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Characters, Harmonic Analysis,
and an L2-Lefschetz Formula

JAMES ARTHUR

Suppose that U is a locally compact group. It is a fundamental problem to
classify the irreducible unitary representations of U. A second basic problem
is to decompose the Hilbert space of square integrable functions on U, or on
some homogeneous quotient of U, into irreducible U-invariant subspaces. The
underlying domain is often attached to a natural Riemannian manifold, and
the required decomposition becomes the spectral decomposition of the Laplace-
Beltrami operator. Weyl solved both problems in the case of a compact Lie
group. His method, which was simple and elegant, was based on the theory of
characters.

In this lecture, we shall briefly review Weyl's theory for compact groups. We
shall then discuss two newer areas that could claim Weyl's work as a progenitor:
the harmonic analysis on noncompact groups, and the analytic theory of auto-
morphic forms. The three areas together form a progression that is natural in
several senses; in particular, the underlying algebraic structures of each could be
characterized as that of an algebraic group over the field C, R, or Q. However,
the latter two areas are vast. Beyond a few general comments, we can attempt
nothing like a survey. We shall instead concentrate on a topic that has a par-
ticular connection to Weyl's character formula and its later generalizations. We
shall describe a Lefschetz formula for the Hecke operators on L2-cohomology.
The formula deals with objects which are highly singular, but turns out to be
quite simple nonetheless. It will probably play a role some day in relating the
arithmetic objects discussed in Langlands' lecture [8d] to the analytic theory of
automorphic forms.

1. Suppose that U is a compact simply connected Lie group. Any represen-
tation1 r E U is finite dimensional, and the character

©7(x) = trr(x), x E U,
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is an invariant function on the conjugacy classes of U. Let T be a maximal torus
in U. Weyl introduced the finite group2

W(U,T) = Normu(T)/Centu(T)
to characterize the conjugacy classes in U. Each conjugacy class of U intersects
T in a unique W(U, T)-orbit. The character Oe, and hence the representation r

itself, is uniquely determined by the W(U, T)-invariant function Oe(t), t E T.
Weyl [12a] constructed the characters {6 } from three simple facts. The first

was the observation that the restriction of r to T is a direct sum of irreducible
characters of T. Accordingly, e, (t) is a finite sum of characters of T. The second
fact is that the characters {Or } form an orthonormal basis of the space of square
integrable class functions on U. This is an immediate consequence of the Schur
orthogonality relations, established for compact groups by Peter and Weyl in [9].
The third fact is the Weyl integration formula

f(x) dx = W(U, T)- f [TAU(t)2 f(x-ltx) dxdt, f E C(U),
where dx and dt are the normalized Haar measures on U and T, and

Ap(t) = n (a(t)1/2 - a(t)- /2), t E T.
c>O

The product here is taken over the positive roots of (U,T) relative to some
ordering, and when multiplied out, the square roots all become well-defined
functions of T.

The function Au is skew-symmetric. That is,

u(st) = e()A(t), s W(U,T),
where e(s) is the sign of s, regarded as a permutation of the roots. Therefore,
the functions

AT(t)O,(t), r e 0,
are also skew-symmetric. It follows easily from the second and third facts
above that these functions form an orthonormal basis, relative to the measure
jW(U,T)I-ldt, of the space of square-integrable, skew-symmetric functions on
T. Now the group W(U, T) acts by duality on T. Let {X} be a set of represen-
tatives of those orbits which are regular (in the sense that X is fixed by only the
identity in W(U, T)). Then the functions

E(s)(sx)(t), t E T,
sEW(U,T)

also form an orthonormal basis of the space of skew-symmetric functions. Choose
tile representatives X so that their differentials all lie in the chamber defined by
the positive roots. It is then a straightforward consequence of the first fact above
that the two orthonormal bases are the same.

2By Normx(Y) and Centx(Y) we of course mean the normalizer and centralizer of Y
in X.
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This gives the classification of U. There is a bijectionr t-* X, with the property
that

(1.1) e,(t) = AU (t)-1 E (s)(sX)(t),
SEW(U,T)

for any point t in

Treg = {t E T: AU(t) 0}.
This identity is the famous Weyl character formula. It uniquely determines the
character ,e and the correspondence r - X. By taking the limit as t approaches
1, Weyl obtained the simple formula

(1.2) deg(T)= n (dx,a)

for the degree of r. Here, X1 E T corresponds to the trivial representation of U,
dX is the differential of X, and (., .) is a W(U, T)-invariant bilinear form on the
dual of the Lie algebra of T. The Peter-Weyl theorem asserts that r occurs in
L2(U) with multiplicity equal to the degree of r. Therefore, Weyl's classification
of U also provides a decomposition of L2(U) into irreducible representations.
(See pp. 377-385 of [12b] for a clear elucidation of a special case, and also the
survey [2b], in addition to the original papers [12a]).

EXAMPLE. Suppose that U = SU(n, R), the group of complex unitary ma-
trices of determinant 1. One can take

T= t= . : dett= 1.

The Weyl group W(U, T) then becomes the symmetric group S,. The positive
regular characters X can be identified with the set

{(A1 ...A,,) E Z: A1 > A2 > ... > An},
taken modulo the diagonal action of Z, and we have

e(s)(sx)(t) = sgn(s)eie'lA(1) ... eOe".(n), s E S,,
for the summands in the Weyl character formula. The degree of the correspond-
ing representation r is simply equal to

n (Ai - A

l<i<j<n

There is a unique bi-invariant Riemannian metric on U whose restriction to
T is given by the form (-,-). One checks that the Laplacian acts on the subspace
of L2(U) corresponding to r by the scalar

(dX, dX)- (dX,, dXj).
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This number represents an eigenvalue of the Laplacian, which occurs with mul-
tiplicity

r>O(dX1, a)
Weyl's theory thus gives something which is rather rare: an explicit description
of the spectrum of the Laplacian on a Riemannian manifold. This is typical
of the examples that Lie theory contributes to an increasingly large number of
mathematical areas. The examples invariably have an internal structure which
is both rich and computable.

2. The compact group U has a complexification. Conversely, a complex semi-
simple group has a compact real form, which is unique up to conjugation. Weyl
exploited this connection with his "unitary trick", in order to study the finite-
dimensional representations of a complex group. Now, a complex semisimple
group is actually algebraic. Therefore, the choice of the group U in §1 is tanta-
mount to a choice of a semisimple, simply connected algebraic group G over C.
In this paragraph, we shall assume that G is in fact defined over R. In other
words, we suppose that we are given an arbitrary real form G(R) of G(C). In
this context there is again a Riemannian manifold. It is the globally symmetric
space

XG = G(R)/KR,
in which KR is a maximal compact subgroup of G(R).
Any representation r E U extends to a finite-dimensional representation of

G(C). However, the restriction of this representation of G(R), which we shall
also denote by r, need not be unitary. The representations in the unitary dual
G(R) are generally infinite-dimensional. The problem of classifying G(R) is
much more difficult than in the compact case, and is still not completely solved.
(See the lecture [11] of Vogan). However, Harish-Chandra found enough of the
representations in G(R) to be able to describe explicitly the decomposition of
L2(G(R)) into irreducible representations.

One of Harish-Chandra's achievements was to establish a theory of characters
for infinite-dimensional representations. For a given or E G(R), it was first shown
that the operators

(f) = R f(x)i'(x) dx, f e C (G(R)),
(R)

were of trace class, and that the functional f -+ tr(7r(f)) was a distribution on
G(R). Harish-Chandra was able to prove that the distribution was actually a
function [5a]. That is, there exists a locally integrable function e9 on G(R)
such that

tr(7r(f))= I/R f(x)e (x) dx,
(R)

for any f E C°°(G(R)). The function e9 is invariant on the conjugacy classes
of G(R), and is called the character of 7r. It uniquely determines the equivalence
class of 7r.
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Harish-Chandra realized that at the heart of the problem of decomposing
L2(G(R)) lay a class G(R)dis¢ of representations in G(R) which behaved very
much like the irreducible representations of a compact group. They are called
the discrete series, because they are precisely the representations which occur
discretely in the decomposition of L2(G(R)). Harish-Chandra [5b] classified the
discrete series. He showed that discrete series exist if and only if G(R) has a
Cartan subgroup Ao(R) which is compact. Assume that such a group exists. As
in §1, we can define the real Weyl group

WR(G, Ao) = NormG(R)(Ao)/CentG(R) (Ao),
and the function

AG (t) = H (ac(t)1/2 - a(t)-1/2) t E Ao(R).
a>0

Then there is a bijection 7r {X} between G(R)dis, and the WR(G, Ao)-orbits
of regular elements in Ao(R) such that

e'(t) = ±AGo(t)1 E E(8)(SX)(t), t E Ao(R)reg.
SEWR (G,Ao)

This looks very much like the classification of representations of U. However,
there are two important differences.

The real Weyl group is in general a proper subgroup of the complex Weyl
group

W(G,Ao) = Normc(Ao)/CentG(Ao).
Replacing the compact real form U with a conjugate, if necessary, we can as-
sume that Ao(R) coincides with the torus T. It is then easy to show that the
Weyl groups W(G, Ao) and W(U,T) are the same. Consequently, every regular
W(U,T)-orbit in T = Ao(R) contains several WR(G, Ao)-orbits. It follows that
G(R)disc is a natural disjoint union of finite subsets G(R),, each of order

w(G)= IW(G, Ao)/WR(G, Ao),
which are parametrized by the representations r E U. The packets G(R), are
characterized by the property that on Treg = Ao(R)reg, the function

(2.1) (_1)(1/2)dim(XG) 5E (
rEG(R),

equals the character eO.
The second essential difference from the compact case is that G(R) generally

has several G(R)-conjugacy classes {A(R)} of Cartan subgroups. The function
e, must be evaluated on every Cartan subgroup if it is to be specified on all of
G(R). Harish-Chandra gave such formulas for the characters of discrete series.
As an example, we shall quote the general character formula for the sum (2.1).
Let A(R) be an arbitrary Cartan subgroup of G(R). Then the set R of real
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roots of (G(R),A(R)) is a root system, and it has a corresponding system Rv
of co-roots. We can choose an isomorphism

Ad(y): Ao(C) -' A(C), y EG(C),
over the complex numbers. This allows us to define a character

X'() = x(Ad(y)-l), ' E A(C),
on A(C), for every X in T = Ao(R). One then has the formula

(_1)(1/2)dim(Xc) E e )=AG((" )-1 E (s)'c(R/X),,R)'(sX)('y),
,rE ("R)r)sEW(G,Ao)

valid for any point -y E A(R)reg. Here, c(Rv(x),,RP ) is an integer which depends
only on the systems of positive roots in Rv and R defined by (sX)' and 'y re-
spectively. It can be computed from a simple inductive procedure, based on the
rank of R. (See [6].)

Thus, on the noncompact Cartan subgroups, the characters of discrete series
are slightly different than the characters of finite-dimensional representations of
G(R). They are in fact closer to finite-dimensional characters for Levi subgroups
of G. Let M be the centralizer in G of the R-split component of A. Then M is
a reductive subgroup of G, and the R-split component AM of the center of M
is the same as the original R-split component of A. We can write

AG(Y7) = AfGM(_)AM(_ l)(-IR-)n(-R+)I, E A(R),
where, if g and m denote the Lie algebras of G and M,

aG (-y) = det(1 -Ad()),/l1/2
It can be shown that the function

(2.2) 4 M(',r) = AG (7)-1l(-_1)(1/2)dim(XG) E e(), y E A(R)reg,
7rEG(R),

extends to a continuous function on A(R). This function is not smooth at
the singular hyperplanes defined by real roots. However, on each connected
component of

{-y E A(R): a(-) 1, a E R},
PM(,r) is an integral linear combination of finite-dimensional characters of

M(R).
EXAMPLE. Suppose that G = SU(p,q). The conjugacy classes of Cartan

subgroups are represented by groups

{Ar(R): 0< r <min(p, q)},
in which the split component AM, of Ar has dimension r. The corresponding
Levi subgroup Mr is the product of SU(p - r, q - r) with an abelian group. The



AN L2-LEFSCHETZ FORMULA 173

real root system R consists simply of r copies of {±a}, the root system of type
A1. The constant

c(R(sx),, Rr)
can be determined from the case of SL(2). It equals 2t in chambers where the
function

(x, ) -(X)
is bounded, and it vanishes otherwise.

The harmonic analysis of L2(G(R)) is based on the classification of the dis-
crete series. Harish-Chandra [5c] showed that the subrepresentation of L2 (G(R))
which decomposed continuously could be understood in terms of the discrete se-
ries on Levi subgroups of G. More precisely, L2(G(R)) is a direct integral of
irreducible representations obtained by inducing discrete series from parabolic
subgroups. As in §1, the harmonic analysis is closely related to the spectral
decomposition of a Laplacian. If (a, Vy) is a finite-dimensional unitary represen-
tation on KR, one can form the homogeneous vector bundle

G(R) XKR Va
over the Riemannian symmetric space XG. The Laplacian on XG then gives
an operator on the space of square-integrable sections. A knowledge of the
spectral decomposition of this space of sections, for arbitrary a, is equivalent
to the knowledge of the decomposition of L2(G(R)). Harish-Chandra's theory
therefore provides another example of an explicit description of the spectrum of
a Laplacian, this time for a noncompact Riemannian manifold.

3. Now suppose that F is a discrete subgroup of G(R). We assume that r
is a congruence subgroup of an arithmetic group. The associated problem in
harmonic analysis is to decompose the right regular representation of R of G(R)
on L2(F\G(R)). The theory has some similarities with that of L2(G(R)). Write

R = Rdisc Rconti
where Rdisc is a direct sum of irreducible representations, and Rcont decomposes
continuously. Then the decomposition of Rcont can be described in terms of the
decomposition of the analogues of Rdisc for Levi subgroups of G. This description
is part of the theory of Eisenstein series, initiated by Selberg [10], and established
for general groups by Langlands [8c].

The remaining problem, then, is to decompose Rdisc. This is much harder
than the corresponding problem for L2(G(R)). In fact, one does not really expect
ever to obtain a complete description of the decomposition of Rdisc. Rather, one
wants to establish relations or "reciprocity laws" between the decompositions of
the representations Rdisc for different groups. Such relations are summarized
in Langlands' functoriality conjecture, and are very deep. (See [8a, 2a, la].)
The best hope for studying functoriality seems to be through the trace formula.
The trace formula is a nonabelian analogue of the Poisson summation formula,
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which relates the study of Rdisc to the harmonic analysis on G(R). It provides
a reasonably explicit expression for the trace of the operator

Rdisc() = (R) f(x)Rdim(x) dx,
G(R)

for a suitable function f on G(R). (Actually, Rdisc(f) is not known to be of
trace class in general, so one must group the terms in a certain way to insure
convergence.) The trace formula was introduced by Selberg [10] in the case of
compact quotient and for some groups of rank one. For general rank, we refer
the reader to the surveys [lb] and [Id]. We shall not try to summarize the trace
formula here, or to discuss the limited applications to functoriality that it has
so far yielded. We shall instead discuss an application of the trace formula to

L2-cohomology. This is appropriate in the present symposium, for in the end
there is a surprising connection with the character formulas that began with
Weyl.

Assume that r has no elements of finite order. Then

Xr = r\G(R)/KR = r\XG
is a locally symmetric Riemannian manifold. Choose an irreducible representa-
tion r of G(C) on a finite-dimensional Hilbert space Va. Restricting r to the
subgroup r of G(C), we define a locally constant sheaf

7r = V xr XG
on Xr. Let A(2) (Xr, 7;) be the space of smooth q-forms w on Xr with values
in h, such that w and dw are both square integrable. Then A2) (Xr, h) is a
differential graded algebra. Its cohomology

H2) (Xr,),) = H)(Xr, r)
q

is the L2-cohomology of Xr (with coefficients in r). Assume that G(R) has a
compact Cartan subgroup Ao(R). Then Borel and Casselman [3] have shown
that the groups H() are finite-dimensional. We would like to compute the L2-
Euler characteristic

(-l)q dim(Hq2) (Xr, F,)).
q

More generally, we shall consider the L2-Lefschetz numbers of Hecke operators.
Hecke operators are best discussed in terms of adeles. As partial motivation

for the introduction of adele groups, consider the question of how one obtains
congruence subgroups r. The main step is to choose a Q-structure for G(R). In
other words, assume that the algebraic group G is defined over Q. Assume also
that G(R) has no compact simple factors. Let

A = R x Ao = R xQ2 x Q3 ...

be the ring of adeles of Q. Then G(A) is a locally compact group, which contains
G(Q) as a discrete subgroup. Suppose that Ko is an open compact subgroup of
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the group G(Ao) of points over the finite adeles. Since G is simply connected,
the strong approximation theorem asserts that

G(A) = G(Q) G(R)Ko.
It follows immediately that there are homeomorphisms
(3.1) r\G(R) -_G(Q)\G(A)/Ko
and

(3.2) Xr = r\G(R)/KR Z G(Q)\G(A)/KRKo,
where

r = G(Q)Ko n G(R),
a congruence subgroup. Every congruence subgroup is obtained in this way. In
other words, given the Q-structure on G(R), a choice of F amounts to a choice of
an open compact subgroup Ko of G(Ao). Suppose that h belongs to the Hecke
algebra )1Ko of compactly supported functions on G(Ao) which are bi-invariant
under Ko. If q is any form in Aq(Xr, ), we define'IW13<lrLIY LVIIII 111 (1(2) (XrI 7, I

h== I() h(g)(g*)dg,
(Ao)

where
(g*q)(x) = q(xg),

for any point x in
X G(Q)\G(A)/KRKo.

Then hoq is also a form in A(2) (Xr, 7). We obtain an operator
H 72)(h, Z): H e2)(Xr, Z) * He2) (Xr, ).

The problem is to compute the Lefschetz number

Cr(h)= (-1)tr(H q) (h, Y)).
q

Of course, if we set h equal to 1Ko, the characteristic function of Ko divided by
the volume of Ko, we obtain the L2-Euler characteristic.

The homeomorphism (3.1) is compatible with right translation by G(R). It
follows that the representations R and Rdisc of G(R) extend to representations
of G(R) x )4Ko. It turns out that one can find a function fr E Cc(G(R)) such
that

£r(h) = tr(Rdisc(fr x h)).
One can then evaluate the right-hand side by the trace formula. The result is a
rather simple formula for L,(h). Foregoing the details, which appear in [lc], we
shall be content to state the final answer.
We must first describe the main ingredients of the formula. Suppose that M

is a Levi component of a parabolic subgroup of G which is defined over Q. If M
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contains a Cartan subgroup A(R) which is compact modulo AM(R)°, we have
the function

4M(Y, T), E A(R)reg,
defined by (2.2) in terms of characters of discrete series. Let us extend this to
an M(R)-invariant function on M(R) which vanishes unless -y is conjugate to an
element in A(R). IfM does not contain such a Cartan subgroup, we simply set
'IM(7, r) = 0. This function represents the contribution from r. Now, suppose
that y belongs to M(Q). Let MA denote the centralizer of - in M. We assume
that 'M(y, r) does not vanish, so in particular, - is semisimple. The contribution
from h E )Ko will be of the form

hM((7) = f M h(k-lm-l'mnk)dmdndk,
Komax Np(Ao) -M (Ao)\M(Ao)

where P = MNp is a parabolic subgroup over Q with Levi component M, and
Ko,max is a suitable maximal compact subgroup of G(Ao). This is essentially
an invariant orbital integral of h, and is easily seen to be independent of P.
The third ingredient in the formula will be a constant x(M.), which is closely
related to the (classical) Euler characteristic of the symmetric space of Mr. Let
M, be any reductive group over Q which is an inner twist of M, and such that
M1(R)/AM(R)° is compact. Then

X(Mv) = (_1)(1/2) dim(XM, )vol(Mv(Q)\My(Ao))w(M~),
provided that G has no factors of type E8. This relies on a theorem of Kottwitz
[7], which requires the Hasse principle. Otherwise, x(MI) must be given by a
slightly more complicated formula.
We can now state the L2-Lefschetz formula. It is

(3.3) £ (h) = _(-l)dim(AM) IW(G, AM)I-1 E X(M(y)M(y, r)hM(S),
M -y(M(Q))

where h is any element in the Hecke algebra 1Ko and

W(G, AM) = NormG (AM)/CentG(AM).
The outer sum is over the conjugacy classes of Levi subgroups M in G, while the
inner sum is over the conjugacy classes of elements - in M(Q). Since 'M(-, 7)
vanishes unless - is R-elliptic in M, we can restrict the inner sum to such
elements. It can actually be taken over a finite set, which depends only on the
support of h. We therefore have a finite closed formula for the Lefschetz number
C (h).

4. We shall conclude with a few general, and perhaps obvious, remarks. Sup-
pose that the symmetric space Xr has complex Hermitian structure. Then one
has the Baily-Borel compactification Xr of Xr, which is a complex projective
algebraic variety with singularities. The Goresky-Macpherson intersection ho-
mology is a theory for singular spaces which satisfies Poincare duality. Zucker's
conjecture asserts that the L2-cohomology ofXr is isomorphic to the intersection
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homology of Xr. It can be regarded as an analogue of the de Rham theorem
for the noncompact space Xr. The L2-cohomology is of course the analytic
ingredient, and the intersection homology represents the geometric ingredient.

Zucker's conjecture opens the possibility of interpreting (3.3) as a fixed point
formula. The geometric interpretation of the Hecke operators is easy to describe.
For

r = G(Q)Ko n G(R),
as above, there is a bijection

r\G(Q)/r ') Ko\G(Ao)/Ko
between double coset spaces. Suppose that h E NKo is given by the characteristic
function of a coset

rrg, g EG(Q).
Let r' be any subgroup of finite index in r n grg-'. Then the map
(4.1) F'x - (rx,rg-x)
is an embedding of Xr, into (Xr x Xr). The resulting correspondence gives
the Hecke operator on cohomology. Goresky and Macpherson [4] have proved
a general Lefschetz fixed point theorem for intersection homology. One could
apply it to the correspondence (4.1) and try to duplicate the formula (3.3).
However, the correspondence (4.1) does not intersect the diagonal in a nice way.
Moreover, the singularities of Xr are quite bad. It therefore seems remarkable
that the formula (3.3) is as simple as it is. It is another instance of a general
theory which works out nicely in the examples arising from Lie theory.

What one would really like is an interpretation of (3.3) as a fixed point formula
in characteristic p, as was done in [8b] for G = GL(2). Our condition that G
be simply connected was purely for simplicity. If we allow G to be an arbitrary
reductive group over Q, some of the spaces

XKO = G(Q)\G(A)/KRKo
will be associated to Shimura varieties, as in [8d]. They will admit natural
definitions over number fields, which are compatible with the action of the Hecke
operators. A similar assertion should also apply to the compactifications XKo.
One could then take the reduction modulo a good prime, and consider the action
of the Frobenius. The intersection homology has an I-adic analogue. What is
wanted is a formula for the Lefschetz number of the composition of a power of
the Frobenius with an arbitrary Hecke correspondence at the invertible primes.
The resulting formula could then be compared to (3.3), for suitably chosen h.
Of course, one would need to know the structure of the points modp, discussed
in [8d], and more elaborate information on the points at infinity. Along the way,
one would have to be able to explain the geometric significance of the discrete
series characters I'M('Y,). Such things are far from known, at least to me. I
mention them only to emphasize that the formula (3.3) is just a piece of a larger
puzzle.



178 JAMES ARTHUR

The ultimate goal is of course to prove reciprocity laws between the arith-
metic information conveyed by 1-adic representations of Galois groups, and the
analytic information wrapped up in the Hecke operators on L2-cohomology. A
comparison of the two Lefschetz formulas would lead to generalizations of the
results in [8b] for GL(2). However, as the analytic representative, the formula
(3.3) is still somewhat deficient. To get an idea of what more is needed, consider
the case that the highest weight of r is regular. Then one can show that the
L2-cohomology of XK, is concentrated in the middle dimension. Moreover, the
cohomology has a Hodge decomposition

Hi2) (XKo, 7)=) HP'q (XKO,7).
p+q=(1/2) dim(Xc)

Since the Hecke operators commute with the Hodge group S(R) - C*, there is
also a decomposition

H2) (h, h) = e H q(h,( ),
P,q

for each h E )Ko. What is required for the comparison is a formula for each
number

(4.2) tr(HP~ (h, 7,)),
rather than just the sum of traces provided by (3.3). However, this will have
to wait until the trace formula has been stabilized. Then one would be able to
write (4.2) as a linear combination of Lefschetz numbers attached to endoscopic
groups of G. These could then be evaluated by (3.3).
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