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ON A FAMILY OF DISTRIBUTIONS OBTAINED
FROM ORBITS

JAMES ARTHUR

Introduction. Suppose that G is a reductive algebraic group defined over
a number field F. The trace formula is an identity

2 o(f) = Jx(f), f E C°(G(A)1),
OE0 XEGr

of distributions. The terms on the right are parametrized by "cuspidal
automorphic data", and are defined in terms of Eisenstein series. They
have been evaluated rather explicitly in [3]. The terms on the left are
parametrized by semisimple conjugacy classes and are defined in terms of
related G(A) orbits. The object of this paper is to evaluate these terms.

In previous papers we have already evaluated Jo(f) in two special cases.
The easiest case occurs when o corresponds to a regular semisimple
conjugacy class {a} in G(F). We showed in Section 8 of [1] that for such
an o, J(f) could be expressed as a weighted orbital integral over the
conjugacy class of a. (We actually assumed that o was "unramified", which
is slightly more general.) The most difficult case is the opposite extreme, in
which o corresponds to { 1}. This was the topic of [5]. We were able to
express the distribution, which we denoted by Junip, as a finite linear
combination of weighted orbital integrals over unipotent conjugacy
classes. The general case is a mixture of these two. If o corresponds to an
arbitrary semisimple conjugacy class {a), let GO be the connected
component of the centralizer of a in G. In this paper we shall reduce the
study of Jo(f) to the unipotent case on subgroups of G,. We will then be
able to appeal to the results of [5].
Suppose that S is a finite set of valuations of F which contains the

Archimedean places. We can embed C°(G(Fs)1) into C°(G(A)1) by
multiplying any function e Cc°(G(FS)1) by the characteristic function of
a maximal compact subgroup of IvyZs G(FV). Suppose that M is a Levi
component of a parabolic subgroup of G which is defined over F. If y is
any point in M(Fs), the weighted orbital integral JM(y, f) is the integral
of f over the G(Fs)-conjugacy class of y, with respect to a certain
noninvariant measure. The measure is easily defined in terms of the
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volume of a certain convex hull if M, = Gy, but in general is more delicate.
In any case it is defined in [4]. The main result of [5] (Theorem 8.1) is a
formula

Jnip(f) = NMIW ol WoG- aM(S, u)JM(u,f),
M u

where u ranges over the unipotent conjugacy classes in M(FS) which are
the images of unipotent classes in M(F), and {aM(S, y)} are certain
constants. In Corollary 8.5 of [5] we showed that

aM(S, 1) = vol(M(F)\M(A)'),
but the other constants remain undetermined. The main result of this
paper (Theorem 8.1) is a similar formula

J(f) = 2IW0IIW WGI aM(S, Y)JM(, f)
M y

for arbitrary o, in which y ranges over classes in M(Fs) with semisimple
Jordan component {a}, and {aM(S, y) } are given in terms of the constants
{aM°(S, u) }.
The distribution J,(f) is defined as the value at T = To of a certain

polynomial JT(f). Our starting point will be an earlier formula for JT(f)
(Theorem 8.1 of [1]). In Section 3 we change this formula into an
expression which contains a certain alternating sum (3.4) of characteristic
functions of chambers. Sections 4 and 5 are a combinatorial analysis of
this alternating sum. We introduce some functions FG(X, 9R) which gen-
eralize the functions 'p(X, Y) used in [2] to prove J,(f) a polynomial. The
main fact we require is Lemma 4.1. It asserts that Fr(X, °R) is compact-
ly supported in X, and that its integral is a sum of integrals of functions
rp(-, Y). The proof of Lemma 4.1 requires a combinatorial property
(Lemma 4.2) which we establish in Section 5. Having proved Lemma 4.1,
we return in Section 6 to our formula for J,(f). We make various changes
of variable which reduce Jo to a linear combination of distributions Junp
on subgroups of Gq (Lemma 6.2). This allows us to apply the results of [5]
in Section 7. Combined with a descent formula for weighted orbital
integrals, they eventually lead to Theorem 8.1.
Theorem 8.1 and the related Theorem 9.2 will be important for future

applications of the trace formula. They can be used to prove a general
formula for the traces of Hecke operators. They will also play a role in the
comparison of GL(n) with its inner twistings, and in base change for
GL(n). Details will appear in a future paper with Clozel.
We have actually written this paper in the context of the twisted trace

formula, which of course is a generalization of the ordinary trace formula.
The twisted trace formula was proved by Clozel, Labesse and Langlands
in a seminar at The Institute for Advanced Study during the academic
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year 1983-84. Their results are to appear in a future volume on the subject.
In the meantime, we refer the reader to the lecture notes [6] from the
seminar.

I thank Langlands, and also Stephen Halperin, for enlightening
conversations related to this paper.

1. Assumptions on G. We would like our discussion to apply to the
twisted trace formula proved in [6], so we shall work with algebraic groups
which are not connected. In Section 1 of the paper [4] we introduce some
notions for such groups. For convenience, we shall describe the ones we
will use here.

Suppose that G is a connected component of an algebraic group G (not
necessarily connected) which is defined over a number field F. We shall
write G+ for the subgroup of G generated by G, and Go for the connected
component of 1 in G+. We shall assume that G(F) is nonempty.
Assume that G is reductive. A parabolic subset of G is a set P = P n G,

where P is the normalizer in G of a parabolic subgroup of Go which is
defined over F. Notice that

PO = P n GO = P+ n GO.
We shall let Np denote the unipotent radical of P°. A Levi component of P
is a set M = M n P, where M is the normalizer in G of a Levi component
of P° which is defined over F. Clearly P = MNp. We call any such M a
Levi subset of G. Let AM denote the split component of the centralizer ofM
in M°. It is a split torus over F. Let X(M)F be the group of characters of
M+ which are defined over F, and set

aM = Hom(X(M)F, R).
Then aM is a real vector space whose dimension equals that of the torus
AM. Observe that

AM c AMo and aM c aMO.
We fix, for once and for all, a minimal Levi subset Mo of G°. (Of course

M0 is actually a subgroup of GO.) Set AO = AM and ao = aM. Write
J for the parabolic subsets P of G such that P° contains Mo. Similarly,
write YPfor the Levi subsets M of G such that M° contains Mo. BothSand
oSare finite sets. Any P E YJhas a unique Levi component Mp in Y, so we
can write P = MpNp. Suppose that M E Y. Write J(M) (respectively
Y'(M)) for the set of elements in '(respectively YS) which contain M. We
also write g(M) for the set of P e J such that Mp = M.
Suppose that P e . Set ap = aM and Ap = AMP. The roots of (P, Ap)

are defined by taking the adjoint action of Ap on the Lie algebra of Np. We
will regard them either as characters on Ap or as elements in the dual space
ap of ap. The usual properties in the connected case carry over to the
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present setting. In particular, we can define the simple roots Ap
of (P, Ap), the associated "co-roots" {aV:a E Ap} in ap, the weights Ap
and the associated "co-weights" {zav:Z Ap} as in Section 1 of [1]. The
roots of (P, Ap) divide ap into chambers. We shall write ap for the
chamber on which the roots Ap are positive. Suppose that Q is another
element in 3V such that P c Q. Then there are canonical embed-
dings aQc ap and a* c a*, and canonical complementary subspaces
aQ c ap and (a)* c ap. Let AQ denote the set of roots in Ap which
vanish on aQ. They can be identified with the simple roots of the parabolic
subset P n MQ of MQ.

Let WG denote the set of linear isomorphisms of a0 induced by elements
of G which normalize Ao. It is actually the set

W7 = wo
that is our main concern. This, of course, is just the Weyl group of
(G°, Ao). It acts simply transitively on W0 (on either the left or the right).
In general, for any two subspaces a and b of ao, we shall let W(a, b) denote
the set (possibly empty) of isomorphisms from a onto b which can be
obtained by restricting elements in WO to a. Suppose that PO is a minimal
parabolic subset ini Then apo is a subspace of a0. The centralizer of ap, in
G° is

Mo = M = MO.
It follows that every element in W(ap, ap) is the restriction to ap of a

unique element in Wo. We therefore identify W(apo, ap0) with a subgroup
of Wo. If P is any element in Ywhich contains Po, the set of chambers of ap
can be recovered as the disjoint union

U U S Q
{QE-QD PO} s EW(ap,aQ)

(See Lemma 9.2.2 of [6].) This generalizes a well known result for
connected groups. In those parts of the paper in which PO is fixed, the
sets

W(ap, aQ), P, Q D Po,
will be regarded as subsets of W(apo, apo) and hence also of WO. For if s

belongs to W(ap, aQ), we extend s to the unique element in W(apo, ap)
such that s(a) is a root of (Po, Ap) for every root a E Ap .

Let A be the adele ring of F. We can form the adelized variety G(A), as
well as the adele group G°(A). If

x = II X

is any point in either G(A) or GO(A), define a vector HG(x) in aG by
e(HG(x)'x) = Ix(x) =I Ix(xX)I, x X(G+)F·
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(Here and in the future the products over v stand for products over the
valuations of F.) Let G(A)1 and G°(A)' be the subsets of G(A) and G°(A)
respectively of elements x such that HG(x) = 0. (Our notation is
somewhat ambiguous in that G°(A)' depends on G and not just GO.) If GQ
is the variety over Q obtained from G by restriction of scalars, let AG
denote the identity component of the Lie group AQ(R). Then GO(A) is the
direct product of G°(A)' and A, and G(A) equals G(A)'IA.

For each valuation v, let K+ be a maximal compact subgroup of
G+(FV), and set

K, = K+ n G(F).
Then K = flv Kv is a maximal compact subgroup of GO(A). We assume
that it is admissible relative to Mo in the sense of Section 1 of [2]. Then if P
is any element in F

G°(A) = P°(A)K = Np(A)M°(A)K.
For any point

x = npmpkp, np E Np(A), mp e Mp(A), kp E K,
in GO(A), define

Hp(x) = HM(mp).
If x E G(A), we can define Hp(x) in a similar fashion.

2. The distributions J/T. The distributions we propose to study are
parametrized by G°(F)-orbits of semisimple elements in G(F). They were
defined for connected groups in [1]. Our references will henceforth be
mostly to papers that apply only to connected groups. The analogous
results for arbitrary G have been proved by Clozel, Labesse and
Langlands. They can all be found in the lecture notes [6]. The references
for the trace formula are actually for groups defined over Q. However, the
results can all be carried over to arbitrary F, by restricting scalars, or by
directly transcribing the proofs.

Suppose that a is a semisimple element in G(F). We shall write G. for
the identity component of the centralizer of a in G°. It is a connected
reductive group defined over F. For any subgroup H of GO which is
defined over F, we shall write H(F, a) for the centralizer of a in H(F).
Then Go(F) is a subgroup of finite index in GO(F, a). We will let

LG(a) = G,(F)\G0(F, a)
denote the quotient group.
There is a Jordan decomposition for elements in G(F). Any element

y E G(F) can be decomposed uniquely as y = au, where a is a semisimple
element in G(F) and u is a unipotent element in Go(F). Let y, denote the
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semisimple component a of y. As in [1], define two elements y and y' to be
equivalent if y, and y' are in the same GO(F) orbit. Let ( be the set
of equivalence classes in G(F). It is clearly in bijective correspondence
with the set of semisimple GO(F) orbits in G(F).
The space C°°(G(A) ) of smooth, compactly supported functions on

G(A)1 can be defined in the usual fashion. Our objects of study are
distributions on G(A)1 which are indexed by the classes in 0. As originally
defined, they depend on a minimal parabolic subset P0 in S and also a
point T E a0 which is suitably regular with respect to P0, in the sense that
a(T) is large for every root a in Ap0. Given P0, a standard parabolic subset
will be, naturally, an element P E which contains P0. Let Tp be the
characteristic function of

{H E ao:'(H) > 0, a E Ap}.
The distribution

T(f), o e Cf E CO(G(A)1),
is then defined by the formula

(2.1) JGO(F)\GO(A)l (l1)dim(AP/AG)
p:po

X Kpo(Sx, 8x)Tp(Hp(8x) - T)dx,
8 E P°(F)\G°(F)

where

KP,0(y,y) = L(A)y-lyny)dn-Y E Mp(F)no JNP(A)

(See [1], p. 947 and Theorem 7.1)
We would like to find a formula for JT(f) in terms of locally defined

objects. A first step in this direction is the formula given by Theorem 8.1
of [1]. If Q D P0 is a standard parabolic, set

JQ,o(y, y) = 2 2
y6EMQ(F)no pENQ(F,y,)\NQ(F)

X JN(AYs ) f(y v' lynvy)dn,
where NQCA, -y) is the centralizer of y, in NQ(A). Then for T sufficiently
regular, Jo(f) equals

(2.2) GO(F)\GO(,4 ) (- im(AQ/AG)

X _2 0 JQ,o(S, Sx)TQ(HQ(8x) T)dx.
SeQ (F)\G°(F)
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This will be our starting point for the next section.
It was shown in Proposition 2.3 of [2] that JT(f) was a polynomial in T,

and could therefore be defined for all T. We are interested in its value at a
particular point To, whose definition (Lemma 1.1 of [2]) we recall. For
each element s E W0, write w, and Ws for representatives of s in GO(F) and
K respectively. These cannot in general be chosen to be the same. The
obstruction is To, which is the point in a0, uniquely determined modulo aG,
such that

HMo(W 1) = TO- sT
for each s E W0. Set

Jo(f) = Jo(f).
This distribution is independent of P0, (see the discussion in [2] following
Proposition 2.3), and will be our main object of study.

In [5] we considered a special case. For any connected reductive
subgroup H of GO which is defined over F, let H denote the Zariski
closure in H of the set of unipotent elements in H(F). It is an algebraic
variety, defined over F. If H = G = G0, then OLG(F) belongs to (. As in
[5], we denote the corresponding distributions by Junip and JunipG,T jGGrespectively (or by J and nip when we wish to emphasize the role of
G). Observe that in this case the formulas (2.1) and (2.2) are the same.

3. A preliminary formula. We choose a class o E 9 and a function
f E Cc(G(A)1). We propose to keep these objects fixed until Section 9.
We shall begin by examining the formula for J (f), so for the time being
we want also to fix the minimal parabolic P0 in J For o unramified in the
sense of [1] we showed (p. 950 of [1]) that (2.2) could be written as a
weighted orbital integral of f In this section we shall perform similar
manipulations for our arbitrary o to obtain at least a reduction of (2.2).

Fix a semisimple element a in o. We can choose a so that it belongs to
Mp,(F) for a fixed standard parabolic subset P1 of G, but so that it belongs
to no proper parabolic subset of M . We shall write Ml = Mpl, Al = AM,
and a1 = aM. Then

G = Cent(a, G°)°
is a connected reductive group with minimal Levi subgroup

Mlo = Cent(a, M°)° = M° n Go
and standard minimal parabolic subgroup

Pl, = Cent(a, PO)O = PO n G,,
both defined over F. Notice that

A1 = Ala
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is the split component of both P1 and Plo. In general, the centralizer of
a in GO is not connected. Its group of rational points is GO(F, a). We shall
have to be careful to distinguish between this group and G,(F).
We shall take a standard parabolic subset Q of G and study its

contribution to the integrand of (2.2). We must then look at the formula
for JQ o(y, y). Suppose that y belongs to MQ(F) n o. We know that y is
G°(F)-conjugate to an element ou, u E aOG (F), but we will have to be
more precise. The semisimple constituent ys commutes with a torus in GO
which is a G°(F)-conjugate of A1. This torus is in turn MQ(F)-conjugate to
a torus AQ, where Ql c Q is a standard parabolic subset of G which is
associated to P1. Thus we can write

-1 -1
= li wsauws Al,

for

s E W(apl, OQ,)
E Me(F) and

u E w M°Q(F)ws n G(F).
The Weyl element s is uniquely determined up to multiplication on the left
by Weyl elements of MQ and multiplication on the right by the Weyl group
of (G°(F, a), Al). Once s is fixed, , is uniquely determined modulo

MQ(F) n sGO°(F, a)w-1.
The element u is clearly uniquely determined by / and w,. Let
W(al; Q, Go) be the union over all standard Q1 c Q of those elements

s E W(apl, aQ)
such that s- a is positive for every root a in AQ and such that sf3 is
positive for every positive root /3 of (G, A1). This set would uniquely
represent all elements s arising above were it not for the fact that the
Weyl group of (GO(F, a), Al) could be larger than that of (G(F), Al).
However, in the formula for JQ,(y, y) we will be able to take a sum over

W(al; Q, Go) if at the same time we sum g modulo

MQ(F) n wsG,(F)w ,
and then divide by tG(a) 1, the index of G,(F) in GO(F, a).

It follows from this discussion that JQ O(y, y) equals the sum over s in
W(a ; Q, G,) of

}lG(o) I-I2I Y ff(y-lv-l,-lWsOuwf ltnvy)dn,
in which gL, v and u are summed over

MQ(F) n WsG,(F)wsX\M (F),
NQ(F, ti-w0aw )\NQ(F).
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and

w-IM (F)w, n %o(F)
respectively, while the integral is over n in

NQ(A, -l1waws 14).
In this expression we replace w'l/n by nws l, changing the integral to
one over

w -NQ(A, a)ws = wS NQ(A)ws n G,(A).
Since

NQ(F, t,-wsaws L)= ~- (NQ(F) n wsGF(F)ws1 ),
we can change the sum over /A and v to a sum over ,r in

Q°(F) n wsG,(F)wsl\Q°(F).
We obtain

JQ,1(YY)-G() 222 f f(y 7T1wsaunw 'ny)dn.J",(Y, Y)= ItC(°I- S~ Z ff(Y-le-lssY)d
S IT U

We substitute this into the expression

(3.1) E JQo(, 8x)rQ(HQ(8x) - T)
8GQ°(F)\GO(F)

which occurs in the formula (2.2). Take the sum over 8 inside the sum over
s, and then combine it with the sum over mr. For a given s, this produces a
sum over 5 in

Q°(F) n wsGg(F)w-'\G°(F)
The expression (3.1) becomes

1()-1I E f (x-'- wsounwilx)
s Au

X TQ(HQ(Sx)- T)dn.
Finally, replace 5 by wsT, changing the corresponding sum to one over
R(F)\G°(F), where

R = w5 Qws n G,.
Clearly R is a standard parabolic subgroup of Go with Levi decom-
position

R = MRNR = (ws Mpws n G,)(W INQws G,).
It follows that (3.1) equals the sum over
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s E W(a1; Q, G,)
of

I()l-,) ' 2 (A) f(x-1-aUnx)E R(F)\G°(F) u E M,(F) (A
X TQ(HQ(wsx) - T)dn.

We can now rewrite (2.2). We see that J,(f) equals the integral over x
in G°(F)\G°(A)1 and the sum over standard parabolic subgroups R of Go
and elements ~ in R(F)\G°(F) of the product of

ItG(o)l- ~ JNR( f(x- 1' unlx)dn
u G &MR(F)( A)

with

(3.2) 2s (- l)dim(AQ/AG)Qr(H (WSX) - T).
In (3.2), Q and s are to be summed over the set

Q D Po, s E W(a1; Q, G,):w lQ ws n G, = R}.

We shall free this expression from its dependence on the standard
parabolic Q.
We shall write .R(M1) for the set of parabolic subsets P E J(M1) such

that PO = R. Suppose that Q and s are as in (3.2). Then

P = w Qw
is a parabolic subset in R(M1). The corresponding summand in (3.2) is
easily expressed in terms of P. For

rQ(HQ(WsX) - T) = TQ(HQ(isx) + HQ(ws) - T),
where iw is a representative of s in K. By Lemma 1.1 of [2] this equals

TQ(HQ(Ws~X) + To - sTo - T).
Since

HQ(isx) = sHp(Sx),
this is the same as

Tp(Hp(x) - Zp(T - To) - To),
where

(3.3) Zp(T- To) = s-'(T- To).
Conversely suppose that P is any parabolic subset in AR(M1). Then

there is a unique standard parabolic Q and an element w E WO such
that
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P = w['Qw.
We demand that s -abe positive for each root a in AQ , so that s will also
be uniquely determined. Since the space sap contains aQ, it must be of the
form aQ for a standard parabolic Q1. Otherwise s-1 would map some
positive, nonsimple linear combination of roots in AQ to a simple root
in Ap, a contradiction. Moreover, combining this property with the fact
that Q° contains wsRws ', we see that sf3 is positive for every positive root
P/ of (G,, Al). It follows that the restriction of s to apI defines a unique
element in W(al; Q, Go). Therefore, the double sum in (3.2) can be
replaced by the sum over PE AR(MI).
We have established

LEMMA 3.1. For sufficiently regular T, JT (f) equals the integral over x in
G0(F)\G0(A)1, and the sum over standard parabolic subgroups R of Go and
elements 5 in R(F)\G°(F) of the product of

IG(oG) 1- 2e LJ( f(x'- l-aunfx)dnu G I& (R) (

with

(3.4) (-_ )dim(AP/AG)¢p(Hp(TX) - Zp(T- To) - To).
P ER(MI)

4. A construction. The next two sections represent a combinatorial
digression. The expression (3.4) is a sum over parabolic subsets of G. We
shall introduce a construction designed to transform it into a sum over
parabolic subgroups of Go.
The discussion will center around the group G., where a is a fixed

semisimple element in G(F). In the next two sections we will not single out
standard parabolic subsets of either G or G.. We do assume, however, that
there is a fixed Levi subset Ml in S which contains a, and such that Mlo is
a minimal Levi subgroup of Go. Then, as in Section 3, we set

A1 = AM1 = AM,,
and

al = aMI = aMi.
Set

o
= yGa(Mio),

the set of parabolic subgroups of G, which contain Ml,. We have the
map

P -> P = Cent(a, P0)0, P E J(M1),
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from Y(Mi) onto '°. Suppose that R is a group in a°. We shall be
concerned with the three successively embedded subsets

JF°(MI)= {P E (Ml):P, = R, ap = aR},
YR(MI) = {P E Y(M1):Pa = R),

and

MR(M1) = {P e -(Mi):Pa D R)
of Y(M1). It is helpful to think of these sets geometrically. Associated to R
is the positive chamber a4 of aR. Its closure is the disjoint union over
P E R(MI) of the chambers ap. The set R(M1) corresponds to
those chambers which are actually contained in aR, while the first set
-°(Ml, corresponds to those chambers which are open in aR. Observe

that R(M1) consists of the minimal parabolic subsets from RA(M).
Our construction will actually be a generalization of a definition from

Section 2 of [2]. The earlier definition will be the special case here that
GQ = G = G°. We shall begin by recalling the earlier definition, or rather
its extension to our connected component G. Take a point Y E a0 and for
any P E Y let Yp be the projection of Y onto ap. Then there is a
function

rG(X, Y), X e a0,

for any P E E, such that

(4.1) r(X, Yp) = (- )dim(A/) Q( - YQ),
{QC.:QDP)

and

(4.2) Tp(X - Ye) = (- l)dim(AQ/AG)Q( (X, YQ).
({QCF.QDP)}

The function FG(X, Yp) depends only on the projection of X onto aG and
it is compactly supported as a function of X in aG. (See Lemma 2.1 of [2].
In [2] we wrote Fp(X, Y) instead of rG(X, Yp) and we treated
only the case that G = G°. However, the proof applies equally well to

arbitrary G.)
Fix a group R in A0. Suppose that

0= {Yp:P eO (Ml)}
is a set of points in a0 with the usual compatibility condition. Namely, if
P, P' E J°(Ml) are adjacent (that is, their chambers share a common

wall), then Yp,- Y is a multiple of the co-root aV, where a is the unique
root in Ap, n (- Ap). Let Q be any parabolic element in ,R(Mi). Then Q
contains a P in ° (M1). Define YQ to be the projection of Yp onto aQ.
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Because of our condition on , YQ will be independent of which group P is
chosen. For any S E a with S D R, set

s = YQ:Q E s(MI) }.

For each such R and Ywe define a function

rG(x, %), X E a,
such that

(4.1)* r R(x,%)
= 2 ri(X)( E (-)dim(AQ/AG)Q(X- YQ))

(S E~::S D R}rQ I S(M

and

(4.2) ( (l)dim(Ap/AG)p(X _ p))
P ert(M1)

- (_ l)dim(AR/As)TS(X)F(X, S).
{SEc°:SDR }

Either formula serves to define this function while the other follows from
the fact that

(4.3) (- )dim(AR/As)SR(X)R'(X) = 0,
{S Ec-J:R CS c R'}

for any groups R C R' in P-. (See the remark following Corollary 6.2 of
[1].) The second formula is evidently the one which pertains to (3.4). It is
clear that rF(X, iR) depends only on the projection of X onto aR. We
shall show that it is compactly supported as a function of X in the
orthogonal complement, aG, of ac in aR, and we shall find its Fourier
transform.
Given R and Y and also P E R(M1), set

cp(A) = FrG(x, Yp)eX(X)dX, A E ia.
As the Fourier transform of a compactly supported function, cp(X) extends
to an entire function of X. It has a simple formula in terms of the
function

cp(X) = ex(YP)
(Lemma 2.2 of [2]) and agrees with the general definitions of Section 6 of
[2]. Define

CR(X) = cp(X).
P EGY9(MI)
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LEMMA 4.1. For any R and 3/, the support of the function
x-_ rG(x,CR), X E a ,

is compact and depends continuously on 3R. Moreover,

rG(x , /R)eX(X)dX = c'R(X), XEA ia.
Proof. For any X in aR, we have

r (x, vY)
= 2 r(X)( 2 (l)dim('4Q/AG)Q(X - Y) )
{S E'*:S S R} Q GS(MI)

rS(X) 2 Z (-ldim(AQ/AP)PQ(X)rp(X Yp),
S Q?(s(Mi) (PE.PDQ}

by (4.1)* and (4.2). This equals

2 rp(X, Yp)
P E R(M )

X ( _ (I- I)dim(AQ/A)Q(X)r(APX)).
({QeR(M,):Qc P)

In the next section we shall prove
LEMMA 4.2. For R E Y°' and P E FR(MI), the expression

E (_-l)dim(Ao/Ap)XQ°(X)'r(X) E AR,
{Q2ER(M,):Q C P)

equals 1 if P belongs to YR(MI) and X belongs to ap, and equals 0
otherwise.

Assuming Lemma 4.2, we obtain

(4.4) rR(X, CR) = rG(, Yp)p(X), X E aR,
P G5R(MI)

where .p(X) equals 1 if X belongs to ap, and equals 0 otherwise. This
equals

) rG(x, Yp)

almost everywhere on a . Lemma 4.1 follows from this fact and Lemma
2.1 of [2].

Continuing a convention from [2], we shall often denote the values of
c,(X) and c'(X) at X = 0 by cp and c' respectively.
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5. Combinatorial lemmas. The purpose of this section is to prove
Lemma 4.2. We continue with the notation of Section 4. Since the center
of G. could be larger than that of G, the space aG could be properly
contained in the analogous space aG for Go. We are denoting the com-
plementary subspace by ao.

Let R be a fixed group in 3o. Then

cG C CaG C aR,
and

= aG a Go.OR =GAOao Ra

LEMMA 5.1. The function
(_)dim(Ap/Ac)Tp(X), XE aCR,

P E (M,)

equals the characteristic function of the set

{X E Ac + aRa:2(X) - 0, a E AR}.-
Proof. We shall define a simplicial complex

C= U cp
P

whose simplices are indexed by the parabolic subsets Pe JR(M1) with
P # G. For any such P set

AP = {,1..... },

and then define cp to be the simplex
{tlil + ... + tn':ti > O, t +... + tn= 1}.

It lies in (aG)*, the complement of aG in at. Let C be the union of the
simplices cp. If R = Go, C is homeomorphic to the unit sphere in
(a )*. If R = G,, C is homeomorphic to the intersection of the unit sphere
with a closed convex cone.

If X E aG the required formula is immediate, both sides being equal to
1. Suppose then that X 4 aG. Fix a small positive number e and set

+ = {X E (aG)* :X(X) _).
Let 9' be the set of elements P whose simplex cp belongs to the interior
of '+, and let g0 be the set of P whose simplex meets the boundary of
t'. We can choose e so that the boundary of X+ contains no zero
simplex of C. Moreover, we can assume that 9 + consists of those P for
which X(X) is strictly positive for every X in cp. Now Tp is the character-
istic function of the open cone in ap which is dual to the positive chamber
in (apG)*. It follows that Tp(X) equals 1 if P belongs to b+, and equals 0
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for any other group P E ,R(Mj) with P # G. Consequently
(5.1) (_l)dim(Ap/Ac)p(X)

Pe(R(MI)

= 1 + (_l)dim(AP/AG)p(X)
{PE=R(M):P G}

= 1 + 2 (-_l)dim(Ap/AG)
Pet

This equals
1 - X(C),

where C+ is the simplicial complex consisting of those simplices in
b+ and x(C+) is its Euler characteristic.

Let D+ be the intersection of C with J+. If R = GO, D+ is a
hemisphere and is contractible. If R # Go. D+ is either contractible or the
empty set. Therefore, the Euler characteristic x(D+) equals 1 unless D+
is empty, in which case it equals 0 by definition. Now D+ is the union of
C+ with

U (cp nf+).PE.PO

We shall exhibit a retraction from D+ onto C+. Suppose that P E 0°.
Since e is small. we can take

Ap= { ).....

with

ai(X) O. 1< i r.

and

.j(X) > i, r + 1 << n.

An arbitrary element in cp n J+ is of the form

A = tl~1 + ... + tnin,
with ti 0, tl + ...+ t = 1, and A(X) > c. The point

1i = (tr+l + ..- + tn)-l(tr+liir+l + ... + tnn)
belongs to the intersection of (cp n X)+) with C+. If X belongs to two
spaces Cp n Xj+, Xl is still uniquely defined. In fact, it is clear that X --> A
extends to a continuous retraction of D+ onto C+. Therefore,

X(C*) = X(Dt).
We have shown that (5.1) equals 1 if D* is empty and equals 0



DISTRIBUTIONS OBTAINED FROM ORBITS 195

otherwise. Since e is small, D+ is empty precisely when X(X) 0 for every
X E C. However C and AR U (ag )* both generate the same positive
cones in (aR)*. (This is just a restatement of the fact that the closure of aR
is the union over P E -R(M1) of the chambers ap.) Therefore D+ is empty
precisely when the projection of X onto aG vanishes, and when iz(X) 0
for every a E AR. The lemma follows.

LEMMA 5.2. The expression

(_ 1)dim(ApI/AG)p(X), X AR,
P E-R(M,)

equals

(- 1)dim(AR/AG)R (X)
ifX belongs to ac + aG°, and vanishes otherwise.

Proof. The given expression equals

o(-l)dim(AR/As) X (-l)dim(ApG)p(
(S e-O:S D R) P Jss(Mi)

This follows from the fact that for a given P E AR(M), the groups
S E o

° such that R c S c P are parametrized by the subsets of
AR\ Ap. Apply Lemma 5.1. If X does not belong to ac + aR, it projects
onto none of the spaces aC + as°, and the expression is zero. Suppose then
that X does belong to ac + aGo. Let R' be the group in jYa, with
R c R', such that

A = { R:D(X) 0}.
Our expression becomes

E (- I)dim(AR/As)
{S E:R' c S}

It equals 0 if R' - Go and it equals
( -)dim(AR/AG)

if R' = G. However, R' = Go precisely when z(X) > 0 for
every 2 E AR. Therefore the expression equals

(_l)dim(AR/Ac),(X)
as required.
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LEMMA 5.3. The expression
E (_--)Odm(AP/AG)?PR(X)Tp(X), XE aR.

PES'(MI)

equals 1 ifR = Go and X belongs to aG, and vanishes otherwise.

Proof. The given expression equals
rS(X) (--l)dim(Ap/AG) p(X).

(Se5':S3R) PEs(Mi)

Apply Lemma 5.2. If X does not belong to aG + aQ°, it projects onto
none of the spaces aG + as°, and the expression is 0. Suppose then
that X does belong to aG + aR . Our expression becomes

? (-1 )dim(As/AGo)'TS(X)s(X).
{S Ec':S R )

As we noted in (4.3), this vanishes if R # G,. If R = G,, so that
a° = {0}, it clearly equals 1. The lemma follows.

We can now prove Lemma 4.2. We must evaluate the expression
(5.2) Z (- 1)dim(AQ/AP)TQ)(X)(X XE R,

{QE'nR(MI):Qc P}

where now P is a fixed element in YR(M,). Let M = Mp. The sum in
(5.2) may be replaced by a sum over JpM,nR(M), the set of
parabolic subsets Q' of M which contain Ml and such that Q, contains
M. n R. The resulting expression is just that of Lemma 5.3, but with
(G, G,, R) replaced by (M, M, M, n R). It is easy to see that
M, = Ma n R if and only if P0 = R. It follows that (5.2) equals I if
Pa= R and X belongs to aM = ap, and equals 0 otherwise. This was the
assertion of Lemma 4.2.

6. Reduction to the unipotent case. We shall resume the discussion of
Section 3, with the symbols a, Go, M, and Mlo having the same meaning as
there. We will need to fix a maximal compact subgroup

K, = I K,
of Go(A) which is admissible relative to Mlo in the sense of Section 1 of [2].
Then for each group R E 5" we have the function

HR:Go(A) - aR
defined in the usual way from the decomposition

Go(A) = NR(A)MR(A)Ko.
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For any x E Ga(A), let KR(x) be the component of x in Ka relative to this
decomposition. It is determined up to multiplication on the left by
elements in MR(A) n Ko.

It is clear that any objects that have been associated to the triple
(G, M0, K) also exist for (Ga, Mlo, Ko). In particular, there is the analogue
of the point To described in Section 1, a point in al, which we shall denote
by To,. Let To be the projection of the point T - To + To, onto al. Then
Too is the value of To at T = To. For most of this section we will retain the
standard minimal parabolic subset PO of G, and we will assume that there
is a standard parabolic subset P1 in M(M1). If T is suitably regular
with respect to PO then TO will be suitably regular with respect to Plo.
We start with the formula for JT(f) given by Lemma 3.1. We shall

make some changes of variables, at first formally, leaving the justification
until later. Change the sum and integral over (5, x) in

(R(F)\G(F) ) X (G0(F)\G0(A)1)
to a sum and double integral over (8, x, y) in

(R(F)\G,(F)) X (G,(F)\G,(A) n G°(A)1) X (G(A)\G°(A)).
(Here we should note that

Ga(A)\G°(A) A)G( Gf(A)l\G°(A).)
The expression (3.4) becomes

2 (- l)dim(AP/A'c)p(Hp(SXy) - Zp(T - To) - TO).
P eR(MI)

Since

Hp(Sxy) = HR(Sx) + Hp(KR(Sx)y)
= HR(8x) + Hp(Kp(8x)y),

this equals
2 (- l)dim(A/Ac)p( (HR(8X) - To) - Y(x, y)),

P R (MI)

with

(6.1) YT(6x, ) = -Hp(Kp(8x)y) + Zp(T - To) - T + To.
The set

R(sX, y) = {( Y X, y):P E R(M) }
satisfies the compatibility condition of Section 4, so by (4.2)* we can write
this last expression as the sum over {S E y'°:S D R} of

(6.2) (- l)dim(A/As)'(HR(SX) - Ta)
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X rF(Hs(6x) - T7, s(6X, y) )
The formula for JT(f) becomes the integral and sum over

y E G,(A)\G°(A),
{S E Y°:S D Pl},
x E G,(F)\G,(A) n G°(A)',
{R E F°:Plo c R c S), and

8 E R(F)\G,(F)
of the product of

(6.3) ILG() i-1 (NA(Af (y-ax- '8~-unkxy)dn
UECM,(F)

with (6.2).
Next, decompose the sum over R(F)\G0(F) into a double sum over

(iU, ) in
(R(F) n Ms(F)\Ms(F)) X (S(F)\G,(F)).

Take the resulting sum over 5 outside the sum over R, and combine it with
the integral over

G,(F)\G,(A) n G°(A).
Then decompose the resulting integral over

S(F)\G,(A) n G°(A)1
into a multiple integral over (v, a, m, k) in

(Ns(F)\Ns(A)) X (A nC G°(A)') X (Ms(F)\Ms(A)) X Ka.
The variables of integration v and a drop out of (6.3), both being absorbed
in the integral over NR(A). A Jacobian is introduced, but it cancels that of
the last change of variables. v also drops out of (6.2), so the integral over
Ns(F)\Ns(A) disappears. The variable a remains in (6.2) but occurs only
in the second function FG. As our final change of variables, we rewrite the
integral over NR(A) in (6.3) as a double integral over (nl, n2) in

(NR(A) n Ms(A)) X Ns(A).
Our formula for JT(f) is now given by the integral and sum over y, S, k, a
and m of the product of ILG(a) 1 with

(6.4) 2 f(- )di(AR/AS)HrTak,(m- -u-num)
R 1t u

X TSR(HR(n) T,)dn 1,
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where

Sa,k,y(m2), m2 E Ms(A)
is defined as the product of

s(m2)1/2 J A) f (y-lak lm2n2ky)dn2,
with

(6.5) rsG(Hs(a) - T,,,s'(k y) )
(We can obviously insert 8s, the modular function of S(A). We have
included it so that at a later stage our definitions will agree with [4].) It is
clear that ( saky is a function in C(Ms(A)l) which depends smoothly on
y, k and a.
We must justify the changes of variables. It would be enough to show

that (6.4) is absolutely integrable over y, S, k, a and m. For we would then
be able to work backwards, verifying each successive change of variables
by Fubini's theorem.

LEMMA 6.1. Given a compact subset A of G(A)' we can choose a compact
subset Z of G,(A)\G°(A) such that

y-' G(A)y n A = 0, y E Go(A)\G°(A),
unless y belongs to E.

In order not to interrupt the discussion, we shall postpone the proof of
this lemma until the Appendix.

Consider the expression (6.4) first as a function of (S, a, k, y). The index
S of course ranges over a finite set, while k ranges over the compact set K,.
We restrict y to a fixed compact set of representatives of the points E of
the last lemma, with A taken as the support off. The variable a intervenes
through the function (6.5). Since Hs maps (As n G°(A)1) isomorphically
onto as, Lemma 4.1 tells us that (6.5) vanishes for all a outside a compact
set which depends continuously on k and y. Since k and y range over
compact sets, we see that (6.4) vanishes for (a, k, y) outside a compact set
which is independent of m. Now consider (6.4) as a function of
m E Ms(F)\Ms(A)'. We immediately recognize the integrand in the
analogue of formula (2.1) for

Junp -Sa, k y).
In particular, (6.4) is an integrable function of m. In fact, it follows from
the proof of Theorem 7.1 of [1] that the integral over m of the absolute
value of (6.4) is bounded by

II^LJT
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where 11-11 is a continuous semi-norm on Cc(Ms(A)I). Since this is a
continuous function of (a, k. yv), (6.4) is absolutely integrable overy, S, k, a
and m. We have thus shown that all our changes of variables are valid. We
have, in addition, proved that JT(J) equals

(6.6) ItG(o) 'I GA) SI(A)\G(A) S Pl

j Ms.'T.(DT'x K( JA nGO(A) Junip (S.aky)dadk)dy
The distribution JO is the value at T = To of J,, while JMp is the val-

ue at T = To of JMni'p. Setting T = To in (6.6), we obtain

JO(f)
--1 a).MS TO

=tG() I JG(A)\GO(A) S ,, (f f J/unp(4S'Oa,ky)dadk)dy.
DJ Pie

The integration in (a, k), being over a compact set, can be taken inside
JMsi The contribution from the integral over a is just the integral of (6.5)
at T = To, which equals

(6.7) JfG F(X, Y/((k. y) )dX.
Now, for any Q E .s(Ml).

Y(k, y)= -HQ(ky)+ T1,
where

T1 = To To0.
Set

vQ(X, ky, T) = ee(-HQ(k))+T1), X ia*

so that

v'(ky, To) = rF(X, -HQ(ky) + T,)dX,
in the notation of Section 4. Then by Lemma 4.1, (6.7) equals

vs(ky, Ti) = vQ(ky, TI).
QeEX(M,)

It follows that

(6.8) ) =IG1Q() j
~~Ae {where S P

where
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S.y,T,(m)
s(m)l/2 JK IN ) f(ylak-lmnky)v(ky, T)dndk,

for any m E Ms(A)1. It is clear that 4>s,T, is a function in CC(Ms(A)1)
which depends smoothly on y. We would like to apply the results of [4] to

(6.8). In order to do so, we ought to free this formula from the dependence
on the minimal parabolic subgroup P1y.

Suppose that R is any group in Ya. Then

R = ws Sw,,
for a standard S D Ply and an element s in WG, the Weyl group of
(Ga, Al,). Let ivs be a representative of s in Ka. Then if ms E Ms(A)
DsVrI(ms) equals

3R(mR)1/2 JK fN( Yl k- mRnky)vs(wsaky, T1)dndk,
where

mR = Wso mSWsa.
Now suppose that Q E Ys(Ml). Then P = ws Qws belongs to R(Mi).
We can write

-HQ(saky ) + T

-HQ(¢sky) -HQ(sws-) - HQ(Ws-1) + T1

(Recall that is is a representative of s in K.) By Lemma 1.1 of [2] and the
definition of Hp, this equals

-sHp(ky) + To, -sTO - To + sTo + T

= -sHp(ky) + sT1,
modulo a vector which is orthogonal to aQ. Consequently,

-HQ(vsky) + T1 = s(-Hp(ky) + TI),
from which it follows that

v'(Hs0ky, T1) = vR(ky, T1).
We have therefore shown that

(S,y,Tr(mS) = R,y,Tr(mR)-
From this it follows easily that

(6.9) Juninp(DS,y,Ti) = Junp(Ry,T,).
(See the remark at the end of Section 2 of [2].)
Our progress to this point may be summarized as follows.
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LEMMA 6.2. J,(f) =

I)I Go(A)\G°(A) (,RE IO UniPRT))
Proof. Recall that Wo° and WaR are the Weyl groups of (G,, Al) and

(MR, Al) respectively. The number of groups in -O which are conjugate to
a given R equals IWoMR| wGo l1. The lemma then follows from (6.8) and
(6.9).

7. Relation with weighted orbital integrals. Lemma 6.2 is our main step.
We shall combine it with results from [4] and [5] to obtain a formula for
JO(f) in terms of weighted orbital integrals.

Suppose that S is a finite set of valuations of F. Set

G(Fs)1 = G(Fs) n G(A)',
where

Fs = n F.
vES

A weighted orbital integral is a distribution

f- J(y,f), f E COc(G(Fs) ),
on G(Fs)' which is associated to an Me Y and an orbit y of M°(Fs) in
M(Fs) n G(Fs)'. We shall use a descent formula from [4], which we recall
in a form applicable here. Suppose that o is a semisimple element in M(F).
Set

DG(a) = det(l - Ad(a) )g/g,
where g and g, are the Lie algebras of G and Go. Then DG(a) belongs to
F*. As in [5], we write

(/Ma(F) )Mo,S
for the finite set of unipotent Mo(Fs) conjugacy classes which meet Mo(F).
If

u e (&M(F) )M,S'
the element y = au represents an M°(Fs) orbit in M(FS) n G(FS)'. For
anyf E C°(G(Fs)'), Corollary 8.7 of [4] asserts that
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(7.1) JM(,f)

-IDG() 11/2 J G(Fs)\GO(Fs)(R J(, ,T))dY,
where

ID (a) Is = II ID (a) Iv
vES

and RRy,T is the function in Cc(MR(Fs)') defined by a formula analo-
gous to that of Section 6. That is,

(7.2) Ry,T,(m)
6R(m)' 2 JN() f(y-ak mnky)v (ky, T,)dndk,

for anyy E G°(Fs), T, E a and m E MR(Fs).
Suppose that S contains the Archimedean valuations. Then we embed

C°c(G(Fs)') in Cc(G(A)1) by taking the product of a given function
in c (G(Fs)') with the characteristic function of i-vS(Kv+ n G(Fv) ).
In this way C (G(Fs)I) is to be regarded as a closed subspace of
C (G(A)'). Any function in C (G(A)l) belongs to C°(G(Fs)1) for some
such S.

Let o, a and Ml be fixed as in the last section. Let SO be a finite set of
valuations of F, containing the Archimedean places, such that for any v

not in SO the following four conditions are satisfied.
(i) IDG(g) 1V = 1.
(ii) K, n G(F,) = Ka,.
(iii) aK,a = Kv.
(iv) If y, E G°(FV) is such that yv l'aG(Fv)Yv meets aKv, thenyv belongs

to G,(Fv)K,.
It is clear that the first three conditions can be made to hold; the fourth
is a consequence of Lemma 6.1. Let S be a finite set of valuations
which contains S., and take f E C°(G(A)1) to be in (the image of)
C (G(Fs)'). The results of Section 6 tell us that the function

ylEftIWGoARIan IWOI Jup(R,y,T ), y G (A),
is left GO(A)-invariant. It vanishes unless

Y = YsY'
with Ys E Go(FS)\G°(Fs), and y' an element in

1I (KoV\Kv) = IH ((Kv n G,(Fv,))\K)
vQS vQS
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- [I (Go(Fv)\GX(F,)Kv).
vZS

(This follows from conditions (ii) and (iv) above and the fact that JuMnp
annihilates any function that vanishes on the unipotent set in MR(A)'.) If
k = ksk', with

ks E I K,, and k' E H K,,,
veS vaS

then for any such y
v (ky, T,) = v'(ksYs, T,).

It follows that ORT, defined in Section 6 as a function in Co(M(A)'),
actually equals RR T and is defined by (7.2) as a function in
the subspace Cc (MR(FS)1). The formula of Lemma 6.2 becomes

Jo(f)

IIG=o) I/-I )1 M VG,5 IjRI I-dy.- G() L(FS)\GO(FS)(R R'l))dY

Let

YEu = _E~G,(Mo)
denote the set of Levi subgroups of Go which contain Mo. We apply the
main result (Corollary 8.3) of [5] to write JMp as a linear combination of
weighted orbital integrals. We obtain

~JMp(~.yR ,

I= Wo l Wgo '
(LEM L C MR }

X 2 aL(S, U)JLM (U",4R,:.T),
UE(aL(F) )L.S

for complex numbers aL(S, u). Consequently, Jo(f) equals

G(;() 1I G -1I G G(Fs)\ (Fss)LF RE°(L)
X 2 aL(S, )JLMR(u, RV,T)dY,

UG(*tL(F) )L,S

where J°(L) is the set of elements in ' which contain L.
Now, let S.o(Mi) be the set of Me f'(Mi) such that AM = AM. If L

is any group in Sa and M is the centralizer in G of AL, then M belongs to

oS(M,) and M, = L. It follows that M -* M, is a bijection fromY.(Mi)
onto .°'. We rewrite our formula for J,(f) as the sum over
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M E Y°(M1) and u E (imM(F) )M,,S
of the product of

I (a) l-IWoI Wo IaIM (S, u)
with

(7.3) FGOF( J R(U,RsmuI. ,))dy.(S)\G R E=-°(Mo) M

By our choice of S, IDG(a) Iv = 1 for each v not in S. Therefore

IDO(a) Is = I oG(a) Iv, IDG( = 1
vES vzS

by the product formula. In other words, (7.3) can be multiplied
by IDG(a) l/2 without changing its value. Consequently (7.3) equals
JM(au,f) by the descent formula (7.1).
We have proved
LEMMA 7.1. There is a finite set S, of valuations ofF, which contains the

Archimedean places, such that for any finite S D SO andf E C°j(G(Fs) ),

Jo(f) I= I G(a)|- iwr°WG-I
X 2 aM.(S, u)JM(au,f).

UE (&Mo(F))Mo,S

8. The main theorem. In Lemma 7.1 we have what is essentially our
final formula for Jo(f). However, it will be more useful if we rewrite it in a
way that does not depend on a distinguished element a in o.

Let M be a Levi subset of G, and let a be an arbitrary semisimple
element in M(F). We shall say that a is F-elliptic in M if a commutes with
a maximal torus in M° which is F-anisotropic modulo AM. If a is the fixed
element of Lemma 7.1, then a is F-elliptic in M if and only ifM belongs to
the set '°(MI).
Suppose that y is any element in M(F) with semisimple Jordan

component a. If y' is another element in M(F), we shall say that y' is
(M, S)-equivalent to y if there is a 8 E M°(F) with the following two
properties.

(i) a is also the semisimple Jordan component of 8- y'S.
(ii) o-1y and a-1 · 8-1y'S, regarded as unipotent elements in Ma(Fs),

are Mo(Fs)-conjugate.
Notice that there could be several classes u in (qM (F) )M,S such that au is
(M, S)-equivalent to y. The set of all such u, which we denote simply by
(u:au - y}, has a transitive action under the finite group



206 JAMES ARTHUR

1M(a) = Mo(F)\M(F, a).
It is, in particular, finite. Define

(8.1) aM(S. y) = EM(a) IM(a) I- ] aM (S, u),
(u:ou--y)

where eM(a) equals 1 if a is F-elliptic in M, and is 0 otherwise. Clearly
aM(S, y) depends only on the (M, S)-equivalence class of y.

Returning to our study of the class o, we write

(M(F) ( O)M,5
for the set of (M, S)-equivalence classes in M(F) n o. It is finite. Our
main result is

THEOREM 8.1. There is a finite set S, of valuations of F, which contains
the Archimedean places, such that for any finite set S D S0 and any
fE C.°(G(Fs) )

(8.2) JO(f) = 2 IWoI IWG-1 2 aM(S, y)JM(yf).
M o y E(M(F) no).s

Proof. We will deduce (8.2) from Lemma 7.1. We let a and Ml be as in
Lemma 7.1. Using the Jordan decomposition, we write the sum over y
in (8.2) as a double sum over semisimple classes and unipotent classes.
Combine the first of these with the sum over M. We obtain a sum over the
set

= { (M, M)},
in which M belongs to S' and aM is a semisimple M°(F)-orbit in M(F)
which is GO(F) conjugate to a. The Weyl group W0 clearly operates on II.
Now, it follows from the definitions that

awsMws (S, WyWS 1) = aM(S, y)
for any s E W0. Moreover, we observed in [4] that

JWM-l(WSYws' f) = JM(Y,f)
Therefore the sum over II can be replaced by a sum over the orbits of W0,
provided that each summand is multiplied by the quotient of W01 by the
order of the isotropy subgroup.

Every Wo orbit in I contains pairs of the form (M, a), where M is some
element in.(Mi). Note that the isotropy group of (M, a) in Wo contains
Wb , the Weyl group of (M°, Ao). Suppose that (M, a) and

(M', a) = ws(M, a)w l, s E Wo,
are two such pairs in the same W0-orbit. Then M' equals wsMws , and s
has a representative in GO(F) which lies in GO(F, a). Since M and M' both
contain MI, we can choose the representative of s to lie in
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Norm(Al, GU(F, a) ),
the normalizer of Al in GO(F, a). Now there is an injection

Norm(Al, M°(F, o) )\Norm(Al, GO(F, a)) - W0 \Wo.
M0We have just proved that the coset of s modulo W0 lies in the image.

Conversely, suppose that s is any coset of W° \W0 which belongs to the
image. Then the pair w (M, a)w l will clearly be of the above special form.
Notice that

Norm(Al, M°(F, a) )\Norm(Al, GO(F, a)) = WMO(F')\WWo(Fo)
where

WGo'F°) = M°(F, a)\Norm(Al, GO(F, a))
and WO(Fr')is the analogous group for M. Thus, we can replace the
original sum over II by a sum over all pairs (M, a), as long as we multiply
each summand by

M 0 0 .(I MI 1W- l\)iw°(F,O)lI WGO(Fra)l-1I
Since

|fWo Iw W | |WG\W001* -1 = I
we have established that the right hand side of (8.2) is equal to

w"'(F°)IWoGO(Fr)i-I
M e e(MI)

X aM(S, y)JM(Y,f)
{y e(M(F) n o)Ms:Ys =a}

We must show that this is equal to the right hand side of the formula in
Lemma 7.1.
We have noted that a is F-elliptic in M, M E-Ya(MI), if and only if M

belongs to YS(Mi). It follows from the definition (8.1) that the right hand
side of the formula in Lemma 7.1 equals

W IWMlwGa-ILtM(a) ItG(o) -1

X aM(S, y)JM(,f).
{y E (M(F) ( O)MS:Ys=a

To complete the proof of the theorem, we have only to verify that

(8.5) WM'1 I W0l-'I M(a) I|G(a) I-1_= IwMO(F.)l lwGO(F)l-1.
Recall that

tG(a) = G,(F)\G0(F, a).
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Every coset in G,(F)\G°(F. a) has an element which normalizes Al. so
there is a subjective map

G,(F)\G°(F, a) -, WGo\W GoF.
The kernel is the subgroup of cosets having representatives that act
trivially on Al. It is isomorphic to

G,(F) n M1\G°(F, a) n Ml = Mo(F)\M°(F, a)= LM().
It follows that

IW Io(IC(G) = I4G°(F.o) I1MI(0) I.

Similarly,
WM1 I(aM() I= W FIo)l ILM'ao) I.

This establishes (8.5) and completes the proof of our theorem.

Suppose that y E o is semisimple. Then by (8.1).
aG(S, y) = EG(y) ILG(y) I- aGo(S 1).

Combined with Corollary 8.5 of [4], this immediately gives a simple
formula for aG(S, y). We state it separately as a theorem, since it will be
important for future applications.
THEOREM 8.2. Suppose that y is a semisimple element in o. Then for any

finite set S D S0, a (S, y) equals
IG.(F)\G(F, y) |I- vol(GY(F)\GY(A)l)

ify is F-elliptic, and is 0 otherwise.

Remarks. 1. In this paper we have not normalized the invariant
measures. However, we have implicitly assumed that they satisfy any
required compatability conditions. If y is F-elliptic (in G), the measure on
Gy(A)' implicit in Theorem 8.2 must be compatible with the measure
used to define the orbital integral JG(Yf). The orbital integral relies on a
choice of measure on Gy(Fs)\G°(Fs), and since S D S,, this amounts to
a choice of measure on

G,(A)\GA) G(A)G,(A)A)\G(A)' =GY(A)-\G°(A)
The measure on Gy(A)l used to define this quotient measure must be the
same as the one above.

2. Suppose that the class o consists entirely of semisimple elements.
Then Theorems 8.1 and 8.2 provide a closed formula for J,(f). (See
Proposition 5.3.6 of [6].) In the special case that o is unramified (in the
sense of [1] ), the formula is easily seen to reduce to (8.7) of [1].
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3. Theorem 8.2 is probably sufficient for many applications of the
trace formula. This is fortunate, since if y is not semisimple, any general
formula for aG(S, y) is likely to be quite complicated. If G = GL2 and y is
principal unipotent, a formula for aG(S, y) is implicit in term (v) on page
516 of [9]. For GL3 there are formulas for aG(S, y) which can be extracted
from [7].

9. The fine o-expansion. Set

J(f) = JOf), f e C(G(A)1),
oE0

the left hand side of the trace formula. It is a distribution, which of course
also equals

E JX(f)

(the right hand side of the trace formula). In some situations it is easier to
take J(f) as a single entity, without worrying about which terms come
from a given o. For convenience, we shall restate Theorem 8.1 as a formula
for J(f).
We need to know that only finitely many o intervene for a givenf.
LEMMA 9.1. Suppose that A is a compact subset of G(A)1. Then there are

only finitely many classes o E (9 such that the set

ad(G°(A))o = {x-'yx:x E GO(A), y E o}

meets A.

We shall prove this lemma in the Appendix.
Now suppose that A is a compact neighborhood of 1 in G(A)1. There is

certainly a finite set S of valuations of F, which contains the Archimedean
places, such that A is the product of a compact neighborhood of 1 in
G(Fs)1 with the characteristic function of HIvs Kv We shall write So for
the minimal such set. Let C°(G(A)1) denote the space of functions in
C°(G(A)1) which are supported on A, and set

CA(G(Fs)) = C,°(G(A)1) n Cc(G(F)),
for any finite set S D S°.

THEOREM 9.2. Given a compact neighborhood A of 1 in G(A)' we can find
a finite set Sa D SO of valuations of F such that for any finite S D S,
and any f C°(G(Fs)),

J(f) = , IW0i IWG- aM(S, Y)JM(Y,f).
M E5 y Gy(M(F) )M,S
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Proof. We shall apply Theorem 8.1 to the definition

J(f) = E Jo(f).
Let Q be the finite set of classes o such that ad(G°(A) )o meets A. We
define Sa to be the union of S' with the sets SO given by Theorem 8.1, as
o ranges over (9. Take any finite set S D Sa, and letf E Cg(G(Fs);).
Since J, annihilates any function which vanishes on ad(G (A))o, we
obtain

J(f)= ] Jo(f)
oee

= IWoMI|Woll1 aaM(S, Y)JM(Yf).
Mc~Y oefA yE(M(F)no)M,

Now suppose that y is any element in (M(F) )Ms. Then y is contained in a
unique o E 6. It is a consequence of Theorem 5.2 of [4] that the orbital
integral JM(y, f) equals 0 if f vanishes on ad(G°(A))o. In particular,
JM(Y, f) vanishes unless o belongs to (9a. It follows that

J(f)= I\WoI IlW 2 aM(s, )JM(Yf)
Mey ye(M(F))M,S

as required.

Appendix. We still owe the proofs of Lemmas 6.1 and 9.1. We shall
establish them by global means, using reduction theory and some familiar
arguments from the derivation of the trace formula. Viewed in this way,
the lemmas are rather closely related.

Let G(F)' be the set of elements in G(F) which belong to no proper
parabolic subset of G which is defined over F. We fix a minimal parabolic
subgroup P° of GO with Levi component Mo. For convenience, write 0 for
any subscript or superscript where our notation would normally call
for PO.In particular, Ho = Hpo, AO = Apo, and N = Npo. If T is any point
in ao, set

A(T) = {a e Ao n G°(A)':a(Ho(a) - T) > 0, a E Ao}.

LEMMA A. 1. For any compact subset F of G(A)1 and any T E ao, there is
a compact subset A(T) of A n G°(A)1 with the following property. If a

is a point in A (T) such that a- ya belongs to F for some y E G(F)', then
a lies in A(T)r.

Proof. Let E be a fixed element in G(F) which normalizes both PO and
Mo. Then e normalizes Ao and therefore acts on ao. Any element in G(F)'
can be written
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(A. 1) y = vwsrE, v E No(F), r E P°(F), s E W0,
by the Bruhat decomposition. Let po be the vector in a , defined as
usual by

80(a)1/2 = ePo(HO(a) ) a E Ao.
We claim that there is a constant cr, depending only on F, with the
property that

(Po - spo)(Ho(a)) cr,
for any a E A(T) and y as in (A.1) such that a-ya belongs to F. To
see this, note that Ep0 = Po. This implies the existence of a finite dimen-
sional representation A of G+, defined over F, with the highest weight
a positive multiple of po. Let 4) be a highest weight vector for A. By choos-
ing a height function for A, and computing the component of the vector
A(a-ya)o in the direction of A(w,)O, (as for example on p. 944 of [1]),
we see that the claim follows.
Given y as in (A.1), let Po D P0 be the smallest standard parabolic

subgroup of GO which contains w. As with P0 above, write 1 for any
subscript or superscript where our notation would normally call for
Po. Thus, a, equals apo, a' is the orthogonal complement of al in a0,
and Al is the set of roots in Ao which vanish on a . If a is any point in
A (T) such that a-ya belongs to 1, we set

(A.2) H0(a) = X+ Y, X ac, Ye a .

(The superscript G denotes the orthogonal complement of ac.) We shall
first show that X belongs to a compact subset of aI which depends only on
r. The element w, is contained in M1 but in no proper parabolic subgroup
of MI. This implies that

Po - SPo= cof3,

where each cfl is a positive integer. From what we have proved above, we
see that X belongs to

{H E a:I cp3(H) _ cr; a(H) a(T), a e A}
This is a compact subset of a1 which certainly depends only on r.

All that remains is to show that the element Y in (A.2) lies in a compact
subset of aG. Our discussion at this point is motivated by some
observations of Labesse (Lecture 4 of [6] ). The element a ya- 1 lies in
the compact set Fe-1. But the element

I-1yel VWTrr

lies in P°(F). Therefore
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Hl(a-1yaC-') = Hi(a-la- 1) = (eX - X)1 + (eY - Y)I,
where (-)l denotes the projection of ao onto al, and e = Ad().
Consequently, (eY - Y)i lies in a compact set. We shall show that the
linear map

H->(eH - H)1, H E a ,
is injective. Suppose that Z E aG lies in the null space. Then

(eZ)1 = Z1 = Z.

Since e is an isometry on a0, and (j1 is an orthogonal projection, eZ
must equal Z. Now the chamber in al associated to Pi meets the space

b = {H e a :eH = H)
in an open subset. Consequently there is a parabolic subset P of G such
that P° contains Po, and such that aG = b. But the element y belongs to
P n G(F)'. It follows that P = G, so that ap = {0}. Thus, the point Z
equals 0, and the linear map above is injective. We have shown that Y lies
in a compact subset of al which depends only on r. The proof of the
lemma is complete.
COROLLARY A.2. There is a compact subset Gr of GO(A)' such that

x-'G(F)'x n rF = 0, x G(A)',
unless x belongs to G°(F)Gr.

Proof. Suppose that x E G°(A)'. By reduction theory, x is congruent
modulo (left translation by) GO(F) to an element

pak, pE o,a E A(Tl),k E K,
where w is a compact subset of No(A)Mo(A)' and T1 is a fixed point in ao.
The set

wI = {a- pa:a E A(TI),p i w}
is compact and so therefore is

Fi = {pkgk- p-':p E ol, k E K, g E F).
If x lG(F)'x intersects r, there is an element y E G(F)' such that a- ya
belongs to Fl. By the lemma, a then belongs to the compact set A(Tl)r,
The corollary follows.

Proof of Lemma 6.1. We are given a class o E 0 and a semisimple
element a in o, as well as a compact subset A of G(A)1. We shall first
consider the case that a belongs to G(F)'. Then o is just the G°(F)-orbit of
a. Suppose that y loy intersects A for some y E GO(A). By the last
corollary, y is G°(F)-congruent to an element in the compact set GA. But
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there are only finitely many elements 8 E Go(F)\G°(F) such that
x 1- -y8x belongs to A for some x E GA. Since the projection of GA onto
G°(F)\G°(A)1 is compact, we see that

{y E G,(F)\G°(A)l:y-lay n A = 0}
is a compact subset of Go(F)\G°(A)'. Its projection onto

Go(A) n GO(A)1\GO(A)1 = Go(A)\GO(A)
is compact. Thus, Lemma 6.1 holds if a belongs to G(F)'.
Now suppose that a is an arbitrary semisimple element in G(F). By

replacing a with a G°(F)-conjugate if necessary, we can assume that a
belongs to M(F)' for a Levi subset M E Y. (This Levi subset was denoted
M, earlier.) Choose a parabolic subset P e 9(M), and write N = Np. Let
No denote the centralizer of a in N. Then any element in 9Gc (A) has
a Go(A) conjugate in No(A). Suppose that y is any point in GO(A)
such that

y-laG(A)y n A # 0.
Then y is congruent modulo G,(A) to an element

nmk, n E N(A), m e M°(A), k E K,
such that

(A.3) m nlaNo(A)nm
meets the compact set

{kgk-':k E K, g E A).
Since the set (A.3) is contained in m- amN(A), the element m- am lies in
a fixed compact subset of M(A). Applying the case we have already
established (with G replaced by M), we see the projection of m onto
Mo(A)\M°(A) lies in a compact set. We can therefore choose m to lie in a
fixed compact subset of M°(A). But then a-n-aNo(A)n intersects a fixed
compact subset of N(A). It is easy to deduce that the projection of any
such n onto No(A)\N(A) lies in a fixed compact set. (This follows, for
example, from the proof of the integration formula

fN(A)\N(A) N (A) (a n2ann21)dndn2
= N(A) (u)du, 4 E C(N(A)).

See Lemma 2.2 of [1] and Lemma 3.1.1 of [6]. Equivalently, one can argue
as in the proof of Lemma 19 of [8].) We can therefore choose n to lie in a
fixed compact subset of N(A). Thus, our original element y is congruent
modulo Go(A) to a point in a compact subset of GO(A) which depends only
on A. Lemma 6.1 follows.



214 JAMES ARTHUR

Proof ofLemma 9.1. The set G(F)' is a union of classes o E (, each one
consisting of a single semisimple G°(F)-orbit. We shall prove Lemma 9.1
first for these classes. Suppose for a given o in G(F)' that ad(G°(A) )o
meets A. Then by Corollary A.2, there are elements y E o and x E Ga
such that x-yx belongs to A. Consequently y belongs to

{d-lgd:d E G, g e A).
This is a compact subset of G(A)' and contains only finitely many
elements in G(F)'. It follows that only finitely many classes o in G(F)'
have the property that ad(G°(A) )o meets A.
Now suppose that M is a Levi subset in Y and that P E 9(M). The

intersection of any class o with M(F)' is a (finite) union of M°(F)-orbits.
Applying what we have just proved to M, and using the fact that

GO(A) = P°(A)K,
we see that there are only finitely many classes o e 0 such that the set

(A.4) {X- lux:,t E o n M(F)', v E Np(F), x E G°(A)
meets A. However,

(o n M(F)')Np(F) = o n (M(F)'Np(F)).
(See the remark following Lemma 2.1 of [1], and also Lemma 3.1.1 of [7].)
Suppose that o n M(F)' is not empty. Then every G°(F)-orbit in o
intersects M(F)'Np(F). It follows that the original set ad(G°(A) )o is just
equal to (A.4). It meets A for only finitely many such o. Since any class
o E 0 intersects M(F)' for some M e Y, Lemma 9.1 follows.
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