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The characters of supercuspidal representations as
weighted orbital integrals
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Abstract. Weighted orbital integrals are the terms which occur on the geometric side of the
trace formula. We shall investigate these distributions on a p-adic group. We shall evaluate
the weighted orbital integral of a supercuspidal matrix coefficient as a multiple of the
corresponding character.
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1. Introduction

Let G be a reductive algebraic group over a non-Archimedean local field F of
characteristic 0. Suppose that r is a (smooth) supercuspidal representation of G(F) on
a complex vector space V. Let f(x) be a finite sum of matrix coefficients

(nr(x)-'v), xeG(F), veV, leV*.

Then f is a locally constant function on G(F) which is compactly supported modulo
the split component AG of the centre of G. If ,, is the character of n, set

t.(f)= f(X)©(x)O,(x)dx.
AG(F)\G(F)

We are going to study the weighted orbital integrals off.
Suppose that M is a Levi component of some parabolic subgroup of G which is

defined over F. The set Y(M) of all parabolic subgroups over F with Levi component
M is parametrized by the chambers in a real vector space aM. The weight factor for
orbital integrals is a certain function vM(x) on M(F)\G(F) which arises in the theory
of automorphic forms; it is defined as the volume of the convex hull in aM/aG of a
set of points indexed by Y(M). Suppose that y is a G-regular element in M(F) which
is M-elliptic over F. This means that the centralizer of y in M(F) is compact modulo
A^(F). The object of this paper is to prove the following result.

Theorem: The weighted orbital integral

M f(x- l'x)vM(x)dx
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equals

(- )dim(AM/AG)0o(f))'(y).
Observe that the second expression depends on a choice of invariant measure on

AG(F)\G(F); the first expression depends on choices of invariant measures on aM/aG
and AM(F)\G(F). There is a compatibility requirement between the implicit measure
on AM(F)/AG(F) and the measure on aM/aG.
The theorem is a p-adic version of a similar result for real groups ([1], Theorem 9.1 ).

It tells us that the character values of n on a non-compact torus can be recovered
as the weighted orbital integrals of a matrix coefficient of r. There is reason to believe
that the result is part of a larger theory. Kazhdan has suggested the possibility of
proving a local trace formula for G. The idea would be to try to compute the trace
of the left-right convolution operator of a pair of functions, acting on the discrete
spectrum of L2(G(F)). Our theorem could be regarded as a special case, in which one
of the two functions is the matrix coefficient f. A different special case of this (as yet
undiscovered) trace formula is provided by work of Waldspurger [6]. We hope to
return to the question on another occasion.
For G = SL(2), the theorem was first established by Kazhdan (unpublished). I am

indebted to him for enlightening conversations.

2. Positive orthogonal sets

Let us recall the precise definition of vM(x). It depends on a special maximal compact
subgroup K of G(F) which is in good position relative to M. (This means that the
vertex of K in the building of G lies in the apartment of a maximal split torus of M.)
For any parabolic subgroup Pe?(M), with Levi decomposition P = MNp, and any
point xeG(F), we can write

x = np(x)mpx)kpx), (1)

with np(x)eNp(F), mp(x)eM(F) and kp(x)eK. Set

Hp(x) = H(mp(x)),
where HM is the usual map from M(F) to the real vector space

am = Hom(X(M)F,R),

given by

exp((HM(m), >)= x(m)l, meM(F), XEX(M)F.
There is a canonical map from am onto aG, whose kernel we denote by aG. Since
X(M)F embeds into the character group X(AM) of AM, there is also a compatible
embedding of aG into aM, and therefore a canonical decomposition

aM = aMaG.
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The function vM(x) equals the volume of the convex hull of the projection of

{-Hp(x): Pes(M)}
onto aM/aG _ aM.

It is convenient to choose a suitable Euclidean metric II on aM, and to use this
to normalize the Haar measures on aM, aG and aM/aG. These measures then determine
Haar measures on AM(F), AG(F) and AM(F)/AG(F). Indeed,

<M = AM(F) K

is the maximal (open) compact subgroup of AM(F), and HM maps AM(F)/KM injectively
onto a lattice in aM. We take the Haar measure on AM(F) such that

vol(KM) = vol(aM/HM(AM(F))).
The cases of AG(F) and AM(F)/AG(F) are similar, and we have

vol(KM/KG) = vol(aM/HM(A (F)) + aG). (2)
The points {- Hp(x)} form a positive orthogonal set. In general, we say that a set

Y={ Y:Pep9(M)}
of points in aM is a positive orthogonal set for M if it has the following property.
For any pair P and P' of adjacent groups in 9'(M), whose chambers in aM share the
wall determined by a simple root a in Apn (- Ap,) of (P, AM), we have

Yp- Yp, = rOV,

for a non-negative number r. As usual, Ap is the set of simple roots of (P, AM), and
aC eaM is the "co-root" associated to a. Suppose that 4g has this property. Then the
volume in aM/aG of the convex hull of { Yp} can be expressed analytically as

lim e exp[(Yp)]0p()-1, ()

A-0 PE:(M)
where

op(,) = vol(aG /Z(Ap ))-' fn (av).
aEAp

(See [3], p. 36.) As in [4], we shall write d({/) for the smallest of the numbers

{a(Yp): caAp, Pe-(M)}.
Fix such a #, and let

Q = MQN, MQ =M,

be an element in the set 9F(M) of parabolic subgroups of G over F which contain M.
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Then

{YPnMQ = Yp: PE(M), P Q} (4)
is a positive orthogonal set for M, but relative to MQ instead of G. As above, aM is
the direct sum of the spaces amQ = aQ and aMQ = aQ. We shall write SQ(') for the
convex hull of (4) in aM, taken modulo aQ, and we shall let aQ(,() stand for the
characteristic function of SQ (3). The vectors (4) all project onto the same point YQ in
aQ. Moreover, if we fix the Levi component L = MQ instead of Q, the set

= { YQ: Qe(L)}
is a positive orthogonal set for L. For simplicity, we shall usually denote SN(YL) and
afL (,'L) by SL(3) and aL(,',) respectively.
The following geometric property is a restatement of Lemmas 3.1 and 3.2 of [4].

Lemma 1: There is a positive constant 6M with the following property. If / is any
positive orthogonal set for M and L = M is as above, and if

HM=H OHL, HMEaM, HLEaL,
is a point in aM such that

M11 < bmd(^),

then HM belongs to SM(Y) if and only ifHL belongs to SL(0L). I

Another example of a positive orthogonal set is provided by the Weyl orbit of a
point. Let Mo c M be a fixed Levi component of some minimal parabolic subgroup
over F, and let Wo be the Weyl group of (G, AMo). Our metric on aM is understood
to be the restriction of a Euclidean metric 11 '1 on aMo which is invariant under W0.
Choose an element Poe(Mo), and let Tp% be a point in aMo which lies in the chamber
associated to P0. The Weyl group W0 acts simply transitively on Y(Mo), and

-= { Tp = sTp: Po = sP', seWo} (5)
is a positive orthogonal set for Mo. By the discussion above (with (M, L) replaced by
(Mo,M)), we obtain a positive orthogonal set

"M= {Tp:P.ec(M)}
for M, and it is not hard to show that

d(-M) > d(-),
provided that M is not equal to G. We are of course free to vary the original point
Tp;. In future we shall want to choose Tp; so that the number d(S-) is large, and of
an order of magnitude comparable to the norm

1esall=
We shall actually work with a combination of the two examples. For a given
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xeG(F), set

x(x, ) = {Yp(x, ) = Tp - H,(x): Pe(M)}, (6)
where P denotes the parabolic subgroup opposite to P. Because it is a difference of
positive orthogonal sets, rather than a sum, 4(x, Y) need not be a positive orthogonal
set. However, if d(9-) is large with respect to x, the positivity of J~ dominates, and

I(x, Y) becomes a positive orthogonal set. We shall assume this in what follows.

3. The main geometric lemma

We shall now begin the proof of the theorem. Suppose that 9 is defined by (5). Let
u(x, S-) denote the characteristic function in AG(F)\G(F) of the set of points

x=k,hk2, kl,k2eK, heAG(F)\AMo(F),
such that the projection onto ao of HMo(h) lies in the convex hull SMo(g'). Since K
corresponds to a special vertex,

G(F) = KAo(F)K.
We can consequently force u(x, Y~) to be identically equal to 1 on any given compact
subset of AG(F)\G(F) simply by choosing 8T so that d(~f) is sufficiently large.
Our starting point for the study of the matrix coefficient f is a simple consequence

of results of Harish-Chandra.

Lemma 2: Suppose that f and y are as in the theorem. Then

©(00)(©Y) TF=f 'yx)xf(xx)ux )dx,
AG(F)\G(F)

whenever d({-) is sufficiently large.

Proof: If g is any function in Cf(G(F)), Theorem 9 of [5] tells us that

©O )n(f g) =fX ( f(x- yx)g(y)dy dx. (7)
AG(F)\G(F) G(F)

Assume that

g(y) = vol(K)-l g(kyk )dk,

where go is supported on a small neighbourhood fl of y. The right hand side of (7)
can then be written

vol(K)1 i f(x - sk ykx)go(y)dkdy)dx
JAG(F)\G(F)\ JG(F) ,K /

It is a straightforward consequence of [5, Lemma 13] that the integrand in x is
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supported on a compact subset of AG(F)\G(F) which depends only on f. Now let g,
approach the Dirac measure at y. The left hand side of (7) approaches

eX(f)eO(7),
while the right hand side converges to

vol(K)' TIF ff('x-k-'1kx)dk)dx.
4GF} GIF}j)X

This last integrand in x is compactly supported. We can therefore multiply it with
u(x, Y) without changing its value, as long as d(YJ) is sufficiently large. The expression
becomes

vol(K)-'T (f f(x- 'k lkx)dk)u(x Y)dx
JAiFi G{F) K

=vol(K)-1 f(x- k- 'kx)u(x, .-)Adkdx
JA46IF G(F) K

= {f) f(x- yx)u(x, Y)dx,
AG(F)\G4F)

since u(x, 9) is bi-invariant under K. This establishes the required formula. L

In view of the lemma, we may write

(D @X(f )-OfltG f(x yx)u(x, .-)dx
J AG(F).GF)

= X f1(x-lyx)( u(ax, f)da dx.
,4.(F)\G(f) AM(F)/AQ(F!

By assumption, the centralizer of y in G(F) is compact modulo AM(F). Therefore, the
last integral over x may be taken over a compact set of representatives of AM(F)\G(F)
in G(F).
Our task then is to evaluate the integral

IAM/olF
u(ax, .-)da.AMID/AGs)

The main step is to express the integral in terms of the set &(x, f-) given by (6).

Lemma 3: For any compact subset r ofG(F) and any 6 > 0, there is a positive constant
c(r,6) with the following property. If x belongs to r,a belongs to AM(F), and f is
such that

d(, )>l I I Hc(r, 6), (8)
then u(ax, ) equals I if and only ifHu(a) belongs to SM(&(X, r)).
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Proof: If Q is a group in E(M), we write TQ for the characteristic function of

{HeaM,:a(H) > 0, aAQ }.

It is known that

Z a7(H, )zQ(H- TQ)=1, (9)
QE4F(M)

for . as in (5), and any HeaM. This is a general property of positive orthogonal sets
which is easily deduced, for example, from Langlands' combinatorial lemma ([1],
Lemma 2.3),([2], Lemma 6.3). We shall actually apply the result with H = HM(a),
and S replaced by the set

-= {ETp: PoE (Mo)},
for a certain > 0. Having been given 6, we choose e so that 265-1 is smaller than
the numbers 6M and 6Mo provided by Lemma 1.

Fix the elements aeAM(F) and x E . The left hand side of (9) is a sum of characteristic
functions, so there is a unique group QeY(M) such that

a (HM(a), S)ZQ(HM(a) - eTQ) = 1.

Once Q is determined, we can write

ax = amo(x)no(x)kC(x)
= ad(amo(x))nQ(x) amQ(x)kQ(x).

Consider a root a of (Q, AQ). Since HM(a) is the sum of a vector in a', the positive
chamber of Q, with a convex linear combination of points

{sTp: Peg(M), Pc Q},
we have

oa(H(a)) > E inf ppQ} (Tp) > £d().
Having fixed e, we choose c(F, ) so that ec(r, 5) is large. Then ed(J-) will be large
whenever ~ satisfies (8), and ad(a) will act by contraction on nq(x). In particular, we
can force the point

ad(am-(x))ne-x)
to be close to 1, uniformly for x in F. We may therefore assume that the point lies
in the open compact subgroup K. Consequently, ax belongs to the double coset

Kam-(x)K.
The next step is to write

am-(x) = khk2, heAM(F), k, k2eK n MQ(F). (10)
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Then ax belongs to KhK. Observe also that

HQ(h) = HQ(a) + HQ(m(x)),
so that

HQ(h) = HQ(a) + H(x). (11)

We write

HM(a)= HQ(a)+ HQ(a), HQ(a)eaQ,
for the decomposition of HM(a) relative to the direct sum aM = aQ aQ. Similarly

HMo(h)= Ho(h) + HQ(h), HQO(h)eaQ0.
Then there is a constant c(F) such that

II HZo(h) II II HQ (a) + c(F),
for any xeF and aeAM(F), and for h defined by (10). This follows easily from the
standard properties of height functions on G(F). Now, we are assuming that

Ua(HQ(a), e-) = 1,

so that HQ(a) belongs to the convex set SO(e3). It follows that II HZ(a)II is bounded
by the norm of the projection of any of the vectors

{eTp: Pe (M), Pc Q}
onto at. Therefore,

|| HQ(a) I< || Tp ll||l.|| (12)
Choose c(r, 6) to be so large that Eb - c(r, 6) is greater than the constant c(r) above.
Then

I HQo(h) 1I < 2e5 - 'd() < 6Mod(S")
whenever .Y satisfies (8). Recall that the function

u(ax, -) = u(h, ~)

equals 1 if and only if HMo(h) belongs to SMo(-). It follows from Lemma 1 that u(ax, ')
equals 1 if and only if HQ(h) belongs to SMQ(G).
We are also assuming that

IQ(HQ(a) - eTQ) = Q(HM(a) - TQ) = 1.

In particular, HQ(a) lies in the positive chamber aQ. More precisely,

o(HQ(a)) > eo(TQ) > Ed(-),
for any root a AQ. We can make this number as large as we wish, for Y satisfying (8),
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simply by taking c(F, 6) large enough. Now HQ(a) is related to HQ(h) by equation (11).
Since HQ(x) remains bounded, we can assume that HQ(h) also lies in aQ. But according
to ([1] Lemma 3.2), the intersection of a' with SM (-) is the set

{HeaQ: m(H - TQ) < O,meAQ},
where AQ is the dual basis of A v. Thus, u(ax, Yr) equals 1 if and only if each of the
numbers

w(HQ(h) - TQ) = m(HQ(a) - YQ(x, )), meAQ,
is negative. We have now only to retrace our steps. Since HQ(a) lies in aQ, the last
condition is equivalent to the assertion that HQ(a) lies in SMQ((x, S)). Moreover, d(~F)
is large relative to x, so we can assume that

d(Y(x, }))3 2 d(F).
It follows from (12) that

H(a)|l< 11 TJ

66 ' d(S)

2£6 - ld(°(x, -))
<6Md(V(x, ")),

whenever ~ satisfies (8). Applying Lemma 1 again, we conclude that HQ(a) belongs
to SMQ(3/(X, I)) if and only if HM(a) belongs to SM(V(x, Y)). This is equivalent to the
original condition that u(ax, T) equals 1, so the proof of the lemma is complete. O
As an identity of characteristic functions, the lemma asserts that

u(ax, T) = aM(HM(a), °3(x, Y)), otAM(F)/AG(F),

for x and iT as stated. It follows that ®,(f)O,(y) equals

f x Yx)(f am(H^(a), .(x, i))da)dx.
AM(F)\G(F) J AM(F)/AG(F)

However, the integral

j{fl amUM(HM(a), 03(x,9i))da
AM(F)/AG(F)

is not equal to the volume of SM(ag(X, i)). For

{HM(a): aeAM(F)/AG(F)}
is a lattice in aM/aG; the integral is multiple of the number of lattice points in
SM(°(x, iT)). We must find a way to relate this to the volume.

It will actually be convenient to replace AM(F) by a subgroup. Suppose that A'
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is any subgroup of finite index in A.(F), which contains AG(F). Combining Lemmas
2 and 3 as above, we obtain

0,(f)o0,( = A f(x-lxyx)(M a(HM(a),1(x, -))da)dx, (13)
A \G(F) AM/AGrF)

a formula which holds whenever .F satisfies the conditions (8).

4. Counting lattice points

For each reduced root f of (G, AMo), we have the co-root fv. Any such fV defines
an element in the lattice

X*(Ao) = Hom(X(AM.), Z)

in a,,. Suppose that Pe.9(M) and that a is a root in Ap. For any given P(e.lMoO),
with Po c P, there is a unique root fl/App whose restriction to AM equals a; the
"co-root" c VeAp is, by definition, the projection of /3 onto am. The lattice Z(Ap)
in aG, generated by Ap , is the projection of Z(Apo) onto a'. Since Z(Ajo) is independent
of Po, Z(Ap) is independent of P. The lattice Z(Ap) need not be contained in

X*(A) = Hom (X(AM), Z).
However, it is easily seen to be a subgroup of

Hom(X(M)F, Z),
which is in turn a finite extension of X*(AM). Consequently, there is an integer k such
that kZ(AP) is a subgroup of X*(AM).

Recall that

exp((HM(m), X) = Ix(m)l,
for any XEX(M)F and meMf(F). It follows easily that HM(AM(F)) equals the lattice

log (qF)X,((Am)
in aM, where qF is the degree of the residue field of F. Define

AM,k = k log (qF)Z(A ) = log (q)Z(Ap)
for any Pe.6(M) and any positive integer k. For any such P, the vectors

A.k = klog(qF)a , eAep,
form a Z-basis of AM,k. We fix k so that AM.k is contained in H.AM(F)). Set

AMk,= {aeAM(F): HM(a)EAM.k }.

Then

Ak = AMAG(F)
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is a subgroup of finite index in AM(F); it is this group which we will employ in the
formula (13). The first step will be to calculate the integral

C ,k/AGF auM(HM(a), 9/(x, '))da. (14)
A'MkAG(F)

The kernel of HM in A'Mk equals the group
KM = AM(F)n K.

It follows easily that the quotient of A'M,k/A(F) by KM/KG is isomorphic under HM
to AM,k. We can therefore write (14) as the product of the volume of KM/KG with the
number of points in the intersection of AM,k with SM(Y(x, J)). Consequently, (14) may
be rewritten as

A-O (15)4
the sum being taken over ~ in AM,knSSM(Y(x,Y)). We shall calculate this by the
method in ([1], § 3).
Take A to be a point in a*Mc whose real part AReaM is regular. If PeM(M), we

shall write

A' = {aeAp: A(c) < 0O}.

Let O' denote the characteristic function of the set of HeaM such that wm(H) > 0 for
each aeA', and wu(H) < 0 for any a in the complement of A' in Ap. (Recall that

Ap = {m: aeAp}
is the basis of (aG)* which is dual to {(Oav: Ap}.) It follows easily from Langlands'
combinatorial lemma that

(-l1)I' PY (H- Yp(x, -)), HeaM,
Pey(M)

equals the characteristic function of SM(1(x,-)).(See Lemma 3.2 of [1] for the
special case that H lies in the complement of a finite set of hyperplanes. The general
case follows in the same way from [2], Lemma 6.3.) Therefore, the expression in the
brackets in (15) equals

Z (-l)'l^ ( Yp(x, ))exp (1)). (16)
CEAM,k

We shall write YA for the extreme point in

{rAM,k: ( - Y(x, ))= 1}. (17)
That is,

Y = Yp(x, ) + tClack - (1-tjU,k
-cAp -Ap- Ap
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for positive numbers t,, with 0 < t, < 1. The set (17) can then be written as

{Y+ Z. nk nZ.C k
,2eA. 2eAp -Ap

where each n, ranges over all positive integers. Expression (16) becomes a multiple
geometric series, which equals

( l)A'l^ p [ (-exp[((-exp )])- (-exp[-A(.k)])-.
2LAp x2Ap-Ap

If A belongs to the negative chamber - (a)+ ofP in at, we shall denote Y' simply by

Yp = Yp(x, )+ =(Tp-Hp(x))+
Then for general i,

Yp+=Yp+= 8sk

2EAp-AP

Expression (16) may therefore be written as

exp [A(Yp)] n (epp[.(#,)] - 1)-
leAp

We have shown that (14) equals

vol(KM/K^G)lim E (exp [A(Y +)] (exp[A(#.k)]-)-1).
A-0 Pe.(M) 2eAp

Let us rewrite this last formula for (14) as

vol (hM/KG) lim Y cp(la x, -)dp(A)Op(A)-,
^-O PE^.M)

where

Cp(A, x, -) = exp [.(Y )] = exp [A((Tp - Hp(x)) )], (18)

and

dp(A) = Op(A) n (exp [A(,,,k)]-)-1
2EAp

We leave the reader to check that

{ Y;PeJ(M)}
is a positive orthogonal set for M. This implies that {c(A, x, Y)} is a (G, M) family,
in the language of ([3],.§ 6). Moreover, {dp(A)} is also a (G, M) family. Applying ([3],
Lemma 6.3) to the product of (G, M) families in the expression above, we see that
(14) equals

VOI(KM/KG) CXx )Q,
QeZF\M\
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This follows the notation of ([3], §6). In particular,

ct(x, g) = lim ¢exp [A((Tp- Hp(x))+)]Op(A)-1.
A"0 {PeY(M):PcQ}

Next, we substitute the formula we have just established for (14) into the identity
(13). We see that O,(f)O,(y) equals

vol (KM/KG) E dQ f(x yx)cZ(x, 3')dx.
Qe.(M) A'tk\G{F)

For any group QcE(M) we have

cQ(x, S) = cQ(mO(x), J').
It follows easily from this fact that

f (x - 'yx)cQ (x, )dx
A' *,k\G(F)

is a multiple of

f { M(F)J
(k-' m-- ymnk)c(m, -)dm dk.

K NO(F) A'Jk\MQ(F)

Since f is a supercusp form, this expression vanishes for any Q-G. Consequently,

.©(f^),(y) = vol (KM/KG)d'f f(x yX)CM(X, F)dx.
A'Mk\G(F)

Now, by definition,

di = d6(O) = lim dp(A),
A-0O

for any Pe~(M). Therefore

di = vol(a /Z(Ap ))-1 lim H (A( V)(exp [A(,,k)] - 1)-)
)-*0 ac-Ap

= vol(am/Z(Ap))- n ((l( )I(,)1)
ae~p

= vol(aG/AM,k)- .

On the other hand, it follows from (2) that

VOI(KM/KG) = vol(aM/HM(AM(F)) + aG)
= vol(aM/AMk + aG) AM(F)/A'M,k-1
= vol(a /AM.k)IAM(F)/AMk -1,
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since the map
AM(F)/Ask {(HM(AM(F))+ aG)(AM. + aG)

is an isomorphism. Our formula becomes

o,(f),(y)= AM(F)/A ) f(x - yx)cM(x,.-)dx. (19)
A'M.k\GiF}

It is valid whenever .Y satisfies the conditions (8)

5. Completion of the proof

The formula (19) is close to that of the theorem. The only problem is that it depends
on (T-HH(x))+, rather than the vector Tp-HHp(x). To overcome this, we shall
average Yf over a certain compact domain.

Observe that AM.k is the projection onto a' of the lattice

AMo,k = klog (qF)Z(Ap), Poe.P(Mo),
in a'o. Choose an element PO in ?(Mo), and let -9 denote the compact fundamental
domain

{U= Uppa.k.O < Up< 1}

for AMo,k in a'o. (Recall that {iPk} is a basis of AMo.k consisting of positive multiples
of the co-roots Apo'). Suppose that Peg(M). Then there is an element seWO such
that Po = sPO contains P. For each 2eAp, let #(2) be the unique root in Ap such
that the restriction of s#(a) onto am equals x. Then '.ck is the projection of s5/,i.k)
onto aM. Given a vector ueS as above, set

UP = E UP(2)}2.k-
xeAp

This notation of course holds if Mo is used instead of M, and the set

-Y= {Tp. - Up:PoE-(Mo)
satisfies similar conditions to Y-. We may therefore replace CM(x, F) by cM(x, .^) on
the right hand side of (19).

Observe that

Cp(A, x, -) = exp [A((Tp - u - Hp(x)) )], PeP(M).
Define

cp(i..x,Y,. u) = exp[((Tp - up - Hx))+ + up)], PeY(M),
so that

Cp(AL X, .-) = Cp(A,x, u,) exp [-I(up)].
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This is a product of two (G, M) families. We can therefore apply Lemma 6.3 of [3]
to decompose cM(x,-,) into a sum over QcE(M). The second (G,M) family is
independent of x. By arguing as in § 4, we see that the contribution of any Q : G to
the integral

X ff(x- 17x)cM(x, -u)dx
A'Mk\G(F)

vanishes. We may therefore replace cM(x, "-) by cM(x, Ad, u), the term corresponding
to Q = G. Since this is valid for any us9, we may integrate over 9 if we choose. It
follows that (19) remains valid if the function cM(x, -) is replaced by

cM(x, -, u)du.

Now,

cM(x, -, u)du

= lim E (cp(, x, , u) Op(;)-)du
iA- Pe6(M)

= lim Z (i cp(,x,-,u)du)Op(i)- .

A-0 PeY(M) J $

Thus, we have only to compute

fE((Yp- up)++ up)du, (20)
where

E((Yp -up)+ + up) = exp [2((Yp -up)+ + up)],
with

Yp = Yp(x, -) = Tp- Hp(x).
This integral can be written as a multiple integral, over the cube

{ 7 ra:0< r < 1}

of the function

E(( YP- raak) + raa,k)
Recall that Y] is the unique point in AMk + aG of the form

YP+ Z taa,k
caeAp
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where 0 < t, < 1. Taking the integrals in r, separately over the intervals [0, 1 - t]
and [1 - t, 1], we can change variables; we obtain the integral over {r} of

E Yp + raIrl,k)

It follows that (20) equals

JE(Yp + up)du.

We have shown that

cM(x, ', u)du = IVM(x, ', u)du,
where

vp(X,x, 3', u) = exp [Tp + p
- Hp(x)]

= exp[- A(Hp(x))]exp [.(Tp + Up)].

This is again a product of (G, M) families. We apply Lemma 6.3 of [3] once more,
and decompose vM(X, .',u) into a sum over Qe.(M). Since the second (G,M) family
is independent of x, the contribution of any Q # G to the integral

Ts f(x - yx)F mi(x, S, u)dudx = f(x yx)vm(x, Y, u)dxdu
A, k\. ) J 2 A'M.k\G(F)

vanishes. The term corresponding to Q = G is just vi(x), where

vp(A,x) =exp[- (HpAx))], Pe6(M).
This is of course independent of u, so the integral over 9 disappears. The formula
(19) becomes

®,(f)®x(7) = AM(F)/Ak- f(x- yx))m(x)dx.
The (G, M)-family {up(2,x)} is slightly different from the original (G,M) family

vp(A,x)= exp [ -(H(x))], PeY(M).

Observe, however, that

V^(x)= lim C exp [- (HF(x))] Op()-1
A- 0 Peg(M)

= (-1)diAM/AG) E exp[- J(H(x))]0())-1
PE.(M)
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-= (-- 1)dimAM ) exp[-A(Hp(x))]Bp(A)-1
PemtM)

= ( )dim(AM/AG)M(X)
since

0p(J.) = (--l)dim('4M/A)08e ).
In other words, 07(f)O,(y) equals

IAM(F)/A r- (_- l)dim(AM/AG) If (x-) )vM(x)dx

Now, it is well known that the function Vm(x) is left invariant under M(F). In particular,
the integrand is left invariant under AM(F). We may therefore change the domain of
integration to AM(F)\G(F), if we multiply by the index IAM(F)/A'M,kI. We obtain the
identity of 0@(f)O@(y) with

)(-1dimlAM/JAGJ f(x-1yx)vM(x)dx.
AM(F)\GCF)

This completes the proof of the theorem. O
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