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INTRODUCTION (i)

Let G Dbe a reductive Lie group. The Plancherel theorem for
& has recently been established by Harish-Chandra. According to
this theorem, there is a linear isometry, F, from L2(G) onto
32(6). LZ(G) 1s a certain Hilbert space of Hilbert-Schmidt operator
valued functions on 6,

The Schwartz space of G, C(G), is a Fréchet space of functions
on G. It is a dense subspace of L2(G), and 1ts injection into
LQ(G) is continuous. Motivated by the abelian case, we can ask
wnether 1t is possible to characterize the image of >Q(G) in Lz(ﬂ)
under F. It turns out that there is a natural candidate, g(@), for
this image space. Q(a) is a Fréchet space which is defined by a
family of seminorms on L2(§). It is the object of this and a subse-
Guent paper to show that the restriction of F to C(G) defines -
tupelogical isomorphism from C(G) onto g(@),

We shall nbt actually define LZ(G) and g(é) Until the next
pagper. In order to make such a defihition, of course, we shall have
¢ nave a collection of irreducible unitary representations of G
whose complement in @ has Plancherel measure zero. This collection
15 obtained by inducing certain representations from cuspidal para-
tclic subgroups of G. In §2‘we shall gather various facts about

the representations of G and its subgroups. In particular we wiil

diccuss the representations
mlo,N) , o € EZ(M)’ A€ a, ,

wihich are induced from cuspidal parabolic subgroups



P=NAM
of G;

The most difficult part of the proof of our theorem is to show
that ((G) 1is mapped onto 9(6\, It is to this cond that most of ;
our labour will be directed. Our first step is the weak estimate in ‘
Lemma 5.4, Our next ingredient is a careful study of the asymptotic
estimates of [5(e)], $27. This is the content of 86. These estimats
lead to the definition of certain meromorphic functions, the c
functions, which play an important role in Harish-Chandra's proof of
the Plancherel theorem. They are essential to our proof as well. We
begin their study in §7c

With an eye towards future applications, we have extended zors
of the Kﬁnze-Stein and Knapp-Stein theory of intertwining operators
from minimal parabolic subgroups to more general cuspidal subgroups
nf G. Our starting point is a result of Langlands (Lemma 3.1). Thix
result, together with Lemma 3.2, allows us to express each intertwining
Joperator

/as a product of operators associated to cuspidal subgroups of rank
one (Lemma 4.4). Product formulas of this nature are helpful in
dealing with the rather delicate convergence questions raised in

Lemma 4.1,

We conclude this paper by using the results of §L to stury the
¢ functions. In fact, the ¢ functions and the intertwining operator:

are related by a. simple formula, which we establish ir» Lemma s.1.
Assuming the analytic continuation of the ¢ functions for parabolié
rank one, a result that must be proved on its own in any treatment,

we then give simple proofs of several of the results in [5(f)]., Thes=




(ii1)

inelude the analytic continuation of the ¢ functions, the functional
equations for the c¢ functions and Eisenstein integral, and the

product formula for the scalar

d(s : A) = c(s : -N\) c(s : N).

The proof of our main theorem will be completed in the next
paper. It is a generalization of the author's doctoral dissertation,
submitted to Yale University in 1970, which dealt with the case of
real rank one. The author is deeply indebted to Robert Langlands,
who originally suggested the problem, and who has been generous

with his advice and encouragement.
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S1. PROPERTIES OF G

We adopt the following notational conventions. If G 1s a
Lie group, we will denote its Lie algebra by g, and the com-
plexification of its Lie algebra by g, . We shall write G° for
the connected component of 1 in G. If X(G) 1is the group of all

continuous homomorphisms of G 1into ;RX, we write

1 ()
G = ! k
2« € X(G) o Il

Finally, we write Gl for the analytic subgroup of G whose Lie

algebra is £y > the derived subalgebra of g.

From now on, G will be a fixed Lie group such that g is

reductive. We make the following assumptions G:

(1.1) G° 1is of finite index in G.

(1.2) Gy has finite center..

(1.3) If ng is the adjoint group of g, then Ad(G) 1is con-
Ad ’

e

L]

tained in G

Fix a mamimal compact subgroup K of G« Then
K = kNc°

is both the connected component of 1 in K and a maximal compact
subgroup of ¢°. K 1is the normalizer of X° in G. From this -
it follows easily that K meets every connected component of G |

1

for if g € G" , an arbitrary connected component of G, g x° g

is another maximal compact subgroup of GO, so that



1.2

()" (g1 k% £)(£°) = (g &) - KO (g £°)

+
equals K° for some go € G° . Then g go belongs to KN G .

Let C be the center of G° . Fix a maximal vector subgroup

(1) of ¢, Then c=oc, - (1),

(1)

X , where Gy = C MK . As agreed

above, k , Cx » and a are the Lie algebras of K , C;, and

(l)A respectively, and

E =8 ©®cp® (L), |

Let © be the Cartan involution of gy Wwith respect to kh=knD gy -
We extend © to an involution of g by defining
(1)

O(X+Y¥)= X-Y, Xe€c,,Ye "“a.

Fix for once and for all a real symmetric bilinear form B on g

such that

(1.4) B(0X,0Y)=B(X,Y), X,Yeg.
(1.5) B([X, Y], 2)+B(Y,[x,2])=0,X,Y,Zcg.
(L.6) The quadratic form

|X |°=-B(X,0%) , Xeg,

i1s positive definite on g .

It is clear that such a B exists. For example we could
choose B such that ¢ and &) are orthogonal and such that
the restriction of B to £ 1s the Killing form. Our assumptions
on (G, K, 6, B) are precisely those of [5(f)] , S2.

It is convenient to extend the form B to a symmetric bilinear
form on 2o in the obvious way. Also, the quadratic form above

extends uniquely to a Hermitian norm | | on B -
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1.3

From (1.3) and (1.5) it follows that for X , Y € g, , and
X€eG,
B(Ad(x) X, Ad(x)Y) =B(X, Y).

Ad

whose
e os

If k € K, A d (k) belongs to the analytic subgroup of G
Lie algebra is (k;), . It follows that

Ad(k)oeY=0Ad(h)Y,Yeg.
Therefore, we have
[Ad(k) Y| =]Y]|,Yeg.

A subalgebra p of g is said to be parabolic if pg
contains some maximal solvablé subalgebra of B, - A subgroup P
of G 1is called a parabolic subgroup if it is the normalizer of
‘some parabolic subalgebra p of g . Then P is closed, and
its Lie algebra is p . It is well known that G° = (G°n P) k° .
Since K meets every connected component of G , we have G =P « K .
Suppose that P 1is a parabolic subgroup of G , with Lie
algebra p . Let n be the nilpotent radical of p,and let N

be the analytic subgroup of P whose Lie algebra is n . Define

L=PnNe(p)

and
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1.4
Let A be the maximal ©O-stable vector subgroup of L .
Then
P=NAM.
m, n, and a are the Lie algebras of N , M and A respectively,
and we have the direct sum decomposition
p=nt+ta+m .

The dimension, q, of a , is called the parabolic rank of P.

Notice that G itsélf is parabolic. Its parabolic rank, (l)q

, 1s
the dimension of

For any element a  in the dual space of a , let

[H, X] = a(H)- X, He a}

The set, ¥, of elements a such that n{a) 1is not empty is called
the set of roots of (P, A). A root o is said to be simple

if it cannot be written in the form a =8 + ¥, for B and >

in I } Let @ be the set of simple roots of (P , A). Then it

is known that @ forms a basis for the dual space of the B-orthogonal
complement of (1)3 in a . Fuidhermore, any eiement in £ can be
written uniquely as a nonnegative integral combination of roots in

@ . As usual we dsfine

a"={Hea:alH) >0 for ae o1

and




1.5

We also Qefine

p = %—2 dim (nfa)) * a .
(o T=p)
Sometimes it will be convenient to denote parabolic subgroups

of G by P together with some left or right superscript. Then

we shall index all the objects associated with P in the same way-

Let K, = KN M, and let QM and BM be the restrictions of

M
g and B to m . Then (M’KM’QM’BM) satisfies all the assumptions

we made on (G, K, 9, B).
The map
N 'xA *M xK —> G
given by
(n, a, my k) —>namk
is a surjective diffeomorphism. If x € G, there are elements
X Xps Xy and xg in N, A, M and K, respectively, such that
X =Xy X, Xy Xp -
Xy and x, are‘uniquely determined, while Xy arnd xp are

uniquely determined modulo Ky. As usual, we define H(x) to be

the element in a such that
exp H(x) = X,

At this point, we shall agree upon normalizations for the

various Haar measures which arise.
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Suppose that P = N A M, as above. Let d X be the Euclidean
measure on py associated with the restriction of the Euclidean norm
| | to pn . We normalize the Haar measure d n on N by

5-m(n) dn = gm(exp X) d X, p € df (W) .
N

n
More generally, for any subspace g of p , we define a measure on

exp g 1n terms of the Buclidean measure on g . JSimilarly, we
choose the Haar measure d a on A to be the measure which corres-

ponds under the exponential mapping to the Euclidean measure on a.

Let d k be the Haar measure on K for which the volume of
K is one. Suppose for the moment that ‘P is a minimal parabolic

subgroup of G . Then M 1is contained in K, so that
G=NAK.
Lét d x -be the Haar measure on G such that for any me;d: (Gj,

SG p(x) d x = \f giy w(a nh)dkdad n..
N AK

Since any two minimal parabolic subgroups of G are conjugate under

'K, d x is independent of P,

Suppose once again that P 1is arbitrary. If, in the above
discussion, we replace G by M , we obtain a normalized Haar

measure dm on M. It is evident that for any P € d: (G),

JJG p(x) d x = \S g S S plamnk)dkdmdad n,
NAMK

and .
§m<x)dx=§83g snamk) e 2 Py g ngaan .
NAMK |
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We shall normalize all our Haar measures according to these canvsntions

without further comment.

Let us fix, for once and for all, a minimal parabolic subgroup

with Lie algebra

(o}.p= (0)é

Let (O)ﬁ' be the normalizer of (O)A in X . (O)M is a normal

(O)ﬁ . The quotient group,

‘_f\_ = (O)’M/(O)M ,

subgroup of

(o)

is called the restricted Weyl group of G. Lloperates on 2. in

the obvious way. It preserves the bilinear form B.
Fix a Cartan subalgebra (O)Q of (O)g . Then

n = (0)y 4 (o),

— —— ——

is a Cartan subalgebra of g. Choosegény ordering on the dual of
(o)g such that for each root of ((O)P, (O)A) is positive. Fix

a compatible ordering on the dual space of h. Denote the set

of positive roots of (g , h), with respect to this ordering, by A -
The restriction of the bilinéar form B to Qc is nondegenerate.

For convenience we shall denote this restricted form by <, > .

We use < , > to identify h, with its dual space. In particular,

we regard A as a subset of QG o
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(O)a . We extend any

Suppose thit a is any subspace of
linear functional on R o : to a
linear functional on he by making it vanish on the orthogonal
complement of 2, in h, . We can then identify this functional
with a vecter in Qc . In particular, if P =N A M is a parabolic

(o)a, we will regard

subgroup of G such that a 1s contained in

@ and X as subsets of h, .

We introduce a convention of indexing the collection of subsets

(o) : we gl

of ”(ozﬁ_ by a partially ordered set J . We derote the greatest
and least elements in J by 1 and O respectively{ Then

gigﬁ = ‘O2§_, while Eggﬁ‘ is the empty set. For any ue d ,
let (u?g be the set of "points H € (O?g such that <a , H> = 0
for each root o« in Eg;@ . Define (uzA = exp'(uzg . Let (u?L
be the centralizer of (W) 4n ¢ , and write (U?M = ((u?L)l .

Denote the set of elements in (0)2 which are orthogonal to N

(Uzi by éﬁg S . Define B
T (), - T (o), (1.
S O

and
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Then

is called a standard parabolic subgroup of G. Let (uzﬁ and (U?Z

(u)

be the sets of distinct nonzero vectors in a obtained by taking

the orthogonal projections onto (u?g of the roots in (O?E and

(OEZ respectively. Then (u)Z is the set roots of 6u2P, (u?A),

while (uzﬁ is the set of simple roots.

It is known that any parabolic subgroup of G is conjugate to

one and only one standard parabolic subgroup. Suppose that (u?P,

u € J, is a standard parabolic subgroup of G. Then
(0)p - (u)y A (o)
(u)P M P

will be our fixed Mminimal parabolic subgroup of (u?M.

The elements

v € J such that v < u index the standard parabolic subgroups

(vip = (uly n{v)p

(v)y
(u)P in the manner
that objects have been associated to P = (u)P will bg‘denoted by

the left superscript (v) and-the left subscript (

(v) . . T . (v)
(u)N is the nilpotent radical of (u)P

. For example

u)
, while gng is a map from

(v)y = (uly )

/

to (V)a. Notice that
(u)=

(vl = (uly . EvgN
. N u ’

and that gzgg is the orthogonal complément of (u) i (v)

a in

Y
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We need to recall Harish-Chandra's results on the center of
a universal enveloping algebra. Let G be the universal enveloping
algebra of Ee s and let Z Dbe the center of G . We can identify

the universal enveloping algebra of QG with

the symmetric algebra on he . We therefore can identify S with a

subalgebra of G . Our bilinear form < , > can be extended

to a bilinear map from S xS to € . For each «a € A\ , the set

of positive roots of (gC , QC) , fix root vectors X, and -X_

a
for o and -a so that B(X X_,) =1 . Then to any Z€Z

a 3
there is associated a unique element ¥ {Z) in S such that

7z - ¥''(Z) velongs to

-

Saepn Xy
If

o
I
nj-

ZGEA a , the map

H—> H+<H, I, H€Eh,

extends to an isomorphism B of S. Define
. T A \
$(2) = BN (2 zez.

Then the map

Z —> ¥ (Z)

y 2 €L,

is an isomorphism from Z .onto J, the subalgebra of elements in S
which are invariant under the Weyl group of -(gc ; Qc) » For a
proof of these facts, see [5(b)], Lemmas 18 and 19.




from the center of the universal enveloping algcbra of m, * &,

onto the subalgebra of elements in S which are invariant under

the Weyl group of (m, + a_,h ) . Since J 1is a subalgebra of

J; , we can define

o= YL_l o ¥ 5

L

an injective homomorphism from Z into Z; - The map

Y. + Y

M —> Y +Y_+<YA,p>I‘, YMEIQ,ELA € a ,

A M A

extends to an isomorphism € of the universal enveloping algebra
of m, + a, , which preserves Z; . Givenany Z€Z , € (u(Z))
may be characterized as the unique element in ZL such that

Z - €(u(Z)) belongs to G n, ,([5(d)], Lemma 13 and its corollary).
In [5(e)], §h5, it is shown that Z - € (u{Z)) actually belongs

to Q(_Il)c ° G e E-P )

It is known that the maps 7, ‘Ki and- # are independent
of our choice of ordering on tiie dual spaces of h and g‘. In
particulaf we could replace P by its opposite parabolic subgroup,
exp (€(n))-A M, so long as we altered the compatible ordering
on the dual of g, accordingly. In the above discussion the roles

and n
of 9(n)/would be interchanged, and € would have to be

replaced by e_l . From this remark it follows that for any Z € Z

€l (#(Z)) is the unique element. in ZL such that

z - e (ulz)
belongs to n_. - G-o(n). .
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It will be necessary to make use of one particular element
in Z . ‘Let {Hy,..., Hl be an orthonormal basis of h, .

Define

t..o+ HZ + 2 (X X_
aEA a =

It is well known that ZG lies in the center of G . We have

+X_ X)) + <8, I,

normalized Xa and X—a above in such a way that

[Xy s Xl =
It follows that
Zo = Ho 4.+ Ho + 25 + 25 X_X +<5, 6> 1,

a>0

so that

¥ (Zg) = HD 4 HE + 35 +<5, 8 I.
Therefore,
1.7 Yz = B i

Let O and By Dbe the restrictioss of © and B to k.
Then (K, K, o, , BK)' satisfies all the assumptions we made on
(G, XK, ©, B). Fix, for once and for all, a Cartan subalgebra (l)g
of 'k which, we may assume, contains (O)Q . In exactly the same

way as above, we can define the element ZK in the center of the

universal enveloping algebra of gc .

We shall conclude this section by recalling Harish-Chandra’s
definition of the Schwartz space of G. G can be identified with
the algebra of left invariant differential operator on G . There

is a canonical anti-isomorphism
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Y“"_'> YR 3 YE_C_;:;

from G onto the algebra of right invariant differential operators on
G. For Y, , Y, €G , the differential operators Y;" and T,
commute. For f € dm(G) , the value of YlR . Y2 «+ £ at any x € G

is denoted by

f(YlZ X ; Y2)

Define two positive functions

= (x) = S <(O)o, (oly (x x)>

and

G(kluepo~k2)=[H|, kl,kzeK,He(‘o)_gn

& is well defined on G since G =X . (0) 4 . x , and
|ad(x} * H| = [H] , k€K, HE (O)g.

For each pair of elements Yi and Y2 in G , and every real number m ,

define a semi-norm on C(G) by

2] | e sup [IF (Yya x5 T,)0
T ¥m e 1 R

£ ¢ &)

Then C (G) , the Schwartz space of G , is defined to be the set of
all f € ¢° (G) such that for every (Y, , ¥, , m),

ey by, m <

()7 (] + &(x))™,



1.14

C (G) , tcgether with this collection of semi-norms, is a topological
vector space. It is known that d: (G) is dense in C (G) , that
2(

C (G) is dense in L°(G) , and that the inclusions

¢¥ () ¢ ¢ (6) c1°(a)

are continuous.




S2. INDUCED REPRESENTATIONS P

If H 1is any reductive Lie group, we shall denote the
collection of irreducible unitary representations of H by E(H) .
We shall write E,(H) for the subcollection of square integrabl;
representations. Th; relation of unitary equivalence partitions
these collections into equivalence classes, which we denote by E(H)
and EZ(H) respectively. If w € EZ(H), and o € E(H) is a
represen%ation in the class of w , which acts on the Hilbert space

V., let

be the formal degree of ¢ . Recall that this is a positive number,
depending on a choice of Haar measure on H, such that the
Schur orthogonality relations hold. Namely, for vectors ¢l’¢2’

wl and 02' in V.

f (O (X) ¢l s (bz) QU(X) 4’1; “(2 ) dx = d;.l(d?l,’vl ) ($2 ;*? ) .

A parabolic subgroup P =N A M of G is said to be
cuspidal if §2(M) is not empty. From [5(e)], we know that this
is the case if and only if m has a Cartan sugalgebra which is
contained in k n m . We shall begin this section with a brief
discussion of E,(M). For more details, we refer the reader to

[12]. (See also [7(b)]1.)

Suppose that P =N A M is a standard cuspidal subgroup of

G. Suppose EM is a Cartan subalgebra of m which is contained

in k. We may as well assume that QM contains (O)g. Let d

M
be one half the sum of the positive roots of (mc, by e) with
, .

respect to some fixed ordering of the dual space of QM ¢ * We
. bJ
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define A\ (QM, M) to be the set of real linear functionals
v on 1 QM sucﬂ that the function

tv- dy) (B)
H —> e , He& QM )

lifts to a function on Bﬁ = exp by . For s €. W(’p_M , m), the

Weyl group of (mq, DM,@) , it is known that s dy - dy 1is an integral

linear combination of the roots of (QC , QM ¢)' In particular,
b

the function

! (s dy - &) (H)

> e

, HE by ,

lifts to a function on . It follows that A (QM , M) is

5 5

invariant under  w(by,

Let A '(by , M) be the set of regular elements in A (by » M) .

If M is any subgroup of M which contains M° , let W (b M)

_IVI)

be the normalizer of by 1in M , modulo the centralizer of by

in M' . Then W(QM , M) is a subgroup = of W(_QM , m) . There

is a one-to-one correspondence between §2(M°)“ and the set of orbits
e

of W (pM , M) in A (QM,M). Suppose that v is an element

in a given orbit and that o 1is the corresponding representation.

Then the value of the character Q}G of o on Bﬁ is given by

v=-d H
@ylexp H) = ¥ ) - ¢ (v) - T (1-e7@))=l o 57 LA 'ULY
" aEPM BEW(QM,M )

for H & by . Here Py 1s the set of positive roots of (QG,QM’C) ,
, € {N)=+1, and ¥(M°) is a

constant which depends only on M° .

g (s) is the determinant of s

These facts follow from [5(e)], Theorem 16. Harish-Chandra's

results actually apply only to a group which is both semisimple and
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acceptable. However, by considering finite covers of M° one can
successively remove these two restrictions. H \

Let M be the subgroup of elements m in M such that the
map

x —> m Tx m, x € M°

is an inner automorphism on M°. Then M 1is a normal subgroup of
M which contains M°, Let C(M°) be the center of M°, and let
c(¥M) be the centralizer of M° in M. Then C(M) is compact

and

and
c(M) AM = c(M°) .
) Suppose yx € E‘(C(ﬁ)) and o € E2(M°). We shall say that ¥
and 67 éfeVgQgE§3ip;§ if the character
¢ —> y(c)- alc), c € c(M?),
of the compact abelian group C(MO) is tri&ial. To every compatible
pair |
(x,a), x = E(C(H)), o & B,(M°),
there is an obvious representation in EZ(M)' Every representation
in E2(M) can be obtained this way. If o 1is associated to
v € /\? (b,,M) as above, we shall denote the corresponding repre-

..._IVI!

sentation in E, (M) by o . Then for ¢ € C(M) and HE b
2 P URY -
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the value of the character of F& , at c-exp H equals
Nl
(2.1) Tr (x(c)) ¥ M%) - (v TT (] - e«a(H))-l )
E(S) (S \"dm)(H)

Suppose that C(Bﬁ) is the centralizer of B& in M. Let

Ad A

M and M a be the adjoint groups of m and m, respectively,
and let BAd be the image of B% in MY . ret BEY? be the
M M M,e

Ad

analytic subgroup of Me whose Lie algebra 1s the complexification

of the Lie algebra of B&d . If ¢ 1is any element in C(Bﬁ),

Ad (c) belongs to the centralizer of By® in M.9 , which is just
_MAg . However, there is an n such that e belongs to M .
In particular, ad{c)® belongs to Bﬁd . This can only happen if

Ad(c) itself belongs to BQd . We have shown that C(Bﬁ) is contained

in M.

Let N(Bﬁ) and N(Bﬁ) be the normalizers:of Bﬁ in M and
M respectively. There is a natural map e from W(bM,M) =
C(B&)‘\N(B&) into M\ M. Since any two compact Cartan subgroups
of M° are M°- conjugate, N(B&) meets every connected component
of M. It follews that « 1is surjective. The kernal of  1is

(Bﬁ)\‘ﬁ(Bﬁ), a group which is isomorphic to W(QM,MO) .
Since M normalizes M, there is an action of the group
(b ,M° ) N\ Wiky,M) = M\M

on E,(M). From the formula (2.1), we see that this action is fixed

point free. Let GX y be the representatién of M obtained by
b
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inducing T x,y from M to M. Then by the general theory of
. 3

induced representations, is irreducible, and o, is

g ,
X5V %1,V

equivalent to Oy v if and only if the equivalence classes of
2?72

G. 5 )

le’“l and ze’vz bglong to the same W(b,, , M ?\\W(QM , M?

orbit. Oy v belongs to EZ(M) , and any representation in
’ v

E2(M) is obtained this way.

Let QM be the orthogonal complement of a in h . Then

hy 1is a Cartan subalgebra of m . It will be convenient to index

our representations by elements in EM’B rather than by linear

functionals on i EM « Accordingly, we fix for once and for all

Ad

an element vy = Yy in the centralizer of QMIW QM in MG such

that

Ad(y) - jgM,e B EM,c :

If v is in the dual space of DM g 1 We define an element V' 1in
H

be = bM,c ©a, by

. _l)

<, Hy o+ Hy> = v (Ad(y™") Hy) , H € by e Hy€a . Any

e

element in A (b, , M) can be regarded as a linear functional on

by . - We define /\‘(M) and A '(M) to be the set of points v
b . -

in h, such that ' belongs to A (b, , M) and A (b M)

respectively.

LEMMA 2.1: If B is a root of (Ec ; QC) , the set of numbers

[<e ,B>: pe A"}



generates a lattice in R .

PROOF: Define the real vector spaces

(B

=Ad(Y)‘iDM ’
l= (B'{'_a_?ﬂg.l,é)

i<

and

Ic

158N Y =UunN &y o
where, as we recall, g 1is the derived subalgebra of g . Then
vy is the real linear span in hc of the roots of (gc , h ) .

Let L(M) be the set of points v’ , where v is a real linear

functional on i EM such that the function

H—> V) ey,

lifts to a character on Bﬁ . Then L(M) 1is a lattice in u ,
It is evident that (dM)y belongs to L(M), so that L(M) contains

¥
/A (M) . Define Ly (M) to be the projection of L(M) onto u; .

It is a lattice in u; -
Let ,LI (G) Dbe the lattice in y; generated by the roots of

(g, » h,) and define

; (G)Nu =1, (G) A »y -

Suppose that » is a root of (g , QC) . Let v be the unique
linear functional on 1 DM such that ' 1is the orthogonal pro-
jection of ¥ onto u; . v is the restriction to 1 QM of a root

of (gé , QM,C + ge) . It follows that the function




e2\)(H) , HE by ,

H "'"‘“"> . =~ =M

extends to a character on Bﬁ . In particular, w belongs to
L(M) N u; , and hence to L;(M) . We have shown that Li(M) is

contained in Ll(M)

Now Ad (y)o©oad(y?d)

is an automorphism of Ee - It sends
the above root =« onto the vector 2v/ - ¥ which, as a resuilt, is
also a root of (g, , h,) . Consequently, 2Y belongs to LI (M) .

~

From this fact it follow; that
Ly (Mz ®/MR = uy .
In other words, L, (M) is a lattice in u; . It is therefore of
finite index in L, (M) .
The bilinear form B is G-invariant, so its restriction to any
simple factor of g must be a multiple of the Killing form. It
follows that if B and = are roéts of (gc', h ),

=c

%%£§§?2 is an integer. Since L; (M) is of finite index in L; (M) ,
3 .

the set . _ )
{<ey , B> py € Ly (M)}

is a lattice in MR . On the other hand, if g € L (M) , and py is

-

the projection of g onto o,
<“L,B>=<ul’B>v

The lemma follows. E:l



We shall require another simple lemma of this type. The re- \

striction of the form < , > to (Ofg is positive definite. Recall
that (ozﬁ is a basis of gigg , the orthogonal complement of (l)g L
in ( o) o |

a . Let . y

\ .
fF = (&:ac o
i (o) " . lo) .
be the basis of (yja which is dual to ‘D with respect to < , > .
Suppose thatw-u’e J . Then
A Y .
W= @:eelon - 2D

is the basis for %Egg dual %o (ugﬁ . Define
7

a
© o (1) ’
iy 7
and ) ( ) -]-:
- (u . (w)yt o _Afu)ye Uyt o2
Ho = _HO ‘Ho < -Ho- , -Ho > 7,
Then HO is a unit vector in _(u?§+ ,

LEMMA 2.2 : Let s belong to the Weyl group of (gC , QC) » Then

the set of numbers
?

A=w s sH> 3 pe A (M)

generates a. lattice in R .

PROOF: Define Ly{M} and LI (M)} as in the proof of the last
lemma. If ﬂ; € LI (M) , g"luI is-ar integral linear combination

(o)

of roots of (g\E ,,QCE » The projection of Snl onto (1)& is
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an integral combination of elements in (O)@ . It follows that

— ? - 7
<u,l , S (15‘) HO> = <5 By s (u?HO>
is an integer. The assertion of the lemma becomes a consequence of

the definition of I, (M) and the fact that LI (M) is of finite

index in Ly (M) . ‘

Cl

The Weyl group W, of (m

A M) .

by ) acts on h.  , and preserves

If g is in /\?(M) , we shall write {u} for the orbit of u
in /\Y(M) under the action of the above group. Suppose that

w € EZ(M) , that o 1is a representation in the classws, and that

?
g = Ox,\)’\)e/\ (:QsM).,'

-

Then if # is any element in the orbit {W1 , we shall write
g = ulc) = ul.)

We define the absolute value

sl = ol
of this representation to be equal to |u| . This depends only on
the orbit of x in [V} .
Suppose that we are given the above representation o¢° together

~ with an element A\ € a_ . Define a representation o ® g of L=MA

by

w®gh)ma)=ék’m“>mm,mem,aeA.

-~ -~
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Then it follows from [5(e)] and our discussion above that for any

e A'(M) such that g = p(o ) , and any V € Z, ,
(2.2) (o 2 8 ) (V) = <wp (V) ,p+> 1.

For any we€ E,(M) define C (M) to be the closed subspace of

w
C(M) , the Schwartz space on M , generated by functions of the form

m —> (G(m)d)l’d)z))mEM;

where o ‘is a representation in the class w, and él and ¢2 are
KM - finite vectors in the space on which ¢ acts. For any orbit
{e} of Wy in /\?(M) , let g{ﬂ}(M) be the direct sum of all the
spaces C (M), for which there is an element #y = pylew) in

{«} . Finally, let C_(M) be the smallest closed subspace of C (M)

which contains each of the spaces

Q_w(M) , we;E_Z(M? .

QO(M) is often called the space of cusp forms on M.
Before going on to induced representations, we shall set up some

notation that we will use in connection with representation of K .

In the above discussion wercan feplace (G, K, 8, B) by

(K, XK, ®, B). The only possibility for P is the éroup K itself.

The Cartan subélgebra (l?g of k takes the place of both QM and

h . By applying the above definitions to K , we can define the

absolute value y| of any irreducible representation % in E(K) .

Recall the element ZK defined in % l.. It is a consequence of ‘

applying the formulas (1.7) and (2.2) to K , that

(2.3) otz = PIF, % e E).
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If 7 is any finite dimensional representation of K , and
n
me @i s 7 €ER),
we define
n
LERE N
i=1 )
- From the Weyl dimension formula and the fact that K° has finite

index in K , we observe that there is a polynomial p such that

for any finite-dimensional representation %of K,

(2.4) deg 7 < P(|%]) .

If v 1s any weight occurring in some irreducible component of

the tensor product of two finite dimensional representations 1 and
%2 of K,
vl < Byl +a sl
It follows that
%y ® 35| < deg 7y deg iy (3] + 1%,])

Therefore there is a polynomial P such that for any % 1 and 7y 5

(2.5) 7. ®%,1 < P(l’?ll}»P(lgzlz :

Suppose that P =N A M is a standard cuspidal subgroup of G ,
We define the absolute value of any finite dimensional representation
of KM =K MM just as above. Then it is clear that there is a

polynomial p such that if % is a finite dimensional representation
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of K and %, 1is the restriction of % to Ky
gl <o (131

A double representation T of K consists of a vector space

V together with a left and a right action of X on V which

commute with each other. As usual we denote this action by

v —> T(kl) v T(k2) , veV, k

13 k2 €K .

If %, eand % 5 are finite dimensional representations of K

on spaces Vl and V2 we define a double representation T of K

on

L (V2 ; Vl) , the space of linear maps from V, to V; equipped with

the Hilbert-Schmidt norm, by

T(kl) S T(kz) = 7zl(kl) o S o7 2(k2) ,

~

for S € L(Vé,Vl and k; , k, € K . In this case we shall write

T=(y.,%,) . If Ry and ’22 are irreducible, we define

It = Ryl o+ 2l
Any finite dimensional double representation T is a direct sum of

representationsof this form. We can define |7| by insisting that
ITl@ Tzl = lTll + ITzl .

Finally, if M 1is as above, we write ™ for the restriction of
to M . Then there is a polynomial p such that for any finite

dimensional double representation T of K ,

(2.6) Iyl < pllTh,

T
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For convenience, we shall denote the class of all finite dimensional

unitary double representations of K by F(K , XK) .

Suppose that «¢€ EQ(M) and that o a representation in the
class of w which acts on the Hilbert space H_. Let H(o )
be the Hilbert space of measurable functiens ¢ from NANG to

HO such that

(i) ¢(mx) = o(m) ¢ (x), meM, x€G,
and

2
(33) |1 Il = Sgp )P dx <o,

For N\ € a_, we have the induced representation (g ,N) of G

on H( o) defined by

(mlo 2 y) )(x) = ¢lx y)-eP H(xy)> -<to, H(x)>

“for ¢ € H(o) and x , y € G . This representation is unitary if
N 1s imaginary.

By differentiation, we can 1ift (0, A) to a representation
of G on the space of smooth vectors in H(g ) , a dense subspace
of H(o ) . Suppose that ¢ 1is a smooth vector in H(o) . Then

for 2€2 and x€ G,

]

(g s N 2Z)¢) (%) (m{g , M x) m(o ,A:Z) ¢)(1)
= (m(o, n:ad(x)2) n(o,nx) $)(1)

= (mlo, n:2) b (D),
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since

is a smooth vector. If X e€n. , and Y € G, it is clear that

(wlo, A :XY) 4 )(1)=(nlo, n:X) nlo, M:X))(1) .
But we observed in Sl that Z - e'l(u(z)) belongs to n, G .

It follows that

(mlo,n:2) §) (x) = (v (o, At €Hu(2)) ¢,)(1) .

If u = p(g ) , it follows from (2.2) that this last expression equals
<y (€7Hm(Z))) , mr a0 >4y (1) .

By the definition of € , this is the same as

D ez, m e gy (1)
= <%(Z), u+ 2> ¢(x) .

We have shown that
(2.7) o, N2 2Z)¢=<%(Z),p+r>4.

If 7, is the element in 2 defined in 51, we can combine this formula

with (1.7) to obtain
(2.8) mlo, A 25) = (Jo 1 + o, »>) I.

The restriction of m(oc, A) to K gives a unitary representation
m(o ) of K which is independent of A . For » € E(K) let
[ w: %] denote the multiplicity of % in w(¢o ) . (This‘number
depends only on the class wof og.) Let ¢ Ky and 7, be the
restrictions of cand “4to Xy . Then m(o ) is equivalent to the
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representation‘obtained by inducing Tk from KM to K . It follows

M
from Frobenius reciprocity that
[ w: %] = b Lo : 81 [, : 8] ;
7 8 € E(Ky) “u " ’
where [ og 5] and [?ﬂw : 8] are the multiplicities of § in
M
ok and 7% M respectively.

M
However, by [5(a)] and our previous discussion, there is a constant

N , which depends only on M , such that
(o : 8] < Ndeg (8) , 8§ € E (K,,) .
Ku M
It follows that

(2.9) [ #: %] < N deg (%) .

LEMMA 2.3: fThere is a constant C

in E,(M) and E(K) respectively, with

M such that if wand 7% are classes

[w:m 1>0,
then

R E YR
PROOF: If [w:7] 1is positive; there must be a & in E (Ky) such
that both [a Ky

Lemma 71, there is a constant C; such that if [o g 8] 1is
M

: 8] and [m, : 8] are positive. By [5(e)] ,

positive, then
However, it is easy to see that there is a C, such that if [% M §]

is positive, then

812 < 17212 + o, .



This fact follows by the method of [5(e)], Lemma 71, or alternatively,

by a highest weight argument. These two inequalities establish the

lemma. E]

suppose that for each w € EZ(M) , we select a representation

c €« oOn a Hilbert space H For each «, choose an orthogonal

w ®

basis {éi :i€I )} of H(c) such that for every 1, ¢i

o]

transformsunder (ch)' according to an irreducible reprepresentation

%(¢;) of K . We shall require the following

LEMMA 2..4: There is a number n such that

3 5 1+ 1wl ™ @+ 1200 @+ 2 A
weE, (M) 1, jET(w) J

is finite.

PROOF: The series in the lemma equals

R S L e - B L X P O R

w €L, (M) i€l(w)
' 2y -n 2y-n 2
- 3 (+|wl <)% (3 deg (3) - [« 1 (1 + [3]%)77)
(ot ;EZ(M) - ’F{EEL(K)
By (2.9) this expression is bounded by
-n 2
(s @+ @M 3 Neaeg (2. 1+ %))

w EE_Z(M) % €E(K)

It follows from our earlier discussion that

2_n 0 2\.=n
(L+ |w|®) <m] = (1 + |u]®)

Z ?
,uE/\ (M)

w€§2(M)
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?
Since A\ (M) is contained in a lattice in a Euclidean space,
the right hand series converges for large enough n . Similarly,

for any fixed integer m , we may choose n so large that

23 € E(K) (1 + l;'lz)a(n‘m) < 00e

We fix m so that

éup (deg (% )2(1 + ITIZ)'m) <o .
“7€E(K)

This can be done in view of (2.4). Our proof is complete.

E]

If we combine this result with Lemma 2.3 we immediately obtain

COROLLARY 2.5: There is a number n such that

z

2 i, jel

- 2,71 - o~
wEeE, (M) (o) (1 +|""(ct’i)| ) (1 + I'J¢j ) <)

is finite. [:}
For each 5 € E2(M) , we have a decomposition

H(o) = ®
: % €E(K)

where the restriction of n(c) to

I

V%G) is equivalent to a

{

finite number of copies of 7. If F is a finite subset of E{X) ,
define

H. ) = @ H¢s, (o)
fplo) = & Bl
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If Fy is a finite subset of E(KM) ;, we define the subspace

H of H_ the same way. Suppose that F,, is the set of
o,EM , o M

irreducible components in the restriction to KM of each representation

in F . Then we write Hy g for HU,FM . If -¢ € Hp(o) , it is

clear that for each k € K , ¢ (k) belongs to H, p -
. ]
We shall sometimes write ﬂo(o) and Hg for the union, over

all finite subsets F of E (K) , of the spaces Hp(o) and Hy 5 o
. J
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83. THE MAPPINGS -Ou(a , a')

(u)

Suppose u € J . Let us say that a linear subspace of a
is distinguished if it is of the form (v)g y for some index v e Jd
such that u<v. If a and g? are two distinguished subspaces
of (O)g ; we write fl(é,év) for the set of distinct mappings from

a onto g' that can be obtained by restricting transformations in

L1 to a . The spaces a and g' ; as well as the corresponding

~ standard parabolic subgroups P and p' y are said to be associated

if fl(g,g') is not empty. We shall write (1(a) for the union, over

all distinguished subspaces g' which are associated to a , of the sets
L (a,a) .

If a 1is a distinguished subspace of

(o)g s we shall say that

an element a € a2 is a root of a if either a or -& 1is a root of
(P, A) . We shall say that a is a simple root of a 1if it belongs
to @ . Let us say that a point H in a_, is P-regular if for

¢
every root a of a ,

<e , B> ¢ 0.

We shall denote the set of P-regular points in a by a,

Suppose that P 1is standard parabolic subgroup of G . A
subset B of the roots of a 1is called a fundamental system if any
root of a can be written wuniquely as a linear combination of

elements in B with integral coefficients all of the same sign.
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The convex set
cB={He_a_: a (H)> 0, o € B}

is called the Weyl chamber of B . If B = { , the set of simple roots

of (P,A) , cg 1is denoted by at . It is clear that Weyl chambers

corresponding to different fundamental systems in a are disjoint.

(O)g and

If gv is amother distinguished subspace of
s € (a , gv) ; s‘l(ﬁv) is a fundamental system for a . All
fundamental systems obtained this way are distinct. For if
vv) ' -

te . (a, a and

- Ty - ?
t l(m ) = s l(E ) ’
-], =" T -1 . . 1e
s t7 (0 )=0 + st~is the restriction to a of some element

Ad(w) , w € G .

We, must have

w:N A w = N R
and therefore
¢ -1 v
WP w _P °

Since no distinct standard parabolic subgroups are conjugate, P7 equals
P" . Therefore w belongs to Pv . However, any element in P'
which normalizes A' also centralizes A9 . It follows that s = t ,

It is known that (0. acts simply transitively on the Weyl

chambers of (O)Q . In particular, there is an element s in (L
which maps (°)§+ onto‘-(o)éf . This means that s((o)E) = ;(O)E. Tt
follows

/that if a is a one dimensional distinguished subspace of (O)g there
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?
is another one dimensional distinguished subspace a , and an element
?
s€ (i(a , a ) such that
' + P+
sfa’) =-(a) .

9
- By the remark above, a and a are uniquely determined.

(o)

Now suppose that a is a distinguished subspace of ‘a of

arbitrary dimension. For each simple root o in ¢ ,

a® ={Hea:<a, B =0}
(o)

is a distinguished subspace of ‘a .« Let P* be the corresponding

standard parabolic subgroup of G . Then

_ a
Pa =P MM

is a maximal standard parabolic subgroup of M,

In particular

_ , a
2, =& N o
is a one dimensional distinguished subspace of (O)g M gq . Applying

]
the above remark we choose a second distinguished subspace a, of

(o?g A" g@ , and an element s, € (L a(ga ) g;)' such that
s (3g) = - (g)" .
s, can be regarded as a map from a to
a =a%e a
which leaves ga pointwise fixed.‘ With this interpretation Sq, 'is

called the simple reflection corresponding to a .
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The following lemma is due to Langlands ([7(a)] , Lemma 2.13).

LEMMA 3.1: Let g(l),ﬂ.a.., a(r? be the distinct distinguished sub-
(o)

spaces of a which are associated toa - If E is the set of funda-

mental systems of roots of a , then a is the closure of (U Cg -
Be
For any B there is a unique i and a unique s € {1l(a , g(l?) such
that . ﬂ
- 51(-“?)& :

PROOF: We have already noted that if i and s exist they must be
unique. Recall that an element Ho € a 1is P-regular whenever it

belongs to no hyperplane of the form
fHea: <, B> =0},aa€3.

We shall call HO P-semiregular 1f it belongs to precisely one such

hyperplane, We shall say that a polygonal path joining two P-regular

points in a 1is P-semiregular if it is a union of a collection of

P-regular points together with a finite number of P-semiregular points.

Suppose that s € 0 (a, a(i) and that Ho is a point in

Since any root of a 1is of the form s ~(B) , for B a root of g(i) ,

HO must be P-regular. Suppose that Hl is another P-regular point
of a such that the line segment joining HO to Hl is the union of
a collection of P-regular points with one P-semiregular peint H2 .
Then H2 belongs to a unique hyperplaﬁe
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[Hea:<a, s B> =0}

for o a simple root of g(i? . If s, E.Ii.(g(i)», g(jb is the

corresponding simple reflection, it follows from the definition of

Sq, that
= -1 (3
ey g = (sys) ™ (2 )
a
is the connected component of Hl in 2, . We note that, conversely,
if s, H. and a are given, we can find Hl € c such that the
o S48

line ségment joining Ho and Hl is as above. Our lemma follows from
the fact that any two P-regular points can be joined by a P-semiregular

polygonal path.

]

Tt follows from the proof of the lemma that any s € (.(a , g(i))
can be written as a composition of simple reflections. The minimum
number of simple reflections in any such decomposition is called the
length of s . In fact, we see easily from the proof of the lemma,
that for every P-semiregular polygonal path between g+ and
s™1 (g(i))+ which contains n P-semiregular points there is a canon-
jcal decomposition of s as a product of n simple reflections.
Any such decomposition of s arises this way. The path may be taken
to be a line segment if and only if n 1is the length of s .

Any root o of (P , A) 1is said to be reduced if there is no
t, 0<t <1, such that to is I . Let T be the set of
reduced roots of (P , A) .

' 7
Suppose s € «1{(a , a ) . Choose associated spaces

?
&, = & ) 81 5 svees 5 B T2,

and simple reflections



such that

S = s ee s e §
a a
1 n

is a decompositinn of s of minimal length. The following lemma

generalizes a result in [2].

LEMMA 3.2: The roots

Bi = S-l S).l co e S.--:L (a.)

n -1 141
are positive and distinct. They are precisely those reduced roots B

in ¥ such that s(B) <0 .

PROOF: It is clear that for any root a of a

— 3

s{a) is reduced if and

only if a 1is reduced.
First we shall prove the lemma for the case that n =1 . Then

S = g

y for a a simple root of a . Following our earlier notation,

Sy, leaves the hyperplane gg pointwise fixed, but maps -a onto a

simple root ' of gv . The other simple roots {ki,...,a}_i}

and {z’i 7rril} , of a and gv respectively, can be indexed

geeey

?
in such a way that for every i , ¥ and ifi have the same pro-

jections onto g@ . It follows that there is a ¢; in AR such that

(v,) = ¥ + 'yl 1
Sy v’i‘ = 3 c; @ 3 <1<r-1.

?
) is a root of a , c; must be a nonnegative integer.

Since s (Y 5

(o i

From these equations we see that the image under 5, of any positive

reduced root of a other than o is a positive root of gv .
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Suppose now that n is arbitrary. Let £ (s) be the
number of roots B € £ such that s(B) is negative. We
')

shall show that ¢ (s) equal the length of s . Let t € (l(a , a )

be the unique map such that

It is a consequence of the remarks following Lemma 3.1 that there
is a minimal decomposition of t 1into simple reflections of

the form

Appealing again to our remarks following Lemma 3.1, we see that
n +m , the length of t, equals the number of positive

reduced roots of a .

Therefore



From the fact that
£(e;) =1 ,1<ig<m+n,

we obtain

In particular, £ (5) equals n , the length of s .
Finally, suppoée that B 1is a positive root of a such that
s (B) 1is negative. Our proof will be complete if we can show that

B 1is one of the roots

We can certainly choose an 1 such that s, ... s, (B) is pasitive

i+l n -
but such that s, ... s, (B) 4is negative. This can only happen if
i n .
& ceoe T (B) = 0. .
%141 % .7
Therefore
-1 -1
B= 8 e 66 e S (CL-) =B
an ai+l 1’ i?
and we are done. E]

We conclude this section with some notation that will be of use
later. Suppose that P 1is a standard parabolic subgroup of G . For

each root B of (P, A) , we have the root space n (B) . Define
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v(ip)={Xeg:[H,X]=-<B,HX,HeEal

If o belongs to = , let = (a) be the set of roots in I  of

the form t a , for t >1. Define

n = @ n (B)
¢ pez(a) -
and )
v = ® v (B) .
— Bes(B) '
Then
n = @® n
- s ¢

Let V Dbe the analytic subgroup of G whose Lie algebra is the

nilpotent subalgebra

of g . Notice that

P=VAM=0(N)AM
is a parabolic subgroup of G . In particular, if g 1is a linear-
subspace of v , we have, by the conventions of gl’ a measure d v

on exp g .

Suppose that o belongs to = . Let N, and V_ be the
analytic subgroups of G corresponding to the Lie algebras
a

n, and Y respectively. Let a~ be the hyperplane

{Hea:a (H) =0}

in a . Let L% be the centralizer of 2% in G . Define
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M = (1%)1 | and k* =x AM* .

If m* is Lie algebra of M* , © (m*) = m® . If we denote the

restrictions of © and B to g@ by o anda B® respectively,
(M* , k*, &, B%) satisfy all the conditions we asked of

(6 , K, &, B) at the beginning of this paper. We define

a, = afn m,
Aa = exp a, ,
and
Py =N, A, M.
Then Pa is a maximal cuspidal subgroup of M. Pa , Na , and

Va are the intersections of M® with P » N and V respectively.
Notice that if a is a simplé root of (P, A) , our
notation coincides with that intrdduced at the beginning of this

section. In this case we define the vector 0% in &, by

<9, ,H>= % Tr(adH)_  Hea .

2 o, a

LEMMA 3.3: Suppose that a is a simple root of (P , A) . Then

Po is the projection of p onto ay
PROOF: We have

a
n=n % n ,

where g@ comes from the standard parabolic subgroup, p® , of G .

For H

n

g’.a b
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<p , B> = % Tr (ad H)n
.1 1, ‘
= 5 Tr (ad H)Ea + 5 Tr (ad H)na
= <Py, B>+ 5 Tr (ad H) _ ,
’ n
The algebra gg normalizes g@ ~ The map
Y—> 5 Tr (aq¥) Yen,

[0 b
E R

is a Lie algebra homomorphism from gg to /R . Since the center of

ga is contained in m”

Nk , this homomorphism must vanish on 2y ©

It follows that

o 3

In other words, is the projection of p onto ay - ]

Pa

? ——
Suppose that s € () (a,a ) . Let Z, and Z_ be the sets
~of roots a in ¥ and I respectively such that s(a) is negative,

Define

s = Caes Yoo
s
Let w be any representative of s in

?

= Ad (w'l) n N v.

v
-s
The group

-1 ..
VS =W N w NNV

is the analytic subgroup of G with Lie algebra vy oo
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Let ¢ be a Weyl chamber in a . Choose the distinguished

' (o)

subspace a  of a, and s € _() (a, gv) such that

s_l(gg)+ = c. We define a vector p, im a by

<., B>= % Tr (ad sH) , ,HCa.
n
Then p, = st (pv) . We define a second vector o, in a by
<p,, B> = -5 Tr (adH), , HeEa.

=5
It is clear that

(301) S(P_ 2 pS) = p °

In other words,




L. INTERTWINING OPERATORS bol

In this section we shall discuss thé intertwining operators
between the induced representations we have defined. The operators
are defined by the sort of integrals which are familiar from the
work of Kunze and Stein, and Knapp and Stein. Following the method
of Gindikin and Karpelevic [4] and Schiffman [9], we shall prove a
product formula for these integrals.

We will need a lemma which will insure the convergence of the
intertwining integrals. Suppose that a and Q? are distinguished
subspaces of (Ogg , and that s € _.(a , g?) . As usual we have
the standard parabolic subgroup P =N A M éf G corresponding to

-~

a . Let a (s) Dbe the set of N in a suck that

<A, B> >0 4
|
for each root £ in fs . We shall write EM for the function
on M wused to define the Schwarts space on M .

m

. TuARTA . N ] ' +
LOVMA 4.1:  Suppose that | is a compact subset of a (s) and

that ¢ 1s any real number. Than there are cowmstants d and dO
such that for any m € M and any suitably large r=al number r

H

the integral over V_ of ~

! - ar ) Y 7 -r d A+pJHIv i
“ha1) :M,(m oo LL o+ ola VM)) .1+ o(vA)) - {su e Pyt V) !
L3 bounded Dby
- ; (/2 - 4
dy  zy (mj - {1+ o(mp)™ / ) )

We shall postpone the proof of this lemma until the end of this

section.
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Let T(s) be the set of points A in a, whose real parts
lie in Q%(s) . Suppose that o is a represeéntation in EZ(M) which

acts on the Hilbert space HO.

LEMMA 4.2: For M€ T (s) , E€H ,$eH (o), and x€G,

the integral

-1 7 ¥
(1+o2) %S ((D (V w-'lx) , E? e<7\.+p 3 H(V w X)> e_<S}\‘+O s H (X)>dv

is absolutely convergent. It equals
(1h3) 3, (ol b, w) plvwlx) , ) e PET> g

. s " - -
PROOF: First of all we shall prove that (4.3) is absolutely con-
vergent. Then we shall show that with a suitéble change of
.variables we obtain the integral (4.2). Since ¢ € H°(c) , we may

choose a finite set {El,...;.,it} of vectors in Hg and functions

CiseeesCy on K  such that for k € K-,
0 (k) = sP . c.(k) g,

Then

I(O(W_IXM,W) o (v w“lxK)-, g) .

is bounded By

1 <A’R+p,H(v)>
e

xg) | - [0l hgpw vy, ) 54,801 - o

t -
Ziq | oeylvgw
Since Ei and £ are KM-finite vectors in HG», the function

m —> (G(m) gi" 5) y me My
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is in ¢ (M) , ([5 (e)], Lemma 65, Corollary 1). The integrability
of (4.3) now follows from Lemma 4.1. ﬂ
To see the equality of (4.2) and (4.3), decompose x as

Replace the variable v in (4.3) by

XN?B XM"xAi-XK °

- -1
(w 1 Xy1e xA,w) v - (w Xy s XA,W) .

If Py is defined as in g}, we have
=1..¢
oo, s H (x)>

d((wul xM?xA,w)-l.v -(w“lXM?XAVW)) = dv .

In view of (3.1), the integral (4.3) becomes

- T v v
- = <?\.+P H(v W- lx ¢ X, ¢ X )> -<sh+p H (X)>
%rs((b(v w lva XAvXK); E.) ° e ’ MTA Kﬂ-e ’ ~ . dv.

Finally, we note that this integral over Vs may be replaced

by the integral over

wiN woN \\w-le W .

In other words we can replace the variable v by v. w'l XyoW o This
gives the integral (4.2). \ ]
For any k € k , let (R(w : A)P)(k) be the vector in Hg‘
such that for any £ & Hg R -
((R({w : N)O)(k), ) = "SV (h(v w_lk), £) e<h+o,H(v2> dv .
. . . S “

Then (R(w : A) §)(k) is a linear combination of the vectors

Fiseeess By introduéed in the procf of the lemma., For any x € G,

we define

(R(w : A) O)(x) = o(wt

Xew) - (R (w2 A) ) (xg) ©



bole

Then R(w : A) ¢ 1is a vector in H° (w o) . For any

£ ¢ g°

° , ((R(w : n) §)(x) , €) equals (3.2). The map

A—>R(w:A), NET(s),

is an analytic function with values in the space of linear maps from

o)

ﬂ? (c) to H (w o).

Suppose that f is a left and right K-finite function in

d? (G) . Then = (gw, A : f) 1is a linear operator on H° (o) .

-

For s, ¢, N, and £ as above,

((Rtw : A) (o, N ) ) (k), =)

N gV S’G £ ly) (7 (o, n:y) ONv wik), =). e Mo, H(VI>y 0 gy

1
k y)>dy dv

s
= fV SG £ (y) (¢(v Wk ), &) - St Hiv w™
s

= J(G fly) ;V (0 (v W—lk v), %) - e<7\.+0, H(v W_lk Y?>dv dy
‘ s

= S0 R RGN B) (ky), €) . e<S AR, K>y

=S5 fy) ((m wo, sy R (wi ) #) (), £) dy

= ((m. (wo, shn: £f)R (w: ) @) (k), ).

We have obtained the intertwining property

(beh) R(w:N) (o, N:f) =" (wo, s\:f)R (w : N) .

If "a 1is any root in ¥ , and A belongs to a, , we write




Lob

<A, a>

MNT LTS

for the projection of A onto (ga)c . Suppose now that a is a

simple root. If A\ = p, it follows from Lemma 3.3 that the definition

of Oy given in §3 is the same as above. Let Wy be a

representative of Sq in (o?ﬁ - 8, can be regarded as a simple

reflection on g, aswell ason a . If A€ T(s,) we have the

operator Ra(wa : ha) associated to the parabolic subgroup P, of
M* . Tts domain, gg (o) , is a space of functions from M* to Hy.

If ¢ € H°(o), and k € K, the function

¢k :m—> ¢ (mk), meM ,

belongs to HS (o) . For x € G, we define

Hy
(RS (w_ : M) 0) (0 = (o) b (Rylug ¢ ) 0 (1)
Rg (w, : A,) 1is an operator whose domain is H° (o) .

LEMMA L.3: If o 4is a simple root of (P , A) and ANeT ts,) s

-

PROOF: By Lemma 3.2, o 1is the only element in 3 which is trans-

formed into a negative root by S Therefore VS = Va . For
a
vevV, ,wehave vp=v , and H(v) = H (v) .

a Ka -
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Q\.a"’_pa, Ha(V)>

=)y (G(YM)« o (v @’ Yy k), §) e dv
a - K .
by Lemma 3.3. But this last expression is just
((RS(w_ :ny) ) (k) , %)
a‘g "o ) _ ’ ’_"
The lemma is proved. E:]

.
Suppose that s € i (a, a ) . We choose assoclated spaces

?
By T 2, 8y soseces 8y T A,
and simple reflections
s, € 1 (a;, a4.7),1<i<n,

(o A9 =1
1

such that

is a decomposition of s of minimal length. Define

S: = 8 ceoe- S 0<i<<nmn.
+ i+l &y -7
Then S, = 8 and S is the identity. For each 1, let w, wai,'
and Wy be representatives in (O?ﬁ' of s, Sai and s; respectively.
We may assume that they have been chosen so that
W = W ee W 0<i<n-1.
+ 341 @ T
LEMMA 4.4: For A €T (s),
R (W :K) = R (wa : Sl7\.) .R (Wa Sz?\;) e ae w0 R (wa S 7\.) e

. 1 . 2 ) i n * Tn




. | L7

PROOF: We shall prove the lemma by induction on n . The length of
3 is n-1, so we assume that the lemma is true with s replaced
by s - By Lemma 3.2, ES is the disjoint union of fs and the

1
reduced root

of a . Therefore T {s} is precisely the union of T (sy) with

the set of A such that the number

Sy Mg @7 T g oo B2

i3 positive. It 1s cisar that

v = v, ®v

furthermore,

T o e ~v~s --=‘_-~~v':s.{..< VB e

and the normalized Haar measure on ‘VS is the product of the normal: ...

‘jaar measures on V_. and YV, .

=i
=~ »

Tor O € H {0} , k €K,

— /

N€ETI{s), and & &€ H

,  equals

. T TN W+ 17y )
,fv Lel{v,i © Cre oW T k), E) gt P }“j> dv

S
Sv Sy (ollmxl, Ollvx), wit. w;i k), g) Py Hlvpx)>q, o
Ia) s - R . - - —
508

S ite (V. ox ) 7 K~ ) 1 { ‘ Svel
Je write M\le, and u(Jin for &le)M and (lezK respective.:. .

Decomposin X a8 Xy« X, Xy X ! i
P g N Ey Xy Xg o We obtain
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IVB ,(V' (cr(M(inlvl Xy Xy X)) - ¢ (K(X&l vy Xy Xy Xy Xp wil Wc_x:JL_ k), E).
< w o .
1l
-1
etes Blay™ vixy 0> gy ax .
By an argument similar to [4], we can assert that
<t v, x, =n- vix, vq)
N 17N A
for uniquely determined elements n € N and v(x, vl)‘e V.., and

1
that for fixed x, the map

is a measure preserving diffeomorphism of Vs « It follows that
1
our expression above equals

’S§B g&s (o(M (v Xy XM)- ) (K(vkxA Xy XK) -wil w;i k), §) .
1 B . - '

ey H (VX >4y gy

In the integral over VS , replace the variable x by

(xA XM?-V '(XAXM?_l . We have

d((xA XM)‘ v -(xA XM) = e dv .

Therefore, ((R(w : A) §)(k), &) equals

j&ﬁ VSl (o(Mlx, x vz- () (K(xy x v XK) Wil wot k), €)
—2<Osl , H(X)>

v)> - dv dx .

-

et H(xA
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Recall from (3.1) that

Sl(Q"ZQS )Y=Ql‘°

-~

Therefore our expression equals

Sy, S,,Sl (o) olwy) & (v xg
At H(v)>

= J(V (o(xy) (R{wy : A 0) (wy xp wy

B

(Vl)s = WloVB‘Wl 3
a
1

replacing the variable x by wy X

(wq x w_l) w
St 1 'Ny 1
Similar equations hold for the A,,

Wy X Wi1~‘ Since

G(XM) = (wlo) (wl Xy

the integral becomes

J

%y

- ((ROwy

4.9

-1 «1
-1
QusT T pq HI(X)>
e 1 1 dv dx
<s A*p S
1 W-l k), € e 1 1° 1

w-l
1

We have

My, and X components of ,

e<sl7\.+p1 ,Hl(y )>

: -1
(V) ((wy0) (yMl) * (R(wy : A) ) (yKﬂ»fQL1 k), £) .

slh) R'(wl : k) ¢? (k?, g) .

dy
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The proof is complete upon applying the induction hypothesis to sy -

1

¥ 79

COROLLARY 4.5: Let s be an element in (L (a , a ) with a repre-

sentative w in (o?ﬁ" Suppose that s and w are as in the

lemma, and that the length of s's is the sum of the lengths of s?

and s. Then .

R (w’w cA) =R (w : sn) R (w:N).
||
If ¢ € H (o), we write

(w §) (x) = ¢ (wt Xqr Xk) 2 X EG.

Then w defines a map from H (¢6) to H (w o). Given A€ T (s),

~

r (s : AN) = wl.R (w : N)

is a linear operator on H° (o). For ¢ € ﬁo(o), E € Hg and k € K,

({(r (s «+ N) O (x), E) = jv (U(VM) 0 (ka), £) Ao, H(v)>dv ’
: - s - .

so r (s : AN) in fact does not depend on the representative w of s
( .

It is convenient to restate Lemma 4.4 in terms of r (s : A).

Given B € ¥ , we define the vector p(PB) in a5 by




For ¢B € HS (o), £ & HC

4.11

Tr (ad H) , H€ a4,
B

N+

<D(PB?, H> =

o and k € KB , we write

P | .
<KB+p(Pb),HB(V)> dv’

((rglng) ) (k), 2) = f§B<®B<v k), £)

where, as we recall, Ng is the projection of A onto (QB)
-6

Then rB(kB) is an operator on EE (o) . If B is a simple root,

it follows from Lemma 4.3 that

rB(kBE = r(sB : k} .

We define the operator rg (A) on H° (o) by setting

(rg (M) 0) (x) = olxgy) - (rg(ng) 0, ) (1)

where ¢ € H° (o), x €G, and

¢XK(m? = ¢ (m XK) , mem .

LEMMA L.6: Let A€ T (s), and define

Bi = Szl (ai)’ 1<i<n. R
Then
. = 0 -G
r (s : k? rBl (N) eouee an (n)

PROOF: From Lemma L.L,

r{(s :AN)= w~-R(w :2A\)
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((W"l R (Wal slk) Wy 0} (k), %)
_ ~ <s Ntp,, Hy(v)>
= ,S(Vl) (¢ (wll v wai w k), BE) e 1ol d v
s
<s AP H, (v)>
- Wt v w k), E) e e LT gy
(vl)al S - ’

by Lemma 3.3. In this integral we change the variable v to

W ~ v w. The integral is then taken over VB ~ It equals
: Mg *P(Pg), H- (v)>
XVB (0 (vx), 8) o BL Fpls B (V>
1 - -

r (s : A) = rgl(x) r (sy : A)
and the 1lermma follows by induction on the length of s.

]

Suppose that F is a finite subset of E (K). If T is an

operator on H (o} for which ﬁF(o) is an invariant subspace, we
shall write det. T for the determinant of the restriction of T <o

F
Hp (o)

-
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COROLLARY 4.7: The holomorphic function

A —> dety (r (s : AN, MNeET (s),

is not identically zero.

PROOF: In view of the lemma, we have only to show that for any
B €3, the holomorphic function

¥ —> dety (rg (v)),

whose domain is

{v e (QB)G P <v o, B>y > 0},

does not vanish identically. This fact is essentially the rank
one version of a result in [5(f)] (Lemma 9 and its corollary).

One verifies the result easily by checking that for ¢ € Hp (o),

1im rg (A 0 =0 .
<k,B>R —> o0 -

]

It is known that

¥ (p) = jv e<20, H(V3> d v

is finite. This fact insures better convergencelproperties for
the integral defining R(w : A) whenever A Dbelongs to P + T (s).
It is easy to show, using a variation on the proof of Lemma 4.4, tﬁat

the integral

S Qgto, H (v) >
e -

dv
Vs
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equals

T
Bex

S

L.lk

+p(Py), Hp(v)>
v e<NR p< B~ B - dv .
B

If A 1is in the closure of o + T (s}, this last expression, by

the first statement of ([5 (e)], Lemma ©5), is bounded by

T ()
s BB

S

In particular, setting AN =p and s = s, , the element of greatest

length in 2 (a), we find that

(4.5)

7{(P) = TI ¥ (Pg)

pez

Suppose that s € N (a, gv) and w € (o)ﬁ are as above,

and that

domain of R (w :

functions

in H (o)

A is an arbitrary point in the closure of p + T (s) . The

A) can be extended to the set of all bounded

(D:G—>HO

. For if ( is any such function, and k € K,

jv
S

is bounded by

¥(p) -

1O (v wik) - eMF0s H (v)> v

sup | [§ (x)}] .
xeG ’
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We can define

R Gre ) 0) (k) = Sy (v wli. e B> g o
. . s -

It will be ﬁecessary to have a formula for the adjoint of

b}
R (w : A) . Since Pq\\G is compact, we can find a function B

in d: (é) such that for any x € G ,

“y . 4( . J(.q B (nma x)dndmda=1.
N A M oo
Then if h 1s any continuous function on P'\ G s
jK.h(k)dk= fG 8 (x) b (x)- 2P, H (x> 4

Suppose that A belongs to p + T (s) , and that ¢ and ¢?
are bounded functions in H (0) and H (w o) respectively. Then

((D?,R (w : A) @) equals

v o -1 —_ 1 ® -
“5G ~5V (0 (k? , 0 (v wlx)) . e s H (v w ??e -<sh+tp ,H (EL/
s

.<2.oi, H (x)> ;
- e . B (x) d x .

By our remarks above, this double integral 1s absolutely éonvergentﬁ

It equals

§

fv SG (@9(w v X), (D(x)) . e<X+pa H(X)>_e<-s A+o , H (w v X?>
S .

¥

B(w vx)dxdyv
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=IG ((Dv(w ), 0 (x)) - eQ—\:ﬂo, H(x)> e<-s5§+p°, H (w x2>{)r 87 (ntwx)dn']dx.

wVSw
Define .
-1 ..t
NS = w N wnNN
and
A ]
N = wilv wAaN.

It is a simple matter to check that for any integrable function h

on the group Ns AM,

. s
j f S h(m a n) e<°> H(a)> P s 8 H (a)> d nd a-d m
M A N : ‘ i

s
=j fg him an)dndadm
M A NS )

Therefore, rewriting our above integral over G as a multiple integral

over M xA st x,ﬁs % K, we obtain

.( 5~ (0" (wd k), § (k)) - g<sh oy Ho(wn)> l
K N S “’

)
1
'.—l

& g ¢ - ~
5 5 jB(nwnamnk)dnv-dnoda-dm}dndk
N - ‘

w sz M s A

= SK' S o W), 0 (). e P BVIZ g T g
; | o

= (R(w-lz -s\) (Dv, d) .
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We have shown that

(4.6) R (w: N = R (w2 : -s%)

for any N€ o + T (s). By analytic continuation, this formula is

true for any A€ T (sjc

Our final task of this section is to prove Lemma L.l. The proof
is straightforward but somewhat lengthy. It entails combining the
inductive arguments on the length of s with some inequalities of

Harish-Chandra.

The group

elp, =un

-is a minimal parabolic subgroup of M. We write (O)QM N
(ozoM, (O?gﬁ and so on, for the various objects associated to the
pair (M, (O?PM). If m is any element in M, there are elements
h € exp (-((Ozg;)) and k, k' € Ky such that
— h k.
Notice that
oy(m) = Sy(h

and

In addition, for v € VS ,
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= Sk uE (s (kv k)T
= Sy hy) s Qo tre (kv b )T
Since

(x v k1)

we can alter the expression (4.1) by replacingm by h and v by

kK v k1. The map

v—>kvkl, vev
is a measure preserving transformation of VS. Therefore, to prove
Lemma 4.1, we may assume that m = h, where - log (h) belongs to

(o),

If we combine the second statement of [5 (e)], Lemma 90, with

[5 (c)], Lemma 43, we find that there are constants ¢, and ¢y such

that for any x € M,

- - ; . " ) ;
=" (h vM) < ¢ e - e | - M’
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Take r to be any fixed positive number; and let r{ =r-cy. Then

the expression (4.1), with m replaced by h, is bounded by

(o) (o) (o). (o)
<\ol, Hy(h)> <'©%,'%4(v)> -
c, - e -~ -FM SMTTT T - - 6,,(1+U(thﬁ)zr‘1 (1+0(VA?_)d
sup  [eM H(V)>} .
el )

VLet +g (s) be the closed subset of & consisting of nonnegative

linear combinations of the roots in fs . We write +g for the set
of nonnegative linear combinations of the roots in 3. It is clear

that there is a constant C, such that for any A€ [, and % € +g(s) ,

, -(ry+d)
1+ <o, x> M) oo 1y o(expr ) L

-

We shall show that H (v) belongs to - (+§(s)) for each T~
v € VS . We assume inductively that this fact is trﬁé if s 1is re-

placed by any element in (L (a) of length less than that of s. Let

S =8, - S, where s is a simple reflection and S1 is an element
1 %1

in 0 (a) whose length is less than the length of s. By Lemma
)

3.2, s is the disjoint union of fs and B = sil(al) . If v is

1
an element in VS , Wwe write

ve=yvx , v, € VSl y X € VB .

As we saw in the proof of Lemma 4.4, there are elements n € N, 3& € Vs
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and k € K, such that

viX =n Xy X v.l k .

In particular,

It
us)
o]
+
oy

¢

H (v)

Now
H (x)

i
(¢}
—~~
»
—~—
w

where ¢ (x) is a real number which, by [5 (e)], Lemma 85, is less than
or equal té zero. Our assertion now follows from tbe induction
hypothesis. . |

It follows that for A € a (s) ,

A, H(v)><O0.
In particular, there is a constant ¢y such that for any A € §+(s) ,

N H(Y)> -(ry*d)

< g (1-<, H (v)>)

If ae [
b}

(1+ ofv ). eEV>

is bounded by
-rl
Now

(1+o(w)) * (1+0 (v 2

)y 2

IA

(1+ 0 (n vM) + o (v

A
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By [5 (e)], Lemma 10, this last expression is bounded by

-

(L+0 (hvy v))7L,

We write

h vy vy=n-h- (0)y (v) - k, (O?A (v) G(O?AL n € (O?N, k €K.

It follows from [5 (e)], Lemma 90, that there is a constant ¢,

such that
(1+0 (v vi)) Te c.(1+om ©a (v)
M YA = YL - ’
Since
0 (v) = - 10g (1004 ()

belongs to +((°)§), the number

fodg [ (edy (n.loly(yy)> = - <(°?pM, (O?HM

-~ ~

)L

~

(n)> - <tolg | Oy ()>

is positive., It certainly can be bounded by a constant multiple of

I(O)H (h - (O)A (v))l = og(h (O?A(V))v

Therefore, there exists a constant Cs such that

(1+o(n- ()t

~

< ¢ (1- <(O)pM, (O?HM ) s, :
(o)
* oy “ .

< < (1- <(°3pM,

By [5 (c)], Lemma 36, there is a constant

6

(h)> - <(O)p (O)H (v)>)_rl

(1)>)7 M2 (1 Loy, Oy (y)5) 712

~

.

o~

such that for any
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<(°20M, >

o
N

cg EM (exp H) .

We can also find another constant c7 such that for any such H

-7 =1
(1 - <(O?OM, H>) 1/2 < ¢y (L + 0 (exp H)) 1/2 .
In other words, for h as above,
(o), (o)
<o H, (h)> -r
e MM (1- <o, (Oly (n)>) /2

< cg-oy - Sy (140 (n)) M2

°

We have shown that the expression
(4.1), with m replaced by h, is bounded by a constant multiple of
the éroduct of

(4.7) e <(O)O,. (O)H (V)> (l _ <(O)Q, (O)H (v)>)_rl/2

and

Sp ()« (1% o(n) 1/

To complete the proof of the lemma, we need only show that for
suitably large ry, the function of v defined by (4.7) 1is integrable
over VS . |

Let w be a representative of s in (OZE « The restriction
of A d (w? to (O)QM maps (q)gﬁ onto a Weyl chamber ¢ in
T By Lemma 3.1, we can choose an element w ' in Mé such that

Ad (w') maps ¢’ onto (o?g Then

+
M' @

R R W CAR BV
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where

It follows that

? v ¢ -1 v .‘ -
(w 'w)™L ’(O?N “(w w) = (ww) N - (O?NM, c(w'w)=w

Let (O)s be the restriction of A d (ww) to (o?g . Then the

.

group

(O)V(o) = (w'w)7t. (o) (w' w) 0 (ely
"¢Te) ) )

equals VS . Thus, in order to prove the integrability of the function
(4L.7) we may assume that P 1is the minimal standard parabolic subgroup

of G.
We need to show that for P = (°)P and s € .,

st S0 HAVI> (3 _ oo, H(v)>) ™™ av
is finite whenever n 1is a suitably large positive number. Assume
that this fact is true whenever s is replaced by any element in {2
whose length is less than that of s. In the integral we change the
variables of integratiofl the way we did in the proof of Lemma L4.L4. Using

the notation of Lemma 4.4, we obtain

§. <P Hv> (o m (v>) P a v

Vs

~( .Y - <p, H (vyx)> 4
v v e -~ (1-<0, H(vx)>)"d vy dx
B s1 -
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j <, H(v)> <sjlo, H (x)>
v ¢ . e - (1 - <o, H (v)>

~<o, H (x)>)™d vdx.

This expression is bounded by a constant multiple of the product of

jv S B> es) /2 g

sl . -
and -1
-JA <s;” 0, H (x)> N/,
v. © : (1 - <p, H (x)>) d x .
B - ~
For large n, the first . integral is finite by our induction hypothesis.

The second integral equals

—n/2

(L.8) ‘f§ e }I(X?> (1 - <syp, H (x)>) d x ,

%1

where, as we recall, Sy is the reflection corresponding to the
1

simple root a; = sl(B) of (P, A). Note that

<sqp, H (x)> = ¢ <aq, H‘(x)>,
where

¢ = <sqP, ay> <al,al>7l = <p, B>« <0Ll,onl>—1

is a positive number. If we employ the argument used to prove Lemma L.3,

» > L3 L3 a
we can interpret (4.8) as an integral associated with M l, a group

of real rank one. The convergence, for large n, of the resultant

integral is a special case of [5(e)], Lemma &9.

We have just shown that for large r, the expression (4.7) is

an integrable function of v. This completes the proof of Lemm; L.1.

C.




85. THE EISENSTEIN INTEGRAL 5.1

Suppose P 1is a standard cuspidal subgroup of G and that 7
is a double representation of K on a finite dimensional Hilbert
space V. Then ™ is the douﬁle representation of KM =K N M on
V obtained by restricting T to Ky- Define ¢C (M, TM) to be the
set of functions ¢ in C (M) ® V which are TM-spheriéal; that

-

is, such that

b (kqm ky) = 7(k;) ¢ (m) 7(ky), m €M, k), k, € Ky -

-

We also define

(M, my) = (C, 0 2 V) A g (M, 7)),

-~

=0

fa O M) = (G D 2O M, m), we AT (W),

c
g

and

‘Qu,(M, ) = (C (M) ® V)" (M, TMz,u.) € E, (‘MN) .

These last three spaces are finite dimensional Hilbert spaces under

the norm

Hel12= S 1o @2 am.
M

Fix ¢ € Qo (M, TM). Extend the domain of ¢ to G by

¢ (namk)=wm) v(k), n€EN, a€h, necN, k € K.

For x € G, and A€ a

2. the Eisenstein integral is defined by

E(y: A :x) = .5~ T(k'l)m (kx) e, Hk x)> d k.
- K .. '
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The importance of the Eisenstein integral is that it is closely
related to the matrix coefficients of the representations defined
in Sz,

First of all we define an infinite dimensional double repre-

sentation p of K. p acts on the Hilbert space 1% (Kx K) by

? T

§ ?
(p(ky) h p‘k233<k1»k2> = hikky, ky ky),
for h € L*(K xK), and kj, k,, ky, k) € K . Suppose that F is a

finite subset of E(K). Let Vp be the subspace of I*(K xK) on
which both the left and right actions of p decompose as a sum of o
classes in F. Let pp be the restriction of p to Vp . PR is
a finite dimensional double representation of K .
Suppose that for 1 =1, 2, Ei i is an irreducible representation
of X, and hi is a matrix coefficient of 7% ;+ Then if
h(kl, k2) = hy (kl)— h, (kzz y Kiy ky €K,

- .

the Schur orthogonality relations gives the inequality
2 2
b (kq, kz)l <deg 7+ deg 7, |[n|®, k¢, k, € K.

The right hand side is certainly bounded by the product of |n|° and
a fixed polynomial in |3 ll + I’?zl . From this fact it follows
easily that there is a polynomial P such that for any finite subset

F of E (K), and any h e V

o

F’




5.3

(5.1).  |h (ky, k)| <P (lpgl) - |n] , kq, ky €K .

Suppose that w € E,(M), and that o is a representation in the
class w which acts on the Hilbert spaée HG . Let F bea finite
subset of E (K) and let T be an operator in End (EF(O)) .

We regard T »aé an endomorphism on all of H (o), and we dé%ine a

function

Kn(k k) ki k5 €K
T 71l 720 2 71 72 ’

with values in End (H such that

o, F )
(1), for my, my, € K NN,

KT(kl my, my, ky) = .

. 1 _

and

(ii), for any ¢ € H (o),
\ -1
(T §) (k) = 5; Kplky, k) ¢ (k) d k, .

These conditions specify Xy uniquely. In fact if {®l,...,®n}

is an orthonormal basis of Hp (0) , and £ € H .p
3

-1
Kp (k) , ky) 8= 25 (5, 0; (k5)) - (T ¢;5) (kq) .

If T 1is any operator on a Hilbert space, we shall always write
||T|I2 for the Hilbert-Schmidt norm of T. Now if T € End (Hg (o)),

this norm makes End (EF(G)) into a finite dimensional Hilbert spar~
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For m € M, the operator o(m) Ky (k

is of finite rank on Ho . We define a function WT from M to

VF by

(5.2) ¥ (ky +m : ky,) = o (m)(k k

1 2)

= 1r {olm) K (0, kgH} .

Let %ﬁM be the restriction of pp to M. Reqall that d, is

the formal degree of o .

LEMMA 5.1: The map

1
T —>d2 4p , TE€ End (Hplo)),

is a linear isometry from Erd (Hp(o)) onto G (M, PF,M) .

-~

PROOF: We must first of all check that WT is a PR M spherical
3

- function. For my, m, € KM«’

(QF(ml) ‘UT(m) DF(mZ))(kl,kz) -

= Tr {o(m) K 1

7 (k

_1)

= Tr {o(m) olm,) Ky (51, K]

o(my)}

— ' e —l _l
= Tr {c(ml m m,) Kplk, ’~kl,)}

(kl tmyomom, : k2)
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Secondly, we observe that the kernal KT’ and hence the operator T,

may be recovered from wT . In fact

ki, k7Y

,Dg Yolky tm:ky)e0 @) dm .

i
Q.

Therefore our map is surjective. Finally, dnllxl}mll,)2
equals

(k2L k

-1 2
5L, k0

S 5 d_| Tr { o(m) K ”dm d kd k, .

K K M 1

From the Schur orthogonality relations, this is just

-1 -1 2
1K (K57, kT7)]],° d kq dk
SK x K T 27 71 2 1 2
5 ‘
- Tl
Therefore our map is an isometry. 1
LEMMA 5.2: E (vp = A X)(l,l) = Tr {mw(o, v : x) T} .

PROOF: First of all, notice that if {ga} is an orthonormal basis

for HG; and {®1,..., ¢} is an orthonormal basis of Hp(o),

(k : k

€ qplky +om 2)
| -1
= 3, (o(m) (T ¢i?(k2), E,) (g 05 (ky )
= Z; (o(m) (T ¢i) (k2), ¢i (kil)) .

We have:
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E (%

T : N T X

)(1,1)

~§ (T(k—l) ¢T(k X))(l,i) Lo SMtp, H{kx)}>

K dk
=jK VT(k'1= (kx)M D (kx)p) €M Hkx)> |
S (o) (T 0 ((kx)p), Bi(k)) - e Hio)>

S (o, % x) T ) (), (D)

= Tr {w (o, N : x) T} .

J

Let End” (H(s)) be the union, over all finite subsets W

of E(g), of the spaces End ﬂF(ﬂ). The map

T —> 4, T € "Ed® (H(~)),

T’
has been used by Harish-Chandra to prove éome of the results of
[5(f£)]. As we shall see later, it also provides a convenient framework
for proving the theorem alluded to in the introduction.

Suppose that T 1is an arbitrary representation in F(K,X),
and that % is a function in QO(M, TM). It is easy to convince oneself

"

that there is a finite subset F of BE(K), a subrepresentation =
?
of t with % € C (M, m), and a unitery intertwining operator between

7

T and a subrepresentation of Ppe In other words, in studyine the

Eisenstein integral, we can take t to eoual pp if we wish.

LEMMA 5.3: Suppose that t is a double representation in F(K,K),
acting on V, and that V; and Y, are elements in G . Then there

1
is a double representation T € F(X,K), acting on the vector space
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V“, and a polynomial p , depending only on Y, and Y,, sO that
{
v 1 <pllr]h),

and such that the following property is satisfied: given

W€ Ey(M), 45 C (M,7y), M€ a,, and £ € V", the dual space of V,
?

? ik
there exist W? € C (Mymy) and & & (V) such that
0

¥l

(1) e 1] < pllwl + InD+ 2] -
(i1) I5'| < pllch)  lg],

and

8

(111) <%, E(§ : A @ ¥y ¢ x5 T)> = <t B(y s N ox)> .

PROOF: We may assume that 1 = Pps for some finite subset F of
E(K), and that
<E, (> =0 (&, k), § € Vg,
for some pair of points kl and k2 in - K. Then { = wT for some
T € End (EF(O)), and o a fixed representation in the class w . We havé
<E, Bl : N2 Y %5 Y,)>

= E(bm: N @ Y0 x5 Y5)
T 10 %5 Yol (kg k)
= Tr {m{o, N @ k). mlo,n ¢ ¥y) m(o, N ox) mw(o, N ¥,)

n(o, N: kz)T}
= Tr {m(o, N : Xx) TV}

= E(¥pe: A X)(l,l) ;



? o
T = n(o , N\ : Y,) mlo, N ky) - T - (o, A ki) m(o, A% ) .

Let Qn be the space of elements in G whose degree is no
greater than n. We assume that n 1is large enough that Yl and Y2
both belong to G . Suppose ??n is the adjoint representation of
K on G . If % is some representation in F, let FY(Oz) be the
set of elements in E(K) which occur in the decomposition of 7% ® ?Zn‘
Let F' be the union of the F (7 ) over all 7€ F. We let r°
be the double representation PR, - It follows from the reﬁarks and

definitions of §2, (in particular, the formulas (2.4) and (2.5)),

that there is a polynomial p  such that

log | < pllogl) .
The operator T belongs to End (Hp,(9)), so that tp, lies

in. We let +? = Define Ei = (VFV)* by

(M i

’ PF|’M) *
2, 0> = 01, 1), eV, .

S,

Ir '%? is the representation in Fi of largest degree, it follows from
the Schur orthogonality relations that

liil = deg 7J .
This is certainly bounded by a polynomial in | %I, and hence by a
polynomial, p, in lpFI . Since |£| > 1, again by the Schur

orthogonality relations, we have

v
€] < Izl - plpgl) -
Our final task is to estimate [I%T, ||, which by Lemma 5.1
l 7
equals d;z— | |T "2 . Let P’ be the orthogonal projection of

H(o) onto EFW (0} . Define




B; = P- mlo, A Y.).-p , i=1, 2,
and
T= n(o, x ky) o T (o , A ki) .
Then
9 Fand
T =B T - B
and 1’

9 A
Lty < Byl JITH, - HIBy Ll = 1Byt - LTI, - [IBy .
We have only to estimate the uniform operator norms
”Bi” , 1=1, 2.

At this stage we must make use of a result of E. Nelson ([s],
Lemma 6.3). Let {Yl,...., Yd} be an orthonormal basis of g with

respect to the bilinear form
(X,Y) —> ~-B(X, 0Y) , X, Yeg.
We assume that a subset of this basis forms a basis of k. Define
an element
V=I- (Yl +oo-o+Y

in® G. It is easy to see that if Zog and  Zp are the elements

defined in 91,

V=272 -24+ ¥ I,

for some real number Y. When applied to our situation, Nelson's
lemma affirms the existence of a constant C, depending only on Yl

and Y2, such that for any differentiable vector ¢ € H (o),

[l wCoy ne X)) Ol <C [lnwto, v V) @], 2 =1, 2.
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If ™M is a class in E (K), and ¢ 1is a unit vector in

E{%}(o), ¢ is differentiable. Furthermore, by (2.¢),

(o, & : V) 011 = (2]w]? [o]® - <, >+ )"

From these properties, and the fact that for 7€ FT, |2 | is bounded

by a polynomial in |pF|, we see that there is a polynomial p  such

that
11811 < » (ol + Inl + loph)
Therefore, by Lemma 5.1,

i .
1 = I < pClal + Inl+ Topl) = THEgll -
With this inequality our proof is complete.

E]

LEMMA 5.L: Suppose that Y, and Y, are elements of G . Then there
is a polynomial p and a constant ¢, such that for

T € F (XK, K) ,w € Ey(M),
t€C (Mymy), M€ a,, and x € G, |[E(Y = A ¢ X ix; Y2)l

is bounded by

ell wp (ol = Il Do) - 2 () -0 © gl - Geslx))

PROOF: First of all we shall estimate ¢{m). Suppose that 7

acts on the vector space V , and that & € V' . Then the function

m—> <F, (m)> m& M,

lies in G, (M). We apply the Sobolev lemma ([10], Theorem 3.3) of
Trombi and Varadarajan. There are elements {X%, X% |< i <r} in the

universal enveloping algebra of m, such that
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SUP (= (m)™h <5, ¥(m)>]]
meM

is bounded by the sum over i of

N

(5.3) (IM |<tg, ~'v(Xi om X%)>|2 d m*“ .

In the previous lemma replace G by M and consider the cuspidal

subgroup M of M. We see that (5.3) 1s bounded by
1
¥ 3 ‘ 5
Gy 1<’ v @>1% dm)?
¥ 9
< s I [1v 1l
< 11l - 11el] - e - pUe |+ Clmgl) -
gﬁcalling the formula (2.6), we conclude that there is a polynomial QLsuc?
at ;
sSup— -1
SIS D 1 < Ul + Il - o]
To go on with the proof of the lemma we note that Lemma 5.3

allows us to assume that Yl = Y2 = 1. We\have

[E (» @ n @ x)]

= | jK (k) ek x) . e HE Xy
+p, H(kx)>
< SK |tk X)I-eq;,Rp <) d k .

If we define
EM(X) = EM(XM), x € G,

it is easily verified,([5(e)], Corollary, Lemma 84) , that

= (x) = jK Sk x) - g<Hk x),0> 4 g
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It follows that |E(* : A : x)| 4is bounded by
e<7\./R',H(k X)>)

[l -y Cles ] + 70)- = (x) (sup
keK

Now it is an immediate consequence of [5(e)], Lemma 90, that

|H(x) ]| < e (L + o(x)), x € G,

for some constant co. Therefore

sup g S Hk x)>
kekK

e 2 lng |+ (1% ol x)) ecolkm |- (1+ G(X)),

This finishes our proof. J

We shall also need a variant of this lemma which we state as a

corollary.

COROLLARY 5.5: Suppose that D = D, 1s a differential operator with

A
constant coefficients on the real vector space 1 a. Then there is

a polynomial p and a constant m such that for A€ 1 a, x € G,
and ¥ as in the lemma, |Dk. E(¥ : A : x)| 4is bounded by

[Pl b pClwo [+ INp + ) - (2 o(x))™ 2 (%)

PROOF: Let g be the polynomial function on a such that
IDK E(y:n: x)

= | Spa (Bl x) - r(&h) ¥ (ke x) . e X)> gy

This expression is bounded by
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,fK le (H{k x)) |« |x(k x) |- e<P (K X)> 4 g

Choose constants C and m such that for all k and x,

lo (H(k x))| < o1+ ok x))™ = g1+ o(x))™ .

Our corollary can be now provea by following the last part of the

proof of the lemma. E]



86. THE MAIN ESTIMATES 6.1

The basis for our paper, and indeed for much of the harmonic
analysis on G, is Harish-Chandra‘’s asymptotic estimates for
tempered T-spherical eigenfunctions of Z, ([5(e)], Part II). We
want to study the dependence of these estimates on T as well as
on the Z-eigenvalues. This has been done in [10], but only for the
case that the eigenfunctions are square integrable. Accordingly,
we review Harish-Chandra’s work.

First of all, we summarize the results of Chevalley [31],
and HarishQChandfa [5(c)], on finite groups generated by reflections.
Suppose that (u)P,‘ u&€d, is a standard’pérabolic subgroup of G.
The Weyl groups, W and (“)w, of (ge, (O)Qc) and ((u)me +(u)§€,(o)hf§
act on (o)ge, and are both generated by reflections. They preserve
the symmetric, nondegenerate bilinear form < , >. It is just these
assumptions on (O)Qﬁ, W, (u)w and < , > for which Harish-
Chandra’s results are valid, although they stated in [5(c)] in a
slightly less general setting. - |

The groups W and (Wy act on S, the symmetric algebra on
(O)Qe. Let J and (u)J "be the subalgebras of S which are
(u)

invariant under W and W respectively. If (u)W is of index

r in W, there are homogenous elements

vl = l’ v2, .‘.'.’ ‘vr"'

which form a basis of (9)J as a free J-module, ([5(c)],




{(u)

Lemma d¢). It is clear that for any v € J, we can choose

elements

in J- such that

v Vj =3, 2 J= 1, ecee, T

i%v,i371 >

o)y . rTnis

Suppose that A\ is any regular element in h,

means that A is not a fixed point of any of the mappings in W.
Let J, be the set of elements z € J such that <z , A > = Q.
(u)J Jao1s an ideal in (u)J. For any v & (u)J, let v* be the
projection of v onto (u)J /(u)J JA. Then by [5(c)], Lemma 13,
vi yeeas Vr* is a basis of the C€-vector space (u); /(U}J J Ae

It is convenient to fix a Hilbert space E, independent of /\ , with
orthonormal basis {el,..., er} . Then for each regular /| we
identify E with the dual space of (u) g /(u)J Ja by demanding

be the dual basis to {vl*, ceey ¥ *}

(u);

that {éi),.., er} 1o By

taking the transpose of the natural action of on

(u); / (u); J, we obtain a representation .

v —> v(N i v), ve (u)J,
of (U)J on E. For v € (u)J,

i %y,a5 Vi %Gy iy s A>T

is in (u)J Jao « It follows that the matrix of ¥ (A : v) with
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respect to the above basis is the transpose of

VARG P

(O)h )

=C

Let (u)zﬁ

which do not vanish on

DGR

o +

be the set of positive roots of (g, ,

(u)

+

a . Define an element, @, in S by

Let {s; =1, s55 eeevy S } be a fixed set of representatives of

r
w/{Wy in W. Then it follows from [5(c)] (Lemma 15 and the

discussion predeeding it), that if

e
F2

£AA ) =5 v s\ ) (u)¢1(si/\ )7L, &, 1<i<r,

then |
BNt v) £ (A ) =<, ;A > s AA) 5 v E SCETER

In addition, there are elements
™ o,1<35<r,

in S such that

‘ - J ) .
e 0T (si/\ ) fi(/\ ), LL g<r.

In particular, {fi(/\ ) :11.<1i<r} is a basis of E, and the

operatar ¥(/A : v) is semisimple.
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Fix a standard cuspidal subgroup P of G. For § > 0, Iet

C (.a_cﬂ

the real part of A is less than 8. Let Cr(g

d) be the set of vectors M\ € 2, such that the length of

e 8) denote the

set of P-regular elements in C (a_, 8). It is a consequence of

—C’
Lemma 2,1 that there is a 8, > O such that for any A\ € Cr(ge, &) ,,

and any u € /\?(M),

AN =p+

is a regular point in (°)h_ . We shall apply the estimates to the

functions
¢(x) =E(¢: n: x),

where A ranges over Cr(gc, 80) and tbelongs to g{ﬂ}(M, TM) .
¥
We will let g vary over all elements in /\ (M), and r vary

over all double representations in F(K,K). As above, we write

N = u+ .

For (U)P as above, and T € F (K, K),

is a finite dimensional unitary double representation of the maximal

compact subgroup
(g o g, . =k nluly
(u)y
of (u)M . Let (u)g and 2Z be the centers of the universal en-

(u)m + (u)ac and g, Trespectively. As

veloping algebras of m. a,

-we saw in gl, there are isomorphisms

Z —>J,
u

(

Y
(U)'y:

Jg —> (W)
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(u), '“"(u)?f_l 0 7.
For A as above, we define Z, to be the set of 2 in Z such
that <Y(Z), A > = 0. Then (u)g- Z/\ is an ideal in (u)g and

u . - . . .
( )Z/Tu)g Z 1s a complex vector space of dimension r. . Define

A

v, = Wy =15 ,1<i<r .

i i
1f ve Wz | gefine
-1

Zo « 2= ¥ (2 )

1 3
Then ‘

_ < (u) )
\ Vj = I M(Zv’i j) V, 1< i<

Define the operator [ (A : V) on E by
TN v = v(A W),

Then the matrix of [ (/\ : V) is the transpose of

(<Ko% 3 3 A>hes, 5<r
Its eigenvalues are
<(u)3’(V), s; A>,1<i<r .
Suppose that a representation T in F(K,K) acts on the finite
dimensional Hilbert space VT - Let E Dbe the Hilbert space VT ® E.
The double representation r of X, and the representation [ (A ) i)

of (“)g both extend trivially to E . For any V € (u)7 define

La
—

U A 1) = Vi = 23 <¥(2y 5 50 A>TV,

i
This is an element in (u)z_(u)u (ZA)>» For mc¢ (u)L s

let 1
(u)d(m).= |det (Ad(m)l(u) )l2
n




Finally, for m € (u)L , define

and

Wgitm) = 25 0N 0 (W ) 0 @) 2ey .

Then (u)@ and (u)IV are (u)T-spherical functions from ‘'L to
E LS ’

If VJ.V is the differential operator (u)d (m)'l Vj o (u)d (m) ,

we have

W () = 2, w0 (m 5 vy") ey

Recall from $S1 the definition of the function — on G. We de-
(u)= (u)

fine the function on L the same way. It is known ([5(e)]. Lemma

47) that there are numbers c¢ and d such that for m € (u)L,

Wy (m) 2 (m) cc WZ(m) (1 + o(m))?

It follows from Lemma 5.4 that we may choose a polynomial p such

that for A\ € C, (ée,, 8) ,

(6.1) KT ()| < 1191 pUA T+ [oh) - 2 () - (2 + o(m)d.
oo gl - olm)

From [5(e)], Corollary 1, Lemma 76, or as can be seen directly from

the above definitions, we have the following differential equation

Wmmy = T (A = DT @) + W) .

In particular, if H € (u)g , H also lies in (u)g , and the



‘
§
3
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differential ecuation can be written
a
dt
ter, me (W

Transforming this into an integral equation, we obtain
(6.2)  (m exp 1 m) = oF TOA ¢ ) (ulp o (T (01T (AE)

u)_IfH(m—exptH) dt, TER, m € u)L

Let H = (u)Ho' be the unit vector in (u)gf defined in $§2.
Let Bo be the smallest value of 'a(HO) as @ ranges over

the simple roots of ((u)P ; (u)A). We shall study the consequences

f (6.2) for H = H, . However, we must first estimate the function

et (wpt o (u)g  (o),+. (u)y

LEMMA 6.1: There is a positive number &, a polynomial p and a
5), m €Wt and t > o0,
-(BycoIngl)E

real number d . such that for A € C (a,,

(D, (moexp v B )| < [V pUIA L+ [T]) - e

o}
(U)Bm) (l + G(m))d, COINRIG(m

PROOF: Since Eﬁ is ‘(u)T—spherical we may assume that m Dbelongs
o )
to (O)A+ . For any V € (U)Z let V' be the differential operator

(Wg=1 v oWy | Then for me (M1,

u)iHo(m) = Zj(u)d (m) . § (m ; Uj(/\ . H )9) ® o. .

We have

(et (N O (m.exp v ) = e T AT BIIIT (00 exp ¢ ),




6.5

U.(A : H )" = (5. (V)ﬂ (2 ) v.)' - KY(ZHo’i j), A> Vi)"

' ¥ ¥
~< (2 . > 1) « V.
o)l J \(( Ho’l J), A ) 1

where I is the identity element in G . Define an element Gy

in (u)g to equal

(7 - < ¥(2y i 3 ), /A > 1) -((“‘)u(zH L 5< Y(Z

i j o o ij)’/\>I)°

Hys

Since the differential operator -

o’

is in the center of G, and annihilates ¢, we have

Vs ) 2 e o

1 = ( 5
(uLIHO(m) = zi'j wlg (m) ¢ (m ; ¢4 3 V1 3

On the other hand

¥

- (u)
‘157 Py, a B 1)

and is independent of /. We noted in 81 that for any Z € 2%,
(u) !
2 -2 goglulyy g = Wy g,

Therefore for each 1 and j there are elements

X? j e (u)x
and " :
| Yi 3 € G, k=1, ..., N(i,j),
such that
(U)-_r — (u) . k P
Iy (m) = zi,j,k d (m)-¢ (m; X3 501 j) e e .
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If HE& (O)g, Y € G, and X € (u)z(a), for a a root of

(ulp, Wy then

O (exp H; X Y) = o~ (H) O (X {exp H; Y) .
It follows that for a & (O)A+ and t >0
I(uXIH (a exp t HO)I is bounded by
o
e_:'Ot b (u)g (a-expt H) | (oxk )i a exp t H ; N )
i3k b o EREE PU s g

Now by [5(e)], Lemma 47, there are numbers ci and d; such that

(u) (u) = . " 4
d(a exp t HO)- —(a exp t HO) <eq 4 — (a exp t HO)« {1 +dn(a))

'a+t)l .

Cur lemma now follows from (6.1).

L

If

:=-gl®el +oo.+ §r®er, gl,ooo, §r€V

T’
is an arbigrary vector in E, define

(=) = & 1< <r .

K i

i
For /\ regular, we have
r

= i=l‘ (V'r® fi(/\ ).
Let F(i),...., F(ig‘ be the projections on E relative to this de-
composition. For =" € E, we have
F(,i\)- - = z5 T‘j(si ) tj(E) & £, (N)
=25 TJ(slA)-v{(sifqﬂu%ﬂ(slA)_l-tj(f) ? e,

®
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L]

It follows that for <i,k<r,

(6.3) £ (FUD) = 2, s adwlsg a) - Wcsy )7

Lt. (=) .
J i J(‘)

Since (u) r(HO) = Ho,'the set of eigenvalues of VA HO) is

C=fr; =<H, , s55A>3:1<1< r} .

/

Let 0°, 0¥, and 0  be the sets of eigenvalues r; such that

<HO R siw> is respectively equal to O, greater than O, or less

than 0. Define

(e} 1
B = 3. o0 pli)
1
o (1)
Fa =20 cot F'a
1
and
- , (1)
P Zeom Fal -
We also define
B = FJ(E) , En=Fa (E) , E, = F, (E) .
Then

E= 9E oE
We write (u)Eo, (u)§+, and (U)E" for ‘Fe\.(u)ﬁ ,

FA ’(u)@’ and F. °(u)§, respectively.

By Lemma 2.1, there ié a positive number ?g which is less

than the absolute value of any nonzero number in the set

{<HO, s{H> ¢ I<i<r, ze A (M)} .
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LEMMA 6.2: Forany ¥ , 0< X K 'ﬁe,we can choose a positive

number 5 and a polynomial p suchzthat for N e C_(a,,8)

(1) 11 T AT g oA & T w s,

ao el N e e paan S s,
and

(131) || e A R, |l <plAD e ¥I* v enr,

PROOF: If we extend any operator T on E to the space E = VT® E
by letting it act trivially on VT, its norm remains the same. There-
fore, for the proof of this lemma, we caﬁ regard the projections

Fn F. , and Fi and the operator [ (A : H,) as acting on E,

a space whose dimension, r, is independent of Tt and A .

We choose & to be any positive number smaller than both %:and

8,0 Given
A =uw+n,necla, 8),

and an eigenvalue r; of [ (/\ : H,), we have

(ri)ﬁ = (<HO, si/\>%R = <Hg, s;m> + <H, 55 Ap> .

O’
Since
v‘54

|<H,, s5 Ag >l < 3

we have
\/{ -
[(rj)pgl > -5, for r, € U0,

and

I(ri»Rl < %, , for r; €Q .
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Jet [—+ , I~ and r’O be closed positive rectangular curves in

the complex plane, whose interiors contain the points in Q+, Q
and Q° respectively, but no other eigenvalues of [ (A : Ho).

We may choose the curves so that |

(1), the arc length of each of the curves is bounded by a polynomial
in AL,

(ii), if 2z 1is any point on one of the curves then the distance from

z to anjr point in Q 1is greater than :2-{ , and

(1i1) , 2zg 2 %- ¥ forze [
2n < ~-(¥,- %), for z € =,
l70] < w, forz € [° .

From spectral theory we know that |

A ) o [ - TN Ho)) T e g

FAa = omi

For t > 0, the norm of this operator is bounded by the product of

~a polynomial in |A | , and

-( v -t

e «3U

U+ | [(z - (A B )R

The absolute value of any point 2z in r‘+ is bounded by a polynomial

in |A|. Therefore, for any such z the matrix of
ZI—r(/\:HO)

with respect to the orthonormal basis {e.,..., er} has entries

whose absolute values are bounded by a polynomial in |[A| . On the

other hand, the absolute value of the determinant of z I - [ (A : H
' T
(=)

o)

is bounded below by . It follows that



'
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sup 1z = THA = H))H]|

ze | +

is bounded by a polynomial in |A] .

We have shown that there is a polynimial p such that for

-{v - ¥t
F;\LHSP(I/\I)*e © ,

as required. The other two estimates follow exactly the same way.

]

LEMMA 6.3: We can choose positive numbers B and &, a polynomial p

and a real number d, such that for A\ € Cr(g , 8), m E(u)L+ , and

C
T > 0,

|(u)m+ (m - exp T Ho) ‘ + l(u)'i" (m.exp T Ho)l
is bounded by

(6.0 cvr 11911 pCIA T#171) - & BT 92 (m) (1w g o ool o)

- ®

£
PROOF: We shall be using Lemma 6.1, and Lemma 6.2 with Y= '% . Choose

8 such that for N € ¢ (a

rlag §) the inequalities of these lemmas are

valid, and such that

o

’ .ﬁ}.

¢, & < inf | I

N \"CD
O

Choose B to be the mimimm of 82 ana 22 .
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First we deal with (U)E.- . Since FA commutes with [ (A
we see from (6.2) that
(u)§€~(m exp T HJ) = eTr(/\ : HO)-(u)m"(m exp T H_)
T
+-§o e(T't)[—(/\ tHy) (u)&% (m exp t Hy) dt
o

It follows from Lemma 6.2 that there is a polynomial P such that

,(u)E-(m exp t H))| is bounded by the sum of
Yot '

(6.5) p(IAN - e 2+ [T (moexp T )|
and
' _X¥ot
(6.6) CaUAD 5T e ® 0 (-t) |‘_“’I~go (moexp t H )| dt .
By (6.1) we can choose a polynomial p; such that (€.5) 1is
bounded by S0t
ol ey UA T+t -6 2 - ) Zm)e (1 + olm exp 7 8_))9 -
ecb“ lelo o(m)
Since ’
o(m exp T HO) < o(m) + 7T,
we have
-¥oT :
- ‘ ® T H
e 2 - (1+ a(m exp T HO))d, eco |7\7R| o(m e’XP o)
¥ .
< e‘('_g - COS)T (l + O'(m))d' (l + T)d . ecolxﬂl G(m)
<y el o (1+omnd.e® ] otm) )



LT

. 6.15

for some constant ¢, . Therefore there is a polynomial ' p such

that (6.5) is bounded by (6.4). The integral in (6.6) 1is dominated by

'Z_O_T. r _T. T
e b .,} i I(U)}Ho(m exp t Ho)l dt +’S.T_ i(u)EEHo(m exp t HO)I d t
2
- {oT
L ;im I(U) : ® (u)
< e ot ﬂ% (m exp t HO)I d t + j%P | i% (m exp t HO)I d t .
o 5 o)

2

It follows from Lemma 6.1 that (6.6) is also bounded by (6.4) for some
polynomial p .

Now we consider (u)ﬁ+ . Using a change of variables, we rewrite
the integral equation (6.2) as
+ - .

E (m exp tlHo) -5;

)

O«

+
E, i%o(m exp t H ) dt ,
for any ty 2 O and m €(u)L . Since

%9-— 8 is positive, we observe from (6.1) and Lemma 6.2 that

'tlr’(/\ t Hy) . (u)§+-(

lim | e

mexp t-H )| = 0.
tl"_—>(x 1l

Therefore

’Téo(m exp t H)) d t
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Replace m by m exp T Ho' We obtain the equation

+ oo ~(t-T) [ (A : H)) |
u - 07 gt
( )@ (m exp T HQ)-- -'ST e EﬁV}hO{m exp t Hq) dt .
Using Lemmas 6.1 and 6.2 once agéin,'we conclude that there is a

polynomial p- such that |(u)@f(m exp T HO)I is bounded by (6.4). This

completes the proof of the lemma. 1

o

Next we turn our attention to (u)ﬁ . Before doing this, however,
we shall prove a simple lemma. For any e > 0, let (u)s (e) be the
set of elements H of norm 1 in (u)g 'such that a(H) >¢ for

every root a of ((u) P, (u)A) .

LEMMA 6.4: Given & > O we can find a real number N such that for
‘m c (U)L" He (u)s (8), and t > N - O’(m), mexp t H is in (U)L+ .

PROOF: Choose No such that

la(¥Y)] < N_

<n littl, te g,

for each root a of ((u)P, (u)A). Any m € (u)L can be written

m = klf exp Y- k2, kl,k2 E(u)K, Y e (u) a .

||¥[]. The lemma follows with N = N_ ¢+ .

Then o(m) o o

For m E(u)L, define

co

(- -t [ (A : H)

(u)(ﬁxm) = (U)QO (m) + e Ei IH (m exp t HO) d t .
0 ’ 0
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In view of Lemmas 6.i, 6.2 and 6.4 there is a & > O such that this
integral converges absolutely uniformly for m and A belonging to
compact subsets of (u)M)<Cr(§€, 8. In particular,~ (u) ED(HH

depends analytically on A € Cr(ge,s). By [5(e)], Lemmas 56 and 5o,

(“)iﬁi has the following properties:

(6.,7) (U)® (m exp H) = el— (/\'H) ulo , m (‘ )L, H E(u)a,

(6.0) (u)® (klm k2) = T(kl) (u)i/ﬁ) (m) . T(kZ)’ m G(U)L, kl’k2 c (U)K
(6.9) (u)@(m; = [ /\ V) (LI)r\( ) m < (u)M, vz (U)Z

LEMMA €.5: ‘e can choose positive numbers B and 8, a polynomial p

and a real number d such that for A€ C (a_., 8), m & (u)L+

g - , and

T=>0,

l(u)@‘%m exp T H)) - (u)(ﬁ)(m exp T HO)I
is bounded by the expression (6.4).

PROOF: e shall be using Lemma 6.1, and Lemma 6.2 with ¥ = inf {2,803,

Choose 8§ such that for A &€ C ( 8) the inecualities of these lemmas

C,
are valid, and such that

COS < E% .
We take B to be ﬁ% .
Since Fg (u)(E)(m) = (u)<E> (m), we observe from (6.7) that
[(u)ﬁo(m exp T HJ) - (u,<:)(m exp T Ho)l

is bounded by the product of
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T [(A & H)

le F% l

and
Ie_T [_(/\ : HO) (

u)@O(m exp T H_) - (u%ﬁ)(m)l .

By Lemma 6.2 theré is a polynomial P, such that the first term is

bounded by
p, (IND) - 7T

On the other hand by (6.2) and the definition of (u){ﬁ}(m), the

second term equals
o -t [ (A :H
15 e

)
. " Ei (ul}ﬁo(m exp t HJ) d t|,

an expression which is bounded by
polIAD- YT (> | mepen) [at.
Our result now follows from Lemma 6.1 , ]
We define
(u)@i(m) = t.((u)(ﬁj(m)) , 1 <1 <r,me (u)L .

Let (u)@ (m) = (u)gl (m). Then (U)Q is a r-spherical function

from (u)L to V. .

COROLLARY 6.6: We can choose positive numbers B and &, a poly-
nomial p, and a real number d such that for A\ € Cr(gc,S), m e (u)L+f

and T > 0,
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1 (W) g (m exp T Hy) ¢ (m exp T H_) - (Wg (m exp T H_) |
is bounded by
el l e pUA T+ 1e 1) - e T8 2 m). (2 4 o(m))? . e

PROOF : For any m & (W ,

But
16 (" @) - o (M@ @ < 1 ) - W@ ()] .

The corollary follows from Lemmas 6.3 and 6.5. 0

LEMMA 6.7: There isa & > O, a polynomial p, and constants N and
d, such that for A € Cf(ée’ §) and m € (u)M .

N - l}\-,RI - o(m)

|(u)@ (m) | < pUAT+I<1) » WZm) - (@ + o(m))d. e Held,

PROOF: Let & be the positive number given by the last lemma.
For any m, & (u)p+ ,“u%gj(m+)l is bounded by the sum of

0
| (u)go (m,) - (u)@(m+)| anda |(W)g (m,)|: The first term, by
the last lemma, can be bounded by an expression

- o Ingl - olm,)
[Fell oy AT + e - 2 (my) - (] + o(m, 1)d. g0 "R TMD

By Lemma 6.2 and (6.1), the second term is also bounced by an ex-

pression of this form.

By Lemma 6.4, there is a constant N,, such that for any

m & (U)M and for t 2> NO- 7 {m), m-exp t HO belongs to (u)L+.
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(u - = -
For any m € )M, let to = N_.o(m), and m, =m- exp tOHO. Then

o, T (A

: H) .
(W@ (m) = DD (m,. exp (-t 1)) = e ol WG (m,)

-t [T (A :HO)

= - e "F?\'(u)@ (m,).

By Lemma 6.2, there is a polynomial P, such that
-tO r' (/\ :’HO) FO

| e X
<polin) e O Mmoo o () -e O o(m) - g
We have
o (m.) € o(m) + o(exp t Ho)
= (m) + N o(m)
= (N, + 1) o(m) .
Since

W) = (Wzm)

our lemma follows with N = (NO + l)cO + 2 NO . []
It is easy to prove a version of Corollary 6.6 which allows us
to replace H_ by a vector which varies over (u)g (¢), for any € > O,

and to let m range over all of (u)L. However, we will not need

to use such a result. We prove only the following weaker statement.

LEMMA 6.5: Let eand & be suitably small positive numbers. Given

N E E%(ﬁc’ §) and m € (u)L, we can find positive numbers D and d

such that for all He (Ws (¢) and T > o0,
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I(u)d (m exp TH) ¢(m exp T H) - (u)@(m exp T H)| <D et

PROOF: - Fix a positive number 3 which is smaller than % ¢ |a|™! for
)

each simple root a of ((u)p, (u)A). Then for H € (u S (g), H

as above, and a a simple root of ((u)P, (u)A),

g

a(H - YH) >%

It follows from Lemma 6.4 that for T large enough, m- exp T(H- XHO)
belongs to (u)L+, To prove our lemma we write m exp T H as the
product of m - exp T(H—‘KHO) and exp T'KHO. The proof follows from

Corollary 6.6. i




S7. THE ¢ FUNCTIONS 7.1

Fix a standard cuspidal subgroup P of G. Suppose we are
given a Weyl chamber ¢ = g in a associated to a fundamental
systems B of roots in a . Suppose also that f 1is a function on
A and that v is a complex number. Following Harish-Chandra, we shall

write

if for every pair of positive nu bers % and € , there is a number
N such that

If (a) - vl < €
whenever the conditions

o(la) > N

and

B(log a) > %-o(a) , B € B,
Von a &€ A are satisfied,

Suppose that T is a double representation in F (K,K) which
acts on V.. Harish-Chandra defines a space A(G,T)to be the set ~f 7

finite functions ¢ in dm(G,T) for which there exist constants C and 4
such that

| (X)ISC'E(X)-(1+0(X))d,XEG.‘

If AN belongs to i 2rs the set of purely imaginary, P-regular points

in a., Lemma 5.4 insures that the function

¢ (x) =E (& :n : x)

is in A (G, T). Given (“)P, u € J, the function (U)o defined in
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the previous section, is called the constant term of ¢ along
(u)p

)
> It is characterized as the unique function in A ((u)L, (u‘T)

such that for every m € (u)L
(u)
e<

b

(7.1) 1lim { p, log a>

(u§a+
(a —=>)

o (ma) - Wo (na)} =o,

({5(£)], Theorem 2), That ® and (u)Q are so related, even if we
take A to lie in 'Cr(ge, 8), for some & > 0, follows directly

from Lemma 6.4 and the formula

(u)d (m a) = —TI.)
u

a e A+

-%<a, log a>
-€ );

%<a, log a>
e

m € (u)M , a € exp ((u)§+) .

Harish-Chandra developed the theory of the last section to define
the constant term of any function in A (G, 1) » In particular, if

G 1is replaced by (u)M, and ¢ 1is replaced by (u)@9 one can defir~

( v )
the constant term gzg(‘u)g) of (u)Q along Suzp, whenever v < u. 1u
vy A\ ¥}

- 1s easy to show that for v < u,
(7.2) (Mo = (7] ((ulg),

We remark that by ([5(e)], Lemma 43), a function @ € A (G, *) is in

A
ﬁb(G, T) if and only if (u,@ = 0 for all standard parabolic subgroups
(ulp £ G.

Suppose again that A € i 8.s and that

Olx) =E (¥ : A : x) .

Harish-Chandra has shown ([5(f)], Lemma 8), that if (u)P is not assori.

ated to P, then for each a ¢ <u)A the function
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1793) m —> (u>9 (ma), m &€ (u)M,

is orthogonal to Qo ((u)M, (u)T) . By analytic continuation, we can

fix a small positive number & such that this fact remains true

whenever A\ belongs to C.la,, B).

e)
Suppose now that (u)P is associated to P. It follows easily
from the above remarks that if A € ¢.(a,, 8), and 0, (u)@ ,

and (u)<§> are as in the last section, the function

m ~—>-(u)<E} (m) , me (u)y ,

is in & ((u)M, (u)T), We write

W@ w - 2, W@Hm,

where (u)<ﬁ}(i) = Fﬂi)' (u)(ﬁ) . Each of the functions (u)<E>(i)
is square integrable on (u)M. On the other hand, if V € (u)g, we

have

@ @Hmm = riAm W@Hm = <D vw),sp> W @),
by (6.9) and the definition of F(/j\') . Thus, (u)@(i) is an eigen-~

function of (u)g , which we have noted is square integrable.

Suppose that (u)<i)(i) is not identically zero in A. From the

results of [5(e)], we know that for any element V 1in the center of

(u)

the universal enveloping algebra of M,» the set of numbers

<(u)Y(V), si/}>= <(u) ¥(V), syu> + <(u)\((V), si?\;>, N E Cr(g_e, 8),

must be discrete. It follows that <(u)a’(V), sik> equals zero for all
| (u)

such V and A. This can only happen if Sy maps a into a
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For any s & () (a, (u)g) there is a unique element 84

whose restriction to a equals s. The function
tl((u)<:>(l)(m)) cmoe
is of course defined in terms of

Plx) = E(* s n 2 x), v eCp M Ty), A€ Cua, B), x€G .

G,

It depends linearly on V and holomorphically on A. The orbit of
(u)

s; /¢ under W, which depends only on s and u, is denoted

{s #u} . We have shown that tbere is an analytic function
c(s : A),” N € c.la,, 8),
with values in the space of linear maps from Q{M}(M, TM) to
? V . ﬁ‘. . :' i
Q{S U}((u)M, (u)#) such that ror m € (U)M
0 (W@ E (m)) = (els 1 0) ¥) ().

It follows from (6.7) that for H € (u)g ‘and m € (u)M

)

(7.4) o (m.exp ) == (c(s : Au)(m). SN, B>

se -n-(.?m(U)@;:)
Set gﬁ = (u)g , and choose s € 1 (a, gv). Define a map
s : .Q.(MyTM) —_—> .Q.(M?) TMY)

by

-1

(s ¥)(m) =1 (w) "(wia w) t(w ), % & g(M, ) s n €M ;

where w 1is any representative of s in (O)M . It is clear tha+ =+~

w€AT(M) and ¥ & Cp (M, Ty), then st € Ciap} My )
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LEMMA 7.1l: Suppose that gﬁv is another distinguished subspace of

(o)g which is associated to a , and that ¢ 1s a Weyl chamber in

gvv. Choose t & LL (g

v i

. gv) such that ¢t (c) = (§?)+. Then for
¥y
$e Q{M} (M, TM),-L € Cr(gc, §) and meM

<pit', log a>
lim {e Pe E(« : AN :ma) -3 , (tT%c(ts:k)ﬁ)(m)
(a—Sx o0) o s€(a,a1")

. e<s\, log a>,

equals zero.

PROOF: let w be a representative of t 1in (oﬁﬁ . Notice that

1}

m' = wmow T belongs to M', and that a' =w a wt belongs to

[ 7

exp (g_i)+ if a 1is in exp (c). Furthermore ¢ P, =0 »> It

follows that

§ ¥ A

<p. , log a>

c

° E(v: N :ma) -2 (t™te(ts: A ) (m) . e<SAs1og 2>
s€ n(a,a’")

equals

<P, log a > T(w)-l E(# : n m?ag) r(w)

e<ts AN, log a‘>

[
™M
.q

(W)™ (c(ts : A )(m') - T(w)-

The lemma follows from (7.1) and (7.4).

u

If ¢ 1is a Weyl chamber in a and 8 1is a positive number, w=
denote the set of points in C(§€,§) whose real parts lie in c¢ by

Cla, 8, c). For s & ((a, gv), we shall sometimes write
b E
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Cla,,s, s) for Clag, 8, sH((a)*)). - .

LEMMA 7.2: Suppose that s € () (a, a') and that c is the

e Y ———— ~——

chamber s'l((§?)+). Then for any A in C(gc, 8§, ¢), and m € M,

e<-7\.+pc,log a> E (w: A -1

lim tma)=(s"c (s :AN)t)(m).

(a -—c~>°°)
PROOF: From the last lemma we know that

<A+ p., log &> 1

lim, c "E(*: N :ma) - (s"c(s : A)U)(m)}
(a ——>00)
equals
-1 o . i
Zren(a,a) (8 cls v M)t)(n) llm(a S s o e, log &>

r+l
Fix a point H in ¢ and a nontrivial element r in . (a,a).
Notice that the points v' o= s Ap and H = s H both lie in (g?)+.

In addition,

v v
is a nontrivial element in (2 (a, a ). It is enough to verify the

inequality

? i 3 9

<v -rvVv,H> >0.

The points v' and H both belong to the closure of (O)g+,

Apply Lemma 3.1 to the pair (Mi, M N (O)P). If (o)g&7 is the
(o)

positive Weyl chamber in gv ) & , there is a unique element

(o).
r in M such that
(o)

; .
(i), the restriction of r to a equals r )

(o) (o) +

and (ii), r maps ay, onto itself,
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(o)

r in (O)gﬂv of sufficiently small
norm. Then both v + Yo and H? TV belong to (O)gf. It follows

Let Vo be a fixed point of

from [5(c)] (Corollary 1 of Lemma 35), that the number
] 1]

<v' o+ (O (o' v ), He v = <v ' H'S>
v vy = r(v, + v, V> =<y —r v,

is negative. This completes the proof of the lemma. ]
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§8. RELATIONS WITH THE INTERTWINING OPERATORS

Once again we fix a standard cuspidal subgroup P of G. Sup-
pose that A is an element in a2, whose real part belongs to §+,
Suppose that T is a double representation of K and that ¢ is in

Then Harish-Chandra has shown that for m € N,
M0, H(v)>

CO(M,TM).

(c(1 : N)¥)(m) = E’(P)'jv w(m - vy) - oTlvy) dv ,

([5(f)], Lemma 9). The proof involves combining Lemma 7.2, the

formula

E(d# : A : ma) fjﬂ T(k_l) v (k am)- e, H(k a m)> dk
KM\K

and the change of variables formula

jKM\K h(k) d k = y(P)-jV hive) - e2P HV> ay e ¢ (g\x) .

The reader should be able to reproduce this result.

Now suppose that F is a finite subset of E(X), and T = Ppe
Suppose also that « € EZ(M)’ that o is a repreéentation in the class
) , and that

= T € End (EF(O)).

mT ,
For kl’ k2 € K,

. eAto, H(v)>

’4"'5V (wT (m VM) pF(VK))(k k2) dv

l’

. gxto, H(v)> dv

v (P) jv tep (m ) (ky v k)

¥(P) jv Tr {o(m vy) - Kp(k5h vid, k(L] ey B> g




Let ¢, € {2 (a, 3) be the unique element in nf(a) of greatest
length. Then s (_ei“)+ = -§+ , and V_ = V. Let w, be a fixed
£

representative of s, in (O}ﬁ. Recall that w, can also be re-
garded as a map from H(o) to H(w,o).

w1~l R (w,: N\)T 1is a new operator in End (HF(G)). It is clear

from the definition of KT that

. -1 -1 -1 <
IV Tr {rx(m VM) KT(k2 VK , kl )} o \,*D;H(V)>dv

]

T 21 -1
Tr {o(m) - K "7, R(w,&:mT(kz » ki)

“‘wzl R(w, :a)7ém) (kp,k,)

We have shown that

(c(1 : n)tg)(m) = ¥(P). ¢ (m).

wz R(w&:h)T

We shall generalize this formula. Let s € v (a, g,). Suppo-

that s; € JQ-(av, gj) is the element in 43_(gv) of greatest length.

¥
L

-— - v — ’~
of S and s™!. Choose representatives w, w, and Ww in (0)F of

Define s = s,s. Then the length of s; is the sum of the lengths

these three maps so that

w L

& =

W= w

LEMMA 5.1: For A € Cla

D e ———

¢r 8 s), and T & End (Hp(o)),

(8.1) c(s:k)mT = Y (P).y -1

(w'z) R(W : A)T R (w'l: s \) :



b-}

PROOF: Suppose that there is a T, € End EF(G) such that

? = R(w T

Tt SN w Tl .
Then for any elements kl, k2 e K,

E (mT Y VI X)(kl’kz)

- E(‘!'R(w—l’: sN) w Ty PN Ky * k2)(1,1)

-1

= Tr {m fo, N : k) x k,) - R{w s AN) w Tl}

- ﬁy(wo, sh ok x k2)w Tl}
= Tr {n(w o, s A :'kl x ky) w Ty R(wl: s 9B

= E (y i S AN ! oX)
w TlR(w'l: s A\) (kl’kZ)
Let ¢ be the Weyl chamber s"l(g?)+. It follows from
Lemma 7.2 that for m € M,

(s_lc(s : h)wT)(m)

= 1im e
(a—S>e0)

1 1

? -
Notice that m = wm w belongs to M - and a =waw

belongs
?
to exp (a )+“ Furthermore, s\ belongs to (§?)+. Our expression

equals




8ody

13 + SN s"lo', sTH'(a')> B (4 —
m (g) W TIR(W‘l:s N
(& t~—>00)
- -1y <-s A+ PV, H'(av)> o/,
- p(W) {llIH( (av)*‘ e ¢ E(\]j.w TIR(W"I:S 7\‘)
a?-:..:.wm)

By Lemma 7.2, this equals

plupte(s s A)y 1

w T-R{w

J(m') - o(w) ;

s A)
which by the discussion preceding this lemma is the same as

T(P). ( )—l- e ‘
p (w (W}’)'l R(WZ P S AN) W TIR(W-I: S K)(m ] olw)

- ¥(p) (s}

e

(w,g)"lR(w-l: S AN TlR(w"l . s )\.))(ML) ’

By Corollary 4.5,

"

R(w, : sA) =R(w:N)R wl:sa .

S W

8 A

1

R |
amw)

This completes the verification of (&.1) in the case that there is a Ty

such that

-1

T = R(w—l : s AN w Tl =w . r(sT: s AN)ew Tl

By Corollary 4.7, any T € End ﬁF(c) may be written this way for

almost all A. By continuity, (v.l) is true for all T € End gF(o),

and all A\ € C (a 5, s).

c"

U
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COROLLARY ©.2: Under the hypotheses of the lemma,

5™ cls : AN = Y(P)=¢ (= "

r(s : A)T r(s :-\)

PROOF: It is a simple matter to check that if T & End Hp(o ),

-1, _
S ‘hTV - 'h‘W'l Tt w
Therefore, by the lemma,
S-l Q(S . 7\.) “'T = Y(P)\'!’ -1 -1 - -1
W (w?z) R(w : AT R(w —: s A)w
Now
~1, ¢ -1 = 2 —
w (w& ) Rlw : A) =w R(w:A)=1r (s :\),
while by (4.6)
- e - sk -
R{w 1, s AN)w = R(w : =-A) (w l) =r(s : -N) .
This proves the corollary. ]

Harish-Chandra has shown that c¢(s : A) can be analytically
continued as a meromorphic functicn of A on 2, -+ He has also
shown that the restriction of the operator

—_ v

cls : A) @ C(M, TM) —> C(M , TM?)

to C (M, ) 1s a scalar multiple of the identity which is inde-
pendent of s , ([5(f)]). Here

c(s : k)* : E
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is the adjoint of c(s : A). His first step in carrying out the proof
of these two facts is to deal with the case that P 1is a maximal
parabolic subgroup of G, We shall assume this first step here. We
will then be able to obtain the general case from the work of gho
Specifically we shall assume that the above two fesults are valid
if (G,P) 1is replaced by the pair (MB, PB), for B a reduced root
of (P, A).

Suppose then that P is of arbitrary rank and that B is an
element in X . If F is a finite subset of E(KB) and T € End

EB,F(G ), the function
N — CB(l : \)) lb’T PRERY = C((éﬁ)@’a’ 1))
can be analytically continued to (_a_B)G . Here, as usual, the sub-

scripts B connote objects associated to the group MB - Recalling

the definition of the map ,rB(v), we see from Corollary 5.2 that

(5.2) CB(l tov) tp = "YB(PB)ﬂ er(v)T °
By Theorem 5.1, the map
? . ¥
T -—> Yoy » T € End EB,F(G ),

is an isomorphism. Therefore the function

N —— I‘B(\J) y VE (-'BLB)C y <v, B >r >0,

can be analytically continued to (g_B)e . It follows that the map

A > rg N, ve g,y N, B>p >0,

can be analytically continued to ag-

(O)a,

Suppose that gf is another distinguished subspace of

i

and that s belongs to .fl(a, a ). Let w be a representative of s
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in (O)M . Then it follows from Lemma 4.6, Corollary &.2, and the
definition of R(w : A) that the functions

AN—>r(s : N), A€ T(s) ,

AN—> c(s : \), X € C(QC, 5, s) ,

N—>R(w : A), A€ T(s),
can all be analytically continued as meromorphic functions to 2,
F is a finite subset of E(K) and A and B are operators on the

. If

HilBart space Hp(o), then the adjoint of the map

— T € End EF(U):

\\rT
is the map

ATB?

e —_— Wko g¥  , T € End Hplo) .
Combining this fact, the equation
cls : ) els : n) = (s7te(s : -X)) “tels : A)),
and Corollary .2, we see that

2 e
(8.3)  dls = A) wp = F(P)%. r(s : 0% rs AT rls @ X)) 'r(s : A)?

for all T € End EF(G).

Suppose again that B is as above. Then for T € End Hg glo),
?

we see from (&.2) that

P 3
(s.4) dB(l : LB) by = Cg (1 - —kB) c(l : xB) by
=7 (Py)%. v, = % .

According to our earlier remarks, there is a complex valued meromorphic

function

v > SB(aLv) , VE (QB)

e b
such that

dB(l : NB) by = Se(w%ks) WT .




.S
It follows easily from (s.4) and the definition of the operator
G . ,

rg that for any ¢ € EF(G),

G _ -2
I‘B(M(P _YB(PB) ¢ SB( u':hs) (p °

If s 1is as above,we examine (s.3). In the notation of Lemma 4.6

the operator

r(s : =X)" r(s : A)
on EF(G) equals
G =% G o\ ¥ G G
(-N)7 oe.e.. (-A) 7 - (N)eoeens (N) e
. an rBl ) rﬁl an

By Lemma 3.2 and our above results, this is just

1T -2
6cs ‘fB(PB) . SB(uJ,kB) I,
S

Similarly on gF(c) we have
e AT rE =TT v (B R sylw ag) - T
BeZ
However, I 1is the disjoint union of fs and f; . We have thus

shown that the restriction of d{s : A} to C (M, Pr M) is the
;

product of the identity operator and the scalar
2 -2
pez
Let us denote this scalar by 8(w,N). Then &(w,X) is a meromorphic

function which is independent of s. Recalling the formula (L.5),

we obtain



C
O

(s.5)  3lw ) =TT Bglw,ng) -
pex
Harish-Chandra has obtained this product formula in [5(f)] by
essentially the above method. According to our remarks in §5, we
‘can replace Pr in the above discussion by any representation 7T
in F(K,K), and still obtain the same formulas.
For harmonic analysis it is convenient to define

w ) = Y(R) e 5w )t

This is a meromorphic function of A which is nonnegative if A is
purely imaginary. For B € X and Vv € (QB)C, we define yB(uz,v)
the same way. Harish-Chandra has calculated uB(oJ,v) explicitly.
In view of the above product formula, this gives an explicit formula
for u(e ,N). In particular it establishes certain properties of

n{w ,N) which we now list,

LEMA 5.3: (i) For s € 0(a, a')

nleo ,N) = (s w,s ).

(ii) There is a constant & > O, independent of w , such that
(e ,N) is analytic for N € C(gC,S)u In fact, given any differential

operator Dk with constant coefficients on 2gs there is a polynomial

p such that for v € E,(M) and A € C(a,,?),

2
Dy lw s n) | < plw| + [N])-

B

LEMMA o.L: For we E,(M), o a representation in the class «, and A

e e oo i

a P-regular point in 4a, the representation (o, A) 1s irreducible.




PROOF: Assume the contrary. Then we can find two unit vectors $l

and ®2 in H% o) such that for each x € G,
(m(o, N X)(Dl: (Dz.) =0 .

Let T be the operator on H{o) which maps ¢2 onto @l and which
vanishes on the orthogonal complement of ®2 in H(o) . Then for

X €G, and k), k, €K,

E(¢r : N 1 x)
T (kl’k2)

= E(‘.L’T TN kl X kZ)(l,l)

=Tr {m (o, N : ki x k2)T}

(u)

We apply Lemma 6.! with F =P. Fix a small number g > 0.

Given m &£ M we can find positive numbers D and d such that

for He (Wg (¢), m € M, and t > O,

|= (cls @ N)ug) (m) - e” v,

s & nf(a ,a)

*

We are of course using the fact that

E( : Nt mexp t H) = 0.

*.UT
The wvectors

[sn:sen(a, a)l

are all distinct and imaginary. In addition, H is allowed to vary
over an open set in the unit sphere of a. It follows that for any

S,
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On the other hand, the map

o

F-—>cls : -7)" , €3,
is regular at J =2A. In particular

8o, AMitg = c(s : 0" els Mg =0 .

But in view of Lemma 5.3, the function

cannot vanish on i a . It follows that "m = 0. This contradicts

the assertion in Lemma 5.1 that the map

T—>4, , TS End®(H (o)),

is injective. ]

y v 4 oy

Suppose that s & (1 (a, a ) as above, and that s €cnla, a

(]
for some other distinguished subspace a of (o)

(O)ﬁ' of s and s vrespectively. Then

?
a . Let w and
W be representatives in

-1 q

A —> pwa,W(G,k) =R(w'w : A)"T R(w' ;s A) R(s' @A), N € Y

1s a nontrivial meromorphic function which for any finite ;subset F

of E(K) takes values in End HF(O). Corollary L.7 has permitten

us to define R(wvw : x)“l. If £ is a K-finite function in é? (G),
we have
pw',w (o, M) m(o, A £) = n(o, n: f) ) Wi w (o, N,

by (4.4). It follows from the last lemma that P (o,An) must be

w',w
a scalar multiple of the identity operator when X is a P-regular
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point in 1 a . Therefore by analytic continuation we can regard

(o, M), NE a

N Py ¢’

as a complex valued meromorphic function such that

(0.6) p (o, N) R(wiw tA) = R(wi : s AN) R(w 2 A)e

wi,w

Of course if the length of s's is the sum of the lengths of sY and s ,

Pt w (o, N) =1 .

Following Harish-Chandra, we define

-1

M{s : ) = ¢l : sA) " ecls : AN), NE a, -

%(s : A))

(Harish-Chandra denotes: M(s : A) by
This gives a meromorphic function which for any F takes values in
the space of linear maps from ch(M,PF,M) to QSOJ(M , pF,M')‘ In

the notation of Lemma 4.l we observe that for T € End O(g(c)),

M(s : k)ﬂT
-1
= C(l S 7\.) W
(w%) 1 R(w : \)T R(w‘l: s N\)
YRy s s AT RGE AT ROt s A

However, by Corollary 4.5,
Y. s K)fl
1,

R(w : A)
-1

R(w

Vi
(¥

R(w w™ s AT R(w )

-

(R(w : N)‘R(w'l: s k))-l R(w : A)

Finally, by (8.6),



Ty Q‘l_}

-1

R(wW™ s N) =o _y(0, M)« R(w A

W,W

We have shown that

(6.7) M{s : A)o =+

T R{w : A)T R(w : K)-l )

Harish-Chandra¥‘s functional equations for M(s : A) can now be

- proved easily.

Theorem ¢.5: For s € (\(a, gi) and T € End O(E(c)),

E(\Lv,T : N 1 x) = E(M(s : k)@T : S A X), NE 2,e

In particular M(s : A) 4is analytic on i a .

PROOF: The first statement of the theorem follows from (6.7), Lemma
5.2, and the intertwining property (4.4). The second statement is an
immediate consecuence of (s.7) and (6.6). For the third statement wsa

note that if F is a finite subset of E(K), the adjoint of the map

Pp—— | 1, T € End Hp(o)
T CR(w ) T R(w o A)T i A

is the map

e — i

,, T € End H.(w o) .
0 F
T+ Rw : &) T R(w : A

>}<_l b)
)
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But by (4.6) and (s.7),

- -1
% w o = M(s :
wR(w T N) 7’ Rlw ¢ )™ 1 (

- s N) mT-’f ,

M(s : -\) 1 P
T

If A 1is imaginary, the morm |[M(s : A)|| equals one. It

follows that M(s : A) is regular.
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HARMONIC ANALYSIS OF THE SCHWARTZ SPACE ON A
REDUCTIVE LIE GROUP II

by

James Arthur




INTRODUCTION

This paper ié the second half of [1(b)]. In the
intfoduction to [1(bv)], we alluded to a éheorem on the
Fourier transform of the Schwartz space on a reductive Lie
group G. Without formally stating the theorem in that paper,
we laid the groundwork for proving it. In this paper we shall
state the theorem (Theorem 3.1), and complete its proof (gé).
Theorem 3.1 is already known in some special cases.
For G = PSL(2, R), the result was established by Ehrenpreis
and Mautner, ([3]). In [1(a)l], the case of real rank one case
was dealt with. In [2], Eguchi establishes the result in case
G has one conjugacy class of Cartan subgroups. Analogues of
Theorem 3.1 for certain subspaces of (C{(G) have been proved
by Harish-Chandra, in his second paper on spherical functions,
by Eguchi and Okomoto, and by Trombi and Varadarajan ({61]).
The techniques for proving any result similar to Theorem
3.1 were introduced by Harish-Chandfa, first, in his second
paper on spherical functions, and later, in his second paper
on discrete series ([4(c)]). In fact most of the results of both
this paper and [1(b)] are simply restatements of results of
Harish-Chandra. The author learned a great deal from Harish-
Chandra’s lectures at the Institute for Advanced Study, 1970-197%,
in which much of the work summarized in [4(d)] was presented in de-

tail.
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N lel
S1. DEFINITION OF £

Suppose that G is a reductive Lie group with Lie algebra g
Suppose that K is a maximal compact subgroup of G, that © is
an involution on g , and that B is a bilinear form on g such
that (G, K, O, B)satisfies all the assumptions of [1 (b)], §1.
We shall use the definitions and notation of [1 (b)], usually without
further comment.

Let P =NAM be a standard cuspidal subgroup of G, and
choose & € gz(M). Recall that p is a double representation of K
on LZ(K:X K), and that Py is the restriction of p to

K

M= KNM, We let Li)(MZ,pM) be the set of functions

f: (m, (kl’kZ)) - w(kl: m : k2), ki, k, € K, m e M,

in 15(M) ® L?(K XK) which are oy-spherical. This means that for
? t

k) 5 ky € Ky,

| 3 t 14
bkyiky mk, ¢ k) = ¥(kjky @ miky ky), ky,k, € K, m € M.

4LEAM, py) 1is a Hilbert space under the norm

= f
Il i Ju fxxx Jo( miky) 1%d kyd &y, dm , ¥ €12 (M0 .

For ¥y, ¥, € Lj{M,oM),. k), k, € K, and m € M, we define

~t

(wl WZ) (kl; m kz) = /;J[ wl(klz m: k ) wz(k tm m : k2) dkdm.
K

This integral converges for almost all kl and k2. It makes

Li (M, py) @ Hilbert algebra.
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Suppose that o is a representation of M in the class /,
acting on the Hilbert space HU « The map

1

2

T—> d%, 4y , T € End® (H(o)),

defined in [1{v)] extends to an isom2try from the space of

Hilbert-Schuidt operators on H(o) onto L%) (M,pM) . i

It is easy to interpret Lz)(M,pM} directly as a space of

Hilbert-Schmidt operators. Let £ be a fixed vector of norm

E!vMJ

d in H,. For o€ H{o), define
@g(mk) = (fﬂ(mk); g)s mEMikEK°

Then the map

¢ —> ¢ 5 9 € Ho) ,

is a linear isometry from Hio} onto a closed subspace H (o)

of I?(M x X). For T & End®°(H(o)), and ¢ € H{o), we have

j' jﬁ @E(m k) wT(k—l . mt no kc) dmdk
KM S

P

. -1
j‘ j’ fo{m)eplk), €) - Tr {c(m_‘)o(me)KT(k‘ , k)}dmdk
K M '

R on

®

Z3 jg j¥ {o{m)p(k), 8 ©0(mE,, olm') Kplk'  , K)g)dmdk ,

where {§;} is an orthonormal basis of H_. By the Schur ortho-

gonality relations, this expression equals
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gt jK (o(k), ;) (o(m')Ep (k" , k) &, ) d k

-1 ' =1
- ) te”) g e, 8 d
=1
=dy (a(m') (T o) (k"), 2) .

" We have shown that

(L.1) (T w)g(m'K’) = duj£ J; pe(m k) wT(k_l: o o' s k") dmdxk.

Suppose that S, T € End® H(c), and that ¢ and £ are as

1

above. Then
j; "&Q" wg(m k). wT S(k"l: m‘lm": k") dmdk
=dt (T sm) (m'" k")

'.‘1 0'1 X X t ]
= (S (m k" ) etk “: ;' m':k"")dnm dk
4‘& ®'g T

1 11 u: k”)

=qmjg j; j; j# Qg(m k) ws(k'l: m™t m' kt)wTék'— :m m

dmdkdm dk'

-1 -1
= du)j f ¢e(m k) {f f Ws(k-li m k')\'!T(k' cm'  om m' kY
K M = K M

4 1]
dm dk}ldmdktk

L
) dmdk .

- -1 ¢¢
d, j; _f wg(m k) (ws WT) (k 1: m lm : k
M
It follows that
(1.02) d’T S = dUJ (‘l’s ‘”T) 4

By continuity, this equation holds if S and T are arbitrary

Hilbert-Schmidt operators on H(o).
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For o€ L3 (M, py) define

%

¥ (kl T m o k2) = w(k'él': m'l: kil)

If m(kl: m : kz) is continuous, we also define

T(y) = j% Wk 1 k) dk .

Notice that if W = ¥ ¥,  ,
- - %* 2
T(y) = jﬂ ~[ \[ ¢1(kl 1 :m : k 1) wz(k :m l: kl) dkdmd kl
K M K
-1 -1 -1 )

= ju jﬁ i, (k cm ok 7). va(k t:m: k" )dm-d kdk
KxK M 1'71 YT 1

(¥, ¥,) -

Suppose that o is a representation in the class w. If T i

a Hilbert-Schmidt operator on H(s),
* .
Suppose in addition that T 1is of trace class and that wT(kl: m :

is continuous. Then we can write
T=8281

for Hilbert-Schmidt operators S; and S, . By (1.2) and the above

remark, T(wT) equals

d

d -v(v Yoz ) ( e ) .
w Sl 52 w Sl’ 32

Since the map

|

S =—> 4" -0

EN

]

k2)
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is an isometry, this expression is just
Tr (s, 55) = Tr (5% 8,) = Tr (T)
I"SlSZ)—I'stl r .

We have shown that
(1.3)  (¥g) = Tr (T) .
For € ia and f € d? (g),

define

A

AN
fwWoh) =d o 2 F) o

where
F(x) = f(x“l).
f(w,\) 4is an element of LEJ(M,QM). It is independent of the

representative ¢ of w. If g 1is another function in é:(G) s

(d,)?

A ) A
£lw,N) Blw,N) ’~&n(c,k:f)' %n(o,k:g)

dw 'wn(c,k : B)mlo,A ¢ )
"% Mmlon : TRe)
Ih other words,

Pt A A
(loll-) (£ g) (w)k) = f(uJ$7\-) g(‘uﬁ\-) .

Define a two sided action n(QJ,k) of G on LE)(M,pM) by
mlw h tyy) - g em(w,h :yy) = lurr(c,x.:Yéi) T n(c;h:Yili )

for Y1, ¥p € G and T a Hilbert-Schmidt operator on H(o) . Lét”



r denote the regular two-sided action

(r(yy)f rlyy))(x) = £(y]

1 1

Xy, ),

1.6

of G on LZ(G)“ For f € d? (G) we have

m (o, N : ;?;;T-E-;T;;))

-1

i
L3
‘C)ﬁ
H
]
’__J

= j f(x'l) mlo, N : yEl) m (o, N

G

= (o, N y%l) m(o, A : T) m(o, N

It follows that

x yg

l) (o, A ! x) d x

(rlyy) £ rly,))" (o)

A\
= mw,N yl) flew ,\) m(w,A

Suppose that

(F(w,n), vy

-1

Py, )mlo, At ?)ﬂ(q, Ny

fe L2(G); x € G,
x) m(o, N yil) d x
yit) .

_]_)

: y2) .

T 1is an arbitrary operator in Endo(ﬂ(n)).

it

d (wn(o, A : £
Tr {n(s, A E) T*}

Jf f(x‘l) Tr {T* m(o, A : x)} d x

G

j_ f(x) Tr {w(a, N :

%)TH* a4 x

G
ij fx) E(wT D

X)(l:l) d s

Then
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by [1(b)], Lemma 5.2. This last expression equals

jc £(x) 'fK (pp(Th) wglieyx)) (g 3y- ePs B> gy Ly

= f ff(kix) . mT(x)(k 1) eM¥e HIx)> 4 4 ky
K G L

- . o<M+p H(2)>
f f f f f(kla nm k2) ﬂrT(a nm k2) (kl’l) = ) e agm
KxK M A N

dkldk2

= ijK jM { f ff(kla nmk,) e~ ey H(a)> 4 g a}
A N

WT(kl:m:kz)dmdkldkz,

since A 1is purely imaginary. If o is any function in c(m),

and ©,, is the character of @, the function

-

a,(m) = d"“)‘fM a(m "1 m) Qw(m') dm' ; mE M,

is the projection of a onto C(M). It follows that

f“( “”7")(1{ ] k2) equals -

l.m.,

, r ' r -1 <-Atp,H(a)>
(1.5) dwa JINfM flkja nm k) 6,(m "m) e ’ dmdadn:

We can combine this result with (1.3) to obtain the formula

for the character,

@u) A of the representation n(o, A), [4(d)], §ll). For
?
fe C°c° (G), and N € i a, the trace of (o, A : f) equals

djs - 1(f{w,n)) = dw[ I K)d k
K
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f f flxlanmk) . @w(m’l) <o, Hla)> § g ndak
K A
)

=f f(k"lmnak)-@u)(m).eo"p’ H‘(a)>dmdndadk,

K

N M
N M
This proves that ®a) 7\.(f) equals .
H

(1.6) f f f j flxtamnk). 9,, (m) - ey Ha)>y g ngaax.
K A "N M

Suppose P' is another standard cuspidal subgroup of G.

Suppose that w' € _E_)Z(M'), 7\.'6 i g_', and that o is a representa-

tion in the class w . The representations n(o, A) and n(‘o', ?\.')
are equivalent if and only if @w ,h(f) equals @aj,k’(f) for each
fe CZO(G). It is ¢ straight forward matter to. show that this is the
case if and only if P 1is associatedto P', and there is an

s G.D-(_é, Q') such that w' = s, and 7\.' = s A, (see [4(d)],

Lemma 12). '
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S2. THE PLANCHEREL THEOREM

As a prelude to stating our main the;rem, we must discuss the
theory of L2—harmonic analysis on G. This leads to a version of
the Plancherel formula on G.

Let Cl (G) be the collection of associativity classes of
standard cuspidal subgroups of G. Suppose that P € Cl (G) and
that P € P . We shall write n(P) for the number of elements
in . (a). ‘By [1(b)], Lemma 3.1, this is the same as the number
of Weyl chambers in a. Recall that we denote the dimension of a
by gq. Recall also that our canonical Haar measure on a is
determined by the Euclidean norm | |. If we multiply this measure
by - (%F)q’ we obtain the dual measure,

For any P € P, we defined in [1(b)] the function

(w0, N) —> plw, ), @€ E)(M), A€ a, .
~Harish-Chandra's version of the Plancherl theorem, ([4(d)],

Theorem 11 and Lemma 15), states that for any f € d:(G), the series
pX z : ,
P P E,(M .[ £)]-d4. A) d
€P “we E N jﬁKlwﬁ)l o @ sn) dn

is finite, and that

£(1) = 2 n(P)-l b z (%F:i)q C) (f) - d ,ulw AV A
PeC1(G) ~ PeP weE,(M) g WA ) ’

Vald

Since f(l) = f(1), and

dy @, (B) = t(f(w,n),

3
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the above formula becomes

-1 1.9 [ . p
2.1 £(1) = b (P .3 T (=) (£(w,N))
(2:3) = PeC1(G) niE) PER w€E, (M) il Yia '

ulw N)dN .

Suppose that F 1is a finite subset of E(X). Suppose that
P and P are standard cuspidal subgroups of G, and that
s € (a,a'). We saw in [1(b)], Theorem 8.5, that for A€ i a
there was a unitary map M(s : A} from QM)(M’PF,M ) to
QSaJ(M', °F,M')" Since Li,(M,q“) is the closure of the union
over F of the spaces gcﬁ(M’oF,M)’ M(s : A) can be extended to
a unitary operator from L%u(M’PM) to LZSLU(M',pM,). Suppose
that ¢ and c' are representations of M and M' belonging
to the classes wW and s «, respectively, and that ["(s : A) is any
unitary intertwining operator from m(o, A) and n(c', s AN). It
follows from [1(b)], (8.7), that for any Hilbert-Schmidt operator
T on H(o),

(2.2) M(s :k)¢T= wP(Si7UTP($Kr' .
For any P € C1(G), define LZ(G) to be the space of measurable

functions

(0’-)’7\‘) E— ap("oﬂ\) i P E‘__E y WE iE.g(M)': A€ ii:

with values in LE)(M,DM) which satisfy the following two conditions;

i

14 | 4
(1).1f P, P €P, se€n(a,a), we EM),
and AN € 1a, then




203
(2.3) aﬁ(s w,s A) = M(s : \) af(a),k) .

{ii), The expression

(2.4) Maz\!z = (Z%i)?n(r_)'-lpgz we_%(M) ,f l\a,z(w AN sl A)d A

'y

ia
is finite.
Let Lz(a) be the direct sum over all P € C1(G) of the spaces
2,1 A A
FE(G). Suppose f € d:(G). Define @E to be the function whose
value at P € P, w€ E,(M) and A€ ia 1is the vector
N A
in %i(M,pM) introduced in the last section. Define

A
fo s

A
f= ®§ P

TERQREM 2.1: The map
f—> 1, fe o),

extends to an isometry from L2(G) onto Lz(a).

PROOF: Suppose f € C(G). It follows from the formula (2.2) that
Cc

N ,
f., satisfies the condition (2.3). Suppose that
i

glx) = (£ % £)(x) = fo(y) fixly) dy .
Then given P, w, and A, it follows from (1.4) that

8w h)) = TEplw,n) Fplw M) = IEplw M7

On the other hand,

g(l) = J[G j£ (x)izd X .



o
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Applying formula (2.1) to g, we see that the map
f—>7f , re ),

extends to an isometry from LZ(G) onto a closed subspace of

Lz(a). We have only to show that the range is Lz(ﬁ).

Fix a class P. Let m, be the two sided representation

of G on Lg (8) given by

(ng(yl)-ag-rrg(yz))(w A) = mlw,h ot yg)- ag_(u),k) - m(w N y,),
for yy,y, €6, PER, wEE 2(M), and N € i a. mp can be

regarded as a representation of Gx G. The same c;n be said of each
of the double representations w(w,\). Using [4(2)], Pg. 230, one
can show that G x G is of type I. Therefore the representation

Tp is of type 1I.

h Fix P€ P, and let S be the Cartesian product of

E,(M) with i a®, the positive Weyl chamber in 'i a. Let C be

the measure class onv.S 'defiﬁéd by the discrete measure on g&(M)

and the Euclidean measure on 1 §+. It is a consequence of the
results of [i(b)], §8, that u{w,\) does not vanish for any -
(w,\) in S. From this fact and condition (2.3), it follows that

Tp is isomorphic to the direct integral of the representations

mw,N) , weEM,resa,

with respect to the measure class C. By the remarks at the end

of the last section and [1(b)], Lemma 8.4, these representations

~ are irreducible and mutually inequivalent. Therefore mp 1is

multiplicity free ([5(b)], Theorem 5). It follows that R(mp, mp),
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the algebra of intertwining operators of Tp, is commutative.

Let r be the two-sided regular representation of G x G on
L?(G). Then the map

A 2 .
f —> fP,fGL(G) ;

is an intertwining operator between r and Tpe Thus if L is thse

closed set

A
(£, : £ e1(a)l,
- ~
the orthogonal projection, P, of L%(G) onto L is in R(nP, mp)o
Since R(nP, nP) is commutative P 1is of the form Pp where E

—

is a Borel subset of S and the range of PE is

{a

e L2 (6) : ap vanishe E}
s € Lp : ap vanishes on E].

In order to conclude that the map

A

is surjective, we need to know that E is a null set. This fact

is an easy consequence of the formula (1.5).

O

Choose P € C1(G), PEP, w € E,(M) and A €i a, Suppose
that F is a finite subset of E(K) and that ¥ € C (M, op 1)
b

Since we can express ¢ in the form p, we have the formula

(2.5) (}P(a):k)s‘l') = ‘[Gf(X) E(v : A x)(l,l)dx y f € C‘:(G):

from §l. From this result we will obtain our version of the
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Fourier inversion formula.

Let C (M, py) De the space of functions

(ky,.m, k) —> ¥(ky :m: k), meM, ky k, € K, ;z,’

in 12(M, py) which are infinitely differentiable in k) and k, ,

and which, for fixed k, and k2, are Schwartz functions in m.,

Given ¢ € C (M, py)» and kg, k, € K, we define

‘l'(n am k)(k]_’kZ) = ‘l'(m)(kl’k k2) $ n 6 N) a E Aa m E M; k E K'i

and

. ® = K} Q,‘i-p H(k X)>
E(y : A ¢ X)(kl’kz) fx (& x)(klk . e ’ dk,

1 k)

XEG’%‘EQC,

~in the usual way. For 711,772 € E(K) and x € G, we denote the

smooth function

foK g Oy (1) Bl - 400 - oli) O (). g -k 9 g

n, and 9,,( stand for the degree

on Kx K by %, -, (x). Here d
717,

and character of 4. It is evident that for Ky, k, € K,

‘l’(x)(kl’kz) = 2021,772 € k& (K) qr”ll)ﬂ?z(x)(kl’kz) !
and

E(¢ : A : %) (e k) T %11, o€ E(K) EH"’ll’sz M) (g v

where the convergence is uniform for x belonging to any compact Tx”"

&

subset of G. From these two formulas it follows that (2.5) is -

valid for any ¢ € _C_w(M, pM).
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Suppose that a = 25 is a function in gz(a) such that for

any P€ P, w€ E,(M) and A€ ia, alw,\) belongs to
Qw(M:PM) , and such that

ZPEB ZUJEE (M) f 'E(a(u) sN) N x)(l 1) plw sx)ldb‘J
la

is a locally bounded function of x € G. Let fa be the unique

function in L2(G) such that
\

fa==a.

Then for any h € C°c°(G) .

Gh(x) £ (x) dx

A
= BT e Z,enm '(2—1].;5-_)q'i£ (hp (WA}, alw ,M))alw M)d n

PEP

From (2.5) we obtain

f f h(x) E(a(w,\):\: x)(l 1)° o pp{w \\)
dx da ,

n(P)‘l Sp 3 (2n1

which by Fubini's theorem equals

£

‘[G h(x) {n(P)'l sz w(znl)q JiaE(a(a),h) :h:x)(l’l) ple/,n)d A} .

Since h 1is arbitrary, we obtain

_ -1 )\ -
(2.6) fa (X) = n(__E) ZPEP ZUJEE (M) Zﬂl f E(a(w )7\)-7\..3{)(1,1}

plw ,\)d A .
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§3. STATEMENT OF OUR MAIN THEOREM

Our aim is to describe the image in Lz(a) of C(G) wunder
the isometry defined in Theorem 2.1. For each P we shall define

a topological vector space QP(a) such that
) A 2/ A
, Q£(G) C LE(G)’

Cp (6) widl be defined by a set of seminorms.

Choose P€P, we §2(M), and let o© be a representation

in the class . Suppose that 3; and 7, are in E(K). Define
F, = {n3},1=1, 2

Suppose that T is an operator on H(c) which maps Hp (o)
. 1
into Hp (0 ), but which vanishes on the orthogonal complement of
2
Hp (o). Define
1
v = 1‘IT .
Then the representations 7y = Wl(m)””éﬁd ‘&2}=‘%2(m)

depend only on the class «. Let U{w ) denote the set of unit

.vectors m'E'Li(M5pM) obtained in this manner. If % € U{w), and

F(¥) = {P(0), 2 5(0) 1
the function

m —> \lf(kl :m : ky), meM, k), k, € K,

is pF(m),M-spherical function from M to VF(w) which is an
eigenfunction of the center of the universal enveloping algebra
of m

¢ « Therefore ([4(c)], Lemma 67) it belongs to C (M, pF(m),M)’

.
[
|

»
|
e
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Suppose that n 1is a positive integer and that D = Dh
belongs to D(i a), the space of differential operators with
constant coefficients on i a. For ap € Lg (6) , we set
”aEHD’n = oo if for some wWEe€ §2(M), a;d fo; somé § € U (w),

the function
A “—'> (aP(w ,k);‘l')

is not differentiable. Otherwise we define laplly , to be
. - 14
supremum over all AN € i a, all we g&(M), and all vectors + in

U (&), of

1Dy (ap(e,n), 1] (1 + IZ)P (1 + (013 + [2,00)[2" .
Let gp(a) be the set of those aPeLg (8) such that for

H
our collection of semi-norms, becomes a topological vector space.

all PeP, and all D and n, llap| <o, C{G), together with

Define g(&) to be the direct sum over all P of the spaces

N\
QP(G), Our main result is

THEOREM 3.1. The map

A
£f—>71 , fec}(a),

extends to a topological isomorphism, F, from ‘Q(G) onto g(@).
The proof of this theorem has two parts. The first half

requires us to show that for any fixed P, the map

N
£f—>1f, , fed(c),
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extends to a continuous injection from C(G) into ¢ (8). We
shall conclude this section with a proof of this fact?

For P € P, we fix a continuous seminorm I “D,n on
gP(E) of the type described above. Choose a function f ¢ d:(G).
S;ppose that o is in EQ(M) and that « is in U(w). If

F(‘l’) = {"21(‘[’)}7(2("’)}

then ¢ belongs to C M, PF(W),M)- By (2.5)

(Bptwnr, #)

equals

Néf(x) E(r ¢ N x)(l,l) dx .
Let 2, and ZK be the elements in G introduced in
[1(v)1], §l, By formula (2.2) of [1(v)],
?Z(ZK) = |7l|2 ’

for any 7% € E(K). Tt follows from Lemma 5.2 of [1(b)] that

E(ﬂv LA VI ZKLX)(].,].) l7? l(\lf)IZ‘ E(\‘f Y W x)(l,l) 3

and

E(h : A @ x g ZK)(l,l) | % 2(¢)l2. E(v = A X)(l,l) .

Notice also that from [(1(b)], (formula (2.8) and Lemma 5.2), we

obtain

E(y + A ZG(‘.X)(l,l) = ('wlz‘lhlz) < Blw i A x)(l,l) ¢

By Lemma 2.3 of [1(b)] there is a constant Cy, depending only
on M, such thét ‘




ek

1+ M2 g 1= (el - B+ (012 + oy

The right hand expression suggests that we should look at the

element
(Cy + 1) I- 25+ 2

in G . In fact we define the elements

Y; =T+ 2%« ((1+ 0T - 25+ 2,)°

K
and

Y,= (I +29°,
where s 1is a positive integer to be chosen. Then

(3.1) le-(?P(") A (1 [(WB)P(1+ |y l(ﬂr)lz)n- (1 + I%(z(ﬁr;)i.?iin

is bounded by the product of

(3.2) (1 + MBS+ (RS (1 (7,00 |38

and

-

IDL’ j; f(x)- E(y ¢ N Y% ; Y2’(1,1) dxl .

are real symmetric elements in G , this

2
last expression equals

Since Yl and Y

: : 1 K : d
‘D7\. ‘[G f(Yl'- X ; YZ)' (i A X)(l,l) Xl ’

_...which is-bounded by
j; |£ (Y, ¢ x; Y2)| IDk E(v : N : x)(l,l)l dx .

By formula (5.1) of [1(b)], there is a polynomial p; such
that
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IDE(w = A - X)(l,l) | < pl(|pl(|°F(m)|) | DyE(w = A = x) |,

where the right hand norm is that of the finite dimensional Hilbert
space G (M, PR( 4) p) - Corollary 5.5 of [1(v)] allows us to

3
choose a polynomial p and a constant m such that the right

hand term is bounded by
pllew] + M+ [opeyy D)+ il - (1 + o(x))™ - ZUx).
Since
lwl? < P02+ oy,

we can choose the integer s, introduced above, so that the

polynomial
p(lwl + |7"| + lPF(ﬁ;)l) = PHCUI + l?\.l + (|721(‘h)| + 1)22(""”}2)

is bounded by a constant multiple of (3.2). Then there is a con-

stant c, independent of f, ), A and  such that (3.1) is

bounded by
c Hml\fG | (Y ¢ x ; Y2)7| (1 0+ o(x))™. ={x) dx .
Since ||¥l| = 1, this in turn is bounded by
£y = g - sup {1£(Yyex 5 T . (1 +o(x)? 2 ()71,
xeG
where
cy =¢ j; = (x)2- (1 + c(x))m'd dx .

It is known ([5(e)], Lemma 11) that for sufficiently large d,

¢y 1is finite. For any such d, Hfﬂd is a continuous seminorm
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on C(G) and is independent of «, A, and ¢. We have shown
that

12llp.

This completes the first half of the proof of Theorem 3.1.

< ey » fedy (o).

The second half of the proof requires some more preparation.
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§.,. SOME FURTHER ESTIMATES

We resume our discussion of the c-functions begun in
[1(b)]. Fix a standard cuspidal subgroup P of G and let
tr be a unitary double representation of K on a finite dimen-
sional Hilbert space V. Let p € A (M), and + € i, Ty -
Suppose that (u)P = P' is another standard parabolic subgroup
which is associated to P. In [1(b)l], 86 and §7, we have
studied the function

(u)e(m a) = Exl%a . )(C(szkam-)(m)- <8 Ny log a>
s a,a!

on M'x A'. This function also depends holomorphically on the
points A\ € Cr(gc, 8), the set of P-regular elements in the
cylinder in a, over the open ball of radius & in a. & 1is a
small positive number which depends only on P. For each

s € N (a, g'), c(s : A) can be continued as a meromorphic
function on a, with values in the space of linear maps from

g{ﬂ}(M’ TM) to C } (M, TM') .

={sp

The function c(s : A) is analytic on C,.(a, 8). In
9
particular, the only singularities of c(s : A) which meet the

cylinder C(QQ,S) are along hyperplanes of the form
<B,N> =0,

for B a root of (P,A). In [1(b)], §8, we saw that for each
«w e §2(M) there was a meromorphic complex valued function

w(ew ,N) such that
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s
-r

(4.1) ¢ (s = =N)" cls : AV =‘((P7'% u(uJ,x)'lm,
for ¢ € C (M, ) - From [1(b)], (4.5) and (8.5), we have the

product formula

(Lo2) plw,\) = TTBEE /LB(“)J‘-B),
which expresses wu{w ,\) in terms of the corresponding functions

assoclated to the pairs (MB,Pa) .

Let cu,(s : A) be the restriction of c¢(s : A) to

gu)(M, TM). For each B € ¥ , let nB(uJ) be the multiplicity of

the pole of cul(s : N) along the hyperplane <B,A> = O, By

(4.1) this integer is independent of s. Combining (4.1) with

(4.2), we see that the function

v —> ué(aJ,v) y VE 8,

has a zero of order ZnB(aJ) at the origin. Define a polynomial
: ' B
alw,n) =TT <ao? (P)

ez

For any element s e.fl(g,g'), we have

(Le3) a(s &, sn) = q(ed ;1)
The functions
AN —> ql(w,\) cu)(s P A,
A —> qlw,A\)"% . wlw,\),

are both holomorphic on C(gc, 8).
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Our first task in this section is to convert Lemma 6.7

of [1(b)] into an estimate of q(w,\) ¢, (s : A). Suppose
that g = g(w) 1is an element in /\'(M) corresponding to w .
Define A = g + N\ , a vector in (O)Qc. From [1(b)], §7,

we have the formula

(cls :n) #) (m) = oy (F'2) - (W@ (m))

In the notation of [1(b)], (6, 3), we have
(c(s : N} W) (m) = Z; "“](Si/\) Vl (Si/\)(u)@(si/\)-l ‘-tjm((u)@(m))c

Reeall that Tj and v, were polynomial functions on

(O)Ec .

Notice that
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War(s,A ) = e () BN,

where & isi) equals 1 or -l1. For any u € /“(M), let

Af be the set of elements a 1in 0, » the set of positive roots
of (g,; (O)Qc) wbich do not vanish on a, such that

<a,u> ¢ 0. By virtue of {1(b)], Lemma 2.1, we may assume that
for any u € /V (M), and a € Aﬁ , the function

A—><a , g+ N>

does not vanish on C(a,,8). Define

arpA) = TT <a,A>
aep,

and

wf; (A) =TT <a,A\> .
I
GEA*'£5+

Then @ p(A) =w%, "(/\)-/uyg(;s.) . Given w € g{”}(M, ) s

we have
(s = M0 (m) =307 2y vy (A) -ty (@)
Here,
£y A =@5 (AL e (sp) e vilsiA e THsiA)

is a rational function on 8, no singularities of which meet
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Cla,, 8)-

By [1(b)], Lemma 6.7, “l)Qb (m) is bounded if A\ ranges
over any bounded subset of C_.(a,,8). It follows that for each
3y tj((u)(:)(m)) extends to a holomorphic function on C(gc,S) .

In particular, the function
A —> @2 () - (cls 1 A)4)(m)
is regular on c(g¢,a). Therefore q(a),h)'}cvg(k) is a product

of linear functions of the form

h'—><‘3,%‘> ) BGEQ

LEMMA L.l: Suppose that Dy is a differential operator in Q(ac)
and that & > O. Then we can find a polynomial p such that for
any sGIl@,!L mew,weﬁﬂm,wéﬂwmﬂw,%d
AELa,

_ —1 .
1D, falw,n) (els : A) a)(m il < pllel+Inl+r]) -« Ule =i(m)-e® olm),
The proof of this result requires another lemma,
LEMMA 4.2: For ¥ and n positive, let Hn(gﬂ,‘{) be the set

of holomerphic complex valued functions on 2, such that

Nell, o = _sup £ ] - (1 + [A])" <o0.
’ Cla,,

Let X be any unit vector in a. Then there is a constant
¢, with the following prdperty: if f 4is an element in

Hn(gc,\f) such that the function

£, () = <x, >t £(n)
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is holomorphic on C(gc,‘() , then
e, 5 < oo 12, o

PROOF: Suppose that A is a point in C(a,, §) such that

|<z.,7~>lg‘f .

Then 1 .
1 y 2 p(n+2¥ 19
f‘!f(l) = el Zb, ¢ 3 dg °
X an fo <x,7\.+%.‘(elg}i'>
Since 1 )
|<t, A+ 3 ¥l Tvan - sl 21 Y
we have
15,001 < 892 swp fr(n + ¥ et
]
-2 1 n
< 8% (l+l7\-|+§‘0’)",\f‘:|n’~(
< 872 (1 »3wh - 1L+ Ah"- I£l,, « -
Lemma 4.2 follows with
= -2 1 -
co = max {8731+ L0, ¥},
]

We now prove Lemma L4.1l. As usual, let x = u(w) and

define A =g + AN, Then |A| = |W]| + |A|. We have

o.. ) f~fealu)(m) = gl 0),7\.)-(,012,(7\.)-" ZJ rij(/\) . tj ((u)@(m)).\

We can use [1(b)], Lemma 6.7, to estimate thé swu..
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f(n) = Zj rij (/\)’tj((u)®(m)):

for \ € C(a,,8). We set Y= 8 and then apply Lemma 4.1 a number
of times, once for each linear factor of‘ﬁgg(h)' q(uJ,h)'l . The

number of such linear factors is certainly bounded by n,, the

P
number of elements in 3,

As a result, we can find a polynomial p, and constants N

and d such that for m 1in (u)M =M ,,and N\ ¢ C(ée, -nP-S),
lalw A (s ) (m)] < p(IA +]r]) Il (N=(m) - (1 + o(m))?
leR|~ o{m)
e .

Our lemma now follows from Cauchy's integral formula, [:]

The same methods also yield

LEMMA 4.3. Suppose that Dy 1is an element in g(gc). Then there
is a polynomial p such that for o€ E,(M) and A€l a,

D, fq(w M) 2 () M3 < pllw ] + [A]) &

PROOF: The function
A —> q(W )72 ¥ w )N
is analytic on C(ge, 8). Our lemma follews from Lemma 4. l and

Lemma 8.3 of [1(b)]. . il

J
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Lemma 4.1 is not quite in the form that we need it. Before

attending to this, however, we must restate the main estimate of

[1(b)], S6.

In the notation of [1(b)], §1,(3h is the split component of
the parabolic subgroup P = G of G. (l)g is the Lie algebra of
(l)A, and 2235 is the orthogonal complement of (l)g in (O)g.

Let Qyseeee, O be the simple roots of ((O)P, (O)A). For

(o)
r
1< k s(o)r , let H(k) be the unit vector in fg;ﬂf such that

<, HES w0, 54k,

Then _
é(k) =R H(k)@ (l)é

is a distinguished subspace of (®)s, It is the Lie algebra of the
split component of a maximal parabolic subgroup p(k’ = N(k)L(k) of
G. We shall apply the results of [1(b)], §6, to the case that
(W) p o plk),

If & is any positive number, let Ak(s) be the set of all
h in §53A+ such that

<o, H(k)>°l * <ap, log h>> e o(h) .

Fix €, SO small that

(0)a%) o (o0),+ (o)
exp (;-{a”) = AW = A (e) .
In. stating the following lemma, we adopt the notation of

[1(v)], $6. In particular, ®‘k’,‘e‘k’, d(k); and E(k) are

functions defined on the group (uly - k),
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LEMMA 4.L: There is a positive number m and a polynomial p such

that if A€ i a,, and h € A (e ) for some Kk,

lat¥) (n) - 2V )72 e pn) = S (m) L oKV ) | < el pUIA I+ s -

o0 a{h) .
PROOF: We may write h uniquely in the form

k
h= y.expt H( ),
where ¢t > 0O and y is a point in sg;f such that
<ay, log y> = 0.
By Corollary 6.6 of [1(b)],we canfind numbers m, and d, and

a polynomial p, such that if A\ is in i 2. and h is as abdve,‘

108 (m) o(n) - oM m)| < Nl BUATL + |11 2H) (g) + et M
| (1 +o(yn)?.

However, since h € Ak(so), we have

-tm -my:€_» o(h)
k<e k~o

€ )

Since E(k)(y) s E(k)(h), our lemma follows for

1
m = min e m]}
1<k< (o). 2 "o "k* ° o
Let A(k)+ be the set of positive roots of (gc, h,) which

do not vanish on _a_(k) « Then

ld,l0g > -3<8,l0g >
e

g @

al¥)(n) = T (
seA ()




4.9

<p(k), log h>

This is the product of e and

TT (k) (1 - < log h>). This second function is bounded

Be A,
away from 0 on Ak(so). It follows from [4(b)], (Theorem 3 and

Lemma 36), that there are constants ¢, and ¢, such that for all
h e Ak(eo)

=)t < a®m). =T g o SmE (e oln)) 2

(1)

Suppose for the moment that P = G. Then a = a . Given

7"’ E (1)=§c 3

O(x) =  w(x). e (I)H(x)> y X € G,
for ¢ € QO(Gl, 1) It is a consequence of [5(c)], Lemma 43, that
olkl(n) =0, 1<x< (Or,
It follows from the above inequality, Lemma 4.4, and the fact that

¢t = K-gf;A”. K ,

that there is a polynomial p, and a positive number m such that

for § of this form,

(hett)  1Z007E 0L < ol - pCIA ]+ I7]) - ™) e 6l
This is a special case of a result of Trombi and Varadarajan
([61, Theorem 7.3). |

!
We return to the situation in which a and a are arbitrar-

distinguished subspaces of (o)g, and

¢u)f E(v : N :x), veEQC, (M ), N€ECla, 8).
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LEMMA L.5: If D, is any differential operator in D(i a) there
is a polynomial p such that for each s € () (a, g_'),
U)E _E_z(M); and NE i a,

D, alew,n) e (s M <pUA L + |+ &

? f
PROOF: Suppose that € C,,{M, TM), and % € _gsw (M, TM"”

We must estimate the inner product
]
(Dx{q(vj,h) c(s : A) #}, w7} .

We apply (L.4) with G replaced by M' and ¢ replaced by W 0
Note that M' = (M')} . By Lemma 4.1 and the fact that

.[.,-'-;'(m) o ~(m-¢g)o(m) dm < oo
M'

if 0 < e < m, we may choose a polynomial p such that

[, {al@ ,n) e (s :a) b, W) < pUAT + 7)) Bl

The lemma follows.

C
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§5. THE CONSTANT TERM FOR ARBITRARY (u)g

- e
Fix P and T as in the last section. For s € (L (a, a ]
we follow Harish-Chandra and define meromorphic functions of A

by

(s :A) = ¢ (s 1 A):cf{l : ) ;

E9(# «: n @ x) = E(c(l : h)'l 2N x), vE QO(M, TM).

It is clear that

) (s : A) =c{l : sA) M(s : A) c(1 :+ =A)"* .
For s € 13.(g', g"), it follows from this formula and [1(b)],
Theorem 8.5, that
(5.1) Os's : A) =c%(s" : sn) s : )
We also obtain from [1(b)], Theorem 8.5, the formula
(5.2) E9Ce ¢ A @ x) = E%c%(s : A)w: s A . x).
These functional equations are due to Harish-Chandra, ([4(d)],
Theorem 6). He proves them without first introducing the function
M(s : A)»

Suppose s € ()(a, g'). Define
S, e_(}_(g,/a\) and s;YEQ(QQ,/?:')
greatest length in 2 (a) and IL(Q') respectively. Tn addition,

to be the elements of

1

. : -1 -
define § = (s,) s (s,) , §=5,

) - N -
s, and 3 = (s;) ls (s,) 1, we

have the commutative diagram
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- ‘ e |
o ——— >
0k

Let

Y
W,WL, WL, e e o 0

be representatives in (O)ﬁ' of these various mappings. We may
assume that

-1

=i

*®

~
o . ~
Wy = v l‘N s w ) =W

Suppose now that F is a finite subset of E(K) and that
T = pp. From [1(v)], (Lemma 8.1, and formula (8.7)), we observe
that for w € E,(M), 0 € &), and T € End (Hp(o),
)"l

(s : n)wT =c(l ¢« sA)M(s : A) c(1 : A i

=V ey 1
(w*) R(w,:s MR(WN)R(wy :N) " w, T+
'R(w:7\.)"l g

AT
The length of w; 1s the sum of the lengths of (3) 1 and s .
It follows from [1(b)], Corollary 4.5, that

R{w, : A) = R(%: s A) Rw : A\)e

£
Similarly

¢ A

:sh)=RW’:y})Rm'l:sk).
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We have shown that

(5.3)  <%s : ) ¥ =Y .
) c'(s T (wz)'ln(v? t S )wy T« Rw : 2)~1

Combining this formula with [1(b)], (4.5), one ean derive the formula

(5.4) (s h)* - c°(s'1 :t - sQ) ;

(u)

Suppose that 2 1is a distinguished subspace of both a

and g' « If (u)P = (u)N (u)A '(u)M is the standard parabolic
(u)g,

subroup of G corresponding to
(o)p o (0)p A (u)
(u)P P M

is a minimal parabolic subgroup of (u)M « Both

(wa =2 0

and
(w2 =2’ n

are distinguished subspaces of fﬁ;é; Denote the set of mappings
in N {a, _') which leaye fujd pointwise fixed by (u )sfl(a a )
We identify (u )Il (a, a ) with the set of mappings from ()2 to

4
(4)2 obtained bx restricting to (u)2 ©elements of the restricted
Weyl group of (u)M. We shall also write (u)‘I)‘ (a) for the
union, over all distinguisheg subspaces g' of (o)a which contain

(u)é' of the sets (u) L1 (a, éf) .

‘For A€ a,, denote the projection of AN onto (u)2e by
s E°
(u)x « We shall write tu)C > (u)© , (u)E and (u ) for the

various functions dlscussed above, but associated to the pair
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Sels

Wy, (Wy N p) instead of to (G, P).
LEMMA 5.1: If s € () - (a, a') and M€ a, ,

(s : ) = (u)co(s T A) .

PROOF: We may assume that «r = op » for a finite subset F of
E(X). For w€ E,(M), 0 € w, and Te End (Hg(o)), c®(s : N)ig
equals

] 1ol A -1
(WL) R(w : SLN)WL T R(w : A) .
It follows, essentially from [1(b)], Lemma 4.3, that

R(w : A)~T = ()R 3 (u)”’—l ]

Notice that the restrictions of s, and s; to (u’g are
the same. In fact they both define the unique element in JTL((u)E)
of greatest length. Let (u)Ss, and (u)sz be the elements of
greatest length in (u) £ (a) and (u) o¥ (g') respectively.

It is a consequence of [1(b)], Lemma 3.1, that

S& ((u)SL)-l = Sg -((u)s,{' -1 °

We denote this element by t. Choose representatives (u)We
and (u)w; of these elements in (O)M such that

_ ) =1 _ 7, -1
W, = Wy ((u)wL) WL((u)w&) .
This element is a representative of t in (O)A’.
Finally, define

A

J -1
(W)= (w)St- S {y)ss)
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and

(¥ = (w)g ¥ ((u)w&rl
Then

(wg)'lv R(¥W : SiN) Wy
equals

Caye) ™+ (o) ™he RO )@+ ()™ 2 sh)+ () = gy,

By a .simple change of variables in the integral used to define the

intertwining operators, this last expression equals
-1 L
Capwdd ™+ Bl 2 (=) = L)

Agéin appealing to [1(b)], Lemma 4.3, we see that
RUg)¥e (S ™ = (Rl ¢ (a)lwseM)

Putting these formulas together, we obtain

s : A) = )c°(s oMo

(u (u

which is what we were required to prove.

2

Suppose now that (u)g is any distinguished subspace of (O)gc
We shall say that two maps s and t in L)L (a) are (u)grequivalent

if s a and t a both contain (u)g, and the map t st

(u)

leaves

a2 pointwise fixed. Let f) (a / (u)g) be a fixed set of
representatives of the equivalence classes. Of course this set

is empty unless (u)g is contained in some distinguished subspace

L
a of (0)2 which 1s associated to a.
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LEMMA 5.2: For ¢y € C (M, my) and A€ i a, , define
M(x) = B2(¢ = A : x) .

Then for m € (u)M and H € (u)g , (U)O(m exp H) eouals

0, .0 . 4 . i . SH, s 2>
. é_fl(g/(u)g) (u)E (c”(s8 = N)¥ (u)(s A) :m)-e

PROOF: Define

(u)y - O(aCls + Ny -
u e(m exp H) SS'G n.(i/(u)é) (U)E (C (S : 7\‘)‘ .(u)(s ?\.)

-

eHs 2> g Wy gy (W, *>

By Lemma 5.1, and the functional equations (5.1) and (5.2), the

T m) .

summand depends only on the equivalence class of s 1in £7L1é/(u)i).

For fixed H G(u)g define

f(m) = (“’e(m exp H) - (u)g(m exp H), m € (u)Mu
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Any standard cuspidal subgroup of (u’M is of the form

éuJP s (u)M N (V)P s V _<_ u .

Suppose, first of all, thet v < u and that (v)g is not

associated to a. Then for any Hy in (u)a the orthogonal
[
complement of ‘u)g in ‘V)a the function
{ {
—_— %V‘ \ (V)M

] u’@)(m exp Hy exp H), m) €

uj ’

gl
c, (i, ey, mis follows from [4(d)],

Lemma 8, and the fact that gzg((“)e) = {V>@ . Again by [4(d)],

is orthogonal to C

Y A
Lemma 8, we have the same result if (u)@ is replaced by (“’e .

Therefore the function

&:v):_, . (v\
; (v {
is orthogonal to C_ (‘J’M» V“"r)..
"On the cther hand, suppose that v <u, but that (v)g is
associa* ed to..a. .Thea fapr H, € iziw and my E(V)Mg
: u, kY 4 (T e T »
uzk‘ Q) {my ex> H, exp H} equals
s i 5 (1€ Loytipny 6A)) =T
) .E. _cj_ (E‘_,{u’g‘}_,“ - G é’u)n‘{s aj (v)a) (U.) \U) (u) =
{ & &
= H <7 ~
CO‘(S/\I‘#HTI:L} G<Hl’ t(u}(o Iy e\:{,s A
= 3 PR = e%t: s A) (s : A) o) (mg) -
se s/ e, s e, Va !
f1)

e<Hl+ H,t s > .

We use the functional equation for ¢° and the fact that any element

in Il(g,(v)a) can be represented uniquely in_the_form
LT

ts,senfa/ W), te (u) <+ (s 2, (Vla),
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to rewrite the above expression as

<Hy + H, s >

) (c®(s : A)#)(my) - e

se .0 (a, Va

This expression is the same as

(v)g (m; exp (Hy+ H)) = m((“)@) (m; exp Hy - exp H) .

It follows that

mf (m, exp Hy) = O .

We conclude from [4(c)], Lemma 43, thatf e_go((u)M, (u)T)' But f
is orthogonal to QO((u)M, (u)T)‘ Therefore. f = Q, which is

what w2 wanted to prove,

In the next section we shall apply this result to the case
that (u)P = Pgi), one of the maximal standard parabolic subgroups
defined in §h. In this case we shall write Ek’ Ces and kk

instead of (u)E’ (u)© and (u)k respectively.

COROLLARY 5.3: Suppose

P(x) = B(» : A = x) ,

for W G_QO(M, TM), and A€ 1ia .

Then for m € mtk)  ang He g(k), Q(k)(m exp H) equals

b3 B (e (1 1 (s x)k)-lc(s SA)Y (s Ayt m) &My s >

s € (a/al))

PROOF: 1In the lemma, replace ¢ by c¢(l : A) *. The corollary"

follows immediately.

Q
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6.1

§6.'COMPLETION OF THE PROCF OF THEOREM 3.1

4

Suppose that P is a standard cuspidal subgroup of €., TIf
V is any finite dimensional Hilbert space there is the usual
topology on S5(i a) ® V, the space of Schwartz functions on i a
with values in V. Suppose that N is any continuous semi;horm
on S(i a). For a€ 8(ia) @V, let N(a) be the supremum over
all unit vectors £ in V of the numbers N(<a, 8>) where <a,g>
is the function

A—><alA), & ,neia.

This defines a continuous semi-norm on S(iza) @V,

THEOREM 6.1: For any positive number r there is a continuous

semi-norm N on 8(i a) and polynomials Py and p, such that
for any 1 € F(K, K), we E,(M), and a € 8(i a) ® C,,(M, i) s

: -1 r f ‘ - - a) .
sup  {=(x)7" (1 + o(x))T | E(a(n) : @ x) p(o, 2) d A}
x€G ia
is bounded by

N(a) . py(lw )« py(In]).
PROOF: For any x in G, we can write

Xx =y-exp H, ye€ Gl, He (1)3 .

Then =(x) E(y). Furthermore, ty Lemma 10 of [5(c)],
(1 + olx))T < (1 +aly))T- (1 + [5])T .

Suppose that
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A=V + L
for € ila, ¢ce i(l)g, and v € i(l}g, the orthogonal complement

of i(l)g in i a. Then
E(a(n) : N ¢ x) #(w,\)

equals

E(a{N) : v 1 y) ulw,v) e<CHiE>

It follows that we can find a differential operator DC in g(i(l)g)

such that for any x =y exp H as above,

Z(x)7h (1 + o(x))T . | f E(a(n) : At x) o plw,N)d A
-1 a

is bounded by

Z(y)™ (1 + aly))T- I[ Blag(v) : v 1 y) wlw, v)dv |,
H(1)&
where

(v) = D.a( )} <>
ay(v) "é(l)é { calv + ¢ } e

d ¢.

If N is any continuous geminorm on §(i(l)g),

a —> supHe(l)3 N(aH) , a€8 (ia),

is a continuous semincrm on S(i a). Therefore to prove our theoren,

(1)

a 1is trivial.

o({or)

we may assume that
"As in §h, let P(l),..., be the maximal standard para-
bolic subgroup of G. Proceeding by induction, we assume the theorem

is true for each of the groups M(k). Since
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= l = o(o) +0
G =G =K JjA"- K,

we have cnly to find Py Py and N

such that for fixed k and a:,
he b (e))

(6.1)

@ amn® | Ea) sa e pwn anl
ia ,

is bounded by N(a) epl(lk)|) °p2(|7|)- Recalling that

=m)t < amy O m)t
we apply Lemma 4.4 and Corollary 5.3.

Suppose

h = hk - exp t H(k)

, b € mik) ¢S e, o(h) ,
where H(K)

is the unit vector in (g_(k))+ . Then there are

polynomials p_, p; and p, such that (6.1) is bounded by the
sum of

(6.2) =) (n ) (14 oln - exp & v 5

s € 1\-(Q/§(k))

[ k
| ié Eele, (1 (s 7")k)—l c(s : A) a (N) :(s k)k:hk) et<H( ),S >

e n{w,\)d A
and
(6.3) (1 + o(n))". ™ O(h){.J[ Ha(A) e w(w,n) - p CIn]) dr} py (1 wi
ia .
pz(( T)).
We deal with (6.3) first.
Certainly

C. = sup (1+ o(h))T. e-mo(h)
nel®)at(a,)
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is finite. By Lemma 8.3 of [1(b)], there are polynomials
£

Po and plv such that

? ¥ '
wlew ) < py (A py ()
If N is the semi-norm on S (i a) given by

v = latal-py(Ih -5, (A1) dan, ces (1a),
i"a

(6.3) is bounded by
Cp s N(a) - py(Jw )= py (1)« pyllrl) .

In light of the first assertion of Lemma 8.3 of [1(b)], the

summand in (6.2) can be written

(k)
'1j;' Bl (L xk)-l° c(s : ) a®(n) : Mg hk)' TH >

® M(Su) ,k)d 7\")
where s € Q. (a, g') for some g', and
a®(n) = a(s'lh) .
For any ¢ € C_ (M, ™) s it follows from (h 1) that
e (12 )7ty = YlP) o (1 e - (s w, xk)»ir ;

where e is the Plancherel distribution corresponding to the

standard cuspidal subgroup Py = M(k)f7 P of M(k) If

é.l'c (k)/'? a then _a_' = (k) &)_k « We write

= (k) v
AN=vw+ z2H » VEZ , z2€1R,

and express the above integral as an iterated integral over i Ay
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and i/R . The result is
(6.4) W“k(l:'l‘:)li_/‘iéhl,c E, (E: (v) : v : K h ) uk(gﬁu, v) d v},
where ‘Eg(v) equals -

i“ﬁR uls w, v+ HK), ¢, (1 : v)¥els : s71(v :ﬁzzg(k)))as(v*zH(k))
z.
)¥ . Then

(oF [oF

Let D, be the differential operator (1 - 2
ﬁg(v) = (1+1¢)°°T aﬁ (v) ,
Where af (vu) equals

Yk(Pk)' 14; D, {u(sw, v + 2 H(k)) Che (1 : v)* c(s : s'l(v + z Hik}}}
- aS(v + z H¥))} o 24 5 .

Appealing to the induction hypothesis we choose polynomials pi and
p; and a continuous seminorm N' = on S(1 gi) such that (6.L4)

is bounded by
(1 + )7 N (ad)e py (w ) o py (Irh) e Z K m ) - (1 + o(h, )" .
We have used (2.6) of [1(b)] as well as the fact that |w| = |sw] .

Since

(1 + o(hy * exp t H(k)))r <(1+¢)f - (2 +o(hk))r )
(6.2) is bounded by
k] 4 4
N (aS). g lwh pytlth .
In the expression for ag (v) we write

pls w, v+ 2 H(k)) ck(l :“v)* c(s : s'l(v + 2 H(k,))
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as the product of four terms:
(6.5) dsw.v+zﬂm)°qﬁsw.ﬂdw
(6.6‘) q{sw, v + 2 ii(k))"2 ~plsw, v +32 H(k))s
(6-7) qk(s W, \)) Ck’s U)(l : V)* )
(6.8) qlw, s'l(v + 3 H(k))) « e ols ¢ s'l(v + 3 H(k))) .

Here gq(¢«, ) is the polynomial function on 2, defined in §h,

and q,(sw, ) 1is the corresponding function associated to the
pair (M(k) » Py ). We have used the fact that

a{sw, v + z (k) « alw, siv + 2z H(k)))‘;

The expression (6.5) is a polynomial, In fact by (4.2) and
the definition of q, it equals

B
TfB <B, v + 13z H(k)>n (s ) s

where the product is taken over those reduced roots B of

(k)

' ' .
(P, A ) which do not vanish on a - Suppose that D =D

< 240
in any differential operator in D(i g_'), and that H( ), v, z) is

any one of the above four terms. Then from Lemmas 4.3 and 4.5

we observe that there is a polynomial Pp such that

"Dz,v' H(w,v, z) < PD”W' + Iv] + |z| + |=]) .
We can certainly find a polynomial p; and a finite set

{DS} of differential operators in D(i ?—l'c such that

8, 5 $ o J .s ‘
N'(af ) < e ol {25 pg (IvD) = 1Dy ag (w11




6.7
It follows from Leibnitz! rule and the above remarks that we can

find polynomials p;', p;_', and p;', and a finite set

Iﬁg v} of operators &n D(i g‘) such thzt -
14
N'(a:‘) is bounded by "
po CIulelal) 18,3, 2%z &Ky

P whep," ey e swp iz, [
-dlz]} .

vei af iR

But

' ve : (k) 4
N (o) = végpéf{ {2y {fim Py (Iv]) - lﬁz’\, (v + 3 # 7). dlz]H,
is a continuous seminorm on S(i a).

We have shown that ( 5‘.2) is bounded by
Ni:,(,_.@).' P;(l wl) . P]'_'(lu l) . pz'(h”.p;'(hl) .

This completes the proof of the theorem ,

O

COROLLARY 6.2, For any elements Yl and Y2 in G, and any real

r, there is a continuous seminorm ® on $S{i a2} and polynomials

Pp and p, such that for any t and w, and any a € S(i a) ®
Cw (M, Ty),
SuR {:-_:(x)"l- (1 + a(x))T. lifa E(a(n) e 7 x; Y,) m(u);l)d A}
is bounded by ) |

N(a)  py (1@ 1)« p,y(f7]).

PROOF: This corollary follows immediately from the theorem and Lemms
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5.3 of [1(b)]. | -

Lot us now complete the second half of the proof of Theorem
3.1. We shall establish a theerem which is a slightly more general
version of what remains to be proved. Fix P € G61(G). Let
§P(a) be the space of functions which is defined analagously to

Qp(a) but without the symmetry condition (2.3).

THEOREM 6.3: Suppose a € Sp(8). Then for P € B, « € E,(M) and
A€ 1ia, alw,\) belongs to C (M, py). : L

The function

-1
£,0x) = n(p)7t. 3

2 (gp)? B(al ) M) iR
PER  EE,(M) fg_ al Mhixd(q )

2mi i

alw ,Md Ny

is defined by an expression which converges absolutely uniformly

®n x € G. Finally, the map
a—>1f,, ae 50,
is a continuous linear transformation from §P(8) to C{G).
PROOF: Fix P € P. For each s»¢ §2(M), let
(¥ : k€ I(w)]

be an orthonormal basis of Li,(M, pM), consisting of vectors in

"U{w). For each k € Iz(wo, and i =1, 2, we shall denote the

representation '7i(¢k) in E(K) by 'Qik . Given k € Iz(u))
. $
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ae€ §P(a),Aand N € 1 a, define
aff, (n) = (a(w WA, ‘”k) "‘k
and
k k
F == {721 '7 12‘};- -
k . R . .
Then a,, is a function in 5(i a) ® G (M, opk , Mo
It is a consequence of the results of [1(b)] (Formula (5.1},

Lemmas 5.4 and 8.3) that there is a polynomial p such that for
AE1L a, u.)€§2(M),k€I2(aJ) and x € G,

(6.9)  IE(a§(n) +n : x)(p gy wlw,n)]
is bounded by
pllwl + In] + lo ) - Iatw, ), 91
Notice that
Io ! = (I 51+ 5D .

It follows from Lemma 2.3 of ([1(b)] that there is a positive

integer m and a constant d, such that (6.9) is dominated by
dg+ Halwndy )]+ (1 s M) - (1 n 52)"
(1w Iy 51Am .
Choose an integer n such that
®h © ZQEEZ(M) Ekelz(w) (1 + I"‘z]J’.clz)-n' (1+ mg'z)-n

is finite. This is possible dy [1(b)], Corollary 2.5. Then
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ZLUEQZ(M) zkEIZ(M)) OJPIE(qE(k) N2 oX) | u( w,n) dn]
i’a (1,1)

is bounded by

cq - sup  [alw,n), ¥) [+ + BT (1 e g K2 g g2

Ny W,

This quantity is finite. Therefore the function

fa,P(x) = n(g)'l .2

299 [ E(a¥Ou:n e
W €E, () ke, (w) (Zng) ifé Blayinen 2 x)(q 4

Blw,N) d A, x € G,

is defined by an expression which converges absolutely uniformly

in x.
Fix Y,, ¥, € G . It is clear that in the expression

fl-é IO ISEER N S Tol(a,zy (N

the differéntial operators defined by Yl and Y2 can be taken
outside the integral sign. On the other hand, the absolute value
of

1

-1 . q Kooy o
B > (529 o) BN in i Yex ;T
nB) w €E, (M) keI, (w) 2mi jl g et 1t 2/(1,1)

4 ﬂ(“))k)d N
is dominated by

z‘pozk 'lj; . E(aﬁ(h) S RS SR I Y2’(l,l)° plw ,A\) d A] .

Fix a real number r. According to Corollary 6.2, we can find a
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continuous seminorm N on 8 (i a) and polynomials p; and p,

such that this éxpression' is no greater than
k
{sz.Ez(M) ke, (w ) N{a') - py(fw]) - pz(lkal)}

=(x)+(1 + a(x))7T .

Remembering [1(b)], Lemma 2.3, we choose a positive integer m and
a constant dl such that the term in the brackets is bounded by

o Iy N(a}f) (1 + I"zl{lz)m (1+ (2 15!)‘“ .

Select a constant d2, a positive integer n and a differen-
tial operator D =D, in D(i a) such that
N(af) < dy-sup  {(1+ NP D, (aled,n), ¥)T .

AElg
We may assume that n is large enough that the constant Shom?
defined above, is finite. We have shown that 'fa 1._,(x) is a
L

smooth function, and that

. x s ()1 r 0
;28 “fa,P(Yl" X Yz)' ___(X) (l +* G‘X)) } S dl dz Cn_muaun’n ®

Here || “'D,n is the contfnuous semimerm on §£(3) defined in
§3. In particular, fa,P belongs to C(G).

——"""" Suppose that in the aboye discussion we replace (G,P) by
the pair (KxMxK, KxMxK). Then we obtain the statement that

for each w and A\, the series

k
kel (w) 2w



6,12

converges pointwise to a function in C (M, pM). Since we
already know that the series converges in L2(Kx MxK) to al ¢ ,\),
we see that a(w,\) belongs to QUJ(M, py). In particular,
E(a(w,\) : A : x) is well defined, and

- 1
fa’P(X) = n(_P_) 1 ":’E.E.i(m) (Z—Tr-i-)q ifa E(a(w ,N) = N\ ¢ x)(l,l)

. p(w ’k)d K [
The right hand expression converges absolutely uniformly in X.

In addition,

fa(x) = Ip €Pp fa,g (x).

Thereforse sire map
P
a"'—>fa s & €'S‘_P_(G)’

is continuous. Our proof is complete.

Ol

Suppose that a € gp(a). Then, as we have just seen, a has
the properties that we demanded in our derivation of formula (2.6).
It follows that the function fa’ defined by the formula in

Theorem 6.3, is also the unique function in Lz(g) such that

t =a.

a

The proof of Theorem 3.1 is, at .- last, complete.




87. TEMPERED DISTRIBUTIONS

The main reason for proving Theorem 3.1 is to allow us to
define the Fourier transform of a tempered distribution. A dis-
tribution of G is said to be tempered if it extends to a continuous
linear functional from C(G) to €. Since d:(G) is dense in
€(G), and since the inclusion map is continuous, we regard the
space of tempered distributions as the topological dual space,
g'(G), of G. It becomes a locally cenvex topological vector
space when endowed with the weak topology.

For any P € C1(G), let C,(G) be the topological dual
space of QPKG)o Let C'(G) be the topological dual space of
¢ (8). Then

'
C

¢'(e) = [

® (G).
PeC1(G)

Theorem 3.1 defines the topological isomorphism
F: g(c) —> c(@) .

An immediate consequence of this theorem is

THEOREM 7.1: The transpose

F' :c¢'(8) — ¢'(0)

of F 1is a topological isomorphism.

]

It is useful to obtain a slightly different characterizatior

of the space gé(a). Fix P € C1(G) and a € §P(G)' For each P
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in P, each w in E,(M), and every point A in 1 a , define

-1

(7.1) (M a) (w,\) = n(gjl pX M(s

'3 : s A) a(sw,s‘)\,),
P'eP s€ Nr(a,af)

LEMMA 7.2: The map

a—>Ma, a € S,(8),

A
is a continuous projection on §P(6) whose range is QP(G).

A

PROOF: Let S, p(G) be the space of functions a in Sp(8) such
3

that for each P € P, a(w,\) vanishes for all but finitely many
/
w € E&(M), and such that for any ® € EQ(M) there is a finite

subset F of E(K) such that the function
A —> a(w,A), NE 1 3,

belongs to d:(i a) ® ¢, (M, PF,M)‘ Then é:LE (G) is a dense
subspace of Sp(a). 7 )

| '7Supﬁdsé ghat“‘a“ is in éj’P(E). By the funectional equations
for M(s'l: s A), ([1(b)], Theore; 8.5), Ma satisfies the symmetry
conditions (2.3). It follows that M a belongs to gP(G). Apply
formula (4.1). Then fM a ! the unique function in EZ(G) such
that -

£
Ma=M_a’

is given by the formula

(2 ez oz 1)%. E((M a){(w,\) ¢ A ¢ .
" e wEE, (M) oy ijg._ (B a)tw ) *)(1,1)

(@ ,A) d A
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Substitute the formula (7.1) in this expression. We note that

E(M(s'lz s \) a(s u),swk) PN LX)
E(M(s_: h)'l als w, sN) : N x)

[}

E(a(sw, s \N) : sA : x).

After a change of variables, we arrive at the formula for fa(x)

defined in Theorem 6.3. It follows that

Efa=Mau

We have shown that the restriction of M to the dense sub-

™~
space §§’P(G) is the composition of the two maps
L X

a—>f, —>Ff, .

By Theorem 3,1 and Theorem 6.3, this composition is continuous,
We can extend it to a continuous linear map from Sp (8) to
gp (6.

We must show that an arbitrary function a in Sp (G) is
sent by this map to the function Ma defined by (7.1).— It is
enough to check thatif a € §p (G), and la,} 1is a sequence of

A ~
functions in §: P (G) which converges in §P (G) to a, then
— | —
Ma=1lim M a, -

n—>00

We have just observed that {M a | converges in Cp (G) to some

3 ' ' 3
function, say a . Then M ay also converges to a in the

topology of Lg (8). But it is evident from (7.1) that M a,
converges to M a in Lg (6) . It follows that for P€ P ,
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(M a) (w, N) =a (w,\)

for almost all (e«&,\) € E4(M) xi a . Since both functions are
continuous, they are equal everywhere.
If a is already in gp(é‘), it is clear that M a = a.

Thereéfore M is a projection whose range is Qp(e).
- .

We shall regard M as an operator on _S_P(a). If we replace
the co-domain by Q_P(a), we denote the resulting map by 'M‘J . If
A, - ~
_S_é(f}) is the topological dual space of _S_P(G), let
| | I ? i
Mo _S.I_;_(G) — 'S'B (G)

and A
? ? A
i 8o (G) —> 5p (G)

=1

be the transposes of the above maps.

THEOREM 7.3: M is a topological isomorphism from s (8)

onto the closed subspace

-p

§

(G) = faesy (G) : M A =4l

? ~
of §£ (G).
PROOF: Clearly - is an injertion into 'S;, (a). Suppose
that A € §; (8). Define a distribution X in Cp (8) to be
the restriction of A to the closed subspace Sp (6‘) of §P(é\)'

o

A
For a € Sp (G),

<IVI:”A7, a> = @,Ma>=<A,I_VI_a>
= M A, &> = <A, 2>.




¢
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Therefore the range of 'ﬁ' is '5; (G). The theorem is proved.

O

A ~t A
From now on, we identify the spaces Q; (G) and §; (G).
Then if F ¢ g'(G), (E')'l (F) is a collection of Euclidean

distributions, which satisfies certain symmetry conditions.

We call it the Fourier transform of F.
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