and

X, X4l S ap X P
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Therefore we can find a constant C such that

Bt 0, X, V)2 e[ (1 ) + Sy

,
It follows that the expression (2.1) differs from 1 by a function that is
bounded by Ce f. The lemma then follows. O

There is another consequence of the formula for \(7) which we shall
eventually need. For any ne€ N we can choose elements X(»2) and Y(n) in
g, and g, respectively such that

= ng-n,-exp X(n)-exp Y(n).
LEMMA 2.2. Both | X(n)] and | Y(n)| are bowiided functions of .
Proof. Suppose that » = exp X-expY, Xeg, Yeg,. We have

To= Tlgeiiy 7, -
Suppose that

iy = v = exp R(n)-exp S(n) , Rn)eg,, S(n)eg,.
Then

Therefore v, = #,, so that

(2.2) (1 +

IR P + Hism = (1 ixe) 2

Now we have

exp X(in)-exp Y(n) = 7y -exp R(n)-exp S(n)- i,
exp (7" R(n))-exp (e #™S(n)) .

Il

Therefore
X)) = L1 L
[(1+ Zoixp) + 2ive
Zp re
and
V()| = o S
|1+ Lixe) + 2]
21 T
A glance at formula (2.2) shows that these functions are bounded. ]

[

3. The distributions T(¢, a,)

Assume for the remainder of this paper that there is a root £ in P.
which vanishes on a,.

Following standard notation we write
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A(a'lht) = Haep (Sa‘/ﬂ(a'lht) - E—-alZ(a'lh't)) ’ a, e A1 ’ teR ’
Ayla,) = Haepj[ (Ealz(aq) - E—a/z(%)) ’ a, €A, .

For real t # 0, and a, € A, define the following distributions:
(T, a), f> = sgnt-A(alh,t)~S Flkn-ahe-n-kN@)dndk |
KxN

{F(t, a), fr = sgnt-A(ah,)- SA Vf(kn-alht-n‘lk‘l)dndk , feCz(G).

These integrals are easily seen to converge absolutely.
The distribution F'(¢, a,) is well known. In Harish-Chandra’s notation

K@, a), [ = FAah) -

F(t, a,) is tempered, and invariant. We mention it only for the sake of
comparison. Its Fourier transform can be readily computed in terms of the
characters of the principal series. On the other hand, T'(¢, ¢,) is not invariant.
Accordingly, its Fourier transform is considerably more complicated. Of
course we must first of all show that T(¢, a,) is tempered. This will permit
us to regard T'(¢, a,) as a continuous linear functional on C(G), the Schwartz
space of G.

Let C(G) be the closed subspace of C(G) generated by the K-finite matrix
coefficients of all the square integrable representations of G. It is known
([3(c)]) that C(G) is nontrivial if and only if there is a compact Cartan sub-
group of G. Unlike F'(¢, a,), the distribution 7'(¢, a,) does not vanish on
C(@). It will be our goal in this paper to calculate the Fourier transform of
the restriction of 7'(¢, a,) to C(G).

There is a slightly different formula for our distributions which we
shall need. Define a function A on G as follows: if x = kna, ke K, ne N,
ac A, let

A(x) = (7)) .
Suppose wnw = Y. Then My) = M(#). We also have
sw =kw-veat
= kw-vy v, .at
Since
A(z)y = M) = ((H(T,)) ,
we have

Ax) = ¢/ (H(zw)) + 1/ (H(z)) .

In particular A(zw) = A(z). A is actually defined on G/A, so for the normal-
ized measure da* on G/A we have
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(T, a), > = sgnt-Ala,he)- SG/A Fla* - aghe w* A e .

Let W, be the normalizer of the Cartan subalgebra § in G modulo its

centralizer in G. W,,, operates on the roots of (mc, a,c). For any y in W,
let

Py = {a¥: e Py} .
Define ¢,(y) to equal 1 or —1 depending on whether [P} N (— Py)] is even

or not. ¢, isa homomorphism of W, into the multiplicative group {1, —1}.
Now for any y in W,,, the map

x— Y

is a diffeomorphism of G/A that preserves the measure da*. Since A(ry) =
A(z) we obtain the formula

T, a?) = ex(y) T(¢, a) , ye WG,b .

The same argument applies to the diffeomorphism x — 8(x) of G/A. It
follows that

T(—t, al) = T(t, a’l) .
These formulae also imply that

(T, a), f> = sgnt-A(alhl)-SK _fler-ah w- k@A .

There is a well known Jacobian formula on N which we should mention
before proving that T'(¢, a,) is tempered. Suppose that a, € 4, t is a nonzero
real number, and that ¢ ¢ Co(N). If

‘0 = ZaeP,_a

ro |-

then

sgn ¢« Adayhy)- Sﬁp’(ﬁ- ahy T arh)d R
(8.1) ¥
= ¢ A (ay)- S_p’(ﬁ)dﬁ .
-
This is a consequence of [3(b), Lemmas 11 and 12].
LEMMA 3.1, For fized a, and t = 0 the distribution T(t, a,) is tempered.

Proof. Since T(t, a,) is symmetric in ¢, we may assume { > 0. For
fe C(G)

[T, a), f)]
< | Ala,he) |- SK I FRT e ) [ M)A
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If we set

V= f-ah 0 arthit
we can regard 7 as a function of ¥, ¢, and ¢,. Then from (3.1), [<T(¢t, a,), f) ]
is bounded by

¢ | A (ay) {.S VT sk k) |\ (@)dEdE .
KN

We must show that \(#) is bounded by a suitable function of v, a,, and ¢.

Now

Ay =70 = n-ah, 7 ear Ryt

Il

H(meahy - n~ arhy) .

Suppose that

n=expX-expY, Xeg, Yeg.,
and
y=expR-expsS, Reg,, Seg.
Then
R=X—¢tX",
and
S=Y— ey — —i—e‘f[X, X].
Therefore
XS (R[-L—-e),
and
YI=(S|+eta|X[)Q—e™)
=81 —e)yt Faet-Q—e)RP.

It follows that there exists a constant C,, independent of ¢, a,, R, and S such
that

2
.
i

(1 g 1XF) = 51

gCO-(l—e")‘G-[<l+ ! [R[2>2+%i8|2].

S 7.2

Therefore
M7) = log [Cl — ¢7)7°] + MD) .
We have shown that | (T, a,), /) | is bounded by
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et Ay | 1S ke k)|
(log [C.(1 —we"‘)“’] + \(V))-dvdk .

For any », let

1F il = sup.. @) | E@) (1 + o)) .
Then for any 7,

TR, a), £ S e -1 Aya) i fll
-STE(Dalh,y(l 4 o@-ak)) - (log [CA — ¢ )] + \(@)dT .

From [1(a), Lemma 11], it follows that /'(H(x))/(1 + o(x)) is a bounded func-

tion on G. On the other hand, in [3(c), Lemma 21], Harish-Chandra proves
that there is & number »’ such that

et‘""[”"‘g E@-a.h) (1 4+ 0@ a.h)) 7 dD
converges and is bounded independently of ¢ and «,. It follows that T'(¢, a,)
is tempered. O

From the proof of this lemma we also have

COROLLARY 3.2. For feC(G) and t == 0 the integral
sgnt-A(ant)-S AT ead TR (@) Ak
PR

18 absolutely convergent and equals (T(¢, a,), f>. M
If we express the estimates of the lemma more precisely we obtain

COROLLARY 3.3. For every positive integer d there is a continuous semi-
norm i i, on C(G) such that for any t > 0, a, € A, and f < C(G),

[<T(t, a), o1 = lifliv-log (L —e)-(L+8)7.
Proof. Suppose that ve N, a, € A, and ¢t > 0. Then
(1 + f(HEah) " =1+ M) +t)
which is bounded by (1 + #)~*. Therefore we may takel| ||) to be a multiple
of I fly.rr O
t. The bechavior for ¢ near 0

There is another distribution that is also of interest. It may be obtained
by examining the behavior of T'(t, a,) as t — 0 +.

For a, ¢ A, let u(a,), a.(a,), g.(a)), and N(a,) be the centralizers of a, in n,
a,, 4, and N respectively. Suppose that n(a,) 0. Let P.(a,) be the set of



566 JAMES ARTHUR
roots « in P, such that Z.(a,) = 1. Set
A*(%ht) = Haep_PA(al) (Ea/Z(alht) - E—alz(alht)) .

Let d7, dn*, and d#, be the normalized invariant measures on N, N/N(a,),
and N(a,) respectively. Then
an = dn,dn* .
For f e C2(G), define

(T(a), [> = A*(al)'g _ __ fER* e m TR 0(R AR d R dE

ExN{NlapxNlay)
where ¢ is a function defined on N(o,) as follows:
If g(a) =0, a(eXp (X, + Y1)) = log | X, X egoi(a),

Y eg ia),
and

if ga) =0, olexpY) =loglY,]|, Y. eg_fa).
Clearly the expression
S_ FURT* - i, k) 6(7,)d A,

depends only on the N(a,)-coset of #*.
Now {T'(t, @), f> equals

L NCIAL S P a- Tl A k) ) d R d T dk .

KExXN[NiuyixNia;
We are going to make a change of variables in this integral. Let
v = whnrthit

= G(n.h7nth,) = 6(v) .

Suppose that
n* =exp(X+7Y), n, =exp(X, + Y), v=exp(R +S)
for Xeg, Yeg, X, Regla), and ¥, Segy(a). Then
v=-exp(X, + Y)-exp(—e'X, — e™Y)
=exp(X,(1 — e + Y1 —e™)

so that

X, =R(1l—-¢")"
and

Y, =81 — e,
It follows that
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n*n, = exp X-exp Y-exp [R(1 — 7)) ']-exp [S(L — ¢ *)7']
=exp[X + R(1 —e )]

.exp[Y LS — ey 4 %[X, R( — e-f)—l]].

Therefore x(ﬁ*ﬁ) equals one half the logarithm of

( ety

Y + S0 — e —[X R —e7) l]L

2
_2

Let us write M(7*: ¥) for M(#*7,), since 7, is a function of ¥ for ¢ > 0.
Let 0* = (.5, ®)/2. Applying the formula (3.1) to the group N(a.)
we see that {T(¢, a,), /> equals

Sn*a, - Bh,-w* k™) M(B*: V)dvdr*dk .

etp*(H')_A*(alht),S 3
ExN{NiaxXNiay:

Suppose that g.(a,) == 0, and that B = 0. Then

MuFIY) + = log 1 —ey

= %log {((1 — e+ | X(L e + R ]2)2

2@ - Y SO+ (X RO = e )]

y

The limit of this expression as t — 0+ equals

2
Llogl: 12 ’“’] .
2 27

On the other hand, suppose that g,(a,) = 0 and that S = 0. Then

M@+ 9) + L log (L — ¢ = Llog {(1 — e‘“)2<1 + Xt)
; : .
+ 21— | Y+ SO - e
e

The limit of this expression as ¢t — 0+ equals

L log [_ |S]2].
2 P
For t = 0 define

S(t, a)) = T(t, ) + —log (1 — )" F(t, a) if g(a) =0,

or
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S(t, @) = T(t, @) + —-log (L= eF-F(t, a) if g.(a) =0

Then we use the Lebesgue dominated convergence theorem and the above
formulaze to obtain a formula for (T(a,), /> if f ¢ C7(G). The result is

(T(@), > = log (VE1)CF(O, @), /) + L lime . (S, @), 7>,

if g(a,) =0,
(T(a), > = log (r1'2)-(F(0, a), f> + lim, ., <S(t, a,), 1>

if g.(a,) =0.

We shall have occasion to use the distributions S(¢, a,) to calculate the

Fourier transform of T(¢, @,) on C(G). If C,(G) = 0 thereis a compact Cartan

subgroup B of G, and so by Lemma 1.1 there is a root 5 whose restriction
to a, is trivial. 5 = 2/ by Lemma 1.2.

Suppose that @, is in A, the set of semi-regular elements of non-compact

typein A, defined in § 1. Then 3 is the only root in P, such that ;(a,) = 1.

Take a function fin C(G) and put

S a1 = -L S, a), £
dt

We shall find a formula for
Hmt—ﬂ- {S’(ty a/l)v J-/\' - /\Sl(_qt’ a/l); f>} .

In §1 we introduced the root vector X' in g, corresponding to 5. For
real 2, let

n(z) = exp (0 X) .
For the other roots {«} in P. let {X,} be a fixed set of root vectors. Put

n* =nmn Zaep, CX,.

#

Then w* = g* @ grifgf =g, nn*, i =1,2 Let N* = expu*. Wehave the
diffeomorphism

(1, &) —— " n(x)

of N* » R onto N. According to the conventions in § 1, dn* is the measure
on N* defined by the Euclidean measure on n*. For f<c C7(N),

g S)dn = 1/7()8 . Rf(’n*-n(a;))da;dn* ,

since | X'| = »/v 2.
For Xeg, Yeg?, write
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n* =n*X,Y)=expX-expY.
We have

Manfa( = e ) + = log (1 — ¢}

10g{<1+$§X12> 1‘—%]}1 + 2}l — ey 211——10g(1

Il

[\;I;_A N|r—* [\./|)—‘

1Og{ 27" S %(1 _ e—2t) } + %log (1 _ e—zz)z

1og {(1 _ 6—21)216215', + {’;2} .
Fix fe C2(G). Set ¢(t: n*: x) equal to
e“’"’””-A*(alht)-S Sl n(w)-a.h, 7 RTdE

Then (S(¢, a.), f) equals

21;?'&\-” o(t: n':w)-log {(1 — e7*)e” ™ + 2f}dn da .

The function

a R e Y, 2 PRI P
Vel S\ ’Rp(t. n*: w)-log {&*ldn*dx

is differentiable at ¢ = 0. Therefore
91/—

lim,_.. {<S'(¢, @), F) — (S'(—t, @), F}

is the limit as ¢t — 0+ of the difference of

4(1 = e7¥).e M. gt
4.1) qu o(t: w*:a) 1 e 1 dn “d
and
4ot Lot 250mn
4.2 S ) Y Ml At LML PP P
( ) AR 0( ) (1 — 6+2z)262¢;n T

We shall show that the limit of each of these terms exists.
The term (4.1) equals

w*)

‘2t 2~
48;\'»«‘0,(& ¥ (1 — e‘”)b)——Tdn*dm

569

—Zt)i
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Now notice that

, ‘ g .
S 80 ¥ 0)—————dn'de
¥=xR [ [

o0

dax
-1 4

- S Co(0: m*: 0)et T dn S
= | s 00
N

Since fis of compact support, this last integral is absolutely convergent.
Therefore by the Lebesgue dominated convergent theorem, the limit as ¢ —
0+ of (4.1) exists and equals

47:8 (0 n*: 0)e M dn* .
N
Similarly, the limit as ¢t — 0+ of (4.2) exists and equals
~4:S o(0: ¥ 0" ™ dn* .
N*

We have proved the following:
Levmvia 4.1, For a,€ Al and fe CG) the limit
lim, ... {{S'(t, @), f) — {S'(—t, a), [}

exists and equals
2V 27 A% (a,)- \  FkrteamrT T Tt N
For fe C2(G), write
/':S*(al)vj.> - hmt%"*- {S/(ty Cl}), j.> - <S’(_ty al)y f>} .
Then S*(a,) is a distribution on G. We shall show later that it is both
tempered and invariant.

5. A differential equation

The distributions F'(¢, a,) satisfy a well-known linear homogeneous dif-
ferential equatiocn. By studying Harish-Chandra’s proof of this fact we shall
show that the distributions 7(¢, a,) satisfy a linear non-homogeneous differ-
ential equation.

Let @ and JC be the universal enveloping algebras of gc and b respec-
tively. For any X in gc and any ¢ in 8, write

R(9) = gX,
L;(g) = Xy .
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For every root « in P fix root vectors X, and X_, such that
BX,X .)=1.

Then [X.,, X_.] = H,, where H, is the vector in b such that

B(H,, H) = a(H) , He Y .
Define

§ =2 _,.(CX, +CX.).
8 is a subspace of gc. Let § be the image of the symmetric algebra on 3
under the canonical mapping. § is a vector subspace of G.

Fix a regular element ¢ in 4, A, the Cartan subgroup of G corresponding
to the Cartan subalgebra §. It isclear that there is a unique linear mapping
r:$QIiI—¢

such that
(i) T,AXRu) = u, uecI
(i) Tu(X, -+ X, ®u) = (Laay—rx, — R,Yl) cor (Lsavx, — Ry u,
X, -, X, €8 uecI.
Harish-Chandra has shown that the restriction of T, to & @ K maps & & IC
bijectively onto & ([3(a), Lemma 15}). Let &' be the set of elements in & of

strictly positive degree. Then it is obvious that for any ¢ in & thereis a
unique element £.(g) in K such that g — 8.(g) is in I' (&' ® I().

Let {H}and {H,, - - -, H,} be orthonormal bases of ac and a,c respectively,
with respect to the Killing form. If w, is the Casimir operator on G,
w, =H+ -« + H: + ZHP H, + 22“1, X . X..

Let @ be the sum of @, and (1/2) 3 _, H. |1, where I is the identity opera-
tor. @ is in 3, the center of 8. We would like to find the element in 5 ® I
whose image under T, is ».
Suppose € P. Then
F.’r(X—eru ®1 = (LAd(xr"t.x;a - RX_,()(LM(/:*UX& - RX“)I
= (Le v, — Be W)X — X)
= (57X, — X)X o+ LX) X, — X
= X X1 — () + 1= 32 + (1 — Z(W)He,
since
XX, =X X, +H,.
Therefore
Gonlt) — )T AKX
equals
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X—"(Xz‘( - (1 - Ea(/t)ﬁl)(Sa/;’.(Au) - E—!Y/Q(A“))igHa .

Since

1 + 2(1 - S:i(/!’))(:ia/:’.([") - S—a/Z(FO)iZ
= (S8 + FoapI))(Zarel) — (),
we see that H, + 2X_,.X, equals

F,<1 . Sapa(tt) + S_ap(29) -Ha> — 21 — (/D) T (X XL -
N ) = ) (o) = £oonlr) G

We have shown that
(5.1) o =T,(1Q L) + 2 ., e ()O(X_. X, ®1)
where
au() = —2(5l2) — Faplt9)
and 8.(w) equals
e s B (ST B
There is a well-known homomorphism v of = onto the set of elements

in JC invariant under the Weyl group of (gc, bc). It is an easy calculation
to show that

Y(w)=H!+ -+ + H.
See [1(a), p. 6.11]. Harish-Chandra has shown that for any element z in =
Bu(2) = (er(t)A(1)) () (er(1DA(2)) -
See [3(a), Theorem 2]. This formula can also be proved directly for z = w
from our formulae for v(w) and B.(®). (The symbol sr(#) follows standard
notation of Harish-Chandra. We shall also permit ourselves to write eg(t)
for
er(h:) = sgnt,
whenever ¢ is a nonzero real number.)
Now let us apply (5.1) to the distributions 7(t, a,). For any f in C(G)
and x in G write
flopa™) = fe ) = fm(zp)
Then for any X in ¢,
F@ X p) = L faexp tX: )|

Do

in the usual notation. This equals
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f;lgf(“v‘ exp (tX)-p-exp (—tX)a ™)

- 4 . —1
= dtf(oo exp (tX)px™)
= fot (wes Ad(e )X — X) .

- % Flop exp (EX)w)

=0

However,

fapa™ 0) = fo-(op; 0)

since w lies in the center of §. By (5.1) and the definition of the map I', this
equals

Flo: 5 Bu@) + T, 0l (@3 XXt 1) -
Now suppose that our regular element g equals 'a,h,, for a, in A, and
t# 0. As wesaw in §3, {T(¢t, a,), /) equals
eR(t)A(alh,)S / f@Faha* YA )da™ .
aGl4
Therefore (T'(¢, a,), @f) is the sum of

sR(t)A(alht)S P2 i Boyn (@) A*)das*

Gl

and

eR(t)A(alht)ZaePaa(alht)g | F@ XX b))
Gl4
For any real number s,

AdR)X_ X, = &(h) "X X, = X_. X, .

Therefore f(a*; X_,X,: a,h,) is well defined for z* in G/A, so the above
integral makes sense.

We shall use the relation between 8, () and v(w). Let V* be the dif-
ferential operator

H+ .-+ H;
on A,. Recall that
1 = 2(r, + 4r) = B(H', H') = B(¢, ¢")™*.
If ¢ is any function in C*(A4,A4),

i

8(e5 (@) = (¥ + 1 E—t—z>p’(alht) .

Then we have shown that

2 —2 d*
(T, a), o) = (v + LT, a), £
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equals

oo tal@h)en®@h)| @7 XX ah)A@)dar

For a e P,

SG/A Fas XX, ah)A@)da* = SG/A Pt ah)A@ XX )do .
Recall that
Aw) = ¢/(H(w)) + ¢'(H@w)) .
Then
Ay X, X_,) = ¢/(Hw; X X)) + ¢/ (H(e; X, X_.: w)),
if H(x: w) = H(zw).
Therefore
Al X, X)) = W(Hw; X_oX. + H,)) + ¢/(H(zw; Ad(w—)(X,X_.)))
= ¢(H(z; X_ X)) + t/(H(z; Hy) + ¢/ (Hzw; XowX o))
where a” is the root of (gc, Hc) given by
a*(H) = a(Ad(w)H) , Hebe.

If « is positive on a, a” is negative on a. If «a is zero on q, so is a®. In
any case if « is in P,

1 (Hzw; XX w)) = 0.
Also
#(H(z; X_.X,)) = 0.
Finally,
#(H(z; H)) = 77,

where 7, is an integer which equals 0, 1, or 2 depending on whether a(H")
equals 0, 1, or 2 respectively.

Therefore
Al X X_)) = r7*n,.
We have proved the following:

THEOREM 5.1. For a fived fe C(G) and ah, a regular element in A A,

(vz 4o j;><T(t, a), 1>

equals

<T(t7 al), U)j.k/\' + 27’_2'211@}? /n’a(galz(alht) - E—a/:’.(a/lht))_2' <F(t; a/l)y f> . D
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The points
ah,, o, €A, t=0,

are sometimes called the R-regular elements of A, 4. Theorem 5.1is certainly
true if a,h, is only an R-regular element in A4, A4.

6. An integral formula

As we noted earlier, the distribution T(¢, @,) is not invariant. To pro-
ceed further we must associate an invariant distribution with 7'(¢, a,).
For fe C*(@), y e G, write

Fi@) = flyay™) .
THEOREM 6.1. Let fe C(G) and y€ G. Then fort = 0,
(T, a), f") — (T a), 1)
equals
sgn t- A(a,hy)- {S Flen-adiy-n k™) ¢ (H(y~k))dndl
KxXN
4+ S ) f(z;ﬁ-alht-ﬁ—lkﬂ).;z'(H(y-ik))dﬁdk} .
KN

Proof. Fix ae C2(A) such that SA a(a)da = 1. Define a function 4 on
G by
Al) = a(e,) , ve@G.
Then {(T(t, a,), f*> equals

sgn t-A(a,h.)- S flya*ah, o 7y~ Ale™)da*

Gla

Il

sgn t-A(alht)-S Flahg-a*) Ay a¥)da*

cld

Il

sgnt-Ala,k,)- S fEna-ah,;-a ' k)A(y hena) - A(kna)dkdnda

KxN

sgn t- A S Fahyw YAy w) A)d |
This expression equals

sgn t-A(a,h.)- {Scf(w-alh, ) () Adw)de
o + Scf(m-alht-:c“)-;z’(H(y‘lxw))-A(fc)dm} .

The first integral in (6.1) equals
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SK _ Fleneahen B (H0)- ala) - dadndk
XN XA

+ S Flen-ahe-n- k) 12 (H(a))- a(a)-dadndk ,
KXNxA4

since H(y™'-kna) = H(y k) + H(a).
This in turn equals

S Flon- k- n )/ (H (y~k))dndk
KxN

+ S Flon-ash, -0 k~)- 2(H(a))- ca)dadndk .
KxNxA4
The second integral in (6.1) equals

Fi-ah 7 k) (H(y™k) + H(a™)- A(7ia) - dadadk .

SKXFXA
Notice that
S A(a)da = S a(ayda = 1.
A A4

Therefore, the second integral in (6.1) equals

FT- ah, 1)/ (H(a ™)) A(Ra)- dkdiida

SKXFXA
+ S PR ke Tk - (H (yR)) - diedin
KxN

We have expressed (T(¢, a,), f*> as a sum of four terms, only two of
which depend on y. If we set v equal to 1, these two terms vanish, so the
sum of the other two terms equals {T'(¢, a.,), f>. Therefore,

<T(t! a’l)) f1/> = <T(t7 a/l)y f>
+ sgnt-Adah,) {SK Sl ek k™) U H(y ™ k))dkdn

+ SA* F T ayhe T - y’(H(y‘lk))-dkd%} : 0
For fin C(G) let f, be the projection of f onto Cy(G). Define
(T, a), f) = (T(t, a), fo fe aG) .

COROLLARY 6.2. T,(¢, a,) is an invariant distribution.
Proof. Fix ¢ in G. Since (f%), = (f,)%
(T, @), f*) = (T, a.), (f)*
= (Tt a)), 1>

+ sgn t-A(alhg)-{SKx b ashe =) ¢ (H (y ™)) dndk

Ak m ) (@) dRdR)
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For fin C(G) let

Fw) = SK £ eask™) - 2 (H (k) .
Then the map
f—7F, fed&,

is a continuous linear operator on &(G). If fis in €(G), so is f. Therefore
Svfo(n-alh,-n-l)dn - S_ F(R-auhy T )dA = 0 .
; v

It follows that
(Tolt, @), [*) = <T(E, @), f
which verifies the corollary. R

Suppose that «, is a semi-regular element in 4,. In §4 we defined the
distribution

(S*(ay), f7 = lime ., KS'@, @), £) — S'(—1, @), O}, feC(G) .
COROLLARY 6.3. S*(a,) 18 invariant.

Proof. For any ¥ in G, and ¢ = 0,

sgn t-Aa,he)- SKfo(lm- ahesn kY (H(y 7 k))dndk

sgn t- Aah,)- SN F-ah,-nY)dn
= e Ay(a)-| Flahom)dn .
This function is differentiable at ¢ = 0. Similarly
sgn ¢- Aashy)- SK_ FTir ok T k) - o (B (g™ didk

is differentiable at ¢ = 0. Therefore (T'(¢, a,), f*> and {7T'(¢, a,), f) differ by
a function in ¢ which is differentiable at the origin. Since the distribution
F(t, a,) is invariant,
<S(t, a’l)’ fy> - <S(t, al)’ f>
is also differentiable at ¢ = 0. This proves the corollary. O
Recall that we are assuming that there is a root 8 in P, which vanishes

ona,. Recall that G, was the centralizer in G of any element in A;. Consider
the map

T: (k, n*) — kit*- G,

of K x N*into G/G,. A consequence of the Iwasawa decomposition for G is
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that T" is surjective. Another consequence is that the inverse image under
T'of e-G,is K, = KN G,, a compact group.

For any function g in C(G/G,) define
T(o) = | olen*)e™ dkdn® .
KxN*

Tis a continuous linear functional on C.(G/G,). Therefore there is a measure
¢ on G/G, such that

S (ke dkdnt = Sm 9@ d (@) geCAG/G) .

KxN*
Fix a, € A} and choose a function ¢ in C?(4,) such that the support of ¢ is
contained in A] and such that ¢(a,) = 1. Then if g € C2(G/G)), the function
fleraw ™) = g(@*)$(a.) , z*eG/G, @, e A,

is in C7(G). As we saw in Lemma 4.1,

(S*(ay), f> = 21/ 3. r-rc-A*(al)-S FoT* - a, T k) 0 dedm
KxXXN*
- 21/§-rr-fr-A*(a1)S PRCZERY
¢lG,
Applying this formula to f* for y € G, we have

(S*(a), f* = 21/5-7‘-7:-A*(a1)-86m a(yz)d ) .

By Corollary 6.3 we have

|, onape = | oweiue, yeG,
aley GlGy

so that y¢ is a G-invariant measure on G/G,. It is well known that any G-
invariant measure on G/G, is unique up to a scalar multiple. Therefore,
there exists a non-zero constant ¢ such that

S o) = cS gk ™ dkdn | g€ CG/G)) .
GlGy KXN*
We shall prove that ¢ = 1.

Suppose that ¢ is any bounded measurable function of compact support
on G. Then

S Haydx = S(x*w)da*dx,
G

SG/Gl‘XGl

- CS (k7% 0,)er ™ das, dledm ™
K N*xGy

s(kT Tak,)e ™ e e . dn dadl,dkdn®

CS
K7 N*XN | x A% K
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where K, = KN G, and N, = N G,. This equals

ST RT T ak )’ Fe o dn dadk,dldn® .

For any 6 > 0 let (IVA), be the set of elements in NA of the form
nr*ma , n*e N*, n,e N,ac A
such that
|1 — g e | < 5,

(N A), is a neighborhood of the identity in NA. Forany é > 0fix a neighbor-
hood G, of the identity in G such that
(1) G,= K(NA),
(ii) kT'Gsk, = G, for every k, e K,.
Let ¢ be the characteristic function of G; divided by the volume of G,. Then
S ¢(@)de = CS s(kTkn*mak,)e Hi el mdn dadk,dkdn* .
G KIXEXN*XN x4
This expression is the sum of
¢ S (ki * Tak,)dn,dadlk,dkdn®
KX KXN*®N %A
and
_CS s(kTkn*mak)- (1 — e Hied @)y dn dadk, - dkdn* .
EyXKXN*XN %A

The first term in this sum equals
cS slw)d .
G
Therefore
11— cl| s@pdo =1 —c|
G

< cS sk mak)-| 1 — e F @ 2@ | dn, dadk,dkdn®

K " KXN*>N | x4

IA

60-8 s(x)da = de
G

by the properties of the neighborhood G;. Since 6 is arbitrary, ¢ equals 1.
We have proved

THEOREM 6.4. For g in C(G/G))

S gx*)dx* = S g(kn*)e* ™ dkdn* . O
alay KAN*
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7. Evaluation of the distributions on Cy(G)

As in [3(b), §24], let y = (T3/4(X' + Y")). y is in G¢, and y leaves a,c
pointwise fixed. (X' — Y') equals (H')*"'. Define

b =1InH "' =RX' - Y,
b=256,+a,

and
B =exph,

Bis a compact Cartan subgroup of G. If 6 equals 8*°', 6 and —§ are the
only roots of (gc, bc) that vanish on a,c. For 6 ¢ R, define

ty = exp (A(X' — Y)).
Then ¢. = vand t,. = 1. Define
A*(aits) = TLaep(Ganl(@itn)?) — Foap((@its)?)) ,

af
and

A(a'ltﬂ) = Haep(falz((axtﬁ)y) - S—a/’z((a1t0)y)) .

Suppose a, belongs to A;. Then for a suitably small positive number 4,
a.t, is a regular element in B, We define, as usual,

Fi(ats) = Aaits)- SG/B FE-at, 5 dE Fel(@),
and
Fiat;) = (—2isin 6)- S g(u* - aty- w* )du* geC(@G) .
&1 B

LeMMma 7.1. Let a, be an element in A,. Then for any j in A(G),

A*(al)' SGIG f(ﬂi*alx*_l)dx*
1

equals

T d
lim, ., = Ff(ats) .
T TR

Proof. This is a special case of a result of Harish-Chandra, ([3(c), Lem-
mas 23 and 28]). We shall repeat his proof in order to obtain the correct
constant. For x e G,, define

9.(u) = flaua™), weG, .

Let dxz* and dz be the normalized G-invariant measures on G,G, and G/B
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respectively. Let du* be the normalized G,-invariant measure on G,/B. Then
dZ% = du*dx*. Therefore,

(1.1) Fi(arts) = A*(altg)s P2t .

Gl

Let B, be the Killing form of I¢, the derived subalgebra of g,c. dand —0o
can be regarded as roots of (I¢, byc). Let H,, be the element in b,c such that

B.(H,;, X) = 6X), Xebyc.
Then
B(H,, «(X' — Y")) = B((H,)* ", (H') ) =pH)=2.
Since B,(H', H') = 8, we have

H, = _i_(x' —vY).
From a well known formula on SL(2, R) we have for any g € C(G)),
—rg(a,) = lim,_., FZ(a.ts; H;)
- _4%— limyy F2(arty; X' — Y7)

. p
= % lim,_, —d—a—Ff(alte) .

Applying the formula for ¢ = ¢,, and using (7.1) one obtains the formula
limy_, & FZ(a,t,) = 47ri-A*(a1)§ g.(a)da* .
ae 6l6,

The lemma follows. O

Let &, be the set of unitary equivalence classes of square integrable
representations of G. Choose a class ¢ in &; corresponding asin [3(c), Theorem
16] to a real linear functional v on ¢b. Fix a function f in C,(G), the closed
subspace of C(G) generated by the matrix coefficients of any representation
in the class 0. We are going to calculate {T(¢, a.), .

Recall the definitions of F(¢, ¢,) and S(¢, a,) from § 4. Since fis in C(G),
(F(t, a), f> = 0, so that

8, a), £ =<T@k a), ).
Suppose that a, is in A]. Then

lim,,, {{T'(¢, @), £ — {T'(~%, ay), f}
= 2/ Fomrar@)-| SO0 R o dnd

= 21/§-n1'-A*(a1)-S / fa*ax*)da* ,
alGy
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by Lemma 4.1 and Theorem 6.4. According to Lemma 7.1 this last expression
equals

1V 2r

21

lim,., %Ff(altg) .

On the other hand, a theorem of Harish-Chandra ([3(c), Theorem 14]) asserts
that for fe C(G),

Fiat)) = f(1)-d5" Alaits)-0y(arto)

where O, is the character of ¢ and d, is the formal degree.
Now for be B,

AD)O,(B) = (—1)-sgn B(V) -2, &(s)30(D)
where @(V) = HMP_F B(v?, a) and 2¢q = (dim gc — rank gc) — (dim hc — rank He).
If s is an element in W, we can write
Eulats) = €4497.0a)
for k(sv) an integer and {* a character on 4,. Any character { on A4, defines
a linear functional ({) on ia,. Put |{ [P = B(1(0), (£)). Notice that
B(v, v) — [P = B(sy, sv) — []F
= k(=) B(H', H)™ + B(p(C™), (1C*) = 1€ F
= k(sv)*-r*.
Since
Ag(a,16)0,(a,ts)
equals
(—=1)7-sgn dW)-2,. ., (s)e™ - L (ay)
we have established the following formula:
lim, . {KT'@, @), £) — {T'(—¢, @), f)}

~ Ve

(7.2) Ty R
—2“— A7t f(1)-(—1)2. (ZSSWG sgn a(sv)-k(sv)-{*(a,)) -

Now let us return to the differential equation. If w is the differential
operator defined in §5, wf = B(y, v)f. Since
F,a) =0,
the equation of § 5 becomes homogeneous. It is
L
dt’
Let AF be the dual group of 4,. For {ec A define

(vz +r )<T(t, a), ) = B, v)-{T(t, a.), I .
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I, 0, ) =\, (T a), f-Uarda .
Then we have differential equation
Pt d:
at
Therefore, there are constants C;” and C; such that (7(¢, ), f) equals
C:eexp {rtV'B(v, v) — [L} + Co-exp {(—rtV By, v) — L[} .

Now, by Corollary 3.3, we know that | {T'(¢, {), /> | decreases for large
t faster than any power of t. We shall write A¥(v) for the set of characters
£ in A¥ such that |{|* < B(y,v). Then if {is in AF(v), and ¢ > 0, C;" must
be 0. Moreover if { is notin A7 (v) then C; = C; = 0. It follows that there
are numbers {C({): L € AF(v)}, depending only on f and v such that for a, € A;
and ¢t = 0,

(73) (Tt @), f) =2y CQ)-Lla) exp (=7 [¢]V'BE, ») — [CT}

(T, 0, 5= (Bl,v) — [{F)LTE 0, £ .

From this formula we see that
limgo, {(<T'( @), f2 — <T(—¢, @), £}
equals
(7.4) —2r Z:m;m V'B(y, v) — [LF-C()-L(a) .
Now we are through, because we can compare (7.2) with (7.4) to solve for

the numbers C({). C({) will be zero unless { = £* for some s € W, in which
case

~27-C)VBE D) = [T
equals
—V%-d?-f(l)-(—l)q-(sgn a(sv)-k(sv)-L(a,)) .
Since B(y, v) — [ £ |F = k(sv)*»r7%, C(L™) equals

1/27

(—1). = -sgn {k(sy)o(sv)}- f(1)-d;* .

We have essentially proved the following, which is our main result.

THEOREM 7.2. Suppose feC,(GF), and o€ &, is associated to the linear
functional v on ib. Then for a,€ A, and t = 0, {T(t, a,), /> equals

(=1 Y2 £0)-07(E, ., S0 (BN} e - 2(a)
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Proof. For a, € A} the formula follows by substituting the above value
for C(£*) in (7.3); but A4; is dense in A, and for fixed ¢t = 0, {T(¢, a,), f> is a
smooth function of a,. Therefore the formula is true for all ¢, in 4,. ]

COROLLARY 7.3. In the notation of the theorem, (T (a.), > equals
et (= 1) _‘/4& FQ)-d (.., sen (hs)as) - C(a)

where ¢ equals 1 or 2, depending on whether g(a,) = 0 or not.

Proof. {F(t, a.), f> equals zero for all a, and all ¢. Therefore by a
formula in § 4,

e(T(a,), 7 = lime, <T@, @), ).
The corollary follows from the theorem. ]
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