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Introduction

The general theory of automorphic forms is in some ways still young. It
is expected eventually to play a fundamental unifying role in a wide array
of arithmetic questions. Much of this can be summarized as Langlands’
functoriality principle. For two reductive groups G and G’ over a number
field F, and a map LG’ — LG between their L-groups, there should be
an associated correspondence between their automorphic representations.
The functoriality principle is very deep, and will not be resolved for a long
time.

There is an important special case of functoriality which seems to be more
accessible. It is, roughly speaking, the case that LG’ is the group of fixed
points of an automorphism of LG. In order that it be uniquely determined
by its L-group, assume that G’ is quasi-split. Then G’ is called a (twisted)
endoscopic group for G. Endoscopic groups were introduced by Langlands
and Shelstad to deal with problems that arose originally in connection with
Shimura varieties. Besides being a substantial case of the general question,
a proper understanding of functoriality for endoscopic groups would be
significant in its own right. It would impose an internal structure on the
automorphic representations of G, namely a partition into “L-packets”,
which would be a prerequisite to understanding the nature of the general
functoriality correspondence. However, the problem of functoriality for
endoscopic groups appears accessible only in comparison with the general
case. There are still a number of serious difficulties to be overcome.

When the endoscopic group G’ equals GL(2), Jacquet and Langlands
[25], and Langlands [30(e)], solved the problem by using the trace formula
for GL(2). In general, it will be necessary to deal simultaneously with
a number of endoscopic groups G’, namely the ones associated to those
automorphisms of £G® which differ by an inner automorphism. One would
hope to compare a (twisted) trace formula for G with some combination of
trace formulas for the relevant groups G’. There now exists a (twisted) trace
formula for general groups. The last few years have also seen progress on
other questions, motivated by a comparison of trace formulas. The purpose
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of this book is to test these methods on the simplest case of general rank.
We shall assume that G’ equals the general linear group GL(n). A special
feature of this case is that there is essentially only one endoscopic group to
be considered.

There are two basic examples. In the first case, G is the multiplicative
group of a central simple algebra. Then G’ is the endoscopic group associ-
ated to the trivial automorphism of LG® = GL(n, C). This is the problem
of inner twistings of GL(n). In the second case, G is attached to the gen-
eral linear group of a cyclic extension E of degree £ over F. In order to
have uniform notation, it will be convenient to write G° = Rg;r(GL(n))
for the underlying group in this case, while reserving the symbol G for the
component G° % 6 in a semidirect product. The trace formula attached to
G is then just the twisted trace formula of G?, relative to the automorphism
6 associated to a generator of Gal(E/F). In this second case, the identity
component of the L-group of G° is isomorphic to £ copies of GL(n,C),
and G' comes from the diagonal image of GL(n,C), the fixed point set of
the permutation automorphism. This is the problem of cyclic base change
for GL(n). In both cases we shall compare the trace formula of G with
that of G’. For each term in the trace formula of G, we shall construct
a companion term from the trace formula of G’. One of our main results
(Theorems A and B of Chapter 2) is that these two sets of terms are equal.
This means, more or less, that there is a term by term identification of the
trace formulas of G and G'.

A key constituent in the trace formula of G comes from the right convo-
lution of a function f € C2°(G(A)) on the subspace of L%(G°(F)\G°(A)')
which decomposes discretely. However, this is only one of several such col-
lections of terms, which are parametrized by Levi components M in G.
Together, they form the “discrete part” of the trace formula
1)

Idisc,t (f) = Igsc,t(f) =

SUWHIIWSI D ldet(s — 1)ag [ tr(M{(s,0)pp,(0, £)),
M

‘EW(GM)"‘

in which pp; is a representation induced from the discrete spectrum of M,
and M(s,0) is an intertwining operator. (See §2.9 for a fuller description
of the notation, and, in particular, the role of the real number ¢.) Theorem
B of Chapter 2 implies an identity between the discrete parts of the trace
formulas of G and G'. We shall describe this more precisely.
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Let S be a finite set of valuations of F, which contains all the Archi-
medean and ramified places. For each v € S, let f,, be a fixed function in
C®(G(F,)). We then define a variable function

f=Hfu

in C°(G(A)) by choosing functions {f, : v ¢ S} which are spherical (i.e.
bi-invariant under the maximal compact subgroup of G°(F,)). For each
valuation v not in S, the Satake transform provides a canonical map f, —
f! from the spherical functions on G(F,) to the spherical functions on
G'(Fy). Our results imply that there are fixed functions f, € C°(G'(Fy))
for the valuations v in S, with the property that if

F=1I%
then

(2) 1§ () = ISaca(f").

Given the explicit nature (1) of the distribution I§, ,, and the fact that
the spherical functions {f, : v ¢ S} may be chosen at will, we can see
that the identity (2) will impose a strong relation between the automorphic
representations of G and G'. In particular, we shall use it to establish global
base change for GL(n).

Chapter 1 is devoted to the correspondence f, — f,. We shall also
establish a dual correspondence between the tempered representations of
G(F,) and G'(F,). For central simple algebras, the local correspondences
have been established by Deligne, Kazhdan and Vignéras [15]. We can
therefore confine ourselves to the case of base change. The correspondence
is defined by comparing orbital integrals. For a given f,, we shall show
that there exists a function f, € C°(G'(F,)) whose orbital integrals match
those of f, under the image of the norm map from G(F,) to G'(F,). At
the p-adic places we shall do this in §1.3 by an argument of descent, which
reduces the problem to the known case of a central simple algebra.

The main new aspect of Chapter 1 is the proof in §1.4 that the matching of
orbital integrals is compatible with the canonical map of spherical functions.
The proof is in two steps. We first define a space of “regular spherical
functions”; if one represents a spherical function as a finite Laurent series,
they are defined by the condition that certain singular exponents do not
occur. For these regular functions, the required identities of orbital integrals
can be proved inductively by simple representation-theoretic arguments.
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An argument of density using the version of the trace formula due to Deligne
and Kazhdan then shows that the identities hold for all spherical functions.
This argument relies in an essential way on a result of Kottwitz, which
proves the identities of orbital integrals for units in the Hecke algebra.
Once the comparison theory of spherical functions has been established, it
will be easy to obtain the local correspondence of tempered representations
(§1.5). It takes the familiar form of a lifting from the representations of
G'(F,) to the representations of G°(F,) that are fixed by §. We shall also
prove identities between local L-functions and e-factors related by lifting
(§1.6). For the Archimedean places, the local lifting of representations is
already known ([32], [11(a)]). We shall establish the matching of orbital
integrals, as well as a Paley-Wiener theorem, in §1.7.
In Chapter 2 we shall compare two trace formulas. The trace formula

WS Y aMSmIn(r, f)

M YEM(F))m,s

- WM WG—l M I
;;l M)W /H(M)a (M) Ina (. )

)

for G will be matched with a formula

ZIW&”llel-‘ Yo aMES NI, S) =

YE(M(F))m,s

5w W / (e D e

v

(3)°

obtained by pulling back the trace formula from G’ to G. Theorem A
establishes an identification of the geometric terms on the left-hand sides of
the two formulas, while Theorem B gives parallel identities for the spectral
terms on the right. (It is the identity of global spectral terms a®¢(7) and
a®(r) which gives the equation (2), and leads to the global correspondence
of automorphic represntations.) The two theorems will be proved together
by means of an induction argument. We shall assume that all the identities
hold for groups of strictly lower dimension. This hypothesis will actually
be needed in §2.12 to construct the right-hand side of (3)¢. It will also
give us considerable scope for various descent arguments. These arguments
lead to the identity of a™¢(y) and a™ () in most cases (§2.5), of a™ ()
and aM(7) in most cases (§2.9), and of IM(x, f) and IM(x, f) in all
cases (§2.10). They also provide partial information relating I™<(y, f)
and I™ (v, f) (§2.5, §2.6, §2.7). However, some intractible terms remain in
the end, and these must be handled by different methods. In §2.13 and
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§2.14, we shall show that for suitable f,

v =150, ) - In(v.f), 7€ M(Fs),

is the orbital integral in 7 of a function on M(Fs). This allows us to apply
the trace formula for M. We obtain a relation between the spectral sides
of (3), of (3)%, and of the trace formula for M. By comparing the resulting
distributions at both the Archimedean and discrete places, we are then able
to deduce vanishing properties for the individual terms (§2.15, §2.16). We
shall finally complete the induction argument, and the proofs of the two
theorems, in §2.17.

As an application of the identity (2), we shall establish base change for
GL(n) in Chapter 3. For GL(2), the complete spectral decomposition of
the space of automorphic forms is known, and this makes it possible to
compare very explicitly the discrete spectra of GL(2, Ar) and GL(2,AEg).
Such explicit information is not available for n > 3. If it were, and in
particular, if there was a strong enough version of multiplicity one, we
would have no trouble deducing all the results on base change directly from
the formula (2). We must instead restrict the category of automorphic
representations considered to those that are “induced from cuspidal’, a
natural notion coming from the theory of Eisenstein series. To prove that
the lifting exists, and preserves this special kind of automorphic forms, we
use (2) in combination with the very precise results obtained by Jacquet
and Shalika about the analytic behavior of L-functions associated to pairs
of automorphic representations.

Assume that E/F is a cyclic extension of number fields, of prime degree
£, with Galois group

{1,0,0%,...,0" ).

Given the local lifting, we may define the global lifting as follows. Let
7 = @ m, be an automorphic representation of GL(n, A r), a tensor product

v
over all places v of F; let I = @II,, be an automorphic representation of

GL(n,AEg), w denoting a plac!g of E. We say that II is a (strong) base
change lift of  if, for any w|v, II,, lifts 7,. Our main result is Theorem
3.5.2, and applies to representations induced from cuspidal. Let =, II stand
for such representations of GL(n, Ar), GL(n,Ag). We prove that

(i) If II is o-stable, — i.e., II is equivalent to Il o & — it is a base change
lift of finitely many .

(ii) Conversely, given =, there is a unique o-stable II lifting =.
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In fact, our results are more explicit. In particular, assume that II is a
cuspidal representation of GL(n,Ag). We show that

(ii1) If I = M, there are exactly £ representations = lifted by II. They
are all twists of one of them by powers of the class field character associated
to E/F.

(iv) Assume IT % II°. Then the data (II,II°,.. .,H”t-l) define, through
the theory of Eisenstein series, an automorphic representation of
GL(n¢, Ag). This representation is o-stable and lifts exactly one cuspi-
dal representation 7 of GL(n{, Af).

Taken together, (iii) and (iv) imply, as shown in §3.6, the existence of
automorphic induction, a functor sending automorphic representations of
GL(n,AE) to those of GL(nf,Ar). In particular, this theorem contains,
for n = 1, Kazhdan’s result about the map which sends idéle class group
characters of E to cuspidal representations of GL(¢, Ar); this in turn gen-
eralized the version given by Labesse and Langlands of the classical con-
struction by Hecke, Maaf, Weil and Jacquet-Langlands of the forms on
GL(2) associated to characters of a quadratic extension.

In §3.7 we apply these theorems to problems related to representations
of Galois groups. In particular, we prove the existence of the cuspidal
automorphic representation associated to an irreducible representation of
a nilpotent Galois group. However, Artin’s conjecture is already known
for nilpotent groups. Indeed, cyclic or solvable base change alone does
not give any new cases of the Artin conjecture. (See §3.7.) Recall that
Langlands’ application of base change to the Artin conjecture for GL(2)
already required another tool, either the lifting from GL(2) to GL(3), or
the Deligne-Serre characterization of holomorphic forms of weight 1.

Finally, we observe that our results lead to an interesting property of the
representations obtained by (solvable) automorphic induction from Abelian
characters. The principle of functoriality implies a multiplicative structure
on the set of automorphic representations. If r, and ,, are automorphic
representations of GL(n, Ar) and GL(m, AF), there should exist an asso-
ciated automorphic representation n, & m,, of GL(nm, Af). If m, comes
from an Abelian character by solvable induction, we can show that this
product exists for arbitrary m,,.

The base change problem has an interesting history. For GL(2) and
quadratic extensions, it was first studied by Doi and Naganuma in connec-
tion with modular curves ([17(a)], [17(b)]). They relied on Weil’s converse
to Hecke theory, as did Jacquet [24(a)] in further work. Saito [34] intro-
duced the use of a twisted form of the trace formula, and treated certain
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examples of Hilbert modular forms in cyclic extensions of prime degree of
totally real fields. His method was cast by Shintani [39] and Langlands
[30(e)] into the mold of automorphic forms on adéle groups. They proved
the existence of a lifting from automorphic forms on GL(2,AF) to auto-
morphic forms on GL(2, Ag), E/F again being a cyclic extension of prime
degree. Shintani also introduced a local notion of lifting: this makes it
possible to obtain analogous results for an extension E/F of p-adic fields.
The case of GL(3) was later considered by Flicker [19]. We refer the reader
to the beginning of Langlands’ book [30(e), §1-3] for a more complete intro-
duction of the base change problem and its history, as well as the famous
applications to Artin’s conjecture in dimension 2.

We would like to thank Robert Langlands for his encouragement while
this work was in progress. We are especially indebted to him for suggesting
that we exploit the cancellation of singularities, a technique that comes in
at a crucial stage in §2.14. We would also like to thank Hervé Jacquet and
Robert Kottwitz for useful discussions. This work has been supported in
part by NSERC Grant A3483 (J. A.) and a Sloan Fellowship, as well as
NSF Grant DMS-8600003 (L. C.).

NOTATIONAL CONVENTIONS: The notation of the introduction will prevail
in Chapter 2. In Chapters 1 and 3, which are concerned mainly with base
change, we will use a more classical notation. Here we will write G or G,
for the general linear group GL(n). ,

If F is a nonArchimedean local field, O will denote the ring of integers.

We shall index our results by both chapter and paragraph. However,
we shall omit the numbers of the chapters when referring to theorems,
formulas, paragraphs etc., of a current chapter.
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CHAPTER 1

Local Results

1. The norm map and the geometry of o-conjugacy

For this section E/F is a cyclic extension of order £ of fields of charac-
teristic 0; we denote by T the Galois group, by o a generator of . We do
not assume that £ is prime.

As we have agreed, G will stand for GL(n) throughout Chapters 1 and
3. Recall that g,h € G(E) are called o-conjugate if ¢ = 2~ hz? for an
z € G(E).

If € G(E), we will write Nz for the element zz° ---z°" " € G(E); it
is called the norm of z.

LEMMA 1.1:

(i) If z € G(E), Nz is conjugate in G(E) to an element y of G(F); y
is uniquely defined modulo conjugation in G(F).

(i) If Nz and Ny are conjugate in G(E), then x and y are o-conjugate.

Otherwise stated, the norm map is an injection from the set of
o-conjugacy classes in G(E) into the set of conjugacy classes in G(F). We
will write Nz for the conjugacy class in G(F') so obtained.

Proof. ([30(e)]). Part (i). Let p1(X)[p2(X)|- - - |p+(X) be the elementary di-
visors of the matrix Nz; thus p;(X) € E[X]. We have (Nz)° = z~1(Nz)z.
This shows that in fact pi(z) € F[X], so the conjugacy class of Nz is
defined over F.

For Part (ii), we will need the following construction. Let u = Nz. By (i)
we may assume that u € G(F). Let Gy be the centralizer of u, an F-group;
it is the set of invertible elements of g,, where g = M,, = Lie(GL(n)).

Let Gz,o(F) be the o-centralizer of z: it is the set of all ¢ € G(F) such
that g~lzg? = z; it is the set of F-points of a group over F, which we
denote by Gz ,. It is easy to check that G o(F) C Gu(E); moreover, the
F-structure on G, is defined by z — za’z~!. In other terms, Gz is

an inner form (in fact an E/F-form) of Gy, the cocycle being given by
co = Ad(z)oo.
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The same construction applies to the Lie algebra (which is also naturally
an associative matrix algebra): we define G, and G, in the same manner,
and Gy is an E/F-form of G; ,. Hilbert’s Theorem 90 (cf. [35, Exercise 2,
p. 160]) then gives

HY(Z,G:,(E)) = 0.
But then an easy cocycle computation gives (ii). il

We will say that ¢ € G(E) is o-semi-simple if the class Nz is semi-
simple. In that case, of course, Gy is a semi-simple algebra, isomorphic to

a product H M, (F;) where F;/F are field extensions; Gy is isomorphic to

[TGL(ns, F) seen as an F-group, and G; o, is an inner form of this group
which defines a product of central simple algebras.

Assume now that F is a global field. We will need to extend the definition
of the local norms to the places of F' which are not inert in E. This is easy
and we do not give details. Assume for example that v is a place of F' which
splitsin E. Then E®Q F, = F, ®-- - & F, (£ factors), ¥ acting by cyclic per-
mutations; we set N(g1,...9¢) = (91,---9¢)(92,---91) - - (92,91 - - ge—1) =
(9192---9¢,92---91,-..,9¢91 -- - ge—1). It is conjugate in G(E,) to an el-
ement of the form (h,h,...h) € G(F,). The general case is an obvious
composite of the split case and the inert case.

LEMMA 1.2: Assume F is a global field. Then, if u € G(F), u= Nz has
a solution in G(E) if and only if it has a solution in G(E,) for any place
v of F.

Proof. Only the “if” part need be proved. We will first treat the case of a
semi-simple u. We may write u as a diagonal matrix

(n \

U
U2

U2

Uk
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where u; generates a field extension F;/F of degree m;, embedded in
GL(m;, F). The centralizer g, is then (if uy # up # --- # uz) a prod-
uct of matrix algebras My, (F;) C Mg,m,(F'), where u; appears k; times. It
is easy to see that the problem actually takes place in [] Mg, m,(F); thus we

may assume that u has only one eigenvalue, say u; G‘Ff. We set k = ky,
m=m;.

Let us first assume that F; = F. The hypothesis is that for any place
v, u= Nz, z, € GL(k,E,). Taking determinants, we have detu =
N(detz,) € NE;. Thus u¥ € NE* since in F*, an element which is a local
norm everywhere is a global norm. We now use the following lemma:

LEMMA 1.2.1: (J.-J. Sansuc). Let k,£ be two integers and E/F an exten-
sion of local or global fields of characteristic 0, cyclic of degree £. Assume
z € F* is such that z* € Ng/rE*. Then there exists an étale algebra Fo/F
of degree k such that x € Ng,/r,Ej, where Ey is the cyclic étale algebra
E® Fy over Fy.

Proof. Assume first that F' is a p-adic field. Then any field extension Fy/F
of degree k has the requested property. Indeed, there is a commutative
diagram (Serre [35, p. 201])

F*/NgspE* = H(Z,E*) 2 H¥(S,E*) > Bt F = Q/Z

R

F3 /Ngo r Ey = HY(Z, Eg) — HX(Z, E}) < Br Fo = Q/Z
where Br denotes the Brauer group; whence a square

F*/NgjpE* = Z/tZ

F(;/NEO/FOES = Z/ez

which implies the result.

If now F = R, the only nontrivial case is when E/F = C/R and k is
even. It suffices to take Fy = C*/2,

Now assume F' is a number field. We may choose a finite set S of places
of F such that, if v ¢ S, z is a local norm in the extension (E ® F,)/F,.
For every finite place v € S, set n, = k; if v is infinite, set n, = 1 if k is
odd or if k is even and F, = C, and n, = 2 otherwise. We now quote the
following theorem (Artin-Tate [3, p. 105]):
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THEOREM 1.2.2: Assume F is a number field, S a finite set of places of F
and (ny)ves integers such that n, =1 or 2 (F, 2 R) and n, = 1(F, = C).
There ezists a cyclic extension Fo/F, of degree n = l.c.m.(n,) such that,
forv € S, the extension Fy,/F, is a field extension, cyclic of degree n,.

We apply the theorem, with the n, fixed before. By the p-adic and
Archimedean cases, we see that for v € S, z € Ng, ,/F, . (E,,) for any
place w of Fy above v. If v ¢ S, z is a local norm from £ ® F, and «
fortiori from Eq @ F,. Therefore z (considered as an element of Fy) is a
local norm everywhere and thus a global norm. This finishes the proof of
Lemma 1.2.1. i

We can now prove Lemma 1.2 for u scalar (F; = F). Since uf¥ € NE*,
Lemma 1.2.1 ensures the existence of a field Fo/F (--- in fact cyclic) of
degree k such that u; € Nggr,/F,(z) for z € (E ® F)*. We can embed
the extension Fy of F into My(F); then E ® Fp is embedded into Mi(E),
and this yields an element of Mi(E) whose norm equals u.

Now let us treat the general case of an element

U
u= (k copies),

Uy

where u; € F} embedded into GL(m, F') and u, generates F;. The central-
izer of u in My, (F) is then isomorphic to My(F;) as an F-algebra.

Assume u is a local norm at the place v of F: u = Ng, jr,z,, 2, €
GL(mk, E,), where E, = E® F,.Then, since u = u’:

Tou = z,u’ = zyz7 - -zgl_lzv = uz,.
Thus z, lies in M;(F; ® E,). If u is a local norm everywhere, we see that it
is a local norm in the F-algebra M(F;). Applying the case already proved
of the lemma to My (F;) and the extension F ® F;/F; (this may not be a
field but the extension to cyclic étale algebras is obvious), we see that there
is an £ € M(E ® Fy) such that Ng/rz = u.

This solves the problem in the semi-simple case.

We now treat the general case. Assume u € GL(n, F) is a local norm
everywhere. Let u = sn, s semi-simple, n unipotent, be its Jordan decom-
position.

Notice first that the norm map may be defined by considering the non-
connected group H over F defined by H = (Resg/r GL(n)) % X, where
T acts on Resg/r GL(n) by F-automorphisms via its action as a Galois
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group: in particular its action on GL(n,E) = (Resg/r GL(n))(F) is its
Galois action on GL(n, E). The norm map is just the ¢-th power in H(F);
more precisely,

(9,0)" = (Ng,1)

for ¢ € GL(n, E). The group H is linear, and the Jordan decomposition is
available in it.
Assume now that u is a local norm at the place v of F. We then have

(L1) (1) =(6,0) ¢€GL(n,E,).
Using Jordan decomposition in H(E,) we write:

(12) (gv 0’) = (31’ 0’)("1, 1) = (nl) 1)(811 6)

with n; € GL(n, E,) unipotent, s; € GL(n, E,) such that (s, ) is semi-
simple. Taking ¢-th powers in H, we see that this last condition is equivalent
to Ns; being semi-simple. On the “connected component” GL(n, E) of
H(E), equations (1.1) and (1.2) translate as

(1.3) s=Ns;, n=ni

(14) 8112‘1’ =Mn;8;.

Since n € GL(n, F) we see first, taking logarithms, that ny € GL(ny, F).
We will write X = logn € M,(F). By (1.4) we see now that s; commutes
with X.

We now finish the proof of Lemma 1.2 under the assumption that

is a scalar matrix in GL(n, F). Let
Vo=Fr=KeeX*DOVi=KerX*!>...0Vi=KerX* >...> {0}

be the flag associated to the nilpotent matrix X. As s; commutes with X, it
acts on V;/V;;1 as an endomorphism s’i defined over E,. Clearly this graded
action commutes with the taking of norms, so we see that Ng,/r,(s}) is
the diagonal matrix with entries equal to z; the norm is taken, of course,
in GL(a;) where a; = dim V;/V;,,. Taking determinants, we conclude that
z% is a norm from E, to F,.
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If a = g.c.d.(a;), this implies that z% is a norm from E, to F,; as this
applies to all places of F', we see that z* € F* is a norm from E*. By the
proof of the lemma in the semi-simple case, we see that the diagonal matrix

4

z

(a entries) is the norm of an element ¢t € GL(a, E). By the Jordan canonical
form, n; may be written as a matrix with square blocks of dimension a,
equal to 0 or 1. Such a matrix commutes with the element s, € GL(n, E)
having diagonal blocks (¢ - -t) and all its o-conjugates; clearly N(san;) =
u.

Finally, in the general case, equation (1.4) shows that n; preserves the
decomposition of n-space according to the eigenvalues of s. Thus, as in
the semi-simple case, we may first assume that s has only one eigenvalue
u; € FY'. Just as in the semi-simple case, we see that the problem actually
takes place in the algebra My (F)) where s is identified to a semi-simple
diagonalized element. This reduces to the previously treated case. |

We now study more especially the case of elliptic regular elements. (Re-
call that u € GL(n,F) is regular elliptic if its eigenvalues generate an
extension of F of degree n.)

LEMMA 1.3: Assume u € G(F) is elliptic regular; let F) = g,(F) be the
field generated by u.

(i) The equation u = Nz has a solution if and only if u € Npjr L,
where L = EQ® Fy; the norm from E® F) to Fy is defined by the structure
of F-algebra on Fy.

(i) In particular, if Fy is F-isomorphic to E, u= Nz has a solution.

Proof. If u= Nz, z commutes to u, hence z € g, (F) which is isomorphic
to L as an F-algebra. Thus u € Nr/r, L*, and the converse statement in
(i) is clear also. If F} = E, then F; splits over E and the norm map is onto;
this proves (ii). §

LEMMA 1.4: Assume E/F is a cyclic extension of local fields, and u €
G(F) is elliptic regular. Then u is a norm if and only if detu € Ng/rE*.

Proof. If u is a norm, we see, taking determinants, that det u is one. Con-
versely, assume that det u is a norm. We will rely on Lemma 1.3(i). Let us
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first assume that Fy and E are linearly disjoint. Let L be their compositum:

AN

F E
\ /
F

The extension L/F; is Abelian, of Galois group X. If K is a local field,
denote by jk the local reciprocity map: K* — Gal(Kqs/K), where Ky is
an Abelian closure of K. Then u € Nr;p, L* if and only if jr,(u) = 1on L.
On the other hand, det u € F* is naturally identified with N, ;r(u). Then

detu € Ng/rpE* if and only if jr(detu) =1 on E. By the compatibility of
the local reciprocity maps (Serre [35, p. 178]):

JF(NF, /) = cry/FiF, (u)
where cp,/F is the canonical map: Gal(Fy4/F1) — Gal(Fap/F). Assume
then that det u is a norm, i.e., jr(NF,yru) = 1 on E. Then, by the isomor-
phism Gal(E/F) — Gal(L/F}), we see that jr,(u) = 1 on L, which shows
that u is a norm.

We now treat the general case. Let F//F be a maximum subextension of
E such that F’ and F; are linearly disjoint. By the transitivity of Abelian
norms, we have detu € Np/yp(F')*. Thus u is the norm of an element v
in (F1 ® F')*, by the case already proved. But in the extension E/F’, the
field F; ® F’ splits totally: in particular, every element in (F} ® F')* is
equal to Ng/pz, for z € (F1 ® E)*. By composition of (Abelian) norms,
we see that u is a norm. i

We note that Lemma 1.4 is equivalent to the following assertion in Galois
cohomology. Let F* be the multiplicative group regarded as an F-torus. Let
F} be the F-torus canonically associated to Fy: thus F}(E) = (F; @ E)*
for E an F-algebra. The norm map N, r sends Fj to F*. Let, for T
an F-torus, H*(Z, T(E)) denote the i-th Tate cohomology group of & =
Gal(E/F) in T(E). Then:

LEMMA 1.5: The norm is an injection:
H(3,F{(E)) —— H°(S, F*(E)).
NFy/F
We finish with a last definition. We will say that (in the local or global

case) ¢ € G(F) is o-regularif its norm is a regular semi-simple conjugacy
class in G(F).
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2. Harmonic analysis on the non-connected group

2.1. In this section, unless otherwise stated, E/F is a cyclic extension of
local non-archimedean fields of characteristic 0. Let £ = (o) be the Galois
group. Let £ be the order of X.

We will denote by G(E) the semi-direct product G(E) x I, the Galois
group acting by the action on G(E) defined by the F-structure. In an
obvious way, this can be seen as the group of F-points of a non-connected
linear algebraic group H defined over F'.{

The standard theory of admissible representations of (connected) reduc-
tive p-adic groups extends to such groups — cf. [11(e)]. We will be mostly
interested in the following type of admissible representations of G‘(E) As-
sume that II is an irreducible, admissible representation of G(E) on a space
V. We say that II is o-stable if it is equivalent to the representation II?
defined by

0°(g) =O(eg), g€G(E).

By definition, there is then a nonzero intertwining operator I, : V — V
between II and II°. By Schur’s lemma, I¢, which intertwines II and itself,
must be scalar. We may first normalize I, by assuming If, = 1. This defines
I, up to an £-th root of unity.

We want to make a canonical choice of I,. This will rely on Whittaker
models.

Assume first that the representation II is generic (cf. [27(a), §1]). By
definition, there is a linear form A # 0 on V such that

A(m(n)v) = 0(n)A(v), vey

1 = *
for any n = - in the upper unipotent group;
T Zp-i
0 1

0 is the character n — ¢ (trg/r(z1 + --- + Zn_1)), Where ¥ is a non-
trivial additive character of F'. Moreover, the space of such functionals has
dimension one. In that case, we normalize I, by requiring that *I,A = A
for the dual action on V*.

1Note the slight abuse of notation: G(E) is not the set of E-points of an algebraic group
over E.
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In general, by the Langlands classification for p-adic groups ([40(a)], [9]),
II can be realized as the unique submodule of an induced representation

. 1G(E
R = indj{ P n ey (T @ 1).

Here M N is a parabolic subgroup of G, that we may take to be defined over
F; M), arepresentation of M(E), is essentially tempered, and in particular
generic ([24(b)], [4]). By uniqueness of the Langlands classification, Il
must be o-stable. If IM is the normalized intertwining operator on I3, we
define IC, acting on the space of R, by induction (cf. [11(b), §6.2]). The
restriction of I to II is then the normalized intertwining operator on II.
To check that the definition of I, is independent of the choices involved,
it is enough to check the following lemma, which follows easily from the
transitivity properties of Whittaker vectors; we omit the proof.

LEMMA 2.1: Assume Ilps is an irreducible, o-stable, generic representa-
tion of a Levi subgroup M(E). Assume llg = ind(Ilps) s irreducible and
generic. Then the normalized intertwining operator on Ilg coincides with
the operator induced from the normalized intertwining operator on Ilps.

For any irreducible, o-stable II, we now define the canonical extension of
II to G(E) by setting
(g x 0*) = (g) I

This is an irreducible, admissible representation of G(E). We define the
twisted character of the representation II as the distribution on G(E) whose
value on ¢ € C°(G(E)) is given by

O, (¢) = trace(ll(¢) I,).

Thus the twisted character is act.uall.'y the trace of the canonical extension
of IT on the component G(E) % o of G(E).

PROPOSITION 2.2: The twisted character O, is given by a locally inte-
grable function, locally constant in the neighborhood of o-regular elements.

Proof. This results from Theorem 1 of [11(e)]. The theorem says that the
representation II extended to G(E) has a locally integrable character. We
only have to check that the regular elements of G(E) X o, as defined in
[11(e)], are just the elements g X o where g € G(E) is o-regular.

By definition ([11(e), §1]), g % o is regular if Ds(g % o) # 0; here D is
given by

det(T — Ad(g) oo+ 1) =T"Dg(g x 0) + terms of higher degree.
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By Lemma 1 of [11(e)], this implies that g x ¢ is semi-simple in H(F); so
(¢9x0)t = (Ng,1) is semi-simple, which implies that g is o-semi-simple. But
then the eigenspace, for the eigenvalue 1, of Adgoa, is just the Lie algebra
of the set of F-points of the o-centralizer of g: since over E this group is
isomorphic to the centralizer of Ng, we see that Ng must be regular, so g
is o-regular. Conversely, if g is o-regular, it is easy to check by the same
argument that g » o is regular in H(F). il

We will need next the analog, for twisted characters, of a result of Cas-
selman relating characters and Jacquet modules. We briefly recall Cas-
selman’s theorem. If ¢ € G(F), there is a canonical way to associate
to g an F-parabolic subgroup P, = M N, of G; Py(F) is the set of
points contracted by Adg ([10(c)]). Assume g € G(F) is regular. Then
g € My(F); the Jacquet module Iy, associated to an admissible represen-
tation II ([10(a),(b)]) is a representation of My(F') and

traceII(g) = traceIln,(g)-

Now assume that II is a representation of G(E). If I 2 Il o o and
P = MN is defined over F, the operator I, acts on the Jacquet module Il y;
we denote again by I, the operator so defined. We will write trace(II(g) I,)
for the character O ,(g).

PROPOSITION 2.3: Assume Il 2 MMoo. Assume g € G(E); we assume that
Ng = h € G(F). Let P, = MyNy the associated F-parabolic subgroup.
Then, if Ng is regular:

trace(Il(g) I,) = trace(Iln, (9) Io).

The proof is an easy paraphrase of Casselman’s ([10(c)]), and is omit-
ted. I

2.2. The next result of harmonic analysis that we will need is the analogue
of a theorem of Kazhdan on the approximation of orbital integrals by char-
acters. Before proving this, however, we need to extend to the twisted case
the form of the trace formula due to Deligne and Kazhdan.

We first state the non-twisted version, in the form in which we will use
it in later proofs.

Assume that E/F is now a cyclic extension of number fields. We write
A for the adéles of F, Apg for the adéles of E. Let Z be the diagonal
subgroup of G; let Z; = N(Ag) C Z(A) = A*. We fix a unitary character
x of Zy, such that x =1 on Z; N F*.
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Let us choose two finite places vy, v, of F' which split completely in E.
Let f be a smooth function on G(A) such that:

(1) f(z9) = x(2)7* f(9) for z € Z).

(2) f is a tensor product of local functions f = [] f,; at almost all places,
fo(zk) = x(z7Y) if z € Z,N F}, and k € G(Oy); fv is zero on all other
elements.

(3) fu, is a coefficient of a supercuspidal representation of G(Fy, ).

(4) fv, is supported on the set of regular elliptic elements of G(F,,) whose
image in PGL(n, F,,) is regular.

Let r be the representation of G(A), by right translations, on
L*(G(F)Z,\G(A),x), the space of L? functions on G(F)\G(A) which
transform by x under Z;. Let r.y, the subrepresentation on the space
of cusp forms.

If y € G(F,), let, for f, € C=(G(F.))

_ d
@, (1) = / f(g ‘79)59
G(F,)\G(Fy)
denote the corresponding orbital integral, for some choices of dg and dt.

LEMMA 2.4: (Deligne-Kazhdan, cf. [15], [21]). If f is as above, the operator
r(f) sends the space of L? automorphic forms in the space of cusp forms;
moreover

W) trace reusp(f) = 3 vol(Gy(F)Z1\G(A)); (7)-
{7}

The sum ranges over the set of regular elliptic conjugacy classes in G(F);
®;() is the orbital integral

o (7) = [[25.(7)

The trace is taken for a measure dgpa = [[dg, on G(A); that measure
enters in the local orbital integrals, and the volume of G, (F)Z1\G,(A) is
computed for the product of the local measures on the tori G, (F,) figuring
in the local orbital integrals.

Let now xg be a unitary character of Z(AEg), trivial on Z(E). We con-
sider the representation of G(Ag) on L?(G(E) Z(Ag)\G(AE),x.). This
space carries a natural action of X. Write I, for the operator associated to
o. Assume now that the function ¢ on G(A g) satisfies conditions analogous
to (1) and (2) above, and moreover:
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(3’) On G(E,,) = G(Ew,) X G(Ew,) X --- X G(Ew,) (£ factors), we have
#v, = (bw,, . .- bw,) Where each ¢, is a coefficient of the same supercusp-
idal representation 7 of G(E,,) = G(Fy,).

(4) Let ¢y, = (duw,,...¥w,) be the analogous decomposition at
vy (wy,...wy are not the same as in (3)). Let Q; = Supp(dy,), where
Supp(f) denotes the support of f.

Then €, - - -Q is contained in the set of elements of G(F,,) with reg-
ular elliptic image in PGL(n, F,,).

Let again r denote the right representation, reygp its cuspidal part.

LEMMA 2.5: Under those assumptions, the operator r(¢) sends L? auto-
morphic forms into cusp forms, and

(I1)  trace(rcusp(®) Io) = Z vol(Gs,0(F)Z(AE)NGs,0(AE))Ps,0(5).
1%}

Here {6} runs over the o-conjugacy classes of elements of G(E) with
elliptic regular norms. The group Gjs,, is the o-centralizer of §, an F-torus.

2%.0=I [ a6aP
¥ Go,o(Fu)\G(Es)
is the product (over the places of F) of the local twisted orbital integrals.
Normalization of measures is as in Lemma 2.4.

We sketch the proof, following Henniart’s article [21]. First, the image
of r(¢) is in the space of cusp forms, by Lemma 2.4. It is clear that I,
preserves the cusp forms. Thus r(¢) I, is trace-class — since the cuspidal
part of r(¢) is — and

trace(rcusp(@) I,) = trace(r(¢) I,).

As in [21, §4.9] we obtain the trace by integrating along the diagonal the
kernel associated to r(¢)I,, whence

trace(r(¢) I,) = / { Z ¢(g'1‘yy’)} dg.

G(E)Z(AE)\G(Ag) YEZ(EN\G(E)

At the place vy, we have E,, @ F,, @ --- @ F,, (£ factors), the Galois
group acting by cyclic permutations.

Let ¥ € G(E); the image of v in the completion E,, is of the form
(1,72, 70)s % € G(Fu,)- g =(g1,---,9¢) € G(Ey,), we have

97179° = (97 192,97 ' 1293, - -, 97 17291)-
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Assume then that ¢,,(97'79°) # 0. By assumption 4’, we have
97 1798,, € 4, whence, taking the product:

91-1(7172 .. -‘n)yl € ..., Q.

This shows that Ny is regular elliptic at v2, and a fortiori as a global
element. Therefore, in the sum appearing in the expression of trace(r(¢)1,),
only elements with regular elliptic norms appear.

LEMMA 2.6: The function

F(g)= 3> l6(g™ v9%)|

Y€Z(E\G(E)
N~ elliptic regular

is compactly supporied on G(E) Z(Ag)\G(AE).

Proof. First of all, the sum is finite, uniformly for g in a compact set.

Moreover, ¢(g1vg°) # 0 implies g~1yg° € C = Supp(¢), whence v €
gCg¢~°. Taking norms, we get

Nyeg(Ccc®---c° g,

with CC? ---C°*™" compact. Henniart ([21, Appendice 3]) shows that the
set of ¢ satisfying this condition for some elliptic regular § (in lieu of Nv)
is compact modulo G(E) Z(Ag). This proves the lemma. i

This shows that in the expression for the trace, we may now permute
sum and integral; the usual manipulation then yields Lemma 2.5. (Note
that no indices appear in the term multiplying an orbital integral, because
we have assumed that the images of the relevant elements in the projective
group are regular.) i

Let us denote by

Bo)= [ 00
Gs,0(F)\G(E)
the local twisted orbital integral, thus E/F is an extension of local fields,
and Gj, is the twisted centralizer. (The convergence of this integral will

be checked in §3. If 6 is o-semi-simple, in particular, the orbit is closed in
G(FE) so convergence is obvious.)

PROPOSITION 2.7: Assume that E/F is an extension of local fields (Archi-

medean or not), and that § € G(E) is o-regular. Then, if § € C°(G(E))
ts such that

el‘[,a (¢) =0
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for any tempered, o-stable representation Il of G(E), the orbital integral
D4 ,(6) vanishes.

Proof. First, an argument of descent reduces to the case of § having elliptic
norm. Assume N§ is not elliptic: then § € M(E) for a Levi subgroup M
of G defined over F. Let P = MN be an associated parabolic subgroup.
Let Kg = G(Og). Then, if

3o = [ olkok~)dk,
Kg
a standard descent formula gives ([40(b), 29(a)])
B4,0(8) = |Ag/m(N8)| " @¥r ,(6).
Here the orbital integral on the right is taken in M(E);

|Acm| = (Deyn)l?

is a certain discriminant — see §4; and ¢(F) is the constant term of ¢, defined
by:

) (m) = 6p(m)* /N (E) ¥(mn) dn

(cf. eg. [29(a), §5]). On the other hand, if the representation II is induced
from a o-stable representation IIps of M(E), and the intertwining opera-
tors correspond, an easy extension of a theorem of Harish-Chandra [20(d))
yields:

O1,0(4) = Omy,o (47).

Therefore, if we assume the proposition for M, we see that the twisted
orbital integral of § must vanish.

Assume now N§ is elliptic regular. We choose a global field k, and an
extension k’ of k, such that at the place vy the extension k;_ /k,, is isomor-
phic to E/F. We then apply Lemma 2.5. We choose first the supercuspidal
representation II of G(k,,). On elliptic elements close enough to 1, its char-
acter is then equal to the formal degree, and hence # 0. The twisted orbital
integral of ¢y, = ($uw,, ... Pw,) is the orbital integral of ¢, * - - - * @y, ; for
correct choices of the functions, it will be a non-zero multiple of the char-
acter of II.

Therefore, if 6* is an element of GL(n, ') approximating é at vo, we may
assume, taking 6* close to 1 at vy, that the twisted orbital integral of ¢,,
does not vanish at §*. We may also assume, using finite approximation,
that 6* has elliptic norm (with regular image in PGL(n)) at the place
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v2. We may then choose the other functions ¢, in such a way that only
one orbital integral appears in the right-hand side of (II), and that it is
of the form ¢®4, (6;,) with ¢ # 0. (This is possible because, for GL(n),
we may separate global (twisted) orbits using only local conditions: indeed,
(twisted) conjugacy classes of semi-simple elements are parametrized by the
coefficients of the characteristic polynomial, and obviously these are known
as soon as they are known at a local place.) We then have an identity:

trace(rcusp(‘ﬁvo ® ¢”°) Id) = c@¢'°,g (6':0)’

However, only generic representations occur in the left-hand side [27(a)]; by
the assumption on @y,, then, it vanishes, which shows that &4, ,(6;,) = 0.
We will see (§3) that the twisted orbital integral is smooth on the o-regular
set. Since 65 can be made close to 6, this proves the proposition. il

2.3. Finally, we will close this section by studying the representations which
play, in the twisted case, the role of the discrete series. We will say that a
representation of G(FE) is o-discrete if it is tempered, o-stable, and cannot
be induced from a (tempered) o-stable representation of a standard Levi
subgroup.

LEMMA 2.8: Assume the representation Il is o-discrete. Then there exist
m|n, and a discrete series representation Il of GL(m, E) such that ny" =
I end 7" 2 10; (1<i<r=2=2), and such that II is induced from the
representation (II;, 11, .. .Ili"-') of the Levi subgroup of type (m,...,m).
Conversely, any such representation is o-discrete.

Proof. Since II is tempered, it is induced from a representation
(I3, My, ..., ), II; discrete, of a Levi subgroup of type (my, ... m;). Since
II? = 11, we must have, by the standard classification results, (I, ... II{) =
(II4,...1I%) up to permutation. Since II is not induced from a o-stable rep-
resentation of a Levi subgroup, this permutation must be transitive on
(1,...k). Thus II is induced from (II,... ,H‘l’k_l) with II" 2 II;. Finally,
k must be minimal for this property, otherwise II would again be properly
induced. The converse is plain. [

We now state a Paley—Wiener theorem for o-stable representations, due
to Rogawski [33(c)]. It extends to the twisted case the Paley~Wiener the-
orem of Bernstein, Deligne and Kazhdan [6]. We formulate it in a way
slightly different from [33(c)], since the normalized intertwining operators
I, are available to us. Recall from [6] that the set Irr(G(E)) of irreducible
admissible representations of G(E) has a natural decomposition into “com-
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ponents” associated to cuspidal representations of Levi subgroups. More-
over, if M is a Levi subgroup (defined over F'), and IIps an admissible
representation of M(E) of finite length, we may twist IIy by an unram-
ified one-dimensional character of M(E). Let Irto(G(E)) be the set of
o-stable representations in Irr(G(E)).
ProPOSITION 2.9: (Rogawski). Assume X is an additive functional, with
values in C, on the Grothendieck group of o-stable representations of G(E)
of finite length. Assume
(i) A : Irr,(G(E)) — C is supported on a finite number of components.
(i1) For any proper Levi subgroup M/F, and o-stable Iy of finite length,

. 1G(E

is a regular function of the unramified character x. Then there is ¢ €
CX(G(E)) such that

A(I) = trace(TI(¢) I,), 11 € Irr,(G(E)).

COROLLARY 2.10: Assume that Il is a o-discrete representation of G(E),
with central character X. Then there is a function ¢ on G(E), compactly
supported modulo the center Z(E), and such that ¢(zg) = X(z)"1¢(g), with
the following properties:

(i) trace(Il(¢) I,) = 1.

(i) trace(T(¢) I,) = O for any tempered, o-stable T # I with central
character X.

(Note that T(¢) = / #(9)T(g)dg 1is well-deﬁned).
Z(E)\G(E)
Such a function ¢ will be called a pseudo-coefficient of Il X 0.

A proof of this can be given, using the Langlands classification, by the
same method as for Proposition 1 of [11(d)], as soon as Proposition 2.9 is
known. 1

Finally, we will need the following results:

LEMMA 2.11: Assume that II is irreducible, generic and o-stable. Assume
On,o is not identically 0 on the set of o-elliptic elements. Then II is o-
discrete modulo torsion by a character.

Proof. By a result of Zelevinsky [42, Theorem 9.7], I is a full induced
representation from an essentially square-integrable representation of a Levi
subgroup. Inducing by stages, we may write

. 1G(E
I = indy Py (ey(Tm © 1)
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where IIps is essentially tempered and dominant in the sense of the Lang-
lands classification (cf. [9, XI.2.9]). Then I’ = ind(II{, ® 1). By the
uniqueness of the Langlands classification, this implies that IIs is o-stable.
If M is proper, the formulas for induced twisted characters ([11(b), Propo-
sition 6]) show that O, = 0 on the o-elliptic set. Therefore M = G, and
II is essentially tempered. It is then easy to see (cf. Lemma 6.4) that, up
to torsion by an Abelian character, II is induced from a o-discrete repre-
sentation. Again, the condition on the character implies that II is itself
o-discrete. li

The following lemma is a sort of dual of Lemma 2.11:

LEMMA 2.12: Assume that Il is o-discrete.

(i) ©n,0 # 0 on the o-elliptic set.

(i) If € CP(G(E), X) is a pseudo-coefficient of I, the twisted orbital
integrals of ¢ are 0 on non-o-elliptic elements and do not vanish identically
on the o-elliptic set.

Proof. We may assume the central character X equal to 1 and work on
PGL(n). If ¢ is a pseudo-coefficient of II, the descent argument used in the
proof of Proposition 2.7 shows that ®4 ,() = 0 for Ny non-elliptic: indeed,
trace(Il(¢) I,) = 0 for any o-stable II properly induced from o-stable. But
now, the identity

1 = trace(TI() I,) = / Or1.0(9)6(g) dg

Go—en

implies both (i) and the rest of (ii). §
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3. Transfer of orbital integrals of smooth functions

In this section E, F are non-Archimedean fields of characteristic 0; E
is cyclic over F; o, ¥ are as above. We want to compare orbital inte-
grals of functions in C°(G(F)) and twisted orbital integrals of functions in
CZ(G(E)). We fix, once and for all, Haar measures dg on G(F) and dgg
on G(E).

Assume § € G(E) has a regular norm vy € G(F). As explained in §1, Gs,
is an inner form of G,; since G, is a torus, these two groups are therefore
isomorphic over F. In fact if ¥ € G(F), one has Gs,(F) = G,(F), a
canonical isomorphism.

In particular, in the expression of the twisted orbital integral

- I'd d
®44(8) = / é(g™'6g )Tgf-
Gs,0(F)\G(E)

and the orbital integral

. d
®s(y) = / flg 1'rg)d—“t’,
G~(F)\G(F)

we will always assume that the choice of measures dt is the same on G, (F)
and G, (F).
We will prove:

ProPosITION 3.1:
(i) Assume ¢ € C°(G(E)). Then there ezists f € C2°(G(F)) such that,
for regular v € G(F):

if v is not a norm
®4,(8) ify=Néb, 6€G(E).

(ii) Conversely, given f € CP(G(F)) satisfying (), there ezisls ¢ €
CX(G(E)) such that

P4,0(6) = ®;(NY) for &€ G(E).

(*) & ={

As usual, the study of orbital integrals begins with a compactness lemma:

LEMMA 3.2: Let § € G(E); assume N6 = v is a semi-simple element of
G(F). Let M = Gs,.

Assume that 6 € T(E), where T is a mazimal torus of G over F. Then
there is a neighborhood V of 1 in T(F) with the following property:



Local Results 21

For any compact Q C G(E), there is a compact set w C M(F)\G(E)
such that, for g € G(E):

g WVE NQ£0 implies M(F)g € w.

Note that by I, §1, the group M is reductive, an inner form of G,.

We also remark that, by the properties of the norm map, o-regular ele-
ments are always o-conjugate to elements of T'(E) for some maximal torus
T over F. Clearly the twisted orbital integrals of an element é € T(E) de-
pend only on its class in T(E)'~?\T(E) where T(E)'~° = {tt=°|t € T(E)}.
There is an exact sequence

1 — T(E)'=° — T(E) — T(F)

since, by Hilbert’s Theorem 90, H!(Z,T(E)) = 1 for any torus of GL(n).
Here N = Ng/r, the norm map. Consequently, since the map Trp — TF
given by ¢ — ¢ is an isomorphism in a neighborhood of 1, we see that T'(F)
gives, near 1, a parametrization of T(E)'~°\T(E) or of the o-conjugacy
classes in T(E).

Proof of Lemma 3.2 (cf. Shelstad, [38(b), Theorem 4.2.1]). We first re-
duce to the case that y is central. Assume that g~t6g° € Q, for some
t € T(F). Taking norms, we have g~'t!Nég € @, = QQ°...Q°""". By the
usual version of this lemma ([20(c), p. 52]), there is a neighborhood U of
Néin T(E) such that, if ¢ € U, and g~'zg € Q, this implies g € M(E)w;,
with w; compact in G(E). So if Vi, a neighborhood of 1 in T'(F), satisfies
V¢ -N§ C U, we have

Vi1’ N £ 0

implies g™1Ug N Q; # 0, whence g € M(E)w,; writing ¢ = mz, ¢ € w;,
m € M(E), we then have 27 1m~1V;ym?z° NQ # @, whence m~V;ym? N
Qp # 0, where

Q=ME)N{zQz7° |z € w1}

is compact in M(E). But then, assuming the lemma in M (where 7 is
central) we see that for suitable Vj, the relation m~1Viym? N Qy # 0
implies M(F)m € wpy, wy C M(F)\M(E); then ¢ = mz € wyw, C
M(F)\G(E). B

We now assume that ¥ is central.

LEMMA 3.3: Assume Q) C G(E) is compact. Then there is a neighborhood
Vi of 1 in T(F), and Q3 compact in G(E) such that the conditions g €
G(E), t € V1, gt'g=! € Q1 imply gtg™' € Qy.
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Proof. Let gg = Lie G(E). According to Harish-Chandra [20(g), p.330],
there is an open, closed, invariant set g% of gg such that

(i) exp : g% — G(E) is defined, and a diffeomorphism,

(i) Opg} = o%,

(iii) exp(AdzX) = zexpXz~!, z € G(E), X € gE.

Let g = £g% C ¢%. Take Vi = T(F) N G}, where G = exp(gg).
Assume t € V; : t = expH, H € gl. Then, if gttg~! € Q;, we have
exp(Adg(£H)) € Q1 N G}, whence Adg(H) € § exp™!(€4 NGE), a compact
set. This implies the lemma. i

We may now prove Lemma 3.2. Let Q be as in the lemma, and set Q; =
v=10Q7 ... Q7" define V; by Lemma 3.3. If t € V; and g~1t6¢° € Q, we
have g~t!g € Q;, whence by Lemma 3.3, g~tg € Q, or g~ 1t71g € O3},
which implies g~16g% = (g~ 't"1g)(g~'t69°) € Q3 1Q. However, the map

M(F)\G(E) — G(E)

given by
grg7log”

is proper since the orbit of the o-semi-simple element é by o-conjugation is
closed: it is just the neutral component of the orbit of (6, 5) € G(E)x X, and
the orbit of the semi-simple element (6, 0) is closed in G(E) x X by an easy
extension of Borel’s results [8(a), IIl.g]. So the condition g~16g° € Q510
implies that g remains in a compact set modulo M(F).

We now return to the proof of Proposition 3.1 (i). Obviously the asser-
tion is local (in the space of conjugacy classes); it is easily reduced to the
following (we assume the function ¢ given):

LEMMA 3.4: Assume 8y € G(E) has semi-simple norm. Let {T\,...T.}
be the F-mazimal tori of G, up to conjugacy, such that 6o € T(E). Then
we can choose neighborhoods Vy,...,V, of 1 in Ty(F),...,T,(F), and a
function f € CX(G(F)) such that for regular v,

0 v not a norm
®y,(8) ¥= N6, 6€bVi.

Proof. (cf. Rogawski [33(a)]). Set M = Gs,,. For all i, let V; C Ti(F)
satisfy the conditions of Lemma 3.2 with Q = Supp(¢). Then g~ !V;80¢9° N
Q=0if M(F)g ¢ w = |Jwi, where w; is defined by Q and V;. Thus, if
6 € V;8y is o-regular, the function

%) ={
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g / ¢(g'1m'l6m"g° éﬂ

dt
Ti(F)\M(F)
vanishes for M(f)g ¢ w.

We choose o € C°(G(E)) such that a(g) = |, M(F) a(mg)dm is equal to
1if M(F)g € w, and to 0 otherwise. Define

wom) = [ alo)b(a™m~bg" ).
G(E)

The function ¥ is in C°(M(F)): it is obviously smooth since o has com-
pact support, and if ¥(m) # 0, there is ¢ € Supp(a) such that
#(9~'m~1609°) # 0, whence m~16, € 2,007, where Q; = Supp(a),
Q = Supp(@): so m must be in a compact set.

For o-regular é € V;6;, we have:

_ dg
1e o\2J
$(9™"69%)—
Ti(F)\G(E)
.\ d 1 - dm
= / a(g)E‘i— / (g lm=l6m7g° )
M(F)\G(E) Ti(F)\M(F)
= / {/ a(m1.¢l)dm1} g / ¢(y'1m-15m°90)irﬁ
M(F)\G(E) Ti(F)\M(F)
d -1, -15 o o\%
= / -a—g—{/ / a(m,9)é(g lm=16m g”)—mdml}.
M(F)\G(E) T:(F)\M(F)

By making the change of variable g — m,g, and grouping the integrals
along M(F), this can be written:

1 d
/ a(g)dg / é(g m 16m’g")-£l—.
&) T(FAM(F)

Writing now § = tép, t € V;, whence m~16m? = m~1t6ym’ = m~1tméy,
we have:

_ d 1 d
B(911809%) %L = / a(g)dg / $(g~ m™ tmbog?)
dt G(E) dt

T;(F)\G(E) Ti(F)\M(F)
_ dm
Ti(F)\M(F)
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In other terms,
¢¢,a(t50) = (I>¢M(F)(t)
where the integral on the right is taken in M(F) and non-twisted.
As recalled in §1, the centralizer G,, of 7o is isomorphic to a product of

groups of the form
Resr,/r(GL(mi, F))

where F; is a field extension and Res denotes restriction of scalars. Since
M is an inner form of G,,, it is a product of groups of the form

RESF_./F(GL(T';, Di))

with D; a division algebra on F; of degree d?, and d;r; = m;.

By a theorem of Deligne, Kazhdan and Vignéras [15, Theorem B2¢] and
Rogawski [33(b)], we may then associate to 1 a function f; on G, (F)
having the following property. (We write M for the group Gy- If m €
M(F), denote by m the conjugacy class in M (F) corresponding to m by
the Skolem-Noether theorem; if 7 € M (F) is not so obtained, we say that
it does not originate in M(F).) For regular § € M(F),

¢ F)(E) _ 0 if f does not originate from M (F)
h le(p)(é) if 6 corresponds to 6.
If we combine this with the equation relating ¥ and ¢, we get
@40 (tho) = ) (D), teVi.

We want to compare the orbital integral of ¢ at t6y, however, with the
orbital integral of f at N(t8o) = t’yo. Since 7o is central in M(F) or M(F),
and the map m — m! is a conjugacy-preserving diffecomorphism from an
invariant neighborhood of 1 in M(F) onto its image (cf. Lemma 3.3), we
may find f, € C®(M(F)) such that

M(F) /3 M(F

(We have used the obvious relation between the correspondence m — m
and the norm map.)

Since M(F) is the centralizer of 74;, we may find a function
f € CX(G(F)) such that, for ¢ close to 1:

@ (t*y0) = ‘I’ﬁ(m(t‘%)

This results from the fact that the germs on G all come from germs on M
(cf. [41(a), §2.6]) and the independence of germs (cf. 15, Proposition 2b]).
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Tracing back all comparisons, we have
®4,0(t60) = @4(t*70)-
If t € Gs,0(F), we have t~165t° = §, whence

al-!

N(bot) = 6063 ... 83

al—!

7 =ty

as an easy computation shows. This shows that any semi-simple ele-
ment uy, € M(F), close to 79, which comes from M is a norm. In
particular, ®; vanishes near 7o on elements which are not in the image
of the norm map. This finishes the proof of Lemma 3.4. |}

To prove part (ii) of Proposition 3.1, we just have to reverse the con-
struction. We start with f on G(F) satisfying the vanishing conditions;
it is enough to construct ¢ on G(F) in an invariant neighborhood of any
80 € G(E). We keep the previous notations, thus M is the centralizer of 7,
and M the o-centralizer of ;.

Given f, we may construct the function f, on M (F), and then, by the
converse of the theorem of Deligne-Kazhdan—Vignéras and Rogawski, the
function ¥ on M(F) associated to fi(ir) = fa(7hly0) on M(F). An easy
extension to the twisted case of the results of Vignéras ([41(a), §2.5]) shows
that ¢ can be lifted to a function ¢ on G(FE), the o-orbital integrals of
which then correspond to the orbital integrals of f.

Implicit in this argument has been the fact that, if f satisfies the vanish-
ing conditions, the function f; satisfies the vanishing conditions involved in
the comparison between M (F) and M(F). That is implied by the following
result:

LEMMA 3.5: Assume yo = Néy € T(F), for T a mazimal F-torus of G.
Assume that ot is a regular norm for some t arbitrarily close to 1 in T(F).
Then T is G(F)-conjugate to an F-torus T' in M.

Proof. Assume ot = (N6g)t = Ng, g € G(E). Then g commutes with yt,
so g € T(E).

Now let t, be a sequence such that ¢, — 1; write yot, = N(gn), gn €
T(E). Since the norm: T(E) — T(F) is a local fibration by T(E)!~7,
we may assume that the sequence (g,) converges: we then get go € T(E)
with Ngo = 40. Since Ngo = Néy, go is o-conjugate to . So there is a
o-conjugate of §y such that Ad(go)at =t for t € T(F), ie., such that T
embeds in Gy, , over F. This implies that a G(F)-conjugate of T embeds
in Géo,a- I

With this the proof of Proposition 3.1 is complete. 1
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We will say that two functions ¢ and f verifying the relations of Propo-
sition 3.1 are associated. We now want to compare the orbital integrals of
associated functions on singular elements. We start with the semi-simple
ones. We recall a construction of Kottwitz [29(b)]. Let § € G(E) have semi-
simple norm. The group Gs, is then a product of multiplicative groups
of central simple algebras. Let e(6) be the sign e(Gs ) defined in [29(b)]:
thus e(6) = (=1)"(6x)=(Gs.¢) where ¥ = Né and r(H) denotes the F-rank
of an F-group H.

LEMMA 3.6: Assume ¢ € C°(G(E)), f € CP(G(F)) are associated.
Then, if v € G(F) is semi-simple,

if v ts not a norm

2 = ,
e(8)®4,,(6) ify=Né.
Here the measures defining the orbital integrals are as follows. Recall that
we have fixed dgg, dg on G(FE) and G(F). We have to fix the measures on
the groups G ,(F) and G, (F). These groups are products of multiplicative

groups of simple algebras, and we choose compatible measures on them as
in [33(b), §3].

Proof of Lemma 3.6. We first prove the vanishing part. Assume ¥ € G(F)
is not a norm. It is enough to show that if ¥ € T(F), T being a maximal
torus, then ¢ is not a norm, for regular ¢t € T(F') close enough to 7. (This
will imply that for f associated to ¢, the regular orbital integrals of f
close to v vanish: by standard theory of Shalika germs, we conclude that
®4(7) = 0.) Assume then that t, = N(z,) for a sequence of regular t, — 7.
Then z, € T(E); since the norm map T(E) — T(F) has compact fibers,
we may extract a convergent subsequence, which implies that v is a norm.

To prove the identity of orbital integrals in Lemma 3.6, we just have to
retrace the proof of Lemma 3.4. Recall that given ¢, we had constructed a
function ¥ on Gs,¢(F), then f2 on G, (F) and f on G(F); they are related
by

Dy,0(t6) = By (t) = &y, (ty) = B4 ("),

t being an element in G ,(F) such that té is o-regular.

In the computation of ®y and ®y,, we have used measures on Gs,,(F) and
G,(F), that we take to be compatible measures. We have, by construction
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of ¢:

¥(1) f a(g9)d(9™ 69" )dg
G(E)
= [ {[  atmoetese)im}as
M(F)\G(E)
= 84,0(5),
the twisted orbital integral being computed by means of dg/dm, where dm
is the measure on Gj o(F).
Analogously, the usual computation on the non-twisted side shows that

f2(7) = ®4(7),

the orbital integral being computed by means of dg/dm, where d is the
measure on G, (F). We conclude by quoting the following result:

LEMMA 3.7: (Rogawski [33(b), Lemma 3.3]). Assume M(F) is an inner
form of M(F) = GL(m, F). Choose associated measures dm on M(F) and
din on M(F). Assume the functions f on M(F) and f on M(F) are such
that .
0 t not from M(F
®5(f) = { - )
®;(t) t associated tot € M(F).

(Ift, are associated, we normalize the measures on the corresponding orbits
by taking the same measure on the corresponding torus.) Then

£(1) = e(M)(1).

We apply this to 9 and the translate of f; by the central element v; this
implies that fo(y) = e(8)¥(1), whence Lemma 3.6.

Finally, we will now describe the (twisted) orbital integrals on all ele-
ments, by reducing them to semi-simple orbital integrals. This has been
known to a number of people; we rely on unpublished notes of Kottwitz.

We first treat the non-twisted case. Let ¥ = su = us be the Jordan
decomposition of ¥ € G(F), with s semi-simple and u unipotent. Let
A = u—1, a nilpotent matrix. We consider the flag of subspaces of F":

V0=Fn3Vl=AV03...:)‘/,-:A"V03"'3Vk={0}'

Let P = P, be the parabolic subgroup stabilizing this flag. If g € G(F)
commutes with u, it is clear that g leaves the flag invariant, whence

G(F). C P(F).
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Let N(F) be the unipotent radical of P(F), n, p the corresponding Lie
algebras.

LEMMA 3.8:
ad(A)p =n.

The proof is easily supplied by using a matrix representation of P and
noticing that A gives a surjective map: V;/Viy1 — Viq1/Viy2. (Alterna-
tively, note that a statement equivalent by duality to Lemma 3.8 is proved
by Howe [23, Lemma 2(b)].) i

Since s commutes with u, s € P(F); since it is semi-simple, we may
choose a Levi component M of P over F such that s € M(F). We have
P(F)/N(F)= M(F). Let X C P be the inverse image in P of the orbit of
sin M. Then X is a smooth and irreducible subvariety of P and we have
an isomorphism:

M,(F)\M(F) x N(F) 2 X(F)
(m,n) —» m~lsmn.

The element ¥ lies in X; let Xy be the orbit of ¥ by conjugation under
P:X,CX.

LEMMA 3.9: Xo(F) = P,(F)\P(F) is open and dense in X (F).

Proof. We compute the tangent space to X at 4. The differential at 1 of
the map
P(F) — P(F),
pp
is equal to Ad(y) - 1.
Thus we must check that m + n = (Ad(su) — 1)p + m,, where m, is the
Lie algebra of M,(F).
The element ¥ = su acts on p by the adjoint action, and Ady =
(Ads)(Adu) is its Jordan decomposition; therefore

(Ad(su) — 1)p = Y p» ® Im((Adu — 1) : p1 — p1)
A#1

where p) denotes the A-eigenspace of s in p. (Here we work on an algebraic
closure of F.) In particular (Ad(su) — 1)p contains the image of Adu — 1
acting on p. We show that this contains n. We must show that, if Y €
n, Y = uZu~! — Z, for some Z € p. Since (for matrix multiplication)
nN(F) = n, it is equivalent to showing that Y = uZ — Zu, or Y = [4, Z]
where A = u — 1. This is true by Lemma 3.8.
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Therefore (Ad(su) — 1)p contains n; it also contains ) my. This proves
that m + n = m, + (Ad(su — 1)p. Al

This implies that the F-map P,\P — X given by conjugating v is open.
By [8(a), Proposition 6.6], we see that Xo C X is open; since X is con-
nected, Xo(F) is open and dense in X(F). Moreover, since G, C P, we
have P, = G, and therefore H!(F, P,) = 0 (cf. Proof of Lemma 1.1). Hence
Xo(F) = Py(F)\P(F). 1

We now choose left-invariant Haar measures dn, dm, dm,, dg, dg, on
N(F), M(F), My(F), G(F), Gy(F). Then dz = £ x dn defines a measure
on X(F). Then, under conjugation by P(F), dz is relatively invariant with
factor 6p; by restriction we get a measure dzg on Xo(F) with the same
property: thus dzo = dg,\dp for some left-invariant Haar measure dp on
P(F). Since the measure of X(F) — Xo(F) is null, we have

- d _ dm
ot p) o = / / f(m~tsmn)dn—.
dgy N(F) dm,
Gy (F)\P(F) M,(F)\M(F)

Combining this with the formula

/G(F) flg)dg = /Kp /1; F) f(pk)dkdp,

with Kr = G(OF), we have proved:
ProrosITION 3.10: For any f € CP(G(F)),

_ dg
1
fg 79)-—de

GA(F)\G(F)
- / F(k~'m=smnk)dk dn:Tm.
M.(F\M(F)xN(F)xKr :

In particular, if f(k~gk) = f(g), we have
&(sm) = 6p(s) 30 ().

Here f(P) is the constant term of f, defined after Proposition 2.7. The
measures are normalized according to: fgz- =dxo = fﬁ— x dn.
We now sketch the proof of the corresponding twisted result. Let 6 €

G(E). Write the Jordan decomposition of § X o:

(6,0) = (s,0)(n,1) = (n,1)(s,0),



30 Chapter 1

with (s, o) semi-simple in G(E) x £, n unipotent in G(E). Thus

8 = sn’ = ns,

-1
t-1

N§=2687...6°
=sn%"n% ...s% 'n
= (N's)n, as an easy computation shows.

We will assume, as we may up to o-conjugation, that y = Né € G(F).
We write ¥ = tu, t = Ns, u = n®. Since u is F-rational, we see that
n = u'/t is also. Therefore sn = ns.

Let P be the F-parabolic subgroup defined, as above, by u (or n). We
have s € G4(E) C P(E).

Since t = Ns is semi-simple in G (F'), there is a Levi subgroup M; of G,,
over F, such that ¢t € M;(F). We have G, = M; x N; as F-group, where
N; is the unipotent radical of G. Since t = Ns and s € G (F), this implies
that there is an element s; € M;(E) such thatt = Ns;. Then N(s;n) = tu
since s; commutes with n and u. This implies that s;n and § = sn are
o-conjugate: so up to o-conjugacy, we may assume that s € My(E) with
M, a Levi subgroup of Gy over F, and a fortiori s € M(E), M being a
Levi subgroup of P over F. We have P(E)/N(E) = M(E).

Now we define Y, an F-variety in Resg,r P, as the inverse image of the
o-orbit of s in M(E). Then

M, ,(F)\M(E) x N(E) = Y (F)

lemn.

(m,n) —» m~
Let Yy be the orbit of § under the twisted action of P(E): thus Yo C Y.
LEMMA 3.11: Yo(F) = Pso(F)\P(E) is open and dense in Y (F).
Proof. The arguments in the proof of Lemma 3.9 also show that we have
Yo(F) = Ps o(F)\P(E). It is enough to show that the tangent space at 6 to
Y, is the tangent space to Y. Since Yy C Y, we just count dimensions. Let
Xo be the variety associated to v, as in Lemma 3.9. We denote by dim(V)
the F-dimension of an F-manifold V. Then

dim Yo(F) = dim P(E) — dim P; , (F)
dim Xo(F) = dim P(F) — dim P,(F);

since Pj . is a form of P,:

dim Yo(F) — dim Xo(F) = dim P(E) — dim P(F).
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On the other hand, by Lemma 3.9:
dim Xo(F) = dim N(F) + dim(M;(F)\M(F)).
From the two last equations, using the decomposition P = M N, and
recalling that M; is an F-form of M, ,, one easily derives:
dimYy(F) = dim P(E) — dim M, ,(F)
= dim N(E) + dim(M, ,(F)\M(E)).
This proves the lemma. i

Proceeding as in the proof of Proposition 3.10, we then obtain, writing
K E for G(OE)i

PROPOSITION 3.12:
(i) If $ € CP(G(F)), we have

dg
-1¢ 0\
$(97 69%) 1
Gs,s(F)\G(E)

= / (k" 'm~tsmnk)dk dn
M, o(F)\M(E)xN(E)xKg

dm
dm,’

In particular, if (k=1gk?) = ¢(g) for k € Kg:
By,5(sn) = 6p(Ns)" 38305 , (s).
(ii) In particular, the twisted orbital integral converges.

Here 6p is the module of P(F); we have §p(Ns) = 6pE)(8), b6p(E) the
module of P(E). The measures are related by g% =dy, = fﬁ‘- X dn.

COROLLARY3.13: Assume ¢ on G(E), f on G(F) are associated. Then,
Y = 84Ny, § = ssns being the Jordan decompositions:

(i) ®;(v) =0 if 5, is not a norm,

(1) ®1(7) = e(s5)Py(6) if v = N6.

This is clear: we may replace f, ¢ by their averages under K(F) or
K(E) conjugation, and then use Proposition 3.10 and Proposition 3.12.
(The measures must be normalized so as to make Lemma 3.6 correct for
the semi-simple orbital integrals.) Il
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4. Orbital integrals of Hecke functions

Let E/F be an unramified extension of local non-Archimedean fields. Let
HF be the Hecke algebra of compactly supported functions on G(F), bi-
invariant by Kr = G(OF); let Hg be the analogue for E. In this section,
we show that if ¢ € Hg and f = b¢ is its base change image in HF, ¢
and f are associated in the sense of §3. This is the so-called “Fundamental
Lemma” for Hecke functions.

If G is any unramified group, Kottwitz has shown that the analogous re-
sult holds for stable orbital integrals of the units of the Hecke algebras.
When the stabilization of the twisted trace formula is understood, the
method presented here should extend to prove base change for stable or-
bital integrals in the unramified situation. That is why we have worked in
‘more generality than is required for GL(n).

4.1. A subspace of the Hecke algebra

Let G be any connected split reductive group over F. Then G is a
Chevalley group, and we will take it to be defined over Z.

We write H for the Hecke algebra of G(F') with respect to the maximal
compact subgroup K = G(OF).

Let H be a maximal split torus in G; let W = W(G, H) be the Weyl
group. We fix a minimal parabolic subgroup Py = HNy. All these groups
are taken over Z. Let Ky = H(OF). We write Hy for the Hecke algebra
CX(H(F),Ky). The Satake isomorphism

S:H— (Hyg)¥

associates to f the function
S1) = 8, (1)3 [ f(hm)dn.
Ny

Here as below, we will, when convenient, write X instead of X(F) for
the F-points of a group X.

More generally, if P = MN is a parabolic subgroup of G, we have the
constant term along P (cf. §2)

ﬂWm:bmﬁLﬂmmzmem.
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For relevant facts about these notions see [20(d)], [40(b)]. Thus Sf =
f(Po) If Spr denotes the Satake transform for the group M — we assume
that P contains Py — we have, with obvious notations:

Su(f®) = Sf.

We will use the customary notations concerning the L-group of G over
F ([8(b)]), except that the split reference torus in G is taken to be H; its
dual is LHO C LG°.

There exists a canonical isomorphism between Xy and C[LH?] ([8(b),
§7]); the composite isomorphism, Hg — C[EH®]" will be denoted by
f— fY. A function f¥Y € C[LH?] can be written f¥ = Y axz*, where X
runs over X*(LHO).

For P = M N a parabolic subgroup, let A = Ay be the split component
of M. Let A(G, A) denote the roots of G with respect to A. If a is such
a root, there is a multiple ma of a which extends to a (unique) rational
character xo of M. For all o, we choose such a character. Then y, re-
stricts to a character of H; by duality, we obtain a cocharacter of LH°. In
particular, (xq,) is well-defined if A € X*(XH?).

DEFINITION 4.1: The space of regular Hecke functions on G is the space
K C H defined by:

feEK & V=) ad,
with ay = 0 if there ezists M # G, o € A(G, Anm) such that (xo,A) = 0.

Thus the condition is that only “regular” exponents, for all the parabolic
roots, should occur in the expansion of fV. The basic property of the space
K will be expressed by the following lemma. For P = M N a parabolic
subgroup, let 7 denote the Jacquet module of a representation 7 of G
with respect to N. Let W(Ay) = W(G, Ay ), the Weyl group of G with
respect to Aps. Let Gg) be the set of elliptic regular elements of G. If 7 is
an admissible representation of finite length of G, we will write:

(tracew, flen = /(; f(g) trace (g)dg.

LEMMA 4.2: Let w be an admissible irreducible representation of G with-
out K-fized vector. Assume that w is not a constituent of an unramified
principal series representation of G. Then, if f €K,

(trace m, f)en = 0.
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Proof. Since f is in the Hecke algebra and 7 has no K-fixed vector,
tracew(f) = [; f(g)tracem(g)dg = 0. Using Weyl’s integration formula,
we may rewrite the elliptic trace of f:

—(trace, f)en = Z Z W(G, T)I‘l/;‘ Dg(t)? trace m(t)®F (t)dt.

MCG T elliptic CM
MgG T modG

The sum, for each M, ranges over elliptic Cartan subgroups in M, modulo
G-conjugation. The measure dt is used to define Q};.

Assume now that T, T" are two elliptic Cartan subgroups of M which are
G-conjugate. Since A = Aps is the common split component of T and T”,
one has gAg~! = A, whence g € Ng(A) = W(A) - M. Moreover, W(G,T)
preserves Ay = A; this gives rise to an inclusion W(G,T)/W(M,T) —
W(A), and W(G,T)/W(M,T) is the stabilizer of T in this action of W(A)
on Cartan subgroups of M. Using this fact, and the invariance of
Ag(t)? trace 7(t)®§ (t) by G-conjugation, one can easily rewrite the ex-
pression above as

—(tra.ce m, f)ell =
Y Wt Y W, / Ag(t)? trace ()35 (t)d.
Mgé T aean !

We now use the following facts:

(i) A standard integration formula implies that, with obvious notations,
7 (1) = Ag/M(t)'l(D’}{,,)(t) fort € T C M (cf. [29(a), §5)).

(ii) Recall Casselman’s Theorem, which to ¢ € T associates a parabolic
subgroup P; = M;N; C G. Then, for T elliptic in M, the following holds:
if ®F(t) # 0, with f € K, then M; = M.

This is seen as follows. First, ift € T C M (T compact modulo Aps) is
such that |x«(t)] # 1 for all @ € A(G, A), it is easy to check that M; = M.
So we have only to show that this condition on the x, is satisfied provided
that <I>?(t) # 0. By (i), we then have Q%p)(t) # 0; so we must have
FP)(m) # 0 for some m € M, conjugate in M to t. Since xq is a character
of M, we then have x,(m) = xa(?).

However, the Satake map My — Hp, which sends g to g(?0), Qo the
minimal parabolic subgroup of M, is injective, and is given by orbital in-
tegrals. In particular, if g(°)(h) = 0 for all h € H such that |x.(h)| = 1,
this implies that g(m) = 0 on {m € M : |xa(m)| = 1}. Taking g = f(P),
we notice that this hypothesis is satisfied for g(Q0) = f(Po) : it was the
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definition of regular functions. Thus f(P) vanishes on the kernel of |x,/| in
M. So, if ®F(t) # 0, we must have |xa(t)| # 1. This ends the proof of
assertion (ii).

(iii) In the expression for —(trace, f)en, we may now divide each term
indexed by M into a sum over all possible unipotent radicals N of parabolic
subgroups P = M N. The term associated to N is

Wt Y WM, T / De(t) trace x(t)8S (t)dt.
TellcM {rernoen)

We now use the facts listed in (i) and (ii). Moreover, we have Ag(t) =
Ap(t)Agm(t), where

Dgym(t)? = |det(Ad(1 = t)|g/m)lF-

If g= m@ndn~ is a triangular decomposition, with n = Lie(N), and if
N; = N, one may check that all eigenvalues (on some field extension of F,
maybe) of ¢ acting on n have absolute values smaller than 1. Conversely,
the eigenvalues of ¢ acting on n~ are larger than 1 in absolute value. This
implies, as is easily seen, that

i 1
Depn(t) = | det(1 - t)la- |2 = 653 (1)
where 6p is the module of P. Thus the term relative to N is the product

of |W(An)|~! with

) / W (M, T A (t)? trace(S5 m) (£) 0% (1) k.

TellcM {1ervan)

Let us write M+ for {m € M : |[xo(m)| < 1 if a is a root of (N, Apx)},
M3, for M* N M. We may then rewrite this term as

(4.1) W (An)|~? /M . trace(85 ) (m) £ ).

ell

By induction, we may assume Lemma 4.2 to be true for M. (It is clearly
true for H.) Thus, if ¢ € K, the analogous space on M, we have

/ trace(é;%‘trN)(m)g(m)dm =0
Men

unless 6;%7rN is a constituent of an unramified principal series, which
would imply that 7 has the same property. This applies to f(P), which
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lies in K s since the definition of K is clearly transitive. If x* is the char-
acteristic function of M+, x* is clearly bi-invariant by Kps; moreover,
g € Ky = x+g € K. Applying the induction hypothesis to g = x+ f(F),
we see that the term (4.1) vanishes. This proves Lemma 4.2. i

We note that we have used only Casselman’s Theorem and very simple
properties of the integral formulas, orbital integrals, and the Jacquet mod-
ules. The theorems necessary to extend this proof to twisted characters
are proved in §2 (local integrability: Proposition 2.2; Casselman’s Theo-
rem: Proposition 2.3).The descent property for orbital integrals is proved
in [29(a), Lemma 8.5]. We just record the result for G = GL(n). Let E/F
be a cyclic extension. We now write G(E) for GL(n, E'). The Weyl integra-
tion formula (for o-conjugation, where o is a generator of Gal(E/F)) now
reads:

[ #aMos = ¥ W(GE), TN / AL(N)®,,, (t)dt.
(&) T T(E)-\T(E)

Here T runs over the conjugacy classes of maximal tori over F in G(F); N
is the norm map, ®4 , is the twisted orbital integral of ¢. Since, for Nt
regular, T(F) can be identified to the o-centralizer of t, ®4 , is associated
to measures dgg on G(F) and dt on T(F). The measure on T(E)'~?\T(E)
is then defined by dt via the exact sequence

1—T(E)'~7 — T(E) — T(F).

We then define G(E)en as the set of regular elements of G(E) with elliptic
norms.

Let B(E) D H(E) be the standard Borel subgroup and split torus in
G(E); H(E) = (E*)™; if X is any character of H(E), let II(X) be the
associated (unitarily induced) principal series representation of G(E).

If IT is a o-invariant representation of G(E) (§2), we extend it to a
representation of G(E) x ¥ where ¥ is the cyclic group generated by o.
If ¢ is a function on G(E), we will then write

(traceIl, ¢ X o)y = / #(g) trace II(g, o')dyg.
G(

ell

It makes sense by the local integrability theorem (§2). Let Kg = G(Og).

LEMMA 4.3: Let Il = Moo an irreducible o-stable representation of G(E);
extend it to G(E)x X. Assume that II has no Kg-fized vector, and is not a
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constituent of a principal series representation II(X), with X an unramified,
o-invariant character of (E*)*. Then, if ¢ € Kg :

(traceIl, ¢ X 0)en = 0.

Here of course Kg is the space defined by Definition 4.1 in Hg. The proof
is the same as for Lemma 4.2. |

4.2. The base change identities
From now on G is GL(n); we assume that E/F is an unramified extension
of local fields. Via the Satake isomorphism, we have (cf. Kottwitz [29(a)])

- -1 -116..
ME = Clzy, 27 22,251, .. 20,2757

the same holds for Hp.

We will denote an element f¥ of Hg or Hr by f¥ = Y axz?; the sum
runs over all multi-indices A = (A1,...A;) € Z" and z = (z1,...2,) €
L0 ~ (C*)*. There is a natural homomorphism b : Hg — Hp which
corresponds to the diagonal imbedding of the L-group of G over F' into
the L-group over F' of Resg/r G. In terms of the Satake transforms, it
associates to ¢V(z) = Y axz* the function fY(2) = ¢V(z%) = T arz*?;
here £ = dimp(E).

In terms of the Satake transform, X C H is identified with

it i A

_ A, —- 4 141 j—1

{f_g a z”:ay=0if -1
=.éi—t——i._A£:_lforsomei<j<k}'

Note that, with obvious notations, (Kg) C Kr.

Let Py = HNj be the standard minimal parabolic subgroup of G com-
posed of upper triangular matrices. An unramified character of H(F) is
canonically identified with an element z of LT°. In particular, the module

1
6p,, regarded as a character of H, is then identified with

a=1 a=3 _{n=1)
z=(q 7,03 ,...,¢ 3 ), where ¢ = |wp|.

Let x be an unramified character of F*, which we identify with the
complex number ¢ = x(wr). Let St(x) be the Steinberg representation of
G(F) such that 5! St(x)n, is the character (x,...,x) of H & (F*)".
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Let Iy denote the interval of integers [1,2,...n]. A partition of Ip is a
disjoint decomposition Iy = I} U---U I} with

I1 = [1,...111],
I2=[n1+1,...n2],
Ik=[nk_1+l,...n].

A family of nested partitions (I;;) of I is a family of partitions Io = I; ; U
~-+UlI, (i =1,... N) where each new partition is finer than the previous
one. It is complete if the last partition is given by Iy = {1}U---U{n}. If X =
(M1,-..An) € Z™, we say that A is positive for (I;;) if the following property
is satisfied. If I = [¢,i+1,...;] is an interval, let |I| be its cardinality and
A(I) =X+t ~+Aj. Then, if Ij,,' = I.‘ih*'+1 u-. -UIj,”H.l is given by
refining the partition I, ; into I, 41, A satisfies:

Myis1) o Airiny) o Mais1)
iitrl 414l [ i1l

LEMMA 4.4: There exist constants cr, where I = (I;;) runs over the set
of complete families of nested partitions of Iy, such that for f € Kp, f =

Saxzt :
1
(trace St(x), f)ell = ZCI Z aX(Caf’o)’\'
I A€Z™
A>0 for T
Here

6;2%( = (Cq‘?,...Cq’(’?)) € (C‘)" ~Lpgo

The proof of this ugly lemma is simpler than its formulation. The proof
of Lemma 4.2 gives an expression of (trace St(x), f)en as a sum over M, N
(notations of Lemma 4.2) of terms of the form

c / trace(é;% St(x)n)(m) fF)(m)dm.
MguﬁM"'

We may assume, by using the invariance of the character trace St(x), that
M is the diagonal block Levi subgroup associated to a partition
n=n; +ny+---+n,, and that M+ is defined by

|det g1[* < |det g5 < --- < |detg,|*,
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where g € M is written

gr
By a result of Casselman and Zelevinsky [42, Prop. 3.4],

553 St(x)v = 65 St(M, x)

where St(M, x) is the tensor product of the St(M;,x) (M = M; x ---x M,
M; = GL(n;, F)). Hence, by induction, this term may be written, using

Lemma 4.4 on M:
1 1
c E e E aA((6506,’,)".

I A>0 for I’
A>0 for M

The sum now runs over all Z' = (Z1,...I;) where I}, is a nested sequence
in [nj +1,...nj41]. The condition “A > 0 for M” is forced by the fact that
we integrate on M *, and can be written

Ll | |
with i1y =[ny+---+nj+1,...,n1+ -+ nj41]. These two conditions
imply that the I group together to give a nested sequence Z for GL(n),
and the sum is over the A positive for Z.
We have denoted by Qo the minimal parabolic subgroup Py N M of M;
it is easy to check that 6g,6p = 6p,. This proves Lemma 4.4. §

We remark that, by the same proof, the formula in Lemma 4.4 also holds
for the twisted character of a representation St(X) of GL(n, E), X being
an unramified character of E*. (Note that since E/F is unramified, the
character X is then o-invariant, hence also the representation St(X).) The
constants ¢z will be the same. We will use this without further comment.

We are now ready to prove:

THEOREM 4.5: Let ¢ € Hg, f = bp € Hp. Then, if ¥y € G(F) is regular
semi-simple,
0 if v is not a norm
OB g
®4,(8) ify=N§, § € G(E).
Here the definitions of ®; and ®4 require choices of measures on G(F),
and G(FE)s, — we take them equal after the identification of these two



40 Chapter 1

groups, as in §3 — and on G(E) and G(F) : on these groups, the measures
give mass 1 to G(Og) and G(OF).

We may now begin the proof. We will often work in fact with G =
PGL(n) rather than G. The homomorphism of Hecke algebras, and the
previous results of this paragraph extend in obvious ways to G.

Assume first that v is not elliptic. Thus y € M(F), where MN is a
proper parabolic subgroup of G. Up to o-conjugation we may assume that
8 € M(E) if v is the norm of 6. There is a commutative diagram ([29(a)])

'HE —b—’HF

| !

M M

the vertical maps being given by f — f(P). By induction we may assume
the identities of Theorem 4.5 known for M. Using formula (i) in the proof
of Lemma 4.2 and the analogous twisted formula ([29(a), Lemma 8.5))

85 ,(8) = Darymer)(N6) T @Yr) (),

we see that the theorem for M implies the identities of orbital integrals
between é and v.

Thus the comparison is reduced to the case of elliptic orbital integrals. If
X is an unramified character such that x™ = 1, let St(x) be the associated
Steinberg representation of G(F). Write Kg, Kp for the regular Hecke
functions on G(E), G(F).

LEMMA 4.6: Let f € Kr be such that

(traceSt(x), flen =0

for any Steinberg representation of G’(F ). Then all elliptic orbital integrals
of f vanish.

Note that Lemma 4.4 states explicitly what the conditions in Lemma 4.6
mean in terms of fV.

Proof. The only discrete series representations of PGL(n, F) that are con-
stituents of unramified principal series are the Steinberg representations
([42]). Thus, by Lemma 4.2, we have (tracem, f)e1 for any discrete =.
Moreover, let T be a non-elliptic Cartan subgroup of G’(F ). Then assertion
(ii) in the proof of Lemma 4.2 shows that the orbital integrals of f vanish
on the maximal compact subgroup of 7. These two facts, and Kazhdan’s
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density theorem for orbital integrals — the non-twisted analog of Propo-

sition 2.7, cf. [28, Theorem 1], imply that the elliptic orbital integrals of

f vanish. Indeed, let p be a faithful rational representation of G. Let
N

P(p(9),X) = ¥ ai(9)X* be the characteristic polynomial of p(g). The

i=

map ¥ : g — (ai(g)) sends G into the affine N-space. The image of G(F)e
has a compact closure w. If Q is a compact-open neighborhood of w in FV,
V = 4~1(Q) is open and closed in G(F); for Q small enough, V N T is
contained in the maximal compact subgroup of T for any T. Proceeding
as in [11(c)], we set g = xv f, where xv is the characteristic function of V;
then g € C°(G(F)) and all the non-elliptic orbital integrals of g vanish.
It is now clear that (tracew,g) = 0 for any tempered representation of G
(recall that all tempered representations of G are unitarily induced from
discrete series). By Kazhdan’s theorem, all orbital integrals of g vanish.
By construction of g, its elliptic orbital integrals are the same as those of
f. Whence the result. §

The same argument can be used (using the “twisted” extension of Kazh-
dan’s theorem) with the twisted elliptic orbital integrals.

Recall from §2.3 the notion of o-discrete representation of G(E). If
¢ € ﬁE, Lemma 4.3 shows that (tracell,¢ X o)en = 0 for any o-discrete
II, unless II is a constituent of an unramified principal series. At this point
let us revert to GL(n) rather than PGL(n) for an instant. A tempered
representation is of the form II = indan(IIp ® 1) (unitary induction), Iy
a unitary discrete series for M. It will be a constituent of an unramified
principal series only if I 5 is, 1.e., if I3 is a Steinberg representation with
unramified inducing character. Thus, writing

M = GL(ny,E) x - -- x GL(n,, E),

we have IIpr = St(X1)®- - -®St(X,) where X; are unramified characters of
E*. But then each St(X;) is o-stable (E/F is unramified!). Thus II can be
o-discrete only if » = 1 and II = St(X) for unramified X. Applying this,
now, to PGL(n, E), we see that for ¢ € Kg such that (trace St(X), ¢ x
o)en = 0 for all unramified X with X £ =1, we have (traceIl,¢ X o)en =0
for any o-discrete II.

The argument of Lemma 4.6 then carries through to give:

LEMMA 4.7: Let ¢ € Kg be such that

(traceSt(X), ¢ ¥ o)en =0, X unramified, X* = 1.



42 Chapter 1

Then all o-elliptic orbital integrals of ¢ vanish.

We note now that Hp may be identified with functions on G(F), bi-
invariant by G(OF), compactly supported modulo Z(F), where Z is the
center of GL(m), and such that f(gz) = f(g) for z € Z(F). The same, of
course, holds for Hg. Moreover, we could have proved the analog of Lem-
mas 4.6 and 4.7 for the space H, of functions satisfying f(gz) = x(2)f(g),
x an unramified character of Z(F) (or Z(E).) Lastly, if f € HF (say) and
x is such a character, we get a function transforming under x by setting
Ix(g) = fZ(F) f(92)x(z)dz. Using these (trivial) facts, one sees that the
identities of Theorem 4.5 for the spaces H can be deduced from the analo-
gous identities for all the spaces H,; here the characters xr of Z(F) and
xg of Z(E) must be related by xr o Ng/r = xg. Note that for unramified
characters this relation is bijective.

For more details, cf. Langlands [30(e), p. 76 ff.].

So let xp be unramified, xg = x o Ng/F. We will just write Hp, and
HE,y for the corresponding subspaces, and Kp, and Kg , for the regular
Hecke functions inside. Combining Lemmas 4.6 and 4.7, we get:

COROLLARY 4.8: The relations of Theorem 4.5 hold for ¢ € Kg,, such
that (traceSt(ng'),¢ X o)en =0 for all unramified ng such that n§ = xk.

Indeed, all non-elliptic orbital integrals correspond by the descent argu-
ment, and the other ones vanish. i

We will now need a result of Kottwitz:

PROPOSITION 4.9: ([29(c), Lemma 8.8]). The identity of Theorem 4.5 is
true when ¢, f are the unils of the Hecke algebras.

Obviously Proposition 4.9 again extends, in an obvious manner, to the
spaces H, .

We will now get Theorem 4.5 for the other functions by an approximation
argument using the trace formula. So let k¥ be now a number field, vy a
place of k such that k,, = F. We assume chosen a cyclic extension k' of &
of degree £ such that k' ? ky, = E; we also assume k totally imaginary.

We now choose a character xx of N/ Z(Ag:) mod Ny Z(k') such that
the restriction of xi to NgyrZ(E) is xr; let xa» = xx o Ng/F, a character
of Z(Akl). Write Z; = Nkl/kZ(Akl) and Zl(k) =27 nZ(k) = Nk//kZ(k’).
We will write A for Ax. Let C°(G(A),x;!) be the space of smooth,
compactly supported mod Z;, functions on G(A), transforming under 7,
by x;!; it acts on the space L2,,(Z1G(k)\G(A),xx). In the same man-
ner, C°(G(Aw),xi') acts on L2, (Z(Ar)G(E')\G(Ar),xk'); we have



Local Results 43

denoted by Lgu,p the parabolic spectrum in the L2-functions transforming
according to a given character. Let us write r for the first representa-
tion, R for the second; in the case of k', we also have an obvious operator
¥(g) — ¥(g7), denoted by I,.

We may choose two finite places vy, vs, of k, different from v, which split
in k'

Let fi be a coefficient of a supercuspidal representation of G(k,,) such
that f(1) = 1. On G(k;)) = G(ky, ), we set ¢y, = (f1,-..,f1). We set
fo, = fi*---* fi. These two functions are associated in the sense of ([30(e),
§8]) — see §5.

In G(k} ) = G(ky,)", we choose an element § = (§y,...6,) such that
Né = 6;...6 is regular elliptic; we may even assume that the image of
N6 in PGL(n, k,,) is strongly regular, i.e., its centralizer is a torus. This
implies that in G(ky,) the relation zNéz=! = z . N§, z € Z(k,,) im-
plies zNéz~! = N§. Then, if fi € C®(G(ky,), Xv,) has support close
enough to é;, ¢y, = (f1,... fr) has support on the o-regular elements and
fus = f1*---* fy has support on the strongly regular elliptic elements; ¢,,
and f,, are associated. We assume, of course, that these functions have the
right invariance by the center.

We now construct functions ¢ and f on G(A/) and G(A;) as follows. Let
S be a finite (non-empty) set of finite places of k, disjoint from {vo,v;,v2}
and containing all places where k' ramifies. We choose, at all these places,
smooth associated functions ¢, and f, (e.g., with regular support). At
all infinite places (which split), we take associated functions of the form
v = (f1,---, Jt), fo = fr *---* fy with f; smooth of compact support. At
all other places, including v, we take ¢, either to be a function in IC,,: \Xo
which satisfies the condition of Corollary 4.8 or a unit in My ,, and we
take fy = b¢,. Thus ¢, and f, are associated. To avoid usiﬁ'g in a non-
obvious way the base change identities in the “intermediary case” (§5), we
take ¢y, fu to be units at all places that are neither split nor inert. We
assume, of course, that ¢, is the unit in #, for almost all v. Then we set
¢ = ¢y, f =8fy.

With these assumptions, the Deligne-Kazhdan form of the trace formula
applies and yields:

(44)  trace(Reusp(8)L,) = Y meas(Gs,o (k) Z(Ar)\Gs,0(A)) 84,0 (8).
{8}

The sum ranges over o-conjugacy classes of elements § € G(k’) such that N'§
is elliptic regular, and in fact has strongly regular image in PGL(n); ®4,,
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is the product of local twisted orbital integrals, defined with the Tamagawa
measures.
In the same way, and with analogous notation, we get:

(45)  trace(reup(f)) = 3 meas(G4(K)Z1\Gy(A))%s().
{}

As seen in §1, the map N gives a bijection between the two sets indexing
the sums. The assertion of Theorem 4.5 applies to our local functions;
moreover, an element of G(k) is a global norm if and only if it is a local
norm everywhere (Lemma 1.2). Since k*\Z1k* has index £ in k*\Z(A), we
have

meas(Z1 Gy (k)\Gy(A)) = £meas(Z(A)G, (k)\G,(A))
=/ meas(Z(A)G,s,a (k)\Ga’a(A))

since G5, and G, are isomorphic. Thus, for such functions

(4.6) £ - trace(Reusp(9)I,) = trace reusp(f).

We may regard this as an identity of linear forms on the functions
6y = (f1,...,ft) and f, = f1 *--- % f;, where v is an infinite place.
A representation of G(k}) = G(k,)* contributes only if it is of the form
I, =7, ®---®m,. Then tracell,(¢,)I, = ( trace m,(f,), with ¢ an £-th
root of unity. Grouping the terms in (4.6) on one side, and putting together
the representations equal to 7, or m, ® --- ® m, at the place v, we obtain
on identity of the form:

Ea,' trace my,(fy) =0

ranging over unitary representations of G(k,). By a lemma of Jacquet—
Langlands (cf. [25, Theorem 5.2]) all a,, must be 0. Applying this to all
infinite places, we then see that (4.6) can be rewritten as

thrace(Hsz(ti:s:)Ia,g:) H ¢X(tﬂ,u)
( 47) n vg S’
=) " trace(ws:(fs)) [[ £/ (tr0)-
x vg S’

Both sums range over representations in the cuspidal spectra such that
their infinite components are equal to ®l oo and 7o, respectively, where
Too 18 a fixed representation of G(ks ). The set S’ is the union of S, vy, v
and the infinite places, and I, s/, tensored with the operator equal to 1 on
spherical vectors outside S’, is the restriction of I, on II. By the funda-
mental theorem on the finite-dimensionality of spaces of automorphic forms
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(cf. [20(b), Theorem 1]), the number of cuspidal representations of G(A)
which have a vector fixed by a given compact-open subgroup of G(Ay), the
group of points with values in the finite adéles, and have a given infinitesi-
mal character, is finite. In particular, if fs: and ¢g/ are fixed, only a finite
number of representations appear on both sides of (4.7), independently of
the choice of ¢, for v ¢ S’. At this point, we apply the following remark:

LEMMA 4.10: Let K = Kp. Let t;(i = 1,...,N) be a finite number of
elements of LH® = {z = (21,...,2,) : 1z; = 1}, different modulo W = &,,.
Assume that the complez numbers ¢;(i = 1,..., N) satisfy

N
Zc,'fv(t.') =0
=1

for all f € K such that the conditions of Lemma 4.6 are satisfied. Then
¢ =0i=1,...,N).

Proof. By elementary linear algebra, the condition in Lemma 4.10 means
that there exist constants ¢, (for x an unramified character such that
X" = 1) such that

(4.8) Z af¥ () + Z ¢y trace(St(x), flen =0
X

forall fe K. f A€ Z" let fY(z) = Y 2“* be the symmetric monomial
weWw

associated to A. Then fY € K if A does not belong to a finite union of
hyperplanes. We will assume that A is so chosen that A\; < A3 < --- < A,.
Using Lemma 4.4, we may rewrite (4.8) as

(4.9) 0= e Yt +) exd ez Y, (C62,)"s
wew x 1 V;S%?I

(x is the n-th root of unity associated to x.

Given Z and s € W, the set of A such that the term indexed by Z and
v = s\ appears is determined by the positivity of certain linear forms.
Consequently, for A in a certain hyperplane cone C C Z", that we can take
contained in the set Ay < Az < --- < Ay, this equality may be written

(4.10) 0=Y a3+ e Yo S(Geoh)
[ X I s

where the set of s depends only on Z and C, and not on A € C. The
identity (4.10) is then a linear dependence relation between characters of
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X*(EH®) = Z"/Z, satisfied for A € C. Therefore it is true for all A €
X*(LH°).

Let us fix w € W. Assume ¢; # 0. Since the character A — t¥* does
not appear elsewhere in the sum indexed by i, the ¢; being distinct modulo
W, it must then appear in the second sum, by the linear independence of
characters. Thus:

t;'” = (Cx6f>.,)’
for some (Z,s) such that s\ is positive for Z if A € C. If C is contained
in (A1 < A2 < -+- < Ay), this obviously implies s # wp, where wy is the
order-reversing permutation. So we have shown that if ¢; # 0, then, for all
weW: ¥ = ((Xéf,o)' with s # wo. This is clearly impossible: if it were
true, then

- 1
170770 = (G,

1 1 1
But ((x63,)"° cannot be equal to ((y6p )* with s # wyo, since (x0p, is
regular. This contradiction proves the lemma. J§

Applying Lemma 4.10, we now see that the identity of traces (4.7) is
true when ¢, is any function in Hg. We may now take the sum of all such
identities over the representations at the infinite places, to get an identity
of trace formulas:

(4.11) Y £ 0(6)%00(6) = 3 v(n)@s ().
{8} {n}

The volumes v(6) and v(y) are the ones which figure in (4.4) and (4.5).
But now, if 6 is an element of G(k') whose norm v in G(k) is regular
elliptic, we may, by choosing the functions ¢ and f at the places in S,
insure that only ®4 ,(8) and ®;(7) appear in (4.9). We may also assume
that the orbital integrals at v # vp are non-zero at v, and that all Hecke
functions (except at vo) are units. If §,, and 1v,, are the elements 6 and
7 considered as elements of G(E) and G(F) respectively, formula (4.11)
implies, for § € Hg and f = bé :

Qd’:”(‘svo) = @f(‘yvo)'
By density of the elements of G(k’), this implies the last assertion of
Theorem 4.5. The first one is implied by

LEMMA 4.11: Assume f € HF is in the image of the base change map.
Then

@;(7) =0 if ¥ € G(F)reg is elliptic and not a norm.
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Proof. Since v is elliptic regular, v is a norm if and only if
dety € Ng/r(E").

Let = be a discrete series representation of G(F). Weyl’s formula gives:

0 = tracen(f) = Z W(G,T)|™? / A(t)? trace w(t)®; (t)dt.
T T(F)

The sum runs over F-maximal tori of G up to conjugacy. If T is non-
elliptic, Theorem 4.5, applied inductively, implies that the integral runs
only over N(T(E)) C T(F).

Let now x be a character of F*/Ng/r(E*). We may replace = by = ®
x(det). The sum over the non-elliptic tori remains unchanged. Taking the
difference yields:

0= WG, / A(t)? trace (8)®; (£)(1 — x(det t))dt.
Ten T(F)

Since the characters of discrete series form an orthogonal basis on the
elliptic set (cf. [33(b)], [15]), this implies that (1 — x o det)®; is zero on
the elliptic set. Thus ®;(¢) = 0 unless det(t) € Ng/rE*, ie., t is a norm
(Lemma 1.4). This proves Lemma 4.11 and completes the proof of Theorem
45. 1
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5. Orbital integrals: non-inert primes

In this section we extend the results of §3-4 about orbital integrals to
the case where a place of the small global field is not inert in the field
extension. The case of split places was treated by Langlands [30(e), Ch. 8].
We quickly hint at the more general results needed when the degree is not
a prime.

We assume that E' is an F-algebra of the form k' ® F, where k is global,
F a completion of k — Archimedean or not — and k’/k cyclic of order £.
Then E = E; X --- X Ey (m factors), with E; a cyclic extension of order
k, and £ = km. If o is a generator of Gal(k’/k), then 7 = o™ generates
Gal(E,/F); we may write the action of ¢ on E as

o:(z1,%2,...Zm) — (%2,23,...Tm-1,21).

The action of ¢ on G(E) = G(Ey) x --- x G(E}) is described by the
same formula; the fixed points of & compose the group G(F), diagonally
embedded into G(E).

The norm Ngjr : G(E) — G(FE) is the composite of

. T T T
Ngig, i (21,...2m) = (2122 T, 2223 TmZ],.. ., EmT] - T1y_y)

and Ng,/r which operates componentwise by z; — NEg,/Fz;.

Note that if z = (z1,...%m), then all components of Ng/g,z are
r-conjugate to z; ...z, € G(E;). We will consider z; ...z,, as the norm
(from E to E)) of z. We write z122 -z, = Ni2.

Let § = (61,...6m) € G(E). An easy computation shows that the o-
centralizer G5 o(F) = {z : 2716z = §} is given by the equations

7629 = 6
1 2 1

.’62_15223 = 62

(5.1)

£ 6mz] = 6.
In particular, setting & = N;6, we obtain z7¢z] = €, so G5,4(F) is de-
scribed by 1 € G¢ -(F) and the (m — 1) first equations giving the z;(i > 1)
in terms of z;.

Let ¢ = 1 ® ¢2® - - - ® ¢m be a function in C®(G(E)) which is a tensor
product. Then

$(z~162%)dz = / 61(2726,22)62(25 6223 - - - (216 z] ) dit
Gs,0(F)\G(E)
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where dz is the quotient measure. Let us define the new variables y,...ym
by

nhh=o1

Y2 = 256283 - - b
(5.2)

-1 T

Ym-1 = a7m_16m-16m‘!71
-1 T
Ym = T, Om2].

Using (5.1), the integral may be rewritten as

$1(yr €T vy o2(v235 ) - o1 (Um—19m") bm (ym ) .
Gs,-(F)\G(E)
In the y-variables, G ,(F) is defined by the equation y; € G¢ (F); the
values of ys, . ..y,, are then fixed. Thus the integral can actually be written,
up to a change of variable, as

$1(y7 €Y Ym " - 43 )b2(32) - - Sm(Ym)dindys - - - dym
Ge,r(F)\G(E)
where G¢ , is embedded into G(E) through the first component, and
dy;(i > 2) is the Haar measure on G(E)). This is in turn equal to

V(i €y])din
Ge,r(F)\G(EL)
where ¥ = ¢1 * @3 * - - - * ¢y, the convolution product on G(E)).

Thus the o-twisted orbital integrals of ¢; ® - -- ® ¢, on G(E) coincide
with the r-twisted orbital integrals of ¢ on G(E,); if f € CP(G(F)) is
associated to 1 in the sense of Proposition 3.1, we see that the o-twisted
orbital integrals of ¢ coincide with the orbital integrals of f. The quotient
measures must be normalized in obvious ways.

Assume now that the extension E/F of non-Archimedean fields comes as
indicated above from an extension k’/k of global fields, and is unramified.
Let Hg, HE,, HF be the Hecke algebras of G(E), G(E;), G(F) with respect
to the standard compact groups. The homomorphism of L-groups given by
base change then yields, as is easily checked, the homomorphism

b: 'HE bad Hp
given on decomposed functions in Hg 2 Hg, ® --- @ HEg, by

$1Q  Qbm —bg, (P11 * 2% % dm),
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be,/F being the base change homomorphism Hg, — HF described on the
Satake transform by f(z) — f(z*) (§4). Consequently, the previous com-
putation and the results of §4 show that ¢ and b¢ have associated (twisted)
orbital integals.
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6. Base change lifting of local representations

6.1. In this section we will obtain the lifting, by base change, of admissible
representations of local linear groups by a cyclic extension. Thus E/F is
an extension of local non-Archimedean fields of degree ¢; £ = Gal(E/F) is
generated by o.

DEFINITION 6.1: (Shintani). Let x,II be irreducible, admissible represen-
tations of G(F), G(E) respectively. Assume that 1 = Il oo. We say that
I is a (base change) lift of 7 if, for ¢ € G(E) such that N'g is regular:

trace(Il(g)l,) = trace 7(Ng).

Here I, is the canonical intertwining operator of §2. The values of the
characters are well defined (cf. Proposition 2.2).

The basic results concerning local base change are contained in the fol-
lowing theorem. We first consider tempered representations only; for the
general case, see §6.4. We denote by Z the center of G. Note that the
central character wy : Z(F) — C* of a tempered representation is unitary.

THEOREM 6.2: Let w,II denote irreducible tempered representations of
G(F),G(E) respectively.

(a) Any tempered irreducible representation = of G(F) has a unique lift
Il to G(E). The representation II is tempered.

(b) Conversely, assume I = Il oo is an irreducible tempered represen-
tation of G(E). Then there is at least one representation = of G(F) such
that I lifts w; w is tempered.

(c) The notion of local lifting does not depend on the choice of o.

(d) Let wy,wry be the central characters of ®# and . Then if 11 lifts =,
they satisfy

wn(z) =wx(Ngjrz) z€ Z(E)2 E*.

(¢e) If E,F are Galois extensions of a subfield L, and v € Gal(E/L),
then, if I lifts =, I" lifts " where Gal(E/L) acts on G(E),G(F) in the
obuvious manner.

6.2. Reduction to the discrete case

We start the proof of Theorem 6.2 by reducing it to the case of 7 belong-
ing to the discrete series of G(F') and o-discrete representations II of G(E)

(§2).
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We first remark that the uniqueness in part (a) of the theorem is obvious.

LEMMA 6.3: If two o-stable representations Il and I’ are irreducible and
non-isomorphic, their twisted characters are linearly independent.

Proof. We may choose a compact-open subgroup K C G(E), stable by
o, small enough that II and II' have non-zero vectors fixed by K. If
Hkx = CP(K\G(E)/K), Hk acts on the space of K-fixed vectors in II
(resp. I') and this finite-dimensional representation is irreducible and de-
termines II (resp. II') ([7(a)]). Since non-isomorphic, finite-dimensional
representations of Hx have linearly independent coefficients, the functions
on Hk defined by ¢ — trace(II(¢)I,) and ¢ — trace(I'(¢)I}) are indepen-
dent. §

LEMMA 6.4: Assume Il = Il o o is tempered and irreducible. Then there

is a parabolic F-subgroup P = MN of G, and a o-discrete representation
Mpr of M(E) such that

. 1G(E

Remark. It follows from the orthogonality relations between o-discrete
characters (Proposition 6.6) that M is then unique up to conjugacy and II
well defined up to W (M, Apy).

Proof. Any tempered II can be written as induced from a standard parabolic
subgroup P = M N (thus P defined over F), with

M = GL(ny) x --- x GL(n,),

of a discrete unitary representation § = 6; ® --- ® 6, of M(E).
If II 2 I o 0, we must have, by standard results:

(6.1) (67,...,67) = s(61,...,6,)
where s € W(G, Apm) can be seen as a permutation of (1, ...,r) which pre-
serves the ranks n;. Moreover, if s leaves stable a subpartition of (1,...,r),

II may be induced from a tempered, o-stable representation of a smaller
group, and II is not o-discrete.

Considering the orbits of the group generated by s in (1,...,r), we may
write, in the obvious way II as induced from an induced, o-stable represen-
tation of a Levi subgroup; the inducing representation is then o-discrete
(cf. Lemma 2.8). I

We now assume Theorem 6.2 in the discrete case and deduce it for other
. . 1G(F)
representations. For (a), assume that = = indygp)n(p) T, Where Ty
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belongs to the discrete series of M(F) and is unitary. We may assume that
7 has a base change lift I57, a o-stable representation of G(E). Moreover,
we will see (§6.3) that II5s is o-discrete and unitary.

By the proof of Lemma 6.4, we may write IIps as a tensor product
I ® --- ® I, (where M = GL(n;) x --- x GL(n,)), each II; being of
the form ind(6 ® 6° ® --- ® 6°° ") with §°° = § and 6°° £ 6 (i < s).
The central character of II; is then wsw§ ~~~wg'-l; since II; is unitary, this
implies that ws, the central character of , is unitary. Thus II; is induced
from a unitary discrete series representation, i.e., II;, and therefore Il s, is
tempered.

By a well-known result of Bernstein [4] this implies that

I = ind g} (T ® 1)
is irreducible and tempered. But then the Atiyah-Bott Theorem [11(b),

Theorem 2] shows that, if we define I,, the intertwining operator in the
space of II, by inducing the operator I, ps for II5s, we have

trace 7(Ng) = trace(Il(g)1,).

By Lemma 2.1, I, is the normalized operator for II. This proves (a).

Likewise, assume given II = II o o, irreducible and tempered. If II is
not o-discrete, write II = indgggg(HM ® 1) with IIps o-discrete. Then
Iy lifts at least one representation mp of M(F). Moreover, Lemma 2.12
implies that mps belongs to the discrete series and is unitary. This implies
that = = indggg mp 1is irreducible and tempered; again, the Atiyah-Bott
Theorem shows that = is a lift of II. This proves (b).

Notice that (d) is an obvious consequence of the character identities since
trace 7(zg) = wx(2)tracen(g), z € Z(F), the analog holds for G(E), and
N(zg9) = (N2)Ng for z € Z(E). If (c) is true for the inducing representa-
tions, it is true for = and II.

As for (e), assume that

trace(Il(g)I,) = trace 7(Ng).
Replacing g by 7(g), we obtain
trace((I o 7(g))I,) = trace m(N'(rg)).
Now
N(rg) = rg0(rg)a*(rg) ---0*~}(rg) = 7(Mg),

where
Nig = goi(g) -~ o5~ (g)
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and 0; = 7-lo7 is a new generator of £. On the other hand, I, satisfies
(g)I, = I,TI(c"1g)
from which we infer
(Mor(g))l, = I,(Mo7)(r"to™g).
This shows that I, intertwines (Il o 7) and (Il o 7) 0 ;1. The equation
trace((Il o 7)(g9)1,) = trace(m o 7)(N19)

then shows that Il o 7 lifts 7 o 7. This proves (e).

6.3. Discrete case

We still have to treat the case of 7 discrete, or II o-discrete. We will
use the following result, to be proved in Chapter 3. We fix a global field k,
and a cyclic extension k' of k of degree £. Notations are as in §2. If v is a
prime of k, let ty, € (C*)" be the element associated to a representation
7 of G(Ag) unramified at v : thus i, , is defined up to permutation of the
coordinates.

THEOREM II1.3.1: Let m,n’' be cuspidal automorphic representations of
G(Ag). If v is a finite prime of k, let f, be the residual degree of k' over
v. Let S be a finite set of primes of k, containing the infinite primes and
the places where k', ® or o' is ramified. Assume that, forv g S :

(6.1) (t’_’u)fv = (t’./,v)fv.
Then 7' = w @ x, for some character x of k*N(A}/)\A}.

We now prove Theorem 6.2(a) in the discrete case. We assume k’/k so
chosen that, for a place vo, ky, = F' and the extension k,  is isomorphic to
E. Let v; # vy be two places where k' splits and v3 # vg be an inert place
of k. Let mg be a discrete series representation of G(F'); without restricting
generality, we will assume that its central character is 1.

LEMMA 6.5: There is a cuspidal representation = of G(A) such that
7l"v.J =3 o,
Ty, 1S a given supercuspidal representation of G(ky,),
Ty,15 a Steinberg representation,

and such that m, is unramified for any finite place v ¢ {vo,v1,v2,v3}.
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Proof. This follows easily from the Deligne-Kazhdan trace formula (Lemma
2.4): by [26, Theorem K], there are compactly supported functions fy,, fu,
such that trace m,,(fy,) = 1(i = 0,3) and that their trace is 0 in any other
tempered (or generic) representation. We take for f,, a coefficient of m, .
We take f, unramified for other finite places v # va. The choice of the
Archimedean factors is arbitary. Taking f,, as in Lemma 2.4, we obtain a
formula
S tracen(f) = Y u(n)% (7).
x cuspidal {7}

By [26, Theorem K], the elliptic orbital integrals of fy,(i = 0,1,3) are
equal to the character. In particular, they do not identically vanish, and
using f,, and the f, for v infinite, we may arrange to have exactly one
non-zero term in the right-hand side. Since cuspidal representations have
generic components [37], this proves the existence of 7 as in Lemma 6.5. Il

We will assume now that all infinite places of k split in k’. Assume that
the function f on G(A) satisfies the conditions in the proof of Lemma 6.5,
except that f,, is now arbitrary, and f satisfies the vanishing conditions of
Prop. 3.1; and let ¢ on G(Aj) be associated to f. By formula (4.6), we
have:

£trace(Recusp($)1,) = trace reusp(f).

(We assume, as we may, that ¢ satisfies the conditions of Lemma 2.5; at the
finite places w above v ¢ {vo, v1,v2,v3}, @y is unramified.) Separating the
representations, as in §4, by using their components at infinity and their
Hecke eigenvalues, we obtain the identity

(6.2) Ltrace(Tl($)1,) = ) _ trace 7'(f),

a finite sum for ¢, f given. The left-hand side of (6.2) is composed of the
unique cuspidal representation of G(Ay:) determined by the Hecke eigen-
values of 7, composed with the norm maps for Hecke algebras. The right-
hand side contains all representations of G(A) verifying conditions (6.1) at
the finite places v ¢ {vo,v1, vz, vs}.

By Theorem I11.3.1, the representations #’ are of the form 7®x. Since m,,
is a Steinberg representation, the relation 7., ® x3 2 m,,, X3 a character of
k;,, implies x3 = 1. (Consider the Jacquet module for the Borel subgroup!)
Thus the condition 7 & 7 ® x implies x,, = 1, whence x = 1 since v3 is
inert. So the representations 7' are all the distinct representations 7 ® x, x
ranging over the Abelian class field characters of A} associated to k. Since
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then trace #/(f) = tracex(f) for any f in the image of the base change
correspondence, we may rewrite (6.2) as

(6.3) trace(II(¢)I,) = trace 7(f).

This proves that II,, lifts mg, except for the value of the normalizing
constant. This is provided by the theory of Whittaker models. By [37],
[31], there is, up to a scalar, a unique linear form A on the space of II such
that, for w in the space of II :

(6.4) A(O(n)w) = 8(n)A(w), n€ N(Aw).

It is given, on the function w by

AMw) = / w(n)f(n)dn.
N(E)\N(AL)

Here 0 is a o-invariant character of N(Ay) defined, as in §2, by a
o-invariant character ¢ of k'\ A . It is clear that A(J,w) = A(w).
This implies that we can write A and I, as tensor products:

A= ®Am I, = ®Io,v
v v

over the places of k, in such a fashion that at each v, I, y Ay, = Ay. In other
terms, I, is the tensor product of the normalized intertwining operators.
(We let the reader fill the gaps at the non-inert places.) We now remark
that the Shintani identities (with the right constant) are obviously true at
the split places; obviously also, they hold for unramified representations
by §6.2; finally, it is easy to check, using the construction of the Steinberg
representation given by Casselman ([10(b)], see also [9]) that they hold for
the Steinberg representation. Since the normalization, then, is correct at
all places except v, it is also correct at vo. This proves Theorem 6.2(a).
Note that the elliptic character of Il % o is non-zero, and then Lemma 2.11
implies that II is o-discrete.

Assume now that Iy = Il o o is o-discrete. (Again, we will assume all
central characters trivial.) Let k'/k be as above; let ¢,, € C2°(G(E), X)
be a pseudo-coefficient of IIg X o (Corollary 2.10). Recall that the o-elliptic
twisted orbital integrals of ¢,,, then, are not identically 0 (Lemma 2.12).
As in the proof of (a), we may construct a function ¢ on G(A}) such that
¢ is unramified for any finite place w above a place v # {vo,v1,v2,v3}, and
such that

trace(Reusp(#)1s) # 0.
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Therefore, there is a representation II of G(Ays) in the space of cusp
forms, such that I,, = Mo, M, = (7, )®¢ is supercuspidal, II,, = (7,,)®*
(since II,, is o-stable), and II,, is a Steinberg representation. (Here we
have used the fact that a Steinberg representation stable by o is o-discrete
and admits a twisted pseudo-coefficient.) Again, the comparison of traces
yields an identity of the form:

(6.5) Ltrace(TI(4)I,) = Y _ trace v'(f).

By Theorem III1.3.1, there are at most £ representations on the right-hand
side; they are all of the form x ® m, for a unique cuspidal 7. On the image
of the norm, their local characters coincide. Consequently, we have an
equality at the place vz of the form:

trace my, o N = ctrace(Il,, I,)

for some constant ¢. Thus the character of m,, is equal to a Steinberg
character on the image of N; it is easy to show that m,, is then a Steinberg
representation. But then 7y, ® xu, # 7y,, Where x,, is the class field
character associated to the extension k;,, /ky,. This implies that r®@ x & 7
unless x = 1. So there are £ terms in the right-hand side of (6.5). Repeating
the arguments used to prove (a), we then obtain part (b) of Theorem 6.2.
Also note that all representations =, lifting Il are obtained from one of
them by twisting by some power of the local class field character.

We now remark that (c) follows from the fact that the local lifting has
been constructed globally. Indeed, given the local representation 7 of G(F)
(mo discrete), we have constructed a global representation 7 of G(k); then
= lifts to II, which restricts at vo to I lifting mo. Since the notion of global
lifting is independent of the choice of o, the local lifting is also. Given (c),
() has been proved in §6.2; (d) is clear. Theorem 6.2 is complete.

6.4. Properties of local base change

We now list some properties of local base change deduced from Theorem
6.2 and its proof. The proofs are easy and are only sketched. The first result
concerns the orthogonality relations for o-discrete representations. Fix a
unitary character X of Z(E), with X = X og. If ©,,0, are two functions
on G(E), invariant by o-conjugation, and such that ©;(zg) = X(2)0;(g),
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set

(6.6)
(01,02)0-a1 = ¥ IW(G(F), T(F))|™ / AZ(N1)B1(t)- Oa(t)dt
Tell Z(E)T(E)'-°\T(E)

(cf. the Weyl integration formula in §4.1).

Here dt denotes the Haar measure on Z(E)T(E)*~°\T'(E) = NZ(ENT(F)
of total mass 1.

Let us denote by £ the character of F* associated to the extension E/F :
thus ¢ = 1. Let £ = Z/{Z be the group generated by £ : it acts on
representations by 7 +— 7 ® (o det), n € E.

The proof of Proposition 6.6 uses a global result from Chapter 3. This
proposition will not be used in the rest of the paper.

PROPOSITION 6.6: Let w,II denote discrete series (resp. o-discrete) repre-
sentations of G(F),G(E).
(i) Assume that 1I lifts m. Write
o= indJ(t;l((EE))N(E)((HM Q@ -l )ol)
with g minimal such that W, = My, and My a discrete series representa-
tion of GL(n/yg, E).
Then g is equal to the order of the stabilizer of  in 2. In particular, 11
belongs to the discrete series if and only if @ £ # w. We write g = g(II).
(i) If 111, I3 are o-discrete, we have, writing ©; , for their twisted char-
acters (i=1,2) :
0 1f H1 ¥ H2
g(my)~t if I =1,
Moreover, the o-discrete characters form an orthogonal basis for the invari-
ant functions on G(E),—en with the scalar product (6.6).

(91,0:92,0)0—ell = {

Proof. Assume that II lifts 7 and 7 = 7 ® 7 with n = ¢* and i is minimal.
We may imbed 7 in a cusp form mwa such that 74 = 754 ® na, where 75
is analogously defined; 74 is then minimal. Under these assumptions, we
will see in Lemma II1.6.6 that w5 lifts to a representation induced from
cuspidal: 5 = ind(IIA, M ®-- ~®H"A§;), g = 2,115, p cuspidal. The local
component of II5 at vo is then as stated in (i); I, has to be discrete,
since otherwise one easily checks that the induced representation is not
o-discrete. This proves (i). As for (ii), we may use the lifting identities
to rewrite the scalar product in terms of m; and m, assumed to lift II,
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and II;. Using Lemma 1.4, the computation is then easily reduced to the
orthogonality relations on the group G(F);, = {z € G(F) : £ o det(z) = 1}
(cf. e.g. [19, Lemma 1.9]). B

Using computations of Jacquet modules, we will show (Lemma 6.10) that
in Proposition 6.6, 7 is supercuspidal if and only if II s is. Thus base change
preserves representations unitarily induced from supercuspidal.

PRroPOSITION 6.7: (w,II tempered). Assume II lifts . Write
r=ind(m ®--- @),

7. belonging to the discrete series of GL(n,,F). Then the other represen-
tations lifting to II are those of the form

T =ind(m®m)®---@ (1 @) with 7 €E.

Proof. 1t is obvious that these representations are lifted by II; conversely,
assume 7’ is lifted by I : #’ then has the same character as 7 on the image
of the norm map. Using the formulas for induced characters [11(b)] it is
then easy to show that = is induced from a discrete series representation
01 ® -+ - ® oy of the same parabolic subgroup, and that o; ® --- ® o, and
a Weyl conjugate of m; ® --- ® m, have the same character on the norms.
The orthogonality relations then imply the result.
We now record the obvious property of lifting:

PROPOSITION 6.8: (,II tempered). Let #,11 denote the contragredient
representations.

() If = lifts to 10, % lifts to 1I.
(il) Ifm lifts to I, nQuw lifts to 1@ (w o Ngyr), w being a character of
F*.

Lastly, we will relate the L-functions of representations associated by
base change.

We first remark that at this point we have obtained the base change
correspondence between all representations, tempered or not, of G(E) and
G(F). Indeed, by the Langlands classification, any representation 7 of
G(F) can be realized as the unique quotient of a representation

- 1G(F

indyPAn ey (T © 1)
with mps essentially tempered and dominant ([24(c), §3.3]). Then 7 has
a unique lift Iy to M(E) - the previous results obviously extend to essen-
tially tempered representations; Il is again dominant, thus
ind(Ilp ® 1) has a unique quotient II; II is the base change lift of = (it
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is clearly o-stable). Conversely, given II = Il o o, we may realize it as the
Langlands quotient of ind(IIps ® 1). The uniqueness of the Langlands da-
tum then shows that Il is o-stable; if ) is any representation of M(F)
lifted by ITps, its Langlands quotient 7 has as base change lift II. With
these definitions, Proposition 6.8 and the obvious adaptation of Proposi-
tion 6.7 still hold. In general, of course, the base change correspondence is
not given by character identities.

Let us now recall the notion of L-function of pairs of representations.
Let G, denote GL(n). If x,  are irreducible representations of G,(F') and
Gm(F) respectively, Jacquet, Piatetskii-Shapiro and Shalika [26(b)] define
a local L-function, denoted by L(s,m x 7). To conform to our general
notations, we will denote it by L(s,7®7). It can be expressed as P(q~*)!,
where P is a polynomial with constant coefficient 1, and ¢ the cardinality
of the residue field.

There is an associated e-factor ([26(b), §2.7]) (s, ® 7,¢), where ¢ is
an additive character of F'; € is a monomial in ¢7*. We will also need
the A-constants of Langlands. Let E/F be an extension of local fields, yp
an additive character of F, Yg = ¥r o trg/r. In [14, p. 549] are defined
numbers A(E/F,yf,dzg,dzr) where dzg and dzp are Haar measures on
E and F. If we take dzg and dzr to be the self-dual measures associated
to ¥g and ¢p, we obtain Langlands’ factor A(E/F, ¥F).

It has the following property, which we could take in our case for defi-
nition. Assume now that E/F is cyclic of order £. Let xr be a character
of F*, xg = Xxr o Ngjr. Let Z be, as in the beginning of 6.4, the group
of characters of F* vanishing on NE*. Then, with ¥ and vF related as
above:

(6.7) 1 etxen ¥r) = ME/F, ¥r)e(xe, ¥)-
nes

This is an immediate consequence of the behavior of A-factors under
induction ([14, 5.6.2]), and the fact that, if we identify characters of a local
field K* and 1-dimensional representations of the Weil group W, we have

indy® (xe) = P xrn-
ne€E

PROPOSITION 6.9: Assume E/F is cyclic of order £. Let m, 7 be irre-
ductble representations of G,(F),Gn(F) and II,'T their base change lifts
to Gn(E),Gm(E). Then

(i) L(5,I®T) = q];[EL(s,w®r®n).
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(i) e(s,1Q T, ¥g) = A(E/F,¢p)~™" 1;[_6(3, TR TN, YF).
neS

In the right-hand sides of (i) and (ii), L(s,* ® 7 ® ) may be interpreted
as L(s,7 ® (r ® )) where 7 ® 7 denotes 7 twisted by the character 7 of
the determinant, or as L(s, (7 ® n) ® 7). These two L-functions coincide,
as can be extracted from [26(b)]. The same applies to the e-factors.

Proof. First notice that it is enough to consider generic representations
7, 7. If , for example, is any irreducible representation, it may be realized
as the Langlands quotient of some representation 7, and 7 is induced from
an essentially square integrable representation of a Levi subgroup. Write
T = m X---X7,, where 7; is an essentially square integrable representation
of Gu,(F), if 7 is induced from the representation 7 ® --- ® 7, of the
corresponding Levi subgroup. We may write, analogously, 7 = 7, x - - - X 75.

We then have (26(b), §9])

L(s,7®7) = HL(s, Q1)
$.J

Analogous considerations apply to II, 7. Since, as we observed after Propo-
sition 6.8, this construction is compatible in an obvious way with base
change, we may deduce the identity (i) for 7, 7 from the analogous identity
for the factors L(s, 7; ® ;) and their lifts. (One also has to observe that, m;
being essentially square-integrable, its lift II; is essentially tempered and,
therefore, generic.)

The same argument applies to the e-factors. Therefore, we may assume
that =, 7 are essentially’square-integrable. Twisting by a character of the
determinant, we may even assume that w, 7 are square-integrable (i.e., in
addition, unitary). We first make the following simple remarks:

(6.8) The identity of L-functions (6.9(i)) is true for m, 7 unramified and
the extension E/F unramified. This is clear by the expression of the L-
functions in that case, cf. [27(a), §2].

(6.9) It is enough to consider the case of E/F cyclic of prime order £.
Indeed, (1) and (2) in Proposition 6.9 can be obtained by repeated lifting.

According to Bernstein and Zelevinsky [7b, 42], the square-integrable
representations of G,(F') are obtained as follows. Let n = ar, a,r € N. If
w is a unitary supercuspidal representation of G,(F'), let St(w,a) denote
the unique submodule of

. a=1 a=3 izg
indyey (@l 157, 0] | 57, 0] | 15),
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where M N is the parabolic subgroup of type (r,...,r). Then all square-
integrable representations are of this type, and St(w,a) is isomorphic to
St(w’,b) if and only if a = b, w = w’.

We will now need the following lemma, which is of interest in itself.
Let w be a supercuspidal representation of G.(F). Its lift Q to G.(E)
(Thm. 6.2) is o-discrete, and therefore Q is square-integrable or equal to
the induced representation I'xI'? x - - -x '~ where T is a square-integrable
representation of Gy(E) (t = %) and I' # I'’ (Lemma 2.8).

LEMMA 6.10: Let w be a supercuspidal representation of G,(F).

(i) Assume the lift Q of w is discrete. Then it is supercuspidal.

(ii) Assume w lifts to Q=T x --- x """ T discrete, T ¢ T°. Then T
is supercuspidal.

Proof.

(i) Assume Q is not supercuspidal. Then Q = St(A,c¢), for c|r, ¢ # 1,
and A a supercuspidal representation of G,;.(E). By the uniqueness of
the Bernstein-Zelevinsky classification, A = A. Let N be the unipotent
radical of the standard parabolic subgroup of G, of type (r/c,...,r/c).
Then, as is well-known [42], the (unnormalized) Jacquet module of Q for
Nis

QNZAI|C—I®AI|C-2®"'®A||1_C.

As the twisted character of A is not identically zero on the o-elliptic set, the
twisted Casselman theorem (Prop. 2.3) implies that the twisted character
of Q does not vanish on points g € G(E) such that N(g) = h € G,(F)
and N, = N. This contradicts the fact that the lift w of Q is cuspidal.

(ii) Assume T is not supercuspidal, and write I' = St(A,c) for ¢|(r/¢),
¢ # 1, and A supercuspidal. Since I' # ', A # A?. Set r = cfd: thus A
is a representation of G4(E). We have:

Q = ind§ v (SHA, ) ® - @ SHA™ " ¢))

where M is the standard Levi subgroup of type (dec,...,dc). We consider
the Jacquet module Qy,, where P, = M, N, is of type (d¥,...df). Note
that M, and M; both contain the Levi subgroup M3 of type (d,...,d),
and the representation I = I'® --- ® 7" of M, is a submodule of a
representation induced to M; from a supercuspidal representation of M3.

An easy extension of a theorem of Bernstein-Zelevinsky ([7b]; see also
[42]) and Casselman [10 a] then gives the following description of Qy,. Let
W = W(G,As) = S, be the Weyl group of (G, A3), where Az is the
split component of M3; then Ily,, a representation of M3, is isomorphic (in
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the Grothendieck group of representations of M3) to a sum indexed by the
subset W, 5 of W determined by the following conditions:

(a) wi<wj for all L,j€EL = [ke+1,...,(k+ 1),

k=0,...,6-1
() wli<wlj forall i,jeJ, = [r+1,...,(r+1)],
r=0,...,c—1.

These conditions are equivalent to

(A) w.Ny CN;3
(B) w! .Ny C N3

where w. denotes the action of w by conjugation.
For w € W 2, the corresponding constituent V,, of Qp, is equal to

s 1M
lndw.’}’;lan(w * H(W-I.NgnM1 ))

(here w™!. N2 N M; C N3 N M; is the unipotent radical of a parabolic
subgroup of M;, and we take the corresponding Jacquet modulet, a repre-
sentation of w™!. My N M;; composing this with Ad(w) yields a represen-
tation of My Nw. M, a Levi subgroup of M, N w. P;; finally, we induce
this representation to M, by unitary induction). Set N, = w=1Ny N M;.

Recall that I = St(A, ¢)®---®St(A° ™", ¢); A is a representation of Gy,
and the unipotent radical N, has blocks of length divisible by d. Using the
known formulas for the Jacquet modules of Steinberg representation [42],
we see that Iy, is a tensor product of representation of the blocks Ggq4, of
type St(A?”, y) for some integers z, y—at least up to an unramified twist
by some half integral power of |det|. Therefore V,, is induced to M> of a
representation of this type.

We are going to consider the twisted trace of Qy, and, therefore, we are
only interested in the V,, that have o-stable subquotients. Consider a block
Gae of Ma. Let £ =4y + --- + £, be a partition of ¢, and assume that

ind(St(A”™ 1) ® -+ ® SHA™" ,y,))

tHere the reader must beware of the following fact. In Casselman’s theorem (cf. Prop. 2.3),
unnormalized Jacquet modules are used; the Jacquet modules used in [42, 7(b)] are nor-

malized Jacquet modules, deduced form the unnormalized ones by a twist by 6;% where
P is the parabolic subgroup in question. The Jacquet module occurring here is normal-
ized. In the arguments that follow this distinction will be unimportant.
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where St(A°",y;) is a representation of Ga,(E), has a o-stable subquo-
tient. The fundamental disjointness theorem for representations induced
from supercuspidal ([7b, Thm. 2.0]; [10a]) easily implies that all conjugates
of A by the Galois group must be involved: therefore £; = 1, and the rep-
resentation must be equal to X = ind(A® A’ ® ---® A"l_l) (in fact, the
factors St(A°"*,y;) may be twisted by half-integral powers of |det|: this
does not change the argument).

Finally, considering M2 = Gg X --- X G, we see that any o-stable
subquotient of Qx, must occur in I| | ** @ --- @ X| | *= where the z; are
half-integers (note that X is irreducible since, up to a twist, it is induced
from a unitary representation).

We now notice that this can occur only for one element w € W) 5. Indeed,
by the preceding arguments, we see that w must send distinct elements of
I} into distinct intervals J,; by (a), we must have w(kc+ ©) € J;; by (b) we
have therefore J; = {wi,w(c+1),...,w((£—1)c+1i)}. But these conditions
completely determine w.

We have shown that the twisted trace of Qu, coincides with
the twisted trace—for the action of o canonically defined on the Jac-
quet module—of a unique representation | | ** ® --- ® X| | ¥, where
L =ind(A® - ®A°""). Since ¥ is o-discrete (A % A°), we know that
its twisted character does not vanish identically on the set of elements with
elliptic norms. We can now argue as in the proof of case (a) to show that
the twisted character of 2 does not vanish identically on elements whose
norm does not belong to the compact part of G,(F), which contradicts the
cuspidality of w. Lemma 6.10 is proved. i

We will now give the proof of Proposition 6.9 (i) using the following facts
about global L-functions. Let 7, 7 be cuspidal representation of Gy, (Ag),
Gm(Ag) where k is a number field. For v an infinite place of k, define
L(s,m, @1,) as the L-function of the tensor product representation of the
Weil group: it is a product of I'-factors. Set

L(s,7r®71) = HL(s,7r,, ® Ty).

Let #, 7 be the contragredient representations. Then the L-functions extend
meromorphically to the whole plane and satisfy a functional equation:

(6.10) L(s,7r@7)=¢€(s,7®@7)L(1 — 5,7 Q).



Local Results 65

Here €(s,7 ® 1) = [], (s, 7 ® 7,), the e-factors being defined above for
finite places and via the Langlands classification for infinite places; the
e-factor is 1 for almost all v.

This function equation is announced, but not completely proven, in
[26(a),(b)]. Let us assume it for the moment.

Now let k’/k be an extension of global fields, chosen as in §4. Specifically,
we assume that, at some place v of k, ki, /ky, is isomorphic to E/F, that
some finite places vy, ve split in k¥’ while another finite place vs remains
inert.

By the arguments for Lemma 6.5, we may choose cuspidal representations
7k, Tk of Gn(Ak), Gm(Ag) such that 7y, (resp. Tk y,) is isomorphic to 7
(resp. 7). We will first consider the case where 7, 7 are supercuspidal. We
assume that 7, (resp. 73;) is unramified at any place v ¢ {vo, v1,v2,v3}US, ,
where S, is the set of places v of F' dividing po, the prime divisor of vy,
and different from vg; we assume that vy, vy, vs do not divide p;. We may
further assume that all places in Sj_ split in E. Finally, for v € S; , we
assume that 7 is supercuspidal. By the arguments in §6.3, 7 and i then
lift to two cuspidal representations Iy, and Ty of the adélic groups over
k'. Consider the two L-functions:

Li(s) = L(s, M @ Tyr)

La(s) = H L(s,mc ® : ® 1),
n€E

which we consider as Euler products over the rational primes. By (6.8),
their Euler factors coincide at almost all primes. They both satisfy func-
tional equations of the usual type. We now apply the following well-known
principle, a precise version of which is given in Vignéras [41(b)]:
LEMMA 6.11: Assume given four L-functions Ly, L1, La, Lo given by Euler
products over the rational primes, including the real prime. Assume they
admit a meromorphic continuation to C and verify functional equations
Li(s) = ei(s) Li(1 — 5) (i = 1,2) with €;(s) = c;e**, ¢;,b; € C.

Assume that (a) the Euler factor of Ly (resp. L) is equal to that of Lo
(resp. La) at almost all primes.

(b) At a prime p we have

1 ~ 1
Ly ,(s) = I | —_— Li,8)=]||———
l,P( ) ; 1 —a}p"’ l,P( ) jH 1-— b}p"

with |a}| # plb}l for all i, j; the same applies to Ly, and Eg’p.
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Then the Euler factors of Ly and Lo coincide at p.

We apply this to Ly(s) and La(s), the functions Ly(s) and Ly(s) being
the ones figuring in equation (6.11) for L; and L. We need only check
condition (b). By Lemma 6.10, and our assertions on =, for v|py, the L-
functions occurring for all places of F or E over py are associated to pairs of
representations that are (unitary) supercuspidal, or unitarily induced from
such. By the results of Jacquet, Piatetski-Shapiro, Shalika [26(b)] (see
formula (6.11) below), the associated Euler factors are products of terms
(1 = x(@)g~*)~!, where ¢ is a power of py and |x(@)| = 1. In particular,
the reciprocal roots of the py-factor have absolute value one, whence (b).
By Lemma 6.11, we see that the pg-Euler factor of L; and L, coincide.
Since Ly (s) = La,(s), trivially, for v € Spo» We deduce that Ly, = Lay,,
proving Proposition 6.9(i) in the supercuspidal case.

To treat general discrete series representations, we will need to know how
generalized Steinberg representations behave under base change:

LEMMA 6.12: Let m = St(w, a) be a generalized Steinberg representation of
Gu(F), n=ar.

(i) Assume w lifts to a supercuspidal representation Q of G,(E). Then
7 lifts to II = St(Q, a).

(i) Assume w lifts to T? x -- - x 7", with T % I'? supercuspidal. Then
x lifts to

1

St(T,a) x St(T?,a) x --- x SHT°"~

,a).

Of course, Lemma 6.10 implies that the assumptions (i), (ii) are the only
two possibilities.

Proof. Consider first the case (i). We know that = lifts to a o-discrete
representation II. We first show that II is discrete (note that we can-
not use Proposition 6.6, which relies on the global results of Chapter III,
which will require Proposition 6.9!). Assume that II is not discrete, whence
I = St(A,c) x --- x St(A” " ¢) for n = cfd, A % A’ a supercuspidal
representation of G4(E). Consider the parabolic subgroup P, = MyN, of
type d, ...,df). The Jacquet module Iy, has been described in the proof
of Lemma 6.10(ii): its o-stable part is equal to X| | ®* x --- x | | ¥, where
T=AxA’x--xA” . In particular, its twisted trace is non-zero on
elliptic elements: the character identities then imply that 7n, # 0, whence
r|df. Moreover, my, is then, up to unramified twists, a tensor product of
representations of the blocks G4¢(F) of type St(w, %) ([42]) and therefore
St(w, %) would (again up to twists) lift to £. However, £ has clearly no
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o-stable Jacquet modules. Therefore we must have df = r, and X lifts w.
But this contradicts our assumption on w: therefore II is discrete.

Write, then, I = St(A,b) for n = bt, A supercuspidal. We must have
A = A?. If N is the unipotent radical of the parabolic subgroup P of type
(t,...,t), we have

Oy = A 10A|2@---0A

(uninormalized Jacquet module).Clearly this is o-stable, so by Proposi-
tion 2.3, A being o-discrete, the twisted character of I does not vanish iden-
tically on elements g € Gn(E) such that N'g € G,(F) satisfies Py, = P.

By the identities of characters and Casselman’s theorem for 7, we see
that my # 0. This implies that bja. If b < a, N is strictly contained in the
unipotent radical Ny of type (r,...,r). Since A is supercuspidal, Iy, = 0
while 7n, # 0; this contradicts again the identity of traces. Therefore a = b.
But now the identity of traces, and the twisted and non-twisted Casselman
theorems, are easily seen to imply that O,y o N' = ¢Ony o, at least on
elliptic elements, ¢ being a (non-zero) constant coming from the action on
the space of Iy of the normalized intertwining operator for II. Therefore
A lifts w, at least up to a constant and if we consider characters on elliptic
elements. If A is a (discrete) representation lifted by A, the orthogonality
relations (cf. proof of Prop. 6.6) imply that A £ w ® n for some € E,
whence the result.

We now consider case (ii). We first show that II, the lift of =, is not
discrete. Assume it were. Write I = St(A,b) with A a supercuspidal
representation of Gy(E), n = bt, A = A°. Then, if N is the unipotent
radical of type (¢,...,t), we have Iy = A| | > ' ® A||*2®---® A. The
identity of characters then implies that 7,y # 0, whence b|a. Moreover (up
to a twist) A lifts the Jacquet module St(w, ). Since the Jacquet modules
of A are null, this implies that a = b, and A lifts w. But this contradicts
our assumption on w.

Therefore = lifts to II; x II{ x --- x II{'_1 with II, discrete, IT; % II9.
Set II; = St(A,b) with A supercuspidal, A £ A?. Let P = MN be
the parabolic subgroup of type (¢,...,t) where n = bt. In the proof of
Lemma 6.10(ii) we showed that the only o-stable subquotient of Iy is the
module

e ?e---0F,

where 5= A x A% x --- x A®" (in fact, we did not compute the precise
unramified twists of £ that occur: but this is easily deduced from Frobenius
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reciprocity). Now the identity of characters implies, in the usual manner,
that mnx # 0, whence b|a.

Now we show that b = a. Indeed, A x A% x --- X A°"" has no o-stable
(non-trivial) Jacquet modules. Assume b < a, whence r < t, and consider
the unipotent radical N; of type (r,...,r) in G;. Then Ily, has a vanishing
twisted trace, whereas the corresponding Jacquet module for 7 is non-zero,
and in fact square-integrable. This contradicts again the equality of traces.

Therefore, b = a, II; = St(A, a). We must show that A = T'. Considering
the o-stable part £| [ *~!®---® X of Iy, we easily deduce that the twisted
character of £ = A x --- x A% is equal, on the elliptic norms, to the
character of w composed with A, up to a non-zero constant. We finish the
proof as in (i). il

We now finish the proof of Proposition 6.9(1). We assume that =, 7
are square-integrable. Write 7 = St(w,a) for w supercuspidal, n = ar.
Similarly, let 7 = St(8,b), m = bt.

Under these assumptions, the local L-function L(s, 7 ® 7) has been com-
puted by Jacquet, Piatetski-Shapiro and Shalika. Their result is as follows
([26(b), Prop. 8.1 and Thm. 8.2]):

(i) Consider the supercuspidal representations w, § of G.(F), Gi(F).
Then

(6.11) L(s,w®6) = [J(1 - x(@)g~*)
X

where the product ranges over all unramified characters x of F X such that
TQ®X = 6, 6 being the contragredient of 8. In particular, if L(s,w ®§) # 1,
we have r = t.

(ii) Let # = St(w,a) and 7 = St(6,b). Then
(6.12) L(s,7®7)=1 unless r=t.

(i) If r =t, assume m < n. Then

a+b

b
(6.13) Ls,r@1)=[[L(s +

i=1

-1-i,w®}id).
In proving Proposition 6.9(i), we now distinguish between cases (i) and

(i1) occurring in Lema 6.10. The identity to be proved is

(6.14) Ls,0xT) = [[ L(s,r®T®n).
neEE
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Using Lemmas 6.10 and 6.12, Proposition 6.9(i) for # and 7 can now
be deduced from the supercuspidal case. For instance, assume that w, 6
lift to supercuspidal Q, A (case (i) of Lemma 6.10). Then =, 7 lift to
St(R2,a) and St(A,b) and (6.12) and (6.13) reduce the identity (6.14) to
the supercuspidal case. The two other cases are analogous.

To avoid using the unpublished results announced in [26(a),(b)], we rely
on Shahidi’s work. Let S be a finite set of places of k containing all the
ramified places for k'/k, mr, 7 and the Archimedian places. If ¢, denotes
a non-trivial character of k, (v € S), Shahidi defines in [36(b)] local coeffi-
cients C(s,%y, T,y X Tk,v) (... denoted there by Cy, (s, 7 X Tk,y) Where
Xv is the non-degenerate character of the upper nilpotent group defined by
%y). Now assume % is a character of Ag; choose S so that v, is unramified
for v ¢ S. Then, writing L5 for the Euler product outside S:

(6.15) LS(s,m, @) = (H C(s, %, Ty X 'rk,,,)) L5(1-5,% ®F)
vES

([36(b), Thm. 4.1]). Moreover, it is shown in [36(d),(e)] that these local

coefficients at the p-adic and real places of S are equal to the corresponding

v-factors. Therefore, equation (6.15) implies the functional equation 6.10.

The proof of Proposition 6.9(1) is complete.

To prove the identity of e-factors, we choose a global extension k'/k of
number fields as in §4. Specifically, we assume that, at some place vy of
k, k¥'/k is isomorphic to E/F, and that some places vy, v; split in k’. We
assume moreover that k'/k splits at all infinite places. As in Lemma 6.5, we
may find a cuspidal representation 7 of G,(Ax) such that =, is a given
supercuspidal representation of G (ky,), Tk, = 7, and 7y, is unramified
for finite v ¢ {vo,v1,v2}. The identity of traces then yields a cuspidal
representation mis of G, (Ay) verifying the identity (6.2):

£ trace(m(p)1,) = Z trace 7 (f)

for associated functions ¢, f. The sum on the right runs over all 7’ twisted
from 7 by a power of the class field character associated to k'/k.

This identity implies that each local component of 7 lifts to the corre-
sponding component of 7x—a priori up to a scalar, but this scalar must
be equal to 1 since the local lifting has already been proven for generic
representations, and twisted characters are linearly independent (note that
this implies that there are £ terms on the right: this will also follow from
the global results of Chapter III).
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The same construction can be applied to 7 = 7 ,. Let ¥ = @1, be
v

a non-degenerate character of A, and ¥’ = 4 o traceg/x the associated
character of Ay,. We may assume that 1, is the non-degenerate character
YF we consider. We now have equations

(6.15) HL(s, TQT®N) = H[e(s, TQ®TQ®n)L(l-57Q7Qn))]

where for simplicity we write 7 for m¢, 7 for 7 ... (the representation of
local groups we consider are then my = m,, and 79 = 7,). Analogously,
(6.16) L(s,I®T) =¢(s,M@T)L(1 -5, ®T).

By Proposition 6.9(i), we know that the L-functions figuring on the two
sides of (6.15) and (6.16) are equal at all places (at the Archimedian primes,
it is clear since the extension splits). Therefore

(6.17) He(s,1r®r®n) =¢(s,IQT).
n
We now write the e-factors as products; for example,

s, 7@7) = He(s, Ty @ Ty, Py)-

We now remark:

LEMMA 6.13: Assume v = vy.
(i) Ifv is inert,

e(s, T, ® Ty, %) = Ak, /by, %) "™ [ [ (5,7 ® 70 ® 1, %)
n

(i) If v is split,
6(8, 1, ®Tv;¢ql;) = 5(3) Ty @ Tua¢v)t~

Proof. Part (ii) is trivial. For (i), note that v is non-archimedian and all
representations are unramified. Therefore the e-factors are just products of
e-factors associated to characters; the identity in that case is just (6.7). i

We now use the obvious product formula for the A-factors:
IT ME /Ry, 0) =1
v inert
which again follows directly from their definition (6.7). Now dividing
the right-hand side by [], inert A(k4/kv, %)™ and using the equations of

Lemma 6.13 at the places v # v, we are left with the identity of Proposi-
tion 6.9(ii). i
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7. Archimedean case

In this paragraph, we will rapidly treat the case of Archimedean fields:
thus the only interesting case is the extension C/R, further extensions
being treated by the methods of §5. The local base change results have
been proved in that case by Shintani and Repka [30]; we will only refer
to them, and also to [11(a)] when necessary. We want here to prove the
results about the Paley-Wiener Theorem and orbital integrals which will
be needed for the trace formula. Let o be the generator of Gal(C/R.).

Recall the parametrization of the generalized principal series of GL(n,R)
([30(b)], [10(d)]). Set n = 2n3 + ny; let xi(i = 1,...n3) be ramified char-
acters of C* (so that x;(2) # xi(2)) and let §;(j = 1,...n;) be characters
of R*. By the Langlands classification, x; defines a discrete series repre-
sentation 7(x;) of GL(2,R); we have n(xi) = n(x{) where x{(z) = xi(2).
Let P = M N be the standard parabolic subgroup with ny 2-blocks and n;
1-blocks. We write m(x1,Xx2,..-&1,...€n,) for the representation induced
from 7(x1) @ -+ ® ®(Xn,) ®€1® -+ ® €n, : it is a generalized principal
series representation of GL(n,R). All generalized principal series are of
this form, and the isomorphisms between them are the obvious ones.

It will be convenient to parametrize them by “discrete” and “continuous”
parameters: we may write

xi(z) =2*(2)!, p-q€Z—-{0}, p+q=s€C
&j(x) = (sgnz) - |z|*, s; € C.

Then (s1,...5n,4n,) € C"2*™ 2 a},. The Weyl group of M, Wy, acts
on ay as &,, x G,,,.

The o-stable lifts of these representations are the representations induced
from the Borel subgroup B(C) :

H(XI’XZ)“'gls" ~En1) = indggg;(lexg)XZaxg)"')61 ON) "'6131 ON)

where N = N¢/r. (They are obviously o-stable.) The lifting thus ob-
tained coincides, via the Langlands classification, with restriction on the
Weil group side [11(a)]. We remark that the base change identities extend
to all values (tempered or not) of the parameters provided we consider the
full induced representations and not their Langlands quotients.

We wish to remark on the normalization of intertwining operators. In
[11(a)], operators A, are defined, using Vogan’s theory; they introduce a
sign (M), equal with our data to (—1)"2, in the Shintani formulas. On
the other hand, we may define I, as in §2; using the trace formula as in §6,
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one can see that the Shintani formulas hold without a sign for the I,. In
what follows we use the operators I,.

We will call o-stable data the data parametrizing the o-stable generalized
principal series. Since §;0 N does not depend on the sign of §;, we will write
o-stable data in the form (xi,...Xn;,&1,...&n,) Where x; is a ramified
character and §; is now just an element of C. Thus &;(2) = |Nz|*', s; € C.

We will first prove, for twisted representations, the analogue of the Paley—
Wiener Theorem of [12(a)]. We assume familiarity with the results of this
paper. The proof in our case is analogous and will only be sketched. Let K¢
be a maximal compact subgroup of G(C), stable by ¢ — e.g. K¢ = U(n);
let C®(G(C), K¢) denote the smooth functions, K¢-finite on both sides.

Again, the o-stable representations are parametrized by “discrete” and
“continuous” parameters, the latter being parametrized by the spaces a,s

for cuspidal parabolic subgroups.
PROPOSITION 7.1: Assume given scalar-valued functions on the set of o-

stable data:

(X’E) = (Xl)XZ: .. -Xng:£1:£2) .. -fn;) = F(Xré) €C.
Then there is a function ¢ € C°(G(C), Kc) such that

F(x,§) = trace(ll(x, €)15)

for all x,€ if and only if
(i) F(x,€) has finite support in the discrete data.
(i) The function on ap :

nat
(sl,...s,,,+,,l) =F(X1 | I.’(:ly--'fmlllgc2 ”1)

ts of Paley—-Wiener type on ays.
(i4i) For w € Wy = 6, x &, -

F(w(x,£)) = F(x,£).

Proof. The fact that the traces of ¢ € C°(G(C), Kc) satisfy (1)—(iii) is
straightforward ([12(a), §2]). We prove the converse. The same argument as
in [12(a), §2] reduces the proof to an assertion concerning only one “series”
of representations at a time, the analogue of Proposition 1 in [12(a)]. The
“discrete” part of x; is expressed by p; — ¢; = r;. We may assume that
r; > 0. Let x° be the character of (C*)" :

(21, ...20) ((zl/'i?)%,(zl/z_l)'%,.‘.,(zn,/?;:;r:'?,l,...l).
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For s € a},, we may then consider the character x° ® s defined in the
obvious manner. It yields, by induction, a o-stable representation.

LEMMA T7.2: Let u be the minimal Kc-type in the induced representation
Nx°®s) = indgggg(xo ® ). Let F(s) be a function of Paley-Wiener type
on a},. Assume F(s) is invariant by (War)yo, the stabilizer of x° in Wyy.
Then there ezists ¢ € C°(G(C), Kc), transforming under p on the right
and left, such that F(s) = trace(II(x° ® 5)(¢)1,)-

Here Wy = 6, x G, acts in the obvious way on the discrete parameters.

Proof. Note that I, preserves the space of y; since u has multiplicity 1, a
function ¢ of type (i, ) acts there as a scalar, and therefore the twisted
trace coincides with the ordinary trace.

Now let ag be the vector space associated to B(C) : thus ag = C™. The
stabilizer of the character x° of the compact part of (C*)” in W = W(ao) =
G,, is then isomorphic to

(6"‘1)2 X (6m2)2 XX (67711:)2 X Gfu)

with m; + my + --- 4+ mp = na, and m; is the multiplicity of a given
ramified character (z;/Z)"/2 in the ramified part of x°. (Note that the
ramified characters occur by pairs.) By Proposition 1 of [12(a)], we know
that any Paley—Wiener function on ag, invariant by W,o, is the value on
the minimal Kc-type of a function ¢. Thus, to prove Lemma 7.2, it suffices
(using Lemmas 7 and 8 of [12(a)]) to check that the restriction map:

S(a)™sn — S(azg) oo
is onto. In our case this is easily checked (see also [12(b), Theorem 2.2]). i
With this the proof of Proposition 7.1 is complete. il

We can now use the Paley—-Wiener Theorem to compare orbital inte-
grals. Recall from §3 the definition of associated functions: they satisfy the
conditions of Proposition 3.1(i). Let Kr be maximal compact in G(R).

LEMMA 7.3:

(i) Assume ¢ € CP(G(C),Kc). Then there is f € C°(G(R), Kr)
associated to ¢.

(ii) Conversely, if f € C°(G(R), Kr) has vanishing orbital integrals on
the regular elements not in the image of N, there is ¢ associated to f.

Proof. We use the methods of [12(a), Appendix]. Assume ¢ given. Then
its twisted traces satisfy the conditions of Proposition 7.1. Therefore there
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is (by the ordinary Paley-Wiener Theorem for GL(n,R)) f € C°(G(R)),
Kng-finite, such that

trace(Il(¢)I,) = trace 7(f)

when II lifts = and both are generalized principal series.
By a theorem of Shelstad ([38(b), Corollary 4.5.2]) we know that there is
a function f* in the Schwartz space of G(R) with orbital integrals matching
those of ¢. But then, by the Weyl integration formula and the identities of
characters,
trace(II(¢)I,) = trace =(f*)

for tempered w. Thus f and f* have the same traces in tempered repre-
sentations, and therefore the same orbital integrals. This proves (i).

Conversely, assume f given. The vanishing condition on the orbital inte-
grals implies that trace x(f) = trace «'(f) if x, #’ lift to the same II, since
then trace r and tracen’ differ only on elements not in NG(C). Then the
assignment II +— x(II) — (trace x(IT), f) defines a family of functions on
o-stable II as in Proposition 7.1; thus there is a ¢ such that

trace(IL(¢)I,) = trace 7(f)

for 7 associated to II. By part (i) of the lemma, there is a function f* €
CZ(G(R), Kr) associated to ¢; then we have

trace 7(f) = trace 7(f*)

for any 7, so f and f* have the same orbital integrals. This proves (ii). il
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The Global Comparison

1. Preliminary remarks

The goal of Chapter 2 is a full comparison of trace formulas. The imme-
diate purpose of this is to extract global information about automorphic
representations. Along the way, we shall also gain some insight into the
rather mysterious local objects which appear in the general trace formula.

We shall treat the problems of base change and inner twisting simultane-
ously. For this reason it will be convenient to revert to the notation of the
introduction, which is more streamlined for dealing with the general trace
formula. For example, we will be letting G stand for a connected com-
ponent of an algebraic group, while G’ will denote the endoscopic group
GL(n). The norm map and the local correspondence of functions will be
written ¥ — 9’ and f — f’ respectively, instead of § — v and ¢ — f as
in Chapter 1. It will also be useful to make the distinction between a well-
defined function, such as f, and a function such as f’ which is determined
only by its characters or orbital integrals. In this paragraph we outline our
assumptions and notation for G in some detail. We shall also recapitulate
the local results, established for base change in Chapter 1 and for inner
twistings in [15].

Let G be a connected component of a reductive algebraic group. We
assume that G is defined over a number field F', and that G(F) is not
empty. We shall write Gt for the reductive group generated by G, and
G for the identity component of G*. Let Mj be a fixed minimal Levi
subgroup of G, defined over F, and let £ denote the finite collection of
Levi subsets M of G such that M° contains My. We shall routinely adopt
the notation of Sections 1 and 2 of [1(e)]. In particular, for any M € L, we
have the lattice X(M)F of rational characters of M, and the real vector
space

arp = HOIII(X(M)F, R)

We also have various other objects, such as LM, L(M),P(M) and Ap,
which were defined in §1 of [1(e)].
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As always, GL(n) stands for the general linear group of rank n over F.
Fix a positive integer £. As a simple example, consider the component

G* = (GL(n) x - -- x GL(n)) x6",

L

where 8* is the permutation
(1,...,0) = (2,...,4,1).

Then (G*)* is the semi-direct product of £ copies of GL(n) with the cyclic
group of order £ generated by #*. Our fundamental assumption on G is
that it is an inner twist of G*. In other words, there is a morphism

7:G—-G",

which extends to an isomorphism from G* onto (G*)*, such that for every
o € Gal(F/F), n~'7° equals a conjugation by an element in Gt. We
shall let E denote the smallest extension of F' over which the image of this
cocycle in Gt /G° splits. Then E is a cyclic extension of F whose degree
is a divisor of £. We can choose 7 so that n(M,) contains the standard
minimal Levi subgroup of (G*)?, and so that the restriction of 7 to Ay, is
defined over F. Fix such an 7, and set § = n~1(¢*). Then

G=G"x09.
Set
G' = GL(n)

and embed G’ diagonally in (G*)°. We shall write £’ for the set of Levi
subgroups of G’ which contain the group of diagonal matrices. The map

M= Ml = {m/ € ﬂ(MO) . (0#)—lmlot — m/}’ Me E,

is then an injection of £ into £’'. If v is any element in G, the centralizer of
v in G is connected. As in §2 of [1(e)], we shall denote it by G,. Observe
that in this notation,

n:Gy — G' =G
is an inner twist.

The norm map may be described as follows. If {y} is a G°(F)-orbit in
G(F), the intersection of {(7)¢} with G'(F) is a G'(F)-conjugacy class. We
shall write 4’ to denote this G’(F')-conjugacy class, or by abuse of notation,
for an element in the class. Suppose that o is a semisimple element in G.
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The centralizer G, of o in G° is the group of units in a product of central
simple algebras over F'. Given 7 and o, there is a canonical inner twist

M : Go — Gy,

which is uniquely determined up to G'(F')-conjugacy. We shall let g — p,
denote the associated map from conjugacy classes in G,(F') to conjugacy
classes in G.,,(F). One checks easily that

(L1) (on) = 'utiy,  WEG(F).

Suppose that S is a finite set of valuations of F. Then similar remarks
apply if ¥ and ¢ are points in

G(Fs) = [[ G(F).
vES
The local results of Chapter 1 could probably be established for the
group G*(F,). However, they are more limited as they stand, and we must
impose an additional condition on G. We shall assume that the image of
the cocycle 7719 is contained in either (G*)° or the group generated by
0*. In the first instance

G(F) = (4"(F) x - x A*(F)) %6,

L

where A is a central simple algebra of degree n over F. This is essentially
the case of inner twisting of GL(n), studied in [15]. In the second case,
G(F) = (GL(n,E) x --- x GL(n, E)) x0%,

—

4

where if o is a generator of Gal(E/F), 6} is the cyclic permutation of order
£y = Ldeg(E/F)!
given by
(91, LR ;glx) - (921 v ’glua'gl)'

This is the base change situation considered in Chapter 1. (The cyclic
permutations 0 and 6* here are of no consequence. The reader, if so
inclined, could eliminate them by making the further assumption that
deg(E/F) = £.) In what follows, we will generally not refer explicitly to

the additional condition on . Indeed, most of the techniques of Chapter
2 apply to the more general setting.
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Suppose that S is a finite set of valuations of F. In §1.2 we used the
theory of Whittaker models to extend any irreducible, ad(#)-invariant rep-
resentation 70 of G’(Fs) in a canonical way to an irreducible representation
7 of Gt (Fs). Let II*(G(Fs)) be the set of (equivalence classes of) irre-
ducible representations of G*(F’s) obtained in this way. Let I, (G(Fs))
and I}, (G(Fs)) be the subsets of II*(G(Fs)) which are respectively tem-
pered and unitary. The local correspondence of representations can be
described as an injection 7 — II'(r) from II*(G(Fs)) onto a collection of
finite disjoint subsets of II(G'(Fs)) which is dual to the map v — v'. (We
suppress the superscript + in denoting sets of representations of G'(Fys).)
To describe the associated character identity, set

€s = H €y,
vES

where e, = €,(Gy) is the sign associated to the group Gy by Kottwitz
[29(b)]. (Recall that if v is nonArchimedean,

CV(GO) = (—1)"v(G‘)"TV(G’) - (_1)Tv(Gg)—n’
where r,(Gy) is the F,-split rank of Gy; if v is Archimedean,
eo(Go) = (=1)3(®:(G)=0(GD),

where ¢, (Gy) is the dimension of the symmetric space associated to Gg(F, ).
It is clear that es remains unchanged if it is defined with respect to an
element M € L instead of G.) The character ©, of any representation
7 € I, (G(Fs)) then satisfies

(12) Ox(7) = es0x:(7')

for any ' € I'(r) and any 7 € Greg(Fs), the set of regular elements in
G(Fs). For if G = G°, the sets II'(r) each contain one element. The
correspondence is just the injection from the representations of a central
simple algebra to those of GL(n). (See [15].) In the base change situation,
the sets II'(7) consist of the representations of G’(Fs) which lift to a given
representation 7. (See §1.6.) In this case es equals 1, and II(G'(Fs)) is the
disjoint union of the sets II'(x).

We can also introduce the set £+(G(Fs)) of standard representations.
Recall first that if M € £ and = € I*(M(Fs)), we can form the induced
representation

Ip(r) =I§(n) =I§i (), P eP(M).
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It is often denoted simply by 7¢. More generally, for each valuation v,
let £, O L be the finite collection of Levi subsets defined over F, which
contain a chosen minimal one, and consider representations of the form

Q& m e TH(M(F,)), M, € L.

vES
Then +(G(Fs)) is the set of all such representations for which each =, is
tempered modulo Ay, (F,). By analytic continuation from the tempered
case, we obtain an injection p — ¥'(p) from T+(G(Fs)) to a collection of
finite disjoint subsets of £(G’(Fs)) for which the character identity above
holds. The reader is reminded, however, that the character identity does
not hold for arbitary representations = € II'*(G(Fs)). We will look at this
difficulty more closely in §8, where we will introduce a substitute for the
character identity (Proposition 8.2) that applies in general.

As always, A = Ap denotes the adéle ring of F. Let K = [] K, and

v
K’ = [] K}, be maximal compact subgroups of G°(A) and G'(A), endowed

v
with the usual properties. In particular, it is understood that K’ is the
standard maximal compact subgroup of G’(A) = GL(n, A), that K is -
stable, and that K, is the fixed point set of §* in (K, ) for any unramified
place v. Having chosen K, we can form the Hecke space H(G(Fs)) of
smooth, compactly supported functions on G(Fs) which are finite under
Ks =[] K,.

For any f € H(G(Fs)) and M € £, we set
fu(m) = e (xC(f)) = te(Zp(n, f)), =€ ML, (M(Fs)), P €P(M).

Consider the case that M = G. The trace Paley-Wiener Theorem (Propo-
sition 1.7.1, [12(a)], [33(c)], [6]) holds in all cases under consideration, and
this allows us to characterize the image space

I(G(Fs)) = {fe : f € H(G(Fs))}

of functions on &, ,(G(Fs)). (See §1 of [1(g)].) Now, suppose that 8 is a
continuous linear map from H(G(Fs)) to another topological vector space
V. Recall that 6 is supported on characters if it vanishes on any function f
with f¢ = 0. For example, the map f — fa from H(G(F5s)) to T(M(Fs))
has this property. It factors through a map ¢ — ¢ from Z(G(Fs)) to
I(M(Fs)). In general, if 6 is supported on characters, there is a unique
continuous map

6 :I(G(Fs)) -V
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such that
0(fe) =0(f),  fe€H(G(Fs)).

In the papers [1(g)] and [1(h)], it was established that the various invariant
distributions and maps obtained from the trace formula for G were all
supported on characters. We shall use this fact repeatedly throughout
Chapter 2.

The basic invariant distributions are of course the (invariant) orbital
integrals. In this chapter it will be convenient to follow the conventions of
[1(e)], and to normalize them with the discriminant

D(y) = D%(y) = det(1 — Ad(7))g,» 7Y €G-

Here, o is the semisimple component of y while g and g, are the Lie algebras

of G% and G,.
LEMMA 1.1: Supposeé that v € G is semisimple. Then
D(y) = €™ DY ().

Proof. The function D%(7) depends only on the conjugacy class of Ad(y)
in the general linear group of g. We may therefore assume that

G =G" = (GL(n) x - -- x GL(n)) x 8",

and that the isomorphism 7 is the identity. Replacing ¥ by a G%conjugate
if necessary, we may also assume that

y=1(61,...,1) x 6%, v € GL(n),
and
Y =(...,96).

Then g, equals g/,. If hs denotes the Lie algebra of GL(n)s, each of these
will equal the diagonal subalgbra of

gy =hs® - Dbhs.
N, e
L

In particular, we can write
DC(y) = det(1 — Ad(Y))g/g,, - det(1 — Ad(0*))g_, /g, -

It is a simple exercise in linear algebra, which we leave to the reader, to
show that

det(1 — Ad(7))u/n,r = det(1 - Ad(')”))a'/a,/ = DG’('Y/)



The Global Comparison 81

and
det(1 — Ad(6"))g.,/g, = £2™ .

The lemma follows. §
Suppose that ¥ = [] 7, is an arbitrary point in G(Fs), with Jordan
vES

y=ou= Ha.,uu.

veES

decomposition

Since G, is the multiplicative group of a product of central simple algebras,
the unipotent element u, € G,, is contained in the Richardson orbit of a
parabolic subgroup

Py, = M;,N,,

of G,,. We shall write A, for the F,-split component of M, . It is a
simple consequence of the definition of P, that

dim(G,,) = dim(M,).

Define
AS(y) = JT AS(n) = TT (1443 9™ ™ S (),

vES vES
where, as in Chapter 1,

(1) = e(Go,) = e(M,,)
is the sign introduced by Kottwitz [29(b)]. In the special case that v is

semisimple, we set

) =ID°WF [ feivede £ EHGES),
G(Fs)\G°(Fs)
where |D(y)| = H |D(7v)|v and Gy(Fs) = H G,,(Fy). Once defined for
veS
semisimple v, the distribution is determmed in the general case by a limit
(1.3) Is(y,f) = limIg(oa,f),  a€ []As.(F).
vEeS
Observe that if a is a small regular point in [] A,, (Fy), then
v

Goa(FS) = H Mﬂ,,(Fv)'

vES
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The distribution I¢ () depends implicitly on a choice of Haar measure on
this group as well as one on G°(Fs). We use the inner twist 7, to transfer
the former to a Haar measure on

Gloay (Fs) = [ Moy (F.).
vES
Combined with a fixed Haar measure on G'(Fs), it allows us to define the
distribution Ig:(y’) on G'(Fs).
We shall write
fofe=f

for the map from H(G(Fs)) to Z(G'(Fs)) constructed in [15] and Chapter
1 by transferring orbital integrals. We claim that

(1.4) Ie(1, f) =AS()ia (Y, f),  7€G(Fs).

If v is semisimple, this follows from Lemma 1.1 and Lemma 1.3.6. If v is
arbitrary, the formula follows from the semisimple case, the formula (1.3)
and the definition of AS(y). (See Corollary 1.3.13.) Consider the special
case that v is G-regular. Then the sign ¢%(7) equals 1, and (1.4) becomes

IG(’Y, f) = (H '£l3/2) jG'(7l’f,)'

vES
We combine this formula with the character identity (1.2) and the Weyl
integration formula. In stating the Weyl integation formula in 1.4, we used
a Haar measure on the torus

G;L(Fv)) v GS,

distinct from that obtained from G, (F,) under 7,,. The discrepancy be-
tween the two measures is just the factor |£|:,'/ 2 It follows that

15)  tra(f)=esf(x'),  7€NML,(G(Fs)),n' € I'(m),

for any f € H(G(Fs)).

Bear in mind that (1.4) and (1.5) both come with supplementary van-
ishing properties. If { is an element in G'(Fs) which is not of the form v/,
vy € G(Fs), then fg:((,f’) = 0. If 7 is a representation in Hiemp(G’'(Fs))
which does not belong to one of the image sets II'(x), then f'(7') = 0. In
particular, the map f — f’ is supported on characters. It follows that if

0 : H(G'(Fs)) = V'

is any map which is supported on characters, then the map f — g’ f)
from H(G(Fs)) to V' is also supported on characters. We will apply this
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later, without further comment, to the invariant distributions in the trace
formula for G'.

There is a related point on measures that we should address. Fix a Eu-
clidean norm | -|| on the space ap, which is invariant under
Wo = W§, the Weyl group of (G° Ap,). We then take the associated
Euclidean measures on each of the spaces aps, M € L. The measure on
ap together with a given invariant measure on M(A) then provides an
invariant measure on the space M(A)!. (Recall that M(A)! is the kernel
of the usual map

HM : M(A) — aM.)
Observe that the map which sends any x € X (M)F to the rational character
m —x(n7'(m), m'eM,
gives an injection of X (M) into X(M')r. The dual map
ay = Hom(X(M')p,R) — Hom(X(M)F,R) = ay

is an isomorphism, and we use it to identify the real vector spaces azs and
apr. With this identification, we transfer the Euclidean measure from as
to one on ay. Since M’(A)! is the kernel of the map

Hpyp : M'(A) — apyp,

we can then associate a Haar measure on M’(A)! to one on M'(A).

For each M € L, we have just identified the spaces ap and aps in a
certain way. The norm provides a second natural isomorphism between the
two spaces. Consider the map from aps to ape = aps defined by

H - H' =(H, H € ay.
Then one can check that
(1.6) Hy(m) = Hy:(m'),  m € M(Fs).

Let
A= M =1, A€ “i{,c,

be the adjoint map. If 7 € I*(M(Fs)) and X € a}; ¢, the representation
m(m) = w(m)erHM(m) m € M*(Fs),

also belongs to II*(M(Fs)). Suppose that 7’ is a representation in II'(7).

It is then a direct consequence of (1.6) that the representation ), belongs
to II'(m»).
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We shall say that a finite set S of valuations of F has the closure property
if for each M € L,

aMm,s = {HM(m) ‘me M+(F5)}

is a closed subgroup of aps. If S contains any Archimedean place, it au-
tomatically has the closure property. If not, S has the closure property if
and only if it contains only valuations which divide a fixed rational prime.
Assume that S does have the closure property. We define

ia}‘u,s = ia]‘u/iHom(aM,s, Z)

This abelian group has a natural measure d, which is obtained from the
Euclidean measure on ia}, dual to our measure on aps. It is convenient to
identify any ¢ € Z(M(Fs)) with the function

é(r, X) = / B(r3)e ®d), 1 € W (M(Fs)), X € aprs.
8y s

In a similar way, we identify Z(M'(Fs)) with a space of functions on
O mp(M'(Fs)) x ap,s. If ¢ belongs to Z(M(Fys)), define
¢/(7l",X') = E'(di“‘AM)esd)(w,X),
7€ It (M(Fs)), X € ap,s,7' € (7).
By defining ¢’ to be zero on the remaining points in Myemp(M’(Fs)) X ap,s,
we obtain a function in Z(M'(Fs)). This is compatible with our earlier

definition. For suppose that ¢ = hps for some function h € H(M(Fys)).
Then

(1.7)

¢ (7', X') = £~WimAM)eog(x, X)
= g~ (@imAnm)e o / tr(ma(h))e~MX)d)
%,
= e@mang [ (@) @i
ia“w,s
= ¢~(dim Ax) / K () )e > Xd.
i85

Since £~(dim Am)d) equals d)/, we obtain

&' X'y = / B (wh)e= > Xy,

{a®
‘uM,S
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In other words, ¢’ is the function on Hiemp(M’(Fs)) X apr,s which is iden-
tified with A’.

It is clear that we can define the spaces H(G(A)), Z(G(A)) and the sets
I*(G(A)), I+ (G(A)?), etc., as above. If 7 belongs to L, ,(G(A)), the
obvious analogue of (1.5) holds. However, if = belongs to II{,,(G(A)"),
the right-hand side of (1.5) must be multiplied by £. This is because of our
choice of Haar measure on G’(A)!. On the other hand, our Haar measures
are compatible with various earlier formulas of descent. (See for example
Remark 1 following Theorem 8.2 of [1(d)].) As an exercise in such things,
the reader could try comparing the Poisson summation formula for the
F-idéles of norm 1 with its twisted analogue for E.
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2. Normalization factors and the trace formula

Our tool for the global comparison is the full trace formula, for which
the main references are [1(g)] and [1(h)]. The trace formula is in invariant
form, and its terms depend on a normalization of the intertwining operators
between induced representations. Since we are going to compare the trace
formulas for G and G’, we shall want to choose the normalization for these
two groups in a compatible way.

Let S be a finite set of valuations with the closure property. Fix an
element M € £ and a representation = = ® my in 1Y (M (Fs)). Associated

to parabolic subsets P and Q in P(M) there are intertwining operators

Jqip(mh), A€ QR{,C’

between the induced representations Zp(mx) and Zg(my). Each of these
is defined by an integral over Ng(Fs) N N5(Fs), and so depends upon a
choice of Haar measure on this group. In order to put the trace formula
into invariant form, it is necessary to define meromorphic scalar valued
functions

(21) 1‘Q|p(7l')\) = H ra(ﬂ',’\(av))x A€ a;ll,C’
a€ZqnIy

so that the normalized operators

Rqip(m) = rqip(m) " Jqip(m)

satisfy the conditions of Theorem 2.1 of [1(f)]. Here Xp denotes the set of
roots « of (P, Ap), and for each «,

ro(m,8) = H ro(Ty, s), s€C,
vES
is a meromorphic function of one complex variable. In [1(f)] we saw that
such normalizing factors could be chosen for any group. However, to show
that this can be done in a compatible way for G and G’, we must use the
more precise results of Shahidi.

The intertwining operators and the normalizing factors are given by prod-
ucts over v € S, so we can work with a given valuation. For the moment,
then, we shall suppose that S consists of a single valuation v. Let v, be a
fixed nontrivial additive character on F,. We shall consider first the spe-
cial case that G = G' = GL(n). To define the normalizing factors, it is
enough to define the function r,(w,s) for any root a of (G, Ap) and any
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x € I(M(F,)). There is an isomorphism

,
M =TI GL(),
i=1
where (ny,...,n,) is a partition of n. The root « is associated to an ordered

pair (p,q) of distinct integers between 1 and r, and 7 corresponds to a
representation

L X -+ X Ty, m; € I(GL(ny, Fy)).
If 7 is tempered, define
(2.2)  ralm,s) = L(s,mp ® #,)e(s,Tp @ Tg, %) "1 L(s + 1,7, ® 7).
Then r,(m, s) is a meromorphic function of s with the the property that
ra(mr,8) = ro(mA(a¥) +5), A €iay,.

By meromorphic continuation in A the definition can then be extended to
standard representations. Finally, if = is an arbitrary representation in
I+ (M(F,)), let p be the standard representation of which 7 is the Lang-
lands quotient, and set
ro(m, 8) = ralp, s).

It follows from the results of Shahidi [36(d)] that there are Haar measures on
the groups Nq(F,) N N5(F,), depending on %y, such that the normalizing
factors (2.1) have all the right properties. (See also §4 of [1(f)].)

We return to the general case, with G as in §1. For G’ = GL(n), we
fix the normalizing factors as above. We shall show that the normalizing
factors for G can be defined in terms of those for G'. Suppose that « is a
root of (G, Ap). Then o' is a root of (G’, Am+). There is an isomorphism

r
M' 5 T]GL(n:)
i=1

and as above, o’ corresponds to a pair (p,q). Set

/\a,v = /\(Ev /Fv, ¢v)n,n, .
We shall also write

Ca(m') = ng p(det my)ng p(det my) ™1,
if
m' — (my,...,m,), m; € GL(n;, ),
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is any point in M’(F,) and ng/F is a primitive Grossencharacter associated
to E/F by class field theory. Then (, is a character on M'(F,) which
depends on our choice of ng/r. Given the representation = € II* (M(Fy,)),
we set

¢
(2.3) ro(m,8) = Aoy | [ re(¢in',s), s€C,
j=1
where 7’ is any representation in II'(7) and
(G)(m') = (a(m'Y o' (), m' € M'(F).

Then rq(7, s) is a meromorphic function of s which is independent of our
choice of 7’ and ng/F.

LEMMA 2.1: The normalizing factors rq p(7») defined by (2.1) and (2.3)
satisfy all the properties of Theorem 2.1 of [1(f)].

Proof. Many of the required properties follow from standard properties of
the operators Jg|p(7) and the general form (2.1) of the normalizing factors.
There is, in fact, only one condition to verify. We must show that

(24)  rpp(m)rpp(m) = um(m)™', P EP(M), A€ dic,

for any 7 € I, (M(F,)). Here upy(7s) denotes Harish-Chandra’s
p-function. As explained in [1(f)], all of the required properties of the
normalized operators will follow from (2.4).

There are two cases to consider. Suppose first that £ = F. Then G is
obtained from a central simple algebra. We may as well assume that £ =1
and G = G°. The definition (2.3) then simplifies to

ro(m,8) = rei(7', 5),
where 7’ is the unique representation in II'(r). Therefore
rq|p(m) = rq/p(Ty)
by (2.1). Since (2.4) is true for G’, we have only to show that
(25) pm(m) = py (')

for any 7 € Memp(M(F,)). Let Haisc(M(F,)) be the subset of repre-
sentations in Memp(M (F,)) which are square integrable modulo Ap(Fy).
Any 7 € Iiemp(M(F,)) is obtained by induction from a representation
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71 € Mgisc(Mi1(Fy)), where My is a Levi component of parabolic subgroup
of M over F,. By definition

pu(7) = pay ().

Therefore, if we are willing to assume that M is defined only over F,, we
need only prove (2.5) for 7 € Igisc(M(Fy)). We shall do so by comparing
the Plancherel formulas for G and G'.

Let f be a function in H(G(F,)) whose character vanishes on any irre-
ducible tempered representation which is not equivalent to some

Ip(r), P e€P(M),7 € Ugisc(M(F,)).

The Plancherel formula for G ([20(e)], [20(f)]) provides a constant yas such
that
(W= [ @) (m)in
Maise(M(Fy))
Here d™(r) is the formal degree of 7, and is not to be confused with dr.
The latter stands for the measure on Igjsc(M(F,)) which is obtained from
our Haar measure on id}, , and the free action

T™— T), Aeiai{’v.

By (1.4),

f(1)=1I6(1,f) = esIa:(1, ).
Moreover, f’ vanishes for any tempered representation of G'(F,) which is
not equivalent to one of the form

= Ipl(?l"), Pe P(M), mEe Hdisc(M(Fv))'

But by (1.5),

F1(@) = fi(7') = e fu (7).
Combined with the Plancherel formula for G’, these observations tell us
that

= [ @) ).
Mainc(M(F))
We choose Haar measures on the groups No(F,) N N5(F,) to match those
on Nq/(F,)N N (Fy) under the isomorphism 7. The constants yp and yp-
are defined in terms of certain integrals on these groups, and are therefore

equal. By varying f, and taking note of the trace Paley—-Wiener theorems
([6], [12(a)]) we see that

dM (aVupp (7) = dM (M)pp(n), 7 € Mainc(M(F)).
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In the special case that M equals G, the functions pg and pgr both equal 1.
It follows that d®'(#') equals d%(). The same formula of course holds for
arbitrary M. We therefore obtain the formula (2.5) for any representation
7 in Hgisc(M(F,)). This establishes the lemma when G = G°.

The second case is that E # F. Then we are in the base change setting.
The intertwining operators for G depend only on the connected component
G°. But

G°(F,) = GL(n, E,)"*,

where
4, = deg(Ey/Fy).
We could therefore define the functions
ra("’; 3): TE II+(M(F.,)),
in terms of the formula (2.2), with ¢, replaced by

YE, = Yy O trE/F, -

It is an immediate consequence of Proposition 1.6.9 that the same functions
also satisfy (2.3). Since we are dealing with the general linear group, we
know that the resulting normalizing factors have all the right properties.
This completes the proof of the lemma. |

Remarks 1. The proof of the lemma in case £ # F' is somewhat unsat-
isfactory. It would be preferable to have a proof based on local harmonic
analysis.

2. If the valuation v is Archimedean, Lemma 2.1 is essentially a special
case of the general results of [1(f),§3].

We have thus defined the local normalizing factors for G. They depend on
the additive characters 1,. We assume that each 1, is the local component
of a fixed additive character ¥ of A/F. This allows us to build global
normalizing factors from infinite products of local ones. We shall return to
the study of normalizing factors, both local and global, in §11.

Having chosen normalizations for the intertwining operations, we can
then write down the full trace formula for G ([1(h), §3,4,7]). It may be
regarded as an identity

()= Y WMws1I™t > eM(S ) Iu(1, )

MecC TE(M(F))m,s

=3 X wHwEr [ M@ e,

t Mel H(M,f)
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in which a certain linear functional I on H(G(A)) is expressed in two
different ways. Both sides break up into constituents which are of either a

local or a global nature. We shall discuss these separately in Paragraphs 3,
5,8 and 9.
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3. The distributions Ip(y) and I§(7)

For the next few sections we shall study the geometric side of the trace
formula. It is a sum of terms which are indexed by orbits, and which can be
separated naturally into local and global constituents. We shall look first
at the local constituents.

As will always be the case in what follows, M denotes an element in
L and S is a finite set of valuations of F' with the closure property. The
local terms on the geometric side of the trace formula of G are invariant
distributions

Im(v,f), 7€ M(Fs), f € H(G(Fs)),

which depend only on the M°(Fs)-orbit of . If My, = G,, they can be
defined fairly directly in terms of weighted orbital integrals. In general,
however, they must be defined by a formula

(3.1) In(y,f)=lim 3 rf(v,a)lL(er, f),
LeL(M)

in which a takes small regular values in Ap(Fs). (This is formula (2.2) of
[1(g)). The functions r§, (7, a) are obtained from a certain (G, M) family,
which is defined in §5 of [1(e)].) We shall recall some properties of these
distributions.

The first property relates the distributions to orbital integrals on M.
Suppose that o is a semisimple element in M(Fs). Consider two functions
#1 and ¢, which are defined on an open subset X of ¢ M, (Fs) whose closure
contains an M, (Fs)-invariant neighborhood of o. We write

61(1) "X po(y), el

if the difference is an orbital integral on M(Fs) for ¥ near ¢. That is, if
there is a function h € C°(M(Fs)) and a neighborhood U of ¢ in M(Fs)
such that

61(7) — ¢2(7) = I3{(7,h), ~v€ENU.

Now, suppose that G, equals M,. Then according to ([1(g)], (2.3)), we
have

(3.2) In(r, £) M0, ye M,(Fs),

for any f € H(G(Fs)). The next property is one of descent. Suppose that
M; is a Levi subset in £, with M; C M, and that v is an element in M;(Fs)
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such that M; ., = M,,. Then
(33) In(r.f)= 3 di, (M, D)5, (r, fr),

LeL(My)

where d§; (M, L) is a constant which vanishes unless the map

ajf, © afy, — af,
is an isomorphism ([1(g)], Corollary 8.3). There is also a splitting property.
Suppose that S is a disjoint union of S; and S3, and that f = f; f, and
¥ = 7172 are corresponding decompositions. Then by ([1(g)], Proposition
9.1),

(B4)  Im(r,f)= ). d§(Ly, La)Ig (v, fro) a2 (v2, fora)-
L‘,Laeﬁ(M)

We shall also make use of properties that apply to particular fields. To
state them assume that S = {v}, so that Fg = F, is a local field. First take
the case that Fy, is Archimedean. Then for every element z € Z(G(Fy,)), the
center of the universal enveloping algebra of the complexified Lie algebra
of G(F,), we have

(35) IM('Y; Zf) = Z 81[({(7) ZL)IL('Y; f)v 7€ M(Fv) n Greg'
LeL(M)

Here z; is the image of z under the natural map from Z(G(F,)) to
Z(L(F,)), and 8% (v, zL) is a linear differential operator on

M(Fv) n Lreg

which is invariant under conjugation by M°(F,). (See formula (2.6) of
[1(g)]) Next, suppose that F, is non-Archimedean. Then for every semi-
simple element ¢ € M(F,) there is a germ expansion

36  ImrH R Y Y oL f),

LeL(M) s€o(Ur,(Fy))

for v € oM,(F,) N Greg. Here (Ur, (F,)) is the set of conjugacy classes of
unipotent elements in L,(F,), and g%, (7,6) is a certain (M, ¢)-equivalence
class of functions defined on the L-regular elements v € oM, (F,). (See
formula (2.5) of [1(g)].)

Now, consider the group G’. There are of course similar distributions
on H(G'(Fs)). They possess a key vanishing property that we should re-
call. We have the injection M — M’ of £ into £’. For each v € S, let
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M'(F,)™ denote the subgroup of elements m € M’(F,) such that for every
X € X(M)F,, x(m) belongs to Normg, /F, (E;). Then
I(FS)M II MI(Fg)M
veS

is a subgroup of finite index in M’(Fs). Suppose that f is a function in
H(G(Fs)). The vanishing property is then
(BT  Le(6£)=0,  s€M(F)M\{y 17 € M(Fs)}.
That is, Ip (6, f') vanishes for any element § € M'(Fs)™ which does not
come from M(Fs). (See [1(g)], Proposition 10.3.)

Our overall strategy will be to pull objects on G’ back to G, where
they can be compared with the corresponding objects on G. We shall
systematically denote objects on G which have been obtained from G’ by a

superscript £. (€ stands for “endoscopic.”) In particular, if 4 is an element
in M(Fs) such that M, = G,, we define

(3:8) () =AMMIw (', f),  feH(G(Fs)).

Any 7 is of course of this form in the special case that M = G, and formula
(1.4) becomes

(3.9) IE(, f) = Ie (1, f).

More generally, suppose that v is an arbitary element in M(Fs). For any
small regular point @ € Ap(Fs) we have My, = G,,. Consequently, for
any L € £(M), the distribution If (a7, f) is defined.

LEMMA 3.1: The ezpression
> th(na)f@r )
LeL(M)
eztends o a continuous function of a € Ap(Fs) is a neighborhood of the

identity.

Proof. Let v = ou be the Jordan decomposition of 4. Then by (1.1) we
have

(ay) = o'ulial = v'dl..

(Remember, that g — u,+ denotes the map from the conjugacy classes of
M, to the conjugacy classes of its quasi-split form M.,.) By the definition
(3.8) we have

I (ay, f) = A (an) I ((av), f') = AM (M) Ip(v'als, f).
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We shall relate r%,(v,a) with the functions rf,: (+',at)).

Suppose that 0 = []J oy, u = []uy, and @ = [] ay. Then
veS vES vES

M, = [] M,,. The function r§;(7,a) is obtained from the (G, M) family
vES

1
rp(v,v,a) = HHrp (Eu,u.,,a,,), P eP(M),v €iay,
vES B

where the inside product is taken over the roots of (Py,, Ap,, ) and for each
such g,

v
Tp(l/, uv’au) = |ae —_ a;pw(p’“v)"(ﬂ )

(See (3.4) and (5.1) of [1(e)]. For the basic properties of (G, M) families,
we refer the reader to §6 of [1(b)].) The real number p(83,u,) was defined
in §3 of [1(e)]. It depends only on the geometric conjugacy class of u, in
M,,. In particular,

p(B,uy) = P(ﬂ,y(uv)vi) = p(# (“0)5(,)’
where &' is the root of G’ associated to 3. It follows without difficulty that
rf:l('y', at)y=rf(r,a"), LDL;DM.

On the other hand, it is not hard to relate rL; (7, a) to the function rﬁl (v,a%).
For
TP(V, e a) = CP(Vy 7)1; a)"P(V,‘Y, al))
where
-4 v(8Y

cp(v,7,6,0) = [T TT (a5 +(l72) + - 4 (g -V 3702

v B
is another (G, M)-family. By Lemma 6.5 of [1(b)],

")I\'!('Y’ a) = Z c}Il? (.2, a)rfl (s at)'

L1€CL(M)

Observe that cp(v,7, £, a) is continuous at a = 1, and that

—1 v
cp(v,7,4,1) = HH ey 3PP (8Y)
v B

In particular, cﬁ,‘ (7,4, a) is continuous at a = 1.
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Combining these observations, we have

Y (i a)If(ay, f)

LeL(M)
=AM(y) Y. Y e bart (v (v, )
LeL(M) L,eLL(M)
=AM(7) Z cﬁl‘(-y,l,a)( Z rf,:(»-/”aﬁ,)f[,,(.ylaf,,,f’)).

LieL(M) LeL(L,)

By formula (2.2*) of [1(g)], the function
Y. a0 (e, f),

LeL(L,)

defined for regular elements a’ in Ap/(Fs), extends to a continuous function
around @’ = 1. Its value at a’ = 1 is just jL“('yi, f'), where y; = yL* is the
induced orbit. (For the definition of yL, see §6 of [1(e)].) Therefore, the
original expression extends to a continuous function around a = 1. Observe
that its value at @ = 1 is just

AM() > e DI, f).
L,eL(M)

The lemma is proved. i

If 4 is any element in M(Fs), we define

(3.7 Ii(r.f)=lim 3 ri(v,0)If(a, ).
LeL(M)

Then I§,(7) is an invariant distribution on (G(Fs)). Much of our effort
will go towards comparing I§;(v) with Ips(7).
In the lemma we used the (G, M) family

cp(v,7,0) = cp(v,7,1) = [] [ 105370, pep(m).
vES B
In the proof of the lemma we established
COROLLARY 3.2: For any vy € M(Fs), we have

I}f{(‘)‘,f) = AM(7) Z ckl('y’e)fL'((‘YL)lifl)! v € M(Fs). 1
LEL(M)

Consider the special case that £ = 1. Then G = G°. Each function
cp(v,7,£) equals 1. It follows from the basic properties of (G, M) families
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that L LM
L , z - { 1) -
u(19) 0, otherwise.

Since AM(v) = eM(y) in this case, the last corollary reduces to
COROLLARY 3.3: If£ =1 we have

5L ) =eMMin (', f), 1€ M(Fs). 1

COROLLARY 3.4: Suppose that S contains all the Archimedean and ramified
places, and that v € M(Fs). Then

I (v, ) = Im (7', f).

Proof. By the nature of S and v, e (v) = 1. Moreover, the rationality of
v = ou implies that M,, = M, for each v in S. Since

lels = T] 14l = 1,
vES

we have i e
AM(‘)') - CM(‘Y)HVU dim My, _ IKI;dlva =1.
v

Observe also that the numbers

(B, u0) = p(B,u)

are independent of v. Therefore

ep(v,7,8) = H lq;‘}ﬁ’(ﬁ,u)v(ﬁv) =1, P eP(M).
B
Therefore,
1, L=M
L )
0=
ea(r,6) { 0, otherwise.

Corollary 3.4 then follows from Corollary3.2. i

Before going on, we make note of a property of the numbers cIM('y,l).
Suppose that v is a valuation of F' and that ¢ is a semisimple element in
M(F,). The centralizer M, is of course a reductive group defined over F,,.
Letting F, play the role of F, we define the real vector space aps, as in §1.

LEMMA 3.5: Assume that ap;, = ap, and let v be any element in M(F,)
with Jordan decomposition ou. Then ck;(7,£) equals cf{l" (v,f) ifap = ar,
and is 0 otherwise.
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Proof. The proof is an exercise in (G, M) families. It is identical to the
proof of Lemma 8.2 of [1(e)], so we shall not reproduce it. |

Our ultimate goal is to prove that If, (7, f) equals Ips(7, f). For a start,
we shall list those properties that I (v, f) evidently shares with Ip(7, f).

Suppose that o is a semisimple element in M(Fs) such that G, = M,.
Then

(3.2) ) %00, yeM(Fs).

This follows from the characterization (Proposition 1.3.1) of orbital integrals
on M(Fs), the vanishing property (3.7), and the property (3.2) applied to
G'. We also have the descent property

(33)° y(r,f)= Y d5, (M, D)Igf (v, fr),

LeL(M,)

for elements v € M, (Fs) with M, , = M,,, and the splitting property

(34)8 Ifl(‘y)f) = Z dfl(Ll)L2)iALll,£(7l)fl,Ll)if{mg('haf2,L2))
Ly, LaeL(M)

for ¥ = 1172 and f = f1f> as in (3.4). If v is regular, these two properties
follow directly from the analogous properties for G’ and the fact that

dfﬁ(M’ L)= dg{l{ (M',L).

For general v, the argument is slightly more complicated, requiring Corol-
lary 3.2 and the formula [1(g), (7.1)]. (For a similar argument, see the last
stage of the proof of Theorem 8.1 of [1(g)].) The analogues of the differen-
tial equation (3.5) and the germ expansion (3.6) are more difficult. They
will have to be established later.

LEMMA 3.6: Suppose that f is a function in H(G(Fs)) such that

for every element ¥ € M(Fs) which is G-regular (and semisimple). Then
the same formula holds for any element v € M(Fs).

Proof. Suppose that § is an element in M(Fs), with semisimple component
o, such that G, = M,. The orbital integral at § of any function on M (Fs)
is completely determined by its orbital integrals at elements y € o M, (Fs)
which are in general position and near to o. It follows from (3.2) and (3.2)¢
that

In(6, f) = I (5, f).
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Now, suppose that v is an arbitrary element in M(Fs). If a is a small point
in general position in Ap(Fs), § = va is as above, so that
In(ya, f) = It (va, f).
It follows from (3.1) and (3.1)¢ that
IM('Yx f) - 11{4(7) f) = 11_?} 2 rlllll('Y)a)(IL(‘ya’f) - If('ya: .f)) = 0:
LeL(M)
as required. il
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4. Convolution and the differential equation

We shall pause to look more closely at a special case. Suppose that S
consists of one valuation v and for the moment assume that G splits at v.
Then we can identify G°(Fs) with

G'(F,) x --- x G'(F,),

L

and the automorphism 6 acts by the permutation
(:L‘l,:cg, ey 17[) — (.’L‘z, ey a:g,zl), T; € GI(F,,).
The group G'(F,) is embedded diagonally in G°(F,). Suppose that

7=, )x0, 7 €G(FR)
Then if
=172 173 V-,
we have
7M=L, 1) 46,
It follows that the norm %4’ equals the conjugacy class of 1192 7, in
G'(F,). We shall simply write
Y =nr2 "
Suppose that f is a function in H(G(Fy)) of the form
(z1,...,2) X0 = fi(z1) - fu(ze), fi € H(G'(FY)),zi € G'(Fy).
Then the function
fixfax - *fy
also belongs to H(G’'(F,)). We will denote it by f', since its image in

I(G'(F,)) coincides with the function we denoted above by f’. (See §1.5.)
Suppose that M € £. Then

M(F,) = (M'(F,) x --- x M'(F,)) %6.

L

Let 4’ be a semisimple element in M'(F,) such that M}, equals G.,, and
set

y=(,1,...,1)x 6.
Then G, equals the group M,, embedded diagonally. In particular, G,
equals M.,. We shall investigate the distributions Ips(7, f) with f as above.
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We must first look at the weighted orbital integral Jas(, f). By definition
(1), §2),

* —
e H=P°@E [ S (s,
Gy(F)\GO(F,)
where vp(z) is the number obtained from the (G, M) family
e'HPE@) P eP(M), veidy.
Consider the integral
(4.1) / f(z yz)up(2)dz.
G+(Fy)\G°(Fy)

This is just the integral over (z1,...,z;) in the space of cosets of the group
G'.(F,), embedded diagonally in (G'(F,))*, of

fi(zT Y z2) fa(zz 23) - - - fe(z7 tz1 )om (2, - . ., 20).
In this integral, introduce new variables by

Y1 =21,92 = 23 ' 21,93 = 23 '31,..., e = 27 'y,
We find that (4.1) equals the integral, over y1 € G',(Fy)\G'(F,) and
(¥2,---,¥2) in (G'(F,))* 1, of
(42) AT Y0 ) fa(yeys ) - felw)om (v, mvs - e Y).

We intend to extract two applications of the equality of (4.1) with the in-
tegral of (4.2). The first applies to nonArchimedean fields.Suppose that v is
nonArchimedean and that f; is invariant under an open compact subgroup
k of G'(F,). Choose each of the functions f,..., fy to be the characteristic
function of k divided by the volume of k. Then the integral of (4.2) equals

AT Y n)vm(v, ..., 0)dw.
G!,(F)\G'(Fy)
Since G’ = G, Lemma 8.3 of [1(e)] tells us that
UM(.'II, .o :yl) = UM’(yl)-

But
fl=hxfax-xfr=F,
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so that (4.1) equals

(™Y v)vm (v)dy.
G (F\G'(F.)

By definition, Jp (7, f') is the product of this expression with IDG'(-y’ )|§
By Lemma 1.1, we have
dim G| NG’
IDS(n)IF = 1efd ™ 1D ()3
It follows that for f of the special form described above,

(4.3) Iu(, ) = 1 ™ I (v, ).

It is really the invariant distribution Ips(7, f) that we want to study.
However, the following lemma is an easy consequence of the definitions. It
was established as Lemma 2.1 in [1(g))].

LEMMA 4.1: Suppose that v is an unramified (finite) place for G, and that
f € H(G(F,)) is K,-bi-invariant. Then

Im(v,f)=Iu(r,f), YEM(F). &

LEMMA 4.2: Suppose that v is an unramified (finite) place at which G
splits, and that f € H(G(F,)) is K,-bi-invariant. Then

In(v, ) =Ig(r.f) 7€ M(F).

Proof. As above, we embed G’ diagonally in G°. The dependence of
Im(7, f) and I (7, f) on f is only through the function tr x(f), with

2= Q- ® 7|-', 7 € Htemp(G’(Fv))'
[4

We can therefore assume that
f — (fl!Xs"'aX))

where f; is a K-bi-invariant function in H(G'(F,)), and x equals the char-
acteristic function of K. We can also assume that

y=0,L...,1), Y eM(R).
Suppose that v’ is G’-regular. Then

I, £) = In(r, ) = 102 0me (Y, £1) = 18122 I (', '),
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by Lemma 4.1, applied to both G and G’, and (4.3) with k = K. Since
o2 (', £) = T (1, F)

if 4/ is G-regular, the lemma holds in this case. It then follows from Lemma
3.6 that the formula

In(v, f) = Iyt (v, )
holds for any v € M(F,). B

While we are at it, we shall record a weaker version of Lemma 4.2 that
holds if v is assumed only to be unramified. It is not related to convolution,
but follows directly from a recent result of Kottwitz.

LEMMA 4.3: Suppose that v is an unramified (finite) place for G, and that
f 1is the characteristic function of the subset K, x 0 of G(Fy). Then

In(v,f)=I§(r.f), 1€ M(F).

Proof. Let f' be the characteristic function of K} in G'(F,). Its image in
I(G'(F,)) coincides with that of f. Suppose that v € M(F,) is G-regular.
In [29(c)] Kottwitz has shown that

f(z"lyz)op(2)dz = / (™' z)vpp (2)dz.
G(Fy)\GO(F,) G /(FO\G'(Fy)

Since IDG(7)!$ equals Illf,'/ ?|p¢’ ('y')|$ this implies that

Tu(r, ) = 12T (', £).
Lemma 4.1, applied to both G and G, then tells us that

Iu (v, £) = 1t I (7', ).
Since v is G-regular, we have

el In: (7', ) = T (1, ),

so the lemma holds in this case. It then follows from Lemma 3.6 that the
formula

holds for any v € M(F,). i

Next, we will take v to be Archimedean. We shall show that I£(y)
satisfies the same differential equations as Ip (7).
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LEMMA 4.4: Suppose that v is any Archimedean place of F. Then

(3.5)¢ p(r,zf)= Y, 0 z)(r,f)
LeL(M)

for z € Z(G(F,)), f € H(G(F.)) and ¥ € M(F,) N Greg.

Proof. Let HO be any #-stable maximal torus in M° which is defined over
F,, and set

T=T0)G0,

where T is the centralizer of # in H®. Notice that T contains Aps. It is
actually enough to prove the lemma with v in Treg(F,) = T(Fy) N Greg. To
see this, note that for general v, the distribution I{;(7, f) depends only on
the M°(F,)-orbit of y. The differential operators 8% (v, z) are obtained
from the differential equation (3.5). They too depend only on the M°(F,)-
orbit of y. But any regular M°(F,)-orbit contains an element of the form
7° x 0, where 7° is a regular element in G°(F,) which commutes with ¢
([11(a)], Proposition 2.10). Letting H® be the centralizer of 4% in G°, we
see that it is indeed enough to take v € Treg(Fy).

We shall regard G°(F,) as areal Lie group. Let g, be the complexification
of its Lie algebra. Then 6 defines a linear automorphism of g,, which we
shall also denote by . Its fixed point set is g/, the complexified Lie algebra
of the real Lie group G'(F,). Since g, and g, are complex rather than real
Lie algebras, there is a canonical isomorphism

[ IR R
JA

in which 6 acts on the right by the standard permutation. (See for example
§2 of [11(a)].) Moreover,

T(F,) = {({t,....t) n 8 : t € T"(F)},

where T'(F,) is a Cartan subgroup of G'(F,) which contains Aps(F,).
Thus, the triple (g,,T(F,), Am(F,)) is no different in general than it is
in the special case that G splits at v. But according to Corollary 12.3 of
[1(e)], the differential operators 8% (7,z) depend only on this triple. It is
therefore enough to prove the lemma under the assumption that G splits
at v.

Assuming that G splits at v, we adopt the earlier notation of this section.
Let Z, and 2 be the centers of universal enveloping algebras of g, and g/,



The Global Comparison 105

respectively. Then
Z,=2/®--®Z).
e —————

¢

If

2=21Q--® z, zi € 2,
set

=z 2.

Then

(f) =2f,  feH(G(F)).
Take

.f'_—"(fl)"',fl)’ fi GH(GI(F'))):

(44) y=(v,1,...,1) x4, v e Tlfeg(F.,),
and
(4.5) z=(1,...,1), €2z,

Exploiting the equality of (4.1) with the integral of (4.2), we find that
1
Jm(7,2f) equals the product of |D®(y)|? with the integral over

y1 € T'(F,)\G'(F,) and (y2,...,y) in (G,(Fv))[_l of
)T Y nys D (a3 t) - flv)vm (v, iy Ly - - iy b)-

Let fa,..., fe all approach the Dirac distribution at 1 on G'(F,). Then
Jm (v, 2f) approaches

1
DS (7)) / @ )T Y ) om (v, - o 11)du
T'(Fy)\G'(Fy)

1 Py
= |e1"/2| D (v)|3 / ( F1) iy v o (1) dys
T'(F )\G'(Fy)
=220y (v, 2 fr).

The differential equation (3.5) actually arose from a similar equation

JM(‘)’,Zf) = E a}%{('/,ZL)JL(‘Y,f)

LeL(M)

for the weighted orbital integrals (Proposition 11.1 of [1(e)]). Consider
each side of this equation with f being as above. Then the left-hand side
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approaches the product of [£]2/2 with
Iw(\2f)=Y, 8, @), f),
LEL(M)

while the right-hand side approaches the product of |¢ I:,'/ ? with

E 65{(712L)JL’(7/vf1)'
LeL(M)
Assume inductively that 8L, (7', 21+) equals 8% (v,2) for any L € L(M)
with L # G. Then
(v, ) (', f1) = 05 (1,2)Je (Y, fu).

It follows that 8% (Y, 25,) = 8k (7, 2) for L = G and hence for all L.
Now, suppose that f is an arbitrary element in H(G(F,)). Since v is
G-regular, we have

Ii{(?’, Zf) = IZI:)'/zIM'(7I’ (Zf)’)
= 632 I (', 2 f)
= Y O Iy, )
Lel(M)
LeL(M)

This is the required differential equation. We have proved it only for ¥ and
z of the form (4.4) and (4.5). However, this suffices, since for general ¥ and
z each side of the equation depends only on 4’ and 2’.
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5. Statement of Theorem A

We shall first discuss the global implications of the definitions in §3. Let
Sram be the finite set of all valuations of F' which are either Archimedean
or ramified for G. Suppose that S is a finite set which contains Syam. By
multiplying any function f € H(G(Fs)) by the characteristic function of

(H K,,) % 6,

vgS

we obtain an embedding of H(G(Fs)) into H(G(A)). The geometric side
of the trace formula for G is an expansion

(5.1) (=Y wMwglt Y. MES I,

MecL YEM(F))Mm,s

in terms of the distributions discussed in §3. Here, (M(F))a,s consists of
what in general were called (M, S)-equivalence classes in M(F'), but which
in the present case are just the M°(F)-orbits in M(F). Also, aM(S,v) is a
certain constant whose dependence on 7 is essentially through the unipotent
part. More precisely, suppose that ¥ = ou is the Jordan decomposition of
7. Set iM(S, ) equal to 1 if o is F-elliptic in M, and if in addition, the
MP(F,)-orbit of o meets (K, N M°(F,)) x 6 for every valuation v outside
of S. Otherwise, set i¥(S, o) equal to 0. Given the special nature of G, it
follows without difficulty from (3.2) of [1(h)] that

(5.2) aM(8,y) = iM(S, o)aM" (S, u).
Define
(53) F(f)=1(), feHG(A)).
If ¥ = ou is an element in M(F), and S is a large finite set, define
(5.4) aME(S,7) = a™'(S,7).

By comparing the characteristic polynomials of o and ¢”, it is easy to see
that i™ (S, ) equals iM'(S, 0’). Applying (5.2) to M’, we obtain

(5.2)¢ aM€(8,v) = iM(S, 0)aM-£ (S, u).
PROPOSITION 5.1: We have

GB.LF ()= Y wWIwETt YD aME(S,)IE(r, f).

MecL YEM(F))m,s
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Proof. Applying (5.1) to G’, we see that
E)y= Y Waws ™ Y &M SO ).
Lecl! (e(L(F))L,s
The distribution i
I(¢,f"), LeL, ¢eL(F),
has a global vanishing property. According to Proposition 8.1 of [1(h)], it

equals 0 unless L = M’ and { = 4 for some M € £ and y¥ € M(F). Since
7 — 7' is an injection of (M (F))u,s into (M'(F))m,s, we obtain
E(f)y= 3 WMweI Y e (S ).
Mec YE(M(F))m,s

Applying Corollary 3.4 and the definition (5.4), we see that this equals

2 WwEIt YT aMES IS,

Mec VE(M(F))m,s
as required. i

We have not actually described the role in (5.1) and (5.1)¢ of the finite set

S of valuations of F. If f is a given function in H(G(A)), let V = V(f) be
the smallest set of valuations which contains Syam and such that f belongs
to H(G(Fv)). A precise assertion is that (5.1) and (5.1)¢ hold for any S
which is suitably large in a sense that depends only on supp(f) and V(f).
(As usual, supp(f) denotes the support of f.) In addition, the sums over vy
in (5.1) and (5.1)% can both be taken over a finite set, that again depends

only on supp(f) and V(f). This follows from Theorem 3.3 of [1(h)], applied
to both G and G'.

THEOREM A: (i) Suppose that S is any finite set of valuations which con-
tains Sram. Then

Iy(v.f)=In(v.f) 7€ M(Fs), f € H(G(Fs)).
(i) Suppose that v is an element in M(F). Then
a*e(S,7) = a¥(5,7)
for any suitably large finite set S.

This theorem, which consists of a local assertion and a global assertion,
is one of the two main results of Chapter 2. It implies a term by term
identification of the geometric sides of the trace formulas of G and G’. The
correspondence between automorphic representations will come from the
resulting equality of spectral sides.
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Theorem A will be proved together with a dual result (Theorem B) which
we will announce presently. The process will take up the remainder of
Chapter 2. We begin by making an induction hypothesis that will remain
in force until the end of Chapter 2. We assume that Theorem A holds
if G is replaced by any G; with dimG; < dim G, where G; is a product
of varieties each satisfying the same conditions as G. In particular, the
theorem holds if G is replaced by any Levi subset L € £ with L # G. More
generally, suppose that M € £ and that o is a semisimple element in M (F).
Then M, satisfies the same assumptions as G. Moreover, dim M, < dimG
unless M = G, £ = 1, and o belongs to Ag(F).

The induction hypothesis has some immediate consequences. Let S be
a finite set of valuations which contains Spay,, and consider a Levi subset
M, € £ with M, g M. If y belongs to M1(Fs) N Greg, We have

() —In(r, )= >, d§, (M, LY(E (v, f) — I (v, 1))

LeL(M,)

by (3.3) and (3.3)¢. Remember that the constant d$, (M, L) vanishes unless

the map
M L G
Op, © dpy, — Ay,

is an isomorphism. Since M; g M, the constant will vanish if L = G.
However, if L # G, the local part of the induction hypothesis tells us that

IE (o, f) - B (v, f) = 0.
We conclude that

(5.5) )= Im(1,f) =0, 7€ Mi(Fs) N Greg.

Next, take S to be a disjoint union of Sy and S;, where Sy contains Sram
and S; consists of one unramified valuation. Suppose that f = fof; and
¥ = 9071 are corresponding decompositions. Then the difference between

I (v, f) and Ing(7, f) equals

> d§(Lo, L) T3 (o, fo,La) it S (11, Fior)
Lo,Llec(M)

- i]f!() (701 ‘fo,l’:o)i}f{1 (71; fl,L‘ ))a

by (3.4) and (3.4)°. We shall see in a moment that the local assertion
(i) of Theorem A implies the equality of I§; (71, f1) and In(y1, f1). Our
induction hypothesis then allows us to write

132 (70, fo,Le) Ing £ (11, f1,00) — I3 (0, fo,Lo) Iag (11, f1,,) = 0,
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if neither Lo nor L, equals G. On the other hand, if one of the Levi subsets
Lo or Ly equals G, the constant d$j(Lo,L1) will vanish unless the other
one equals M. According to the definitions in §7 of [1(g)],

d$ (G, M) = d§;(M,G) = 1.
We conclude that
I (v, H)-In(v, f)

1 -
=D oI £) = Da (e, ) T IM (35 f3.m)-

ji
(Of course there is only one factor in the product on the right.) Notice that
Theorem A(i) implies the vanishing of the left-hand side of (5.6) as well as
the summand with ¢ = 0 on the right. It therefore also implies the equality
of I (11, f1) and Ip(71, f1), as we claimed above.

The induction hypothesis also has a global consequence. Given M € C,
take an element ¥ = ou in M(F). In the case that M = G, assume that
o does not belong to Ag(F). Then dim M, < dimG, so we can apply the
global part of the induction hypothesis to M,. If S is a suitably large finite
set of valuations, we conclude from (5.2) and (5.2)¢ that

a™£(8,7) = a™(S,7).

Thus the global assertion of the theorem follows in most cases from the
induction hypothesis. From (5.1), (5.1) and (3.9) we obtain the following
lemma.

(5.6)

LEMMA 5.2: The distribution

E()-1(f),  feH(G(Fs)),
is the sum of
DoWIWE Y aMS T ) - In(1, )
Mec YE(M(F))m,s

and
2 Z (GG'S(S: u) - aG(Sr u))IG(fu’ f)
§€EAG(F) ueUg(F))a,s

(By definition, Ug is empty unless £ = 1. In other words, the second term
vanishes unless G = G°.) B
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6. Comparison of I§; (v, f) and Im(7, f)

In this paragraph we shall derive some consequences of the local assertion
(i) of Theorem A. The assertion applies only if every valuation outside S
is unramified for G. It would be natural to consider more general finite
sets S. For example, if v is any valuation of F', we could ask whether the
distributions I§,(7») and Ip(7,) are equal. The next theorem provides a
partial answer.

THEOREM 6.1: Fiz an element M € L and a finile set S of valuations with
the closure property. In the special case that S D Spam, we suppose that

IEnH=I(v,f),  7€L(Fs), f€H(G(Fs)),
Jor any L € L(M). Then there are unique constants
er(S)=¢€§(S), LeL(M),
such that

61 Ix(nH= Y Ii(r.ec(S)fi), v € M(Fs), f€H(G(Fs)).
LeL(M)
The constants have the descent property
(6.2) em(S)= Y, d5, (M, L)k (S), McM,
LeL(M,)
and the splitting property
63) em(S)= Y. d§(L1,La)ei(S)ew2(S), S=5US,.
Ly,Ly€L(M)
Proof. If M = G, the theorem holds with
ec(S)=1.

Fix M # G, and assume inductively that the theorem is valid whenever
M is replaced by any element L € £(M) with L # M. In particular, we
assume that the constants

eL(S), L 2 M,
have all been defined. The main step is the following lemma.

LEMMA 6.2: The function

em( ) =I5(1. )= Y I5(v,ec(S)fL), v € M(Fs), f € H(G(Fs)),
L2M

has descent and splitting properties which are identical to (3.3) and (3.4).
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Proof. These properties will hold for (7, f) essentially because they hold
for I5,(y, f), I% (7, fr) and €L (S). Let us verify the descent property. Take
M; and 7 as in (3.3). By (3.3) and (3.3)° we may express ep(7, f) as the
difference between

Y (M DI, i)
LeL(M,)
and
(6.4) E Z dIIt’{; (My Ll)i}{’lll(%le)eL(S)'
L2M LieLL(My)
Consider the expression (6.4). Since we need only consider terms for which
dfs, (M, Ly) # 0, we may write (6.4) as
2 2 din(M L)L (1, fr)en(S):
ngMx LGL(LI)

The element L in the sum will be strictly larger than M. Therefore our
induction assumption implies that €, (S) satisfies the descent property (6.2)
of the theorem. Combining this with a formal property ([1(g)], formula
(7.1)) of the constants d§y (-,-) we obtain

Y. i (M L)er(S)= Y diy, (M, L)k, (S).

LeL(Ly) LeL(Ly)

Consequently, (6.4) equals
2 2 dn (M DI ek, (S)fr.):

L.2M, LeL(Ly)

We have shown that ep(7, f) equals

) dﬁl(M,L)(iﬁfw,n)— )> fﬁ;,(v,eﬁ(sm,).

LeL(M,) {L::M §GLiCL}
We obtain
(6.2%) em(v, )= Y, d5, (M, L)k, (v, fr),

LeL(M,)

the required descent property.
For the splitting property, we take ¥ = 4192 and f = fif2 as in (3.4). It
is proved in much the same way. One applies the splitting properties (3.4),
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(3.4)¢ and (6.3) (with M replaced by L 2 M) to the formula for e (7, f).
We shall skip the details. The final result is

(6.3%) em(r,f)= E d$r (L1, L2)Ex (11, fr,,)éx (12, far,)- 1

L‘,LQGL(M)

Remark. Lemma 6.2 is proved under the given assumption of Theorem
6.1 This is actually slightly stronger than what we used to prove the lemma.
The formulas (6.2*) and (6.3*) hold if we only assume that

IZ(v, f) = I(v.f), 7 € L(Fs),f € H(G(F5s)), S D Sram,

for elements L € L(M) with L # M.

We can now prove Theorem 6.1. It is obvious that the constant ep(S)
is uniquely determined by the required condition, so we have only to prove
its existence. We shall do so by decreasing induction on the number of
valuations in S. If S contains Syam, the theorem holds with e7(S) = 0, by
hypothesis. Assume inductively that the theorem holds for a given set S.
In particular, we assume that €,s(S) is defined. The required condition is
just

5M(71f)=€M(S)fII:l{(7’fM)’ 7€M(FS)’
Now, suppose that S is a disjoint union of S; and S,. We shall show that
the theorem holds for S; and S,.

If ¥ = 1172 and f = fyfa, the splitting property (6.3*) allows us to

express ey (7, f) as

em (11, 1) T8 (v2, fomr) + I (11, Fomn)em (2, f2)
+ colM(m, i) I (v2, o),

where
o= Y. d§(L1,La)ef}(S1)er?(Sa).
L,,L;€L(M)
LI)L2¢G

Fix v, and f; so that [ M(v2, f2,m) # 0. Let v; be any element such that
IM(y1, f1,m,) vanishes. Then

em (7, f) = em(S)Ip (11, fr,m) Ip (12, fam) = 0.
This implies that
em (11, f1) I (v2, fam) = 0,
and that epr(y1, f1) vanishes. It then follows for any 7; that

em(11, f1) = em (S1, 1) I (71, fom),
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for some function €p(S1,71). Similarly,

e (72, f2) = em(S2, 72) I (72, fo,m),
for some function €p(S2,72). Substituting back into the original expres-
sion, we see that
em(S1,71) +em(S2,72) + co = em(S).
It follows that ep(S,v1) and ep(S,v2) do not depend on 7; and 7;. We
have shown that if ¢ = 1,2, there is a constant ps(S;) such that
em(vi, £i) = em(Si) I (%, fima)-

This completes the inductive definition of the constants e (SS).

We have the two supplementary properties to check. However, these
follow immediately from (6.2*) and (6.3*). The proof of the theorem is
therefore complete. |l

COROLLARY 6.3: Suppose that S either contains Sy, or consists of one
unramified valuation. Then
S) { 1, M=G
€ =
M 0, M#G. 1
It seems likely that Corollary 6.3 is true for arbitrary S. We shall inves-
tigate this question only in the case that £ =1.

PROPOSITION 6.4: Suppose that £ = 1. As in Theorem 6.1, assume that

L) =I(v,f), 7€L(Fs),f € H(G(Fs)),
if L€ L(M) and S D Sram- Then
1, M=G

em(S) =
m(S) { 0, M#G
for any finite set S of valuations with the closure property.

Proof. By Theorem 6.1, we know that the constants er(S) exist. The
proposition is trivial if M = G, so we shall fix M g G. We may assume
inductively that ek(S) = 0if M G L G G. It follows from the descent
property (6.2) that ex(S) = 0 unless M is minimal. Moreover, from the
splitting property (6.3), we see that

em(S) = em(v).
vES
It is therefore enough to show that each number €37(v) vanishes.
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We are assuming that £ = 1. Consequently,
G(F) = A*(F),

where A is a simple algebra of degree n over F. For each v, A has an
invariant #, which is an element in Q/Z whose order d, divides n. The
constant £p(v) depends only on the pair (G(F,), M(F,)). We may as well
fix n and assume that M is minimal over F,. Then

e(iy) = em(v)

is a complex number which depends only on the element ¢, € Z/nZ. There
is a (unique) simple algebra A over F' attached to any finite set

{i, €Z/nZ :v € S}

Eiv =0.
> i) =¢(S) =0,

vES
if S O Sram. It follows easily from this that all of the constants (i, )
vanish. i

such that

We know that
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7. Comparison of germs

Our induction assumption of the last section leads us to define a certain
subspace of H(G(Fs)). If £ = 1, G is just the group of units of a central
simple algebra. In this case, let Sg denote the set of finite places at which
G does not split. If £ # 1, simply take Sg to be empty. Define H(G(Fs))°
to be the subspace of H(G(Fs)) spanned by functions

r=1ls £ enGE)),

vES

which satisfy the following condition. For each v € Sg N S, the orbital
integral of f, vanishes at any element

Yo = ﬁvuva Ev € AG(F,,),U,, euG(Fv)a

such that u, # 1. Orbital integrals are of course invariant, and they define
distributions on the space Z(G(Fs)). We can therefore define a subspace
I(G(Fs))° of I(G(Fs)) in the same way. It is clear that we can also define
further spaces H(G(A))? and I(G(A))°.

Suppose that v is a nonArchimedean valuation of F. The purpose of
this section is to show that if f belongs to H(G(F,))°, then Z§ (7, f) and
ZIm(7, f) have the same germ expansions. In order to exploit our induction
hypothesis, we shall first show that Theorem A implies an identity of germs.

The germs for G(F,) and G'(F,) belong to different equivalence classes,
but it turns out that they can be compared directly. Choose a semisimple
element ¢ in M(F,), and consider the germ expansion about 7 = ¢’ for

he(C,f),  fENG(R)).
Any Levi subgroup in £(M') equals L', for a unique element L € £L(M).
Consequently
- M'r ' A
) “7 Y i, f),
LEL(M) ner(liy: (F))

for ¢ € TM7(F,) N Gieg. The vanishing formula (3.7) tells us that
Ir(n, f') = 0 unless 5 = &' for some 6 € o(Ur, (F,)). Therefore

A M ' s
(S IS S S A ()Y Y
LeL(M) seo(Ur,(Fv))

But by (3.7), the function Ip((,f’) vanishes unless ( = 4’ for some
Y € M(F,) N Greg. We claim that for each L and §, there is a function
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gL1(¢,6") within the (M’,7)-equivalence class which has the same prop-
erty. We can certainly assume inductively that this is true if L # G. Fix
61 € o(Ug(Fy)), and choose f; € H(G(F,)) so that

AS(&) , 6=06,
Ig(8, f1) =
68 f1) { 0 , otherwise.

Then by (1.4),

1, 6=é,
0, otherwise.

a8, f1) = {

Substituting f; into the expansion above, we justify the claim. Now the
orbital integral of a function on M’(F,) which vanishes if { # ¥’ is equal to
an orbital integral in v of a function on M(F,) (Proposition 1.3.1). Each
germ

95 (7,6, ¥ € oMy(F,) N Greg,

may therefore be regarded as an (M, o)-equivalence class. It is in this sense
that we can compare the germs for G and G’. The expansion above becomes

2 M, ' a
IM(7I) f/) ( NU) E Z 9){'4:(7': 6,)IL’(6,’ fl))
LeL(M) sea(Ur,(Fyv))

for v € oM,(F,) N Greg. If we apply (3.8) to the left-hand side, we can
rewrite this as

M, : -
GRS TR I D DI DI At LN o)
LeL(M) s€o(Us,(Fy))
PROPOSITION 7.1: Suppose that £ = 1 and that Theorem A holds for G.
Then for each nonArchimedean valuation v of F, and each u € (Ug(F,)),
' M1
oS (v ) Y S(wef(r,w), 7 € M(F)N Greg.

Proof. By hypothesis G and M satisfy the conditions of Proposition 6.4.
Combining this proposition with Theorem 6.1, we obtain

y(r, ) =Im(.f), 7 €M(R),f€HGF)).
Moreover, by Corollary 3.3,
I, f) = et (u) I (u, ) = eF(u) " I (u, f).
It follows from (7.1) that

() Y% ()t () oy, f).

LeL(M) ueUL(Fy))
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On the other hand, applying the original expansion (3.6), we have
M1
W)Y Y i),
Lel(M) ue(UL(F.))

We may assume inductively that

- ’ M1
eL(w) fE (v, u') YD gk (v, u),

if L # G. It follows that

- ' M,1
> (@) - g w)a(u, ) X 0.
u€Ua(Fy))
This is a formula in the space of (M, 1)-equivalence classes of germs of
functions. Since it is valid for any f, we obtain

e (u) 19§ (v, u') — 9§ (7, u) D0, ue Us(Fy)).

This is the required formula. |

We are carrying the induction hypothesis that Theorem A holds if G
is replaced by a proper Levi subset. In Proposition 7.3 we shall combine
this with the last lemma to deduce the equality of most of the germs.
However, there is one pair of germs which we can compare without recourse
to Theorem A (and the global methods its proof entails).

LEMMA 7.2: Suppose that £ = 1 and that v is a nonArchimedean valuation
of F. Then

] M1
08 1) Y eg€(1,1), ¥ € M(F,)N Greg.

Proof. Since £ = 1, G is the multiplicative group of a central simple
algebra. In this case the local correspondence is an injection # — 7’ from
Miemp(G(Fy)) into Miemp(G'(Fy)) such that

tra(f) =e f'(x'),  fEeMH(G(F)),
and
Ox(7) = &Ox(7), 7 € G(Fo)reg-

Any supercuspidal representation in II(G'(Fy)) is of the form ', for a
(unique) supercuspidal representation 7 in II(G(F,)). This follows from
the character identity above and an easy argument based on Casselman’s
theorem [10(c)]. Fix such a pair 7 and .
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Let f be a matrix coefficient of the contragredient # such that trx(f) # 0.
Since 7 is supercuspidal, f belongs to H(G(F,)). The main result of [1(i)]
asserts that for 7 in M(F,) N Greg,

(~1)3im(Ar/40) . vol(G(F)/Am(Fo)) ™" - tew(f) - IDG ()3 0x().

Notice that if 4 is not Fy-elliptic in M, the Fy-split component of G, is
larger than Aps, and the right-hand side vanishes. The function f’ is a
priori only an element in Z(G'(F,)), but we can clearly represent it as a
matrix coeflicient of #'. Since

. 1
(- )ytimAslAe) . vol(GL(Fo) /A (Fo))™ - tr(f) - IDE (1)1 ©x(v)
equals
(—1)limAselA0r) . vol(Gy(F,)/Apr (F)) ™ -t (§) - 1D (4) [ @0:(7),
for any G-regular element ¥ € M(F,), we see that
Im(v,f) = I (7, f).

But for any such v, In(7, f') equals I§, (7, f). It follows from Lemma 3.6
that In(7, f) equals I&(y, f) for any element v in M(F,). We shall use
this fact with v = 1. In this case we obtain

IM(l’f) = I]fl(laf) = evIM'(laf')’
from Corollary 3.3.

We shall also need to know that if u is a unipotent element in M(F,)
which is not equal to 1, then Ip(u, f) = 0. Since G comes from a central
simple algebra, u can be represented as an induced unipotent conjugacy
class

ujlu’ u € (uMl(F"))i

where M is a proper Levi subgroup of M. (We can in fact assume that
u; = 1.) The descent formula in Corollary 8.2 of [1(g)] then applies. We
obtain

In(u, )= Im(ui', )= Y dip, (M, L)l (us, fr).
LeL(M,)
But f is a supercusp form on G(F,), so that fr = 0 for any proper Levi
subgroup L of G. If L = G, the constant dfy, (M, L) is equal to 0. Conse-
quently, Ip(u, f) vanishes, as required. An identical argument applied to
G’ leads to the vanishing of Ing/(/, f').



120 Chapter 2

Take 7 to be a G-regular element in M(F,) which is close to 1. Then
M1
IM(7af) ( ~) E Z 91[&?(7, u)IL(u)f)‘
LeL(M) ueUL(Fy))
But from (7.1) we also have
M1 ’
e, ) S eI, f).
LeL(M) ueUL(F))

We have seen that the left-hand sides are equal. Substituting the formulas
we have proved into the resulting equality of right-hand sides, we obtain

3 ewgh (v, DI (1, ) 3 ek DI, ).

LeL(M) LeL(M)

(M,1)

Assume inductively that

M1 1
eghr(r 1) 2 gf.(v, 1),
if L # G. It then follows that

evdit (1, DIa (L, f) "~ gipn(v', DIar(1, f).
Since Ig/(1, f') # 0, this gives the lemma. i

(M,1)

PROPOSITION 7.3: Suppose that v is a nonArchimedean place of F, and
that o is a semisimple element in M(F,). Assume that apr, = apr. Then

Mo
(3.6)¢ FACE ) LD DR S 2% (18}
LEC(M) 6ea(uL,(F.))

for ¥ € 6M,(F,) N Greg and f € H(G(F,))°.

Proof. 1t is known that the germs depend only on the unipotent part of 4.
More precisely, suppose that

6 = ou, u €U, (F,),

and
T =0hp, pE M, (F,).
Then by Lemma 9.2 of [1(e)],

(7.2) am(7,6) = {

This formula will allow us to limit our consideration to varieties of dimen-
sion smaller than G, where we can apply the induction hypothesis of §5.

L, :
gM,(/‘a U) ) lf aL, = aL)
0 , otherwise.
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According to (7.1), I(y,f) is (M,o)-equivalent to the sum over
L € L(M) of
(73) 2 Y g, ), f).
s€0(Us, (Fy))

Set 7 = o'. Applying (7.2) to (G',7), and taking account of (1.1), we see
that
L t .t .
! ! g fl(" :u) , if ar, =4ar,
90 (v 8') = ghe(rul rug) = 4 MO :
0 , otherwise,

for 4 and § as in (7.2). In particular, we need only sum (7.3) over elements
L € L(M) with ar_, = ag. Take such an L, and suppose in addition that
L, # G. Then by our induction hypothesis, Theorem A holds for L,.
Applying Lemma 7.1 to L,, we see that

L:' (M”l) 4 o
gM", (Pf-;uf-) ~ eL (ul)gfl, (l‘t’ut)‘
There is a homogeneity property of germs (Proposition 10.2 of [1(e)]) which
allows us to express g,{’,‘: (p*, ut) in terms of a certain sum over £+ (M,).But

any group in this set equals Ly,, for a unique L; € LX(M). The homo-
geneity property then asserts the equality of g}{’{’ (ut, ut) with

le|g Z Z yf}:(p,ul)cf;,(ul,l)[uf’ s,
LieLL(M) ui€Us,,(Fy))

where cf‘,:’ (u1,£) follows the notation of §3,
d= %(dimL,., -n),

and [ul v u] equals 0 or 1, depending on whether the induced conjugacy
class uf"’ equals u or not. Suppose that ["1 c: u] =1, and set
61 =0ou;.
Then
d= 1 dim L 1
=3 18 ~ 5™

Since u and u’ represent the same unipotent conjugacy class in (U, (F,)),
we have

eL’(u‘) = eL'(u) = el1e (u1) = CL‘(51),
so that
lel3/?1el5eme (u) = AF3(6y).
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Moreover, Lemma 3.5 tells us that
cke (ur, ) = cf, (ou1, €) = ek, (61, 0).

Finally, by (7.2) we have

g5t (p,u1) = 937 (7, 61).

Gathering these facts together, we see that (7.3) equals the expression
(DY D ARE)ew (0,80, (1, )L ((1) f).
LieLL(M) 6160(111,1,(1‘1.))

The equality of (7.3) and (7.4) was established for any L € L(M) with
ar, = ag and L, # G. Suppose L is such that ar # ar. It follows from
(7.2) and Lemma 3.5 that

g (7,8) =0,
and
gi’j (7 61)cf‘d(61,£) =0.

Consequently, (7.3) and (7.4) both vanish, and in particular remain equal
to each other. The only other case is when L, equals G. Assume this is
so. Then L = G and ¢ is central. This implies £ = 1 and G = G°. The
expression (7.3) then equals

(1.3%) Yo e 8)ia (8, ).
§€o(Us(F,))

Since £ =1, cfl(él,l) comes from a constant (G, M) family, and vanishes
unless L; = L = G. Consequently (7.4) equals

(14%) Yo @) (1,81, ).
sea(Ua(Fy))

We are assuming that f belongs to H(G(F,))°. If G splits at v, this poses
no restriction on f. But then G = G’ and (7.3*) and (7.4*) are certainly
equal. If G does not split at v,

jc’(5l,f') =0
unless § = . Since we are assuming o is central,
950(8',0') = g (7', 1) = ey (1, 1) = e%(0)g5i (v, 0),
by Lemma 7.2. It follows that (7.3*) equals (7.4*) in this case as well.
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We have shown that (7.3) equals (7.4) for any L € L(M). In other words,
I§(7,f) is (M, 0)-equivalent to the sum over L € £L(M) of (7.4). Inter-
change the sums over L and L; in the resulting expression. By Corollary
3.2,

AR (8) N of (60,01 ((6TY, f) = If, (61, ).

LeL(Ly)
Therefore (7.1) becomes

118‘4(71 f) (%’) E Z gjlllll (7)61)151 (61, f))

LieL(M) 6,€0(UL,,(Fy))

which is the required formula. §
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8. The distributions Iy (m, X) and I{ (7, X)

We shall now direct our attention to the other side of the trace formula.
The spectral side is similar to the geometric side, in that its terms can
be separated into local and global constituents. We shall discuss the local
properties in this paragraph.

As usual, S denotes a finite set of valuations of F' with the closure prop-
erty and M is an element in £. The local constituents of the spectral side
are related to the distributions

In(m, X, f), 7 € I (M(Fs)), X € am,s, f € H(G(Fs)),

introduced in [1(g), §3]. These distributions are also defined for standard
representations p € £¥(M(Fs)). The two are connected by an expansion
formula

IM(W,X, f) =
(8.1) Z“’PZ Z / rf{(n,p,\)[L(pl\,hL(X),f)e—A(X)d/\’
P L

P eptiay, fia} o
where P, L and p are summed over P(M), L(M) and X¥(M(Fs)) respec-
tively ([1(g), (3.2)]). For each P, €p is a small point in (a})*, and
wp =vol{X € a} : || X]| < 1} -vol{X € ap : || X|| < 1},

while for any L, hr(X) denotes the projection of X onto ay. The function
rk (mx, pa) was introduced in §6 of [1(f)]. It is obtained from a certain
(G, M) family built out of the local normalizing factors. It is a rational
function of the variables

(8.2) {MaY), g2y,

in which a ranges over the roots of (G, Aa), and v ranges over the discrete
valuations in S with residue degree g, . In the special case that = is unitary,
the formula (8.1) simplifies somewhat to

IM(W, X, f) =
2.2 / rig (T, )L (pa, B (X), £e 2 X)d),
L

P emtiay, gfia} o
where €5 is a small regular point in aj;.
The lattice X(M')r has a quotient

Cu = X(M')F/EX(M')F
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of order ¢dimAnm  Note that there are natural embeddings
CLCCum

for the elements L € £(M). We shall fix a primitive Grossencharacter ng;r
associated to E/F by class field theory. Then for each £ € Cpy,

ne/p(€(m’),  m'e M'(Fs),
is a character of M'(Fg). There is an action
(€p")(m') = ng p(E(m))p'(m), & € Cm,p' € Z(M'(Fs))
of Cpr on X(M'(Fs)). There is a similar action on II(M’(Fs)) and also an

adjoint action of Cpr on Z(M'(Fs)). If € belongs to the subgroup Cg of Cay,
it follows easily from (1.5) that

jM'(&p,’le f/) = IAM'(p,aXIagf’) = jM'(p,yX,uf/);
for any (p', X') in Z(M'(Fs)) x apmr s.
As we noted in §1, the local correspondence gives us a map p — X'(p)

from T+(M(Fs)) onto a collection of finite disjoint subsets of £(M'(Fs))
such that

trp(h) = esh'(p), pPE E+(M(F5)), F € X(p),
for any function h € H(M(Fs)). We also have a map = — II'(w) from
II* (M (Fs)) onto a collection of finite disjoint subsets of II( M’(Fs)). How-
ever, for nontempered 7 this map does not give a simple character identity

unless h is in the unramified Hecke algebra. Suppose that p € Z¥(M(Fs)).
Take any p' € ¥'(p) and define

Iig(p, X, f) = es ) Iuw(€, X', f).
§ECM
LEMMA 8.1: As the notation suggests, I5,(p, X, f) depends only on p, and
not on the element p' € X'(p).

Proof. The distribution Ins:(p’, X', f') is left unchanged if p' is transformed
by an element in Cg. It will be convenient to write

Ilil(er’f).:eS[dimAG Z IAM'(ep,’XI;f,)'
£€Cm/Ca

We can use a splitting formula (Proposition 9.4 of [1(g)]) to reduce the
lemma to the case that S contains one element v. For suppose that S is a
disjoint union of two sets S; and S, which both have the closure property,
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and that p = p; ® p2 and f = f,f, are corresponding decompositions.
Suppose that p’ = p} ® p} is any representation in X'(p). For a given point

(X1,X2) € (am,s, ® am,s,),

the splitting formula expresses the Fourier transform

| X DulerXi+ X e EiFaan,
§eCp/Ca
with
A€ (i}, ® ity 5,)/ ity s,
as the sum over Ly, Ly € £(M) of the product of d§;(L,, L) with
Y. Dl X1 £ ) (€0, X, fo ).
§€Cm/Ca
A given summand will vanish unless the map

L L G
ay ®ay? — ay
is an isomorphism. For any such L, and Lj, the natural map

Cm/Cc — (Cm/CL,) ® (Cm/CL,)

is an isomorphism. This is a consequence of Lemma 10.1 of [1(h)]. There-
fore, the lemma will follow for S if it can be established for S; and S,.

We may therefore assume that S = {v}. Choose a minimal element
M, € LM for which p is induced from a representation p; € TH (M (Fy)).
Then p’ will be induced from a representation pj € X(M;(F,)). Suppose
that X is a point in a7, s whose projection onto aas s equals X. A formula
of descent (Corollary 8.5 of [1(g)]) expresses the Fourier transform

Yo Dw(Eph, X', f)e N KDan’
iay, olidh s ¢eCpm/Ca
as the sum over L € L(M) of the product of d§y (M, L) with the function
(8.3) 3 et X1, f10).
§€Cm/Ca
A given summand will vanish unless the map

M L G
M, ® Gy, — Qp,
is an isomorphism. For any such L, the natural map

Cm/Cc — Cum,/CL
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is an isomorphism. Therefore the function (8.3) equals

o s X1 £,

€€Cr, /CL

Given our choice of M;, the theory of the local lifting (Proposition 1.6.7)
tells us that

(p1) = {¢p} : € €Cp, )

It follows that (8.3) depends only on p;. Consequently, the original function
depends only on p, as required. il

For each L € L(M), p € E*(M(F5s)) and X € a} ¢, there is an in-
duced representation p¥ of L(Fs). If ) is in general position, p% belongs
to £¥(L(Fs)). As in (8.1), we will often drop the superscript L, so that

If(pr, X, f) = IE(p%, X, ).
If 7 € I+ (M(Fs)), we define
I&(m, X, f) =
B4 3 wpd Y / rhr (72, 03) IE (o, hi(X), £e>X)d.
P L

P .. . .
eptiay, sfie] o

To describe the local constituents of the trace formula one changes nota-
tion slightly. If = stands for a representation in II* (M(Fjs)?!), let us agree to
identify = with an orbit {mx : A € aj, ¢} of a}; ¢ in T (M(Fs)). Usually
7 will be unitary, in which case we will identify it with the smaller orbit
{mx : X € iaj,} of ia}, in I}, (M(Fs)). We shall also adopt these con-
ventions, sometimes without comment, for representations in II+(M(A)?)
and I} ;. (M(A)'). If 7 belongs to II} . (M(Fs)!), we set

IM(?I',f) = IM(wlaovf)
and
Ifl("r:f) = If,(n,O,f).

These expressions are independent of A. The former describes the local
spectral terms of the trace formula of G. The latter is closely related to
the analogous terms for G’. Both expressions are independent of S if S is
suitably large, and so may be defined for = € IIf ;. (M(A)?).

As in [1(f), §5], let A(w, p) and T'(p,7) be the constants which describe
the transformation formulas between standard characters and irreducible
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characters. That is,

tr(p) = Z T'(p, 7) tr(x), p € &Y (M(Fs)),
T€l+(M(Fs))
and
t(m)= Y, Amp)t(p), e IT(M(Fs)).
pEEH(M(Fs))

Now suppose that 7 € II(M'(Fs)) and p € +(M(Fs)). The constants
above are not immediately defined, since the representations are for two
separate groups. However, we shall set

A(r,p)=es Y, Arp).

p'€X'(p)

For each m € T (M(Fs)) we then define

§(rm)= ) Ama(p7).

pETH(M(Fs))

If G = G, we have

l, =7«

é(r,m) = { .

0, otherwise,
but in general the situation is more complicated. Observe that
(8.5) é(r,m) = H 8(7y,my)

vES

fr=Qmnandr= Qmy.
vES vES

PROPOSITION 8.2: We have

K(ry= ). 6(r,m)trn(h)

x€ll+(M(Fs))

Jor any h € H(M(Fs)) and T € II(M'(Fs)).
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Proof. The sets ¥'(p) are all disjoint. Recall that h’(p’) equals eg tr p(h) if
p' belongs to £’(p), and vanishes if p’ belongs to no such set. Therefore

Kiry= Y. AP
o €S(M(Fs))
= T AGpah)

pETH(M(Fs))

= ¥ > ArpT(p, ) tea(h)

p€T+(M(Fs)) n€ll+(M(Fs))

= Z §(r, ) tr w(h),

as required.

COROLLARY 8.3: Suppose that S consists of one unramified place v and
that # € I (M(F,)) is unramified. Then for any T € I(M'(Fs)),

5(r,7) = { 1, rell'(m),

0, otherwise.
Proof. Take h to be an arbitary function in H(M (F,)) which is bi-invariant
under K, N M° (Fy). Since v is unramified, e, = 1. The fundamental
lemma (Theorem I1.4.5) tells us that h’(7) = tr x(h) for any 7 € II'(x). The
corollary then follows from the proposition. §

Now supposethat 7 = ®1',, and T = ®1r., arerepresentations in II(M’(A))
and I (M(A)) respectlvely Define

8(r,m) = [J 6(ro, m).

By the corollary, almost all the terms in the product are either 0 or 1, so the
product can be taken over a finite set. The adélic formulation is therefore
included in the previous definitions, and satisfies all the formulas above. In
particular,

K(ry= Y. s(rm)tra(h), heH(M(A)), T I(M'(A)).
r€T(M(A))
Suppose instead that we take 7 and 7 to be representations in II(M’(A)!)
and II*(M(A)?') respectively. As we have agreed, we may identify these
representations with orbits {r;} and {7} in II(M’(A)) and IIt(M(A)).
Then in this situation, we define

o(r,m) = Z 6(my, ).

A€ “;u,c
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There can be at most one nonzero summand on the right, and its value is
independent of 7.



The Global Comparison 131

9. Statement of Theorem B

In this paragraph we shall describe the global constituents aM(m) of the
spectral side. We shall then state Theorem B which, together with the dual
Theorem A, is the main result of Chapter 2.

Let I be the distribution defined by (5.1). The spectral side of the trace
formula is a sum

I(f) = Y k()
>0
where

O KH= Y WS [ M@ .
MeL (M, 1)

In particular, it is an expansion of I(f) in terms of the distributions

IM(”)f) = IM(”A)O)f)

discussed in §8. The variable ¢, which ranges over the nonnegative real
numbers, is required for convergence. We shall recall in a moment how it is
used to keep track of the size of Archimedean infinitesimal characters. We
shall then briefly review the definitions of a™(x) and II(M,t) from [1(h)].

Let S,, denote the set of Archimedean valuations of F, and set
Fo, = Fs_. Then GL(n, Fy) can be regarded as a real Lie group. Let
b denote the standard Cartan subalgebra of its complex Lie algebra.
Let B’ C b be the real form of h¢ associated to the split real form of
GL(n,Fs). Then b is invariant under the complex Weyl group W’ of
GL(n, Fy). Set

[): b'@@b'
t

By means of the inner twist 7, we can identify hc with a Cartan subalgebra
of the complex Lie algebra of the real Lie group G°(Foo). Then b is invariant
under the complex Weyl group W of G%(Fy). It contains each of the real
vector spaces dp. It is convenient to fix a Euclidean norm || - || on h which
is invariant under W. We shall also write || - || for the dual Hermitian norm
on h. To any representation = € I (M (A)), M € L, we can associate the
induced representation 7¢ of Gt (A). Let vy be the infinitesimal character
of its Archimedean constituent. It is a W-orbit in hg which meets (b')g.
We shall be more concerned with the case that 7 is a representation in
I+ (M(A)'). Then vy is a priori determined only as an orbit of a}, ¢ in
he. However, this orbit has a unique point of smallest norm in hg (up to
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translation by W), and it is this point which we will denote by vy. Ift > 0,
define II*(M(A)}, ) to be the set of representations = € It (M(A)!) such
that
| tm(we)ll = ¢,
where Im(vy ) is the imaginary part of v, relative to the real form §* of hg.
The global constituents of (9.1) are defined in terms of a function

agisc(T) = ag“(w), T € T (G(A)},t).

It in turn is defined by rewriting the expression

Idisc,t(f):
02 STIWEIWEITT 3 [det(s — 1)o7 tr(M(5,0)p0,4(0, )
Lel aeW(uL),.,
as
(9.3) Yo ae(m)fa(),

rellt(G(A)L,t)
a linear combination of characters. The terms in (9.2) are as in [1(h),
§4]. In particular, Q is any element in P(L), and pg; is the induced
representation of G¥(A)! obtained from the subrepresentation of M+ (A)?
on L2(M°(F)\M°(A)') which decomposes into a discrete sum of elements
in I (M(A)!,t). Moreover, M(s,0) is the global intertwining operator
associated to an element in

W(ag)reg = {s € W(ayr) : det(s — l)af # 0}

(Here W(ar) denotes the Weyl group of ar;.) For any function
f € H(G(A)), the sum in (9.3) can be taken over a finite subset of
I} . (G(A)',¢), and it is understood that

fa(m) = Ig(7, f) = Ia(m, 0, f).
Suppose that M; € £. As in [1(h)], we write Igjsc(M1i,t) for the subset
of IIY .. (M1(A), %) consisting of irreducible constituents of induced repre-
sentations

oM, Le M, o e} (L(A) 1), ) € ia} fia},,,

in which o) satisfies the following two conditions.

(l) agisc(a) # 0.
(i) There is an element s € WM (a)req such that sox = 0.
Then for any M, II(M, t) is the disjoint union over M; € LM of the sets

Op, (M, 1) = {7 =m » : m € Maisc(M1,1), ) € ia}y [iay}.
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The global datum in (9.1) is the function
aM(7) = agige(m) rif,(mp), 7€M (M),

also introduced in [1(h), §4]. It can be defined for any representation
T =m0, m € WH(My(A)), A € iayy, [ia}y,

but it vanishes unless 7 belongs to Iy, (M,t) for some t. The function
rM (m1,)) is obtained from a (G, M;) family which is built out of the global
normalizing factors. We shall discuss it in more detail in §11. Finally, the
measure in (9.1) is given by

dr = dm \ = WM |WM|"td), 7 el (M,1).
In our notation {7y} stands for the orbit of iaj}, /ia}, in
I (Mi(A) N M(A))

associated to a given m € Ilgjsc(M1,t), but we shall often identify
™ = w1, with the induced representation 7, in IIF;,(M(A)'). It is in this
sense that the distribution Ins(, f) in (9.1) is defined. We should perhaps
emphasize that the function

In(m, f) = In(zfh, f), X € i}y, [iayy,

is rapidly decreasing. It in fact extends to a meromorphic function in
the complex domain which is rapidly decreasing on cylinders, as one sees
directly from the definition [1(g)] of the distribution. This property is
implicit in the formula (9.1) (as well as (8.1)), and will be used later without
comment.

The integral over II(M,t) in (9.1) converges absolutely. So does the sum
Y.: Ii(f). However, it is not known that the two converge together as a
double integral over (¢, ). It is because of this difficulty that we introduced
the sum over ¢ in the first place. However, it does not seem unreasonable
from an aesthetic standpoint that we should be forced to keep track of
Archimedean infinitesimal characters.

A similar expansion of course holds for G’. However, we would like to
define functions which we can compare directly with a™ (7).

LEMMA 9.1: If m is any representation in I+ (M1(A)'), the series

> ayts (m)8(r1, 1)

T €N(M](A)!)

can be summed over a finite set.
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Proof. Lift m; to a representation in II*(M;(A)), and choose a finite set S
of valuations outside of which G and 7, are unramified. Let 7, = 7, 5 ® 1rf
be the decomposition of 7; corresponding to

Mi(A) = MI(FS)(H Ml(F.,)>.

vgS

Consider the representations 73 = 71,5 ® 7 in II(M}(A)) such that the
number

§(r1,m) = 8(r1,5,m1,5) [] 6(ri v, 710
vgS
does not vanish. By Corollary 8.3, 7 is unramified, and it is clear that there
are only finitely many choices for 71 . It follows from Lemma 4.2 of [1(h)]
that there are only finitely many such m; with aﬁi{;c(rl) # 0. Therefore,
there are only finitely many nonzero summands in the series. il

Define
©4)  afif(m)=emaa Y gl (n)6(n,m).
T1€N(M{(A)')
Then if
=T, m € IH(Mi(A)Y), A€ ay, /e

we define

o€ () = aflf (m) rif, (7).
The function r%l(n, ) is obtained from global normalizing factors, and is
well behaved only when m; is automorphic. Therefore, it is not a priori
clear that the definition of a™-¢ (1) makes sense. This will follow from the

induction hypothesis introduced below.

THEOREM B: (i) Suppose that S is a finite set of valuations which contains
Sram- Then

Ifl("" f) =Iu(x, f), LES H:nit(M(A)l)’f € H(G(Fs)).
(ii) For any given
T =T, m € IH(M1(A)'), X € ayy, c/oM.c)

we have
aME(x) = aM(m).

This theorem, which consists of a local assertion and a global assertion,
is the second main result of Chapter 2. It will imply a term by term
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identification of the spectral sides of the trace formulas of G and G'. It is
the second assertion (ii) which will allow us to deduce the correspondence
between automorphic representations.

Theorem B will be proved in conjunction with Theorem A. As we shall
see in the next section, the local assertion (i) can be proved from our induc-
tion assumption of §5. However, the global assertion (ii) requires its own
induction assumption. We assume that for any M; € £, with M; # G,
that

adif(m) = afil(m),  m eT(Mi(A)).

Then o}/ () vanishes unless 7; belongs to Iaisc(Mj,t) for some ¢. This
means, in particular, that v; must be unitary. But if 7, is unitary, and
M D M,
=1, A € iayy [iay,,
is well defined. Moreover, if m; belongs to Mgisc(My,t), the function
o, (1,2) is defined. It follows that the function a™:(7) is well defined
and that
aME () = oM (r)

whenever M, # G.
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10. Comparison of If,(n’,X, f) and Iy (7, X, f)

We shall establish the local assertion (i) of Theorem B. We are actually
going to show that Theorem A(i) implies the equality of the distributions
In(m, X, f) and I§(7, X, f) described in §8. We will use the constructions
of [1(g)], which were designed for this purpose.

Fix a finite set S of valuations of F' with the closure property. In [1(f),
§11] and [1(g),§4], we defined function spaces

Hae(G(Fs)) D Hae(G(Fs)) D H(G(Fs))

and
Z..(G(Fs)) D Z4(G(Fs)) D I(G(Fs)).

The definitions were set up so that the spaces in the second row become
the images under invariant Fourier transform of the corresponding spaces
in the first row. We shall not describe them further, except to say that
those of the second row consist of functions ¢(7, X) on Hiemp(G(Fs)) x
ag,s with different conditions on the second variable. The conditions on
Z(G(Fs)) require that ¢(m, X) be smooth and compactly supported in X.
For Z,.(G(Fs)) the compactness of support is relaxed, and for Z,.(G(Fs))
the smoothness condition is also weakened. All the invariant distributions
on H(G(Fs)) that we have described extend naturally to linear forms on
Hae(G(Fs)). Their Fourier transforms therefore extend to Zae(G(Fs)).

In [1(g), §4] we also defined maps 8%, and °6% from H,.(L(Fs)) to
Zao(M(Fs)), for every pair M C L of Levi subsets in £. These maps
satisfy

(10.1) Yo 0= > bh0(n) =0,
LeL(M) LeL(M)
(10.2) In(v,f)= ), “Ig(r.00(f))
LeL(M)
and
(10.3) ‘In(v.f)= Y. Ia(r,0c(f)),
Le (M)

for ¥ € M(Fs) and f € Hao(G(Fs)). Here Ik (v) is an invariant distri-
bution on H,.(L(Fs)) which depends only on the M O(Fs)-orbit of v. (As
usual, we have suppressed the superscript if it is G.) The key feature of
Iy is a property of compact support. If f actually belongs to H(G(Fs))
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then °Ip(7, f) is compactly supported as a function of v in the space of
M?O(Fs)-orbits in M(Fs) ([1(g), Lemma 4.4]).

We have similar objects for G/, of course, and we can pull these back to
G. Define

Iy(r, )= Wt (s '), f € Haol G(Fs)),

for any G-regular element v € M(Fs). If f € Hqa(G(Fs)), 7€ I, p (M(Fs))
and X € ay s, we also set

05 (f,mX)=es Y bur(f',&n', X")

§ECMm

and X
05(f,m X)=es D “ban(f, 7', X"),

§€Cm
where 7/ is any representation in II'().
LEMMA 10.1: As the notation suggests, 05,(f, 7, X) and °05.(f, 7, X) are
independent of the choice of 7' € I'(w). The functions 65,(f) and °65,(f)
of (m, X) defined by these expressions both belong to To.(M(Fs)). Moreover,
we have

(10.1)¢ Yo oFCoE) = Y b)) =0,
LeL(M) Lec(M)
(10.2)¢ Li(v.f)= Y, (655,
Lec(M)
and
(10.3)¢ Tt = Y, Iif (.65
LeL(M)

Proof. According to Lemma 4.7 of [1(g)],
b (F, 7', XY = D wp(X)e P XD Dy, X, f),
PeP(M)
for any = € It (M'(Fs)). Here
wp(X) = vol(ap N B) vol(B)™1,

where B is a small ball in ap centered at the origin, while vp stands for
any point in the chamber (a})* which is far from the walls. It follows
from Lemma 8.1 that 65,(f, 7, X) is independent of ' € I’ (7). Moreover,
Proposition 10.3 of [1(g)] implies that G5 (f', 7', X') vanishes if 7’ does not
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belong to a set II’(x). It follows from the definitions that 65,(f) belongs
to Z,o(M(Fs)). We have thus established the two required properties of

0%,(f). To see that they also hold for °6%,(f), we must first make an
observation.

For any function f € 'fiac(G(Fs)), we have
O5() (', X') = st m(A0)gE, £, 7, X)
={ dim(4c) Z éG'(f')&’r,a X’)
§€Cq
= éG'(f,) 7l", X’)v
by (1.7) and the definitions above. In other words
0(f) = b ).

This formula is rather trivial, for the maps are defined in [1(g)] so that

bc(f) = “06(f) = fe-

If G is replaced by an arbitrary element L € L, the corresponding formula
does not hold. However, suppose that I’ is an invariant distribution on
Hac(L'(Fs)) which is supported on characters, and annihilates any function
which vanishes on the Ks-bi-invariant set L'( Fs)L. Fourier inversion on the
finite abelian group

L'(Fs)/L'(Fs)*
then yields the partial result
P6E(5Y) = I'(0u(£)).
The distribution
r'(hy= " 05u(hex',X"),  he€Ha(L'(Fs)),
§€Cum
satisfies the two conditions above. Consequently,
Y. O 5T X)
LeL(M)
=Y es Y O (65 (f).€n', X)
L §ECMm

=eg Z Z céﬂ‘(éL'(f’)rfwl’X,)'

€€Cm LeL(M)
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This vanishes by (10.1), applied to G'. Since 65(f) equals fg, we obtain
Va(fimX)=— 3, OFEL), T X).
{LeL(M):L£G}

It follows inductively that °65,(f,, X) is independent of 7’ € II’(w), and
that °05,(f) belongs to Zs.(M(Fs)). One half of the required formula
(10.1%) is also an immediate consequence of this identity.

The remaining assertions of the lemma follow by similar arguments. For
if I' is an invariant distribution on ’ﬁ.,c(L’ (Fs)) which satisfies the two
given conditions, we can also establish a formula

Fe6L(f)) = ' (f")),
as above. This holds in particular if
I'(h),  h€Hao(L'(Fs)),

is one of the distributions ) Oﬂ,(h,&r’ , X")or IL. (v, k). The other half
§eCum

of (10.1), as well as (10.2)¢ and (10.3)%, follows without difficulty. N

THEOREM 10.2: Fiz an element M € L and a finite set S of valuations
with the closure property. In the special case that S D Siam, assume that

IE(v, ) =1L(v.f), f€H(G(Fs)),

for each L € L(M) and v € L(Fs). Then for any f € ﬁac(G(Fs)) and
X € ap,s, we have

(a) 05:(f) = 0u(f),

(b) 05 (f) = “0m(f),

(<) (o, X, f)=In(p, X, f),  p€SHM(Fs)),
and

(d) Ig(m, X, f) = In(m, X, f),  m eI (M(Fs)).

Proof. According to the induction assumption of §5,

IFE(y) =I(v), v € L(Fs),

if LC L, g G and S D Sram. We may therefore assume inductively that
the four required formulas of this theorem hold if G is replaced by any such
Ly. We shall also assume inductively that the four formulas hold for G,
but with M replaced by any Levi subset L 2 M.
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It suffices to prove the theorem for a fixed function f € H(G(Fs)). For
the restriction of a given function in Hac.(G(Fs)) to any fixed set

G(Fs)? ={z € G(Fs) : He(z) = Z}, Z € ag,s,

coincides with that of some function in H(G(Fs)). Suppose that ¥y € M(Fs)
is G-regular. The given hypothesis permits us to use Theorem 6.1, and in
particular the expansion (6.1). Combined with the descent properties (3.3)
and (6.2), this becomes

(10.4) L= Y, eSO 1)

LieL(M)

Anticipating a similar formula for °I{; (v, f), let us consider the expression

(10.5) (N - Y e (S)I(r.f).
Lleﬂ(M)

By (10.3) and (10.3)%, we can write this as the sum of

(106) I (1, 65(f) ~ *0m(£)

and

> {Eaem- ¥ SR

L2M LyeLL(M)
Now if L # M, we have
Yo eI 0u() = Iy (1,00(F)) = Iy (7, 65.(£)),
L,eLL(M)

by our induction hypothesis and (10.4) (with G replaced by L). Therefore
the second expression vanishes, and (10.5) equals (10.6). Since f belongs
to H(G(Fs)), the expression (10.5) has bounded support as a function of
7 in the space of M°(Fs)-orbits in M(Fs). The same is therefore true of
(10.6). For a given X € ap,s, (10.6) is the orbital integral in

{r € M(Fs) : Hu(7) = X}
of a function defined on
M(Fs)X = {z € M(Fs) : Hy(z) = X}.
The tempered characters of this function are just
°0ﬁ,(f,1r,X)—°0M(f,7r,X), TE Htemp(M(FS))-
It follows that the difference is compactly supported in X.
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In [1(g), §5] we defined a meromorphic function

Opg (f,m2) = j O (f,m, X)X, A€y,
aM,s

for each 7 € I, (M(Fs)). The definition extends readily to standard
representations p € £+ (M (Fs)) by analytic continuation. Define

‘In(p, X, f)= Y. Ih(p, X,°0L(f)), p€TH(M(Fs)).
LecL(M)

Then Proposition 5.4 of [1(g)] asserts that

107) “Iu(p X, =limn 3 wr [ BOYOu(S e Da

PeP() eptivy, s

where 3 stands for a test function in C°(aps,s) which approaches the Dirac
measure at the origin, and X € ays s is any point at which the left-hand side
is smooth. (If ap s is discrete, X can be any point and # may be removed
from the formula.) Thus, Ip(p, X, f) may be computed inductively from
the function “Gp(f, pa).

In a similar fashion, we define
05 (fym) = / 05 (f,m, X)r XX,  Aeajc,
am,s
for each = € T, .(M(Fs)). If «’ is any representation in I'(7),

°91£u(f» WA) — / E escéM(f,,f'n",X,)CA(X)dX

aM,s EecM

= ¢~ dimAym / Zes°éM(f',£W',X')e"'(x')dX'

LIYIR] §

= ¢~ dimAum Zes°éM(f', £my),
3

since dX equals ¢~ dimAmdX’ These formulas again extend by analytic
continuation to representations p € L+(M(Fs)). We can also define

Tyl X, N)= Y Lo, X,05(f)).
LeL(M)
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Then
Tap X, )= Y, Y eship(€r, X', 65())
LeL(M) ¢eCu
=Y es Y Huler X', bu(s))
¢€CM  LEL(M)
=Y eshu (€0, X', f).
§eCy
(See the proof of Lemma 10.1.) To this last expression we apply (10.7),
(with f, p, and X replaced by f/, ép’ and X'). We obtain

fign >, wr / BNY Y esOu(f Eph)e™> X a.
PEPM) . los €€Cu

Finally, we substitute the formula above for °65,(f, px). Remembering that
d) equals £~ 9im(Am)d)  we see that

107F “HypX.N=lin T wr [ BOVOL D,
PEP(M)  ¢piiay,
for any smooth point X.

We shall apply (10.7) with p = =, where 7 € I, ,(M(Fs)) and p €
ays. We may as well take p to be in general position. Then the contours of
integration on the right-hand side of (10.7) can all be deformed to iaj}; 5.
Consequently,

(X, 0) =lim [ BO)Oua (S, mupn)e™ P
ia} s
= eH(X) li;’n / B — 1)°0n(f, ma)e~*X)d).
utiey, o
Remember that 3 is to approach the Dirac measure at the origin. But
A= B - p)
is the Fourier-Laplace transform of a function
X — e‘“(x)ﬂ(X)
which also approaches the Dirac measure at the origin. We may therefore

replace B(/\ — p) by B()). We obtain

Ly X, 1) =lim [ BOY O m)e P

utiay, o
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A similar formula arises from (10.7)¢. Taking the difference of the two, we
see that

(10.8) e MO Iy (7, X, ) = “Int (7, X, f))
equals
lién / B (05 (f, ™) — “Oar(f, m2))e~ 2 X)dA,
pHiah, s
Now
A = O3 (f,m2) = “Om(f,72)

is the Fourier transform of the compactly supported function
X - coil(f’ﬂ')x) - ceM(faw)X)»

and is therefore entire. Consequently, the integral over u + iaj, ¢ can be

deformed to any other translate of ia}, 5. The outcome of this discussion is

that (10.8) is independent of u. At least this is the case for almost all 4 and

X . But there are formulas in [1(g), §4] which allow us to express the value

of (10.8) at any p# and X in terms of its values at nearby points in general

position. It follows that (10.8) is independent of y without restriction.
According to Lemma 4.5 of [1(g)],

> wp(X)e P Iy (m,,, X, f) = 0.
PeP(M)

(The notation wp(X) and vp was described at the beginning of the proof
of Lemma 10.1.) Applying the same formula to G, we obtain

Y wp(X)e™rP®) I (m,,, X, f) = 0.
PeP(M)

Since (10.8) is independent of i, we can express its value at any y as the sum
over P € P(M) of the product of wp(X) with its value at vp. Consequently,
(10.8) vanishes for any u. We have therefore established that

cIfl(ﬂ'“,X, f) = CIM(W;HX) f))

for any 7 € IIE,,,,(M(Fs)) and p € a},. The next step is to set u = 0. For
there is another result (Lemma 4.7 of [1(g)]) which asserts that

cIM(W;X)f)= caM(f"’r;X), mE Ht-;tmp(M(FS))
The same result applied to G’ yields
It (7, X, f) = 05(f, 7, X).



144 Chapter 2

Combining the three formulas, we see at last that °65,(f) equals 0 (f).
This is the second assertion of the theorem. The first assertion is the
equality of 84,(f) and 6 (f). This follows from the second assertion, our
induction hypothesis, and the formulas (10.1) and (10.1)¢.

The third assertion of the theorem will follow from a comparison of (10.7)
with (10.7)¢. Our definitions, together with the second assertion of the
theorem (which we have already proved), imply that

cgﬁ{(f) 71',\) = cOM(f) 7|',\), TE H;tamp(M(Fs))’ A € c“.IM,C‘

But by analytic continuation, this formula remains valid if 7 is replaced
by the standard representation p. Therefore, the right-hand sides of (10.7)
and (10.7)¢ are equal. Consider, then, the resulting equality

I (p, X, f) = “In(p, X, f)

of left-hand sides. By our induction assumption and the second assertion
of the theorem, we have

I (0, X, *05(9) = Tia (o, X, “61(1)
for any L € L(M) with L # G. We therefore obtain

Ii(p, X, ) = In(p, X, ),

the third assertion of the theorem.
Finally, suppose that = is any representation in II* (M (Fs)). We defined
I& (7, X, f) by (8.4), an expansion in the distributions

If(pa,hL(X),f), p€ZY(M(Fs)), A €ep+iay s, L € L(M).

We also noted that Ips(7, X, f) satisfies (8.1), an identical expansion in the
distributions

It(pa, h(X), f).

The fourth and final assertion of the theorem then follows from the third
assertion, with M replaced by L. i

COROLLARY 10.3: Under the assumptions of the theorem, we have

i, f)= > en(SFI(r.f),  f€HaelG(Fs)),
LeL(M)

for any G-regular element vy € M(Fs).
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Proof. In the proof of the theorem we established the equality of (10.5)
with (10.6). But by the second assertion of the theorem, (10.6) vanishes.
The corollary follows. §

We shall now use Theorem 10.2 to prove the local assertion (i) of The-
orem B. We are not at liberty to assume the equality of I£(7) and I (7).
However, we are carrying our original induction assumption from §5. Con-
sequently, if L C L; G G, we may assume that I7**(y) and If*(y) are
equal. ‘

Now, suppose that = € II¥,; (M (Fs)). We must show that

I5(m,0,f) = In(m,0,f),  f € H(G(F5s)).

As we noted near the end of the proof above, these distributions have
identical expansions in terms of the distributions associated to the standard
representations p € £+ (M(Fs)). Moreover, only those p with A(w, p) # 0
can occur in the expansions. Since 7 is unitary, any such p must have a
unitary central character. It is therefore sufficient to establish the formula

(109) If(p/\)hL(X):f) = IL(pX:hL(X)’f): Le L(M); X €ay,
for any such p and any point A € aj, ¢ with small real part.

We will use the splitting and descent formulas for Ir(px, hr(X), f) and
I€(pr, hL(X), f). (See the proof of Lemma 8.1.) By the splitting property,
we need only establish (10.9) under the assumption that S contains one
valuation v. Suppose that this is the case. Since the central character is
unitary, p is either tempered or induced from a proper parabolic subset. If
p is tempered, we have

0 , L#£G,
fa(p5 ha(X)) , L=G,
as may be seen from the proof of [1(g), Lemma 3.1]. In the other case

p= pill’ M, g M, p € TH(My(F,)),

and we can make use of the descent property of each side of (10.9). We find
that we need only establish the formula

LE(pas X1, fry) = I (puan X1, fry), Ly € L(My), Xi € ay,,

with L; # G. Since we are assuming the equality of I f"e('y) and I f‘ ),
the formula follows from Theorem 10.2, with (G, M) replaced by (L1, M;).
This completes the verification of (10.9) and therefore of Theorem B(i).

IE(P,\,hL(X),f) = IL(p)\,hL(X),f) = {
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11. More on normalizing factors

This section is a digression. We shall discuss some further questions
related to the comparison of normalizing factors.

Suppose that 7 € Hgisc(M,t). Then 7 can be identified with an orbit
{m\} of ia}, in I} ,,(M(A)). The global normalizing factors are functions

reap(m) = [ re(mA(@Y)), PP eP(M),
aeEplnDF2

which are meromorphic in A € ajs ¢ and which are regular for imaginary
A. They satisfy
(11.1) TP,y (T2) = TP, |, (T) TRy Py (T2)-

(See [1(h), §4].) The global factors ro( ) can be obtained from the local
normalizing factors defined in §2. In fact, if 7 is identified with a unitary
representation @), of M(A), they are related by an infinite product

v

ra(”’ ’\(av)) = Hra(wva A(‘J‘V )))

v

which converges in some right half plane. Suppose that ' = @) is a

v
representation in II’(x). The formula (2.3) for the local normalizing factors
can be written

ro(my,s) = Aaw H ra’(f”;’s)-

EECM/CMqy

Here M, D M is the Levi subset such that
apy, ={HE€ay : a(H)=0}.

Since
HAa,u = la
v
we obtain
(11.2) ro(m,s) = H ror (€7, 5).

fEcM/CMa

In particular, the expression on the right depends only on 7 and not =’.
Observe that if the representation #’ € II'(7) is not automorphic, the con-
stituents ro/(€7’, s) may not be defined for all s. They are defined in general
only for s in some right half plane.
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The functions which occur in the trace formula are built out of the (G, M)
family
(11.3) rp(v,m\, Po) = rp|po(7rx)_l TP|Po(TA4r), PeP(M),v€iay.
The associated functions r;(7,), L € £(M), are analytic in X € ia},, and
are independent of Py.
LEMMA 11.1: . For each L € L(M) we have

rig(m) = ¢-Am Al AN el (e,
§eCum/CL

where 7' is any representation in II'(7).

Proof. Since the (G, M) family (11.3) is defined as a product of functions
indexed by roots, we can apply Lemma 7.1 of [1(c)]. We obtain

rh(m) = Zvol(aM/Z(Qv)) H ro(m, /\(av))_ r(r, A@")),
aed
where @ is taken over all subsets of the roots of (G, Apr) for which

Y ={a¥ : a€®}

is a basis of a},, and r(l) denotes the derivative with respect to the second
variable. Observe that the map X — X' from ak; to ak;, sends any “co-
root” aV to the corresponding “co-root” (a/)V. Since the map expands
volume by a factor £4im(4m/AL) relative to our fixed measure on ak, = aﬁ,,
we have

vol(afy/Z(®Y)) = £-dmAnm/AL) yol (aky, /Z((2')Y))
for any ®. Notice also that there is a canonical isomorphism

Cu/CL= P Cu/Cn,..
aEd

Combined with (11.2) and the fact A(a¥) = N ((a’)V), this gives
I1 re(m2(@")) "1 (m, M(@"))

a€P
> I relen . X(@)) D er, X)),

§€CM/CL '€’
Applying Lemma 7.1 of [1(c)] to the function
rillll’(g”r'A’)r

we obtain the required formula. §
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It is actually a slight variant of Lemma 11.1 that we will need to use. If
T is any representation in Igjsc(M’, 1), set

reap () =[] I reEnX@)),

aEEp‘nzﬁz £€CM[Cm,
and let
v Vo v -
rp(v,Ta, Po) = PP (TA) T TPIP(Tasv), P €P(M), v € id}y,

be the associated (G, M) family. The proof of the lemma gives
COROLLARY 11.2: .

At =t S i)

§eCm/CL
for each L € L(M).
Suppose that 7 is as above, and that
™ = ®7r,,,)\, Ty € HlTnit(M(Fv))'
v

We can write

rP]IPg(WA) = HrP;[IPg (Tv,/\);
v

the right hand side being defined by analytic continuation. The local factors
do not satisfy the product formula (11.1). However, it is important to
consider certain quotients of local factors which do satisfy this formula.
The functions rf; (7, px) discussed in §8 arise from examples of this sort.
More examples are provided by coupling representations of G and G'.
Suppose that 7 = @7, and * = Q) 7, are arbitrary representations in

v v
II(M’(A)) and II*(M(A)) respectively. Assume that the number
§(r,m) = [[é(mv, )

defined in §8 does not vanish. For each root @ of (G, Ap) and each v, set
FalTo,m0,8) = (Aaw [ ra(€m,5)) ral(m, s).

€€CM/Crmq

This function is constructed out of local L-functions. If r, and =, are
unramified, the representation 7, must belong to II'(w,). It follows from
the product formula above that in this case

~ ,V
Ta(Ty, Ty,8) = 1.
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We can therefore define

~ (¥ ~ v
ra(T, 7|', 8) = H"'a(‘rv, 7"0 ] 8)
v
as a product over a finite set S. We can then set

~ v ~ ¢V
TP,IP,(TA, m) = H Ta (T: T, ’\(av))‘
ae!)pl nEJ—%

Now for any given v,
5(Tv; 7|'v) = Z E evA(Tv’p:;) F(p‘”"r") # 0’
PvESH(M(F,)) P,EZ (py)

so we may choose p, and p| so that A(r,p})T(py,n,) does not vanish.
Since

"'a(Pvas) = /\a,v Z T'a'(fpi,,s),

fecM/cMo:

we can write 'Fa(¥v,1r.,, s) as the product of
-1
H Ta! (ffv,s) "'a'(ﬁp;r s)_l
and
Ta(pu, 8) " ra(my, ).

By Lemma 5.2 of [1(f)], these are rational functions of s if v is Archimedean,
and of ¢,* if v is non-Archimedean of residual order ¢,. The same is

therefore true of ’Fa(¥,,,1r,,,s). Another consequence of the lemma is the
formula

~ ,V ~ V)
Fa(Tu, Ty, 8)F-a(Ty, Ty, 8) = 1.
In other words,
~ 4V ~ v
To(T, 7, 8)T_o(T,m,8) = 1.

From this we see easily that

~ v ~ v ~ v
TP P (T, TA) = Ty P, (T, TA) Fry Py (T, T2,

for any Py, P, and P3 in P(M).
We define a (G, M) family

~ v ~ v -1 ~ v .
TPU AT, Po) = Tp1P, (Tum) ™ 7RIy (Tats Tags), PEPM), v € ialy.
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LEMMA 11.3: . (a) Take 7 and 7 as above. Then for each L € L(M),

F};,(A, 7)) is a rational function of the variables (8.2) which is independent
of Py. (In (8.2) S is understood to be any finite set of valuations outside
of which T and 7 are unramified.)

(b) Suppose in addition that v € Haisc(M’',t) and 7 € Mgisc(M,t). Then

~ v Vo
PP (Tas ™) = 1Ry, (T2) TRy 2y (M)
In particular, for each L € L(M) the function F,[;!(‘\i/',\,w,\) is regular for
A € iay,. Moreover,
Voop VY
rir(m) = Z it (TA) FE, (Ta, ™).
L,eLL(M)

(As we have done before, we have written 75 and m\ when in the last formula
we really mean the induced representations Tf‘ and wf‘ .)

Proof. Everything but the last assertion of the lemma follows from the
discussion above. Notice that under the conditions of (b) we have a decom-
position

~ \"% v
rp(v,mx, Po) = 7p(v, Ta, ma, Po) rp (v, Ta, Po)

into a product of (G, M) families. The last assertion therefore follows from
Lemma 6.5 of [1(b)]. I

It is clear that there are other (G, M) families which are similar to those
just discussed. For example, suppose that p = @) py is a standard repre-

v
sentation in X*(M(A)) such that the number

A(Tr P) = HA(Tv;Pv)

does not vanish. Then by replacing 7 by p in the discussion above, we can
define a (G, M) family

~ v ~ v -1 ~ v

rp(v, T, P, Py) = rPlPo(T)n Px) ! 7’P|P.,("'A+u,P,\+u)-

For another example, let o and 7 be representations in II(M’(A)) such that
for some w € II(M(A)), the numbers é(o, r) and (7, 7) are nonzero. Then

~ v v ~ v ~ v -
rP(V;a/\;Tz\)PO) = rP(V,U'A,ﬂ'A,PO)TP(V, TA;W/\)PO) !

is a (G, M) family which is independent of . It satisfies an obvious ana-
logue of Lemma 11.3. Notice that Lemma 6.5 of [1(b)] provides additional
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expansion formulas

~ ~ v ~]
(11.4) @)= Y TR m) T (e
LieLL(M)
and
(11.5) FR@nm)= Y TRONT)FE (Fa,m).
LyeLt(M)

Finally, suppose that 7, p and = are arbitrary representations in II(M’(A)),
T+(M(A)) and IT*(M(A)) respectively. The functions r;(7x, p») used in
§8 are obtained from the (G, M) family

TP(V, WA,PA,PO) = A(“’;P);"P(V’ X P2 PO): Pe p(M)> S z'a*M.

In a similar fashion, we define

rp(v, 1!;\, 7z, Po) = 6(7, )7p(v, ¥A, T, Po)
and
rp(v, T, P2, Po) = A(T, p)Fp (v, T2, o2, Po)
for P € P(M) and v € ia};. These two new (G, M) families (as well as the

earlier ones) satisfy versions of Lemma 11.1. We shall comment explicitly
only on the case of the latter one.

LEMMA 11.4: . For each L € L(M) we have
v ; ,
rir(7x, pa) = £EmAMAR R N rhp (e nb).
€ECM/CL p'€Z/(p)
Proof. By definition,

v L Y
Tkl(‘l',\, PA) = A(Tv P) 1‘1{'{(7’)‘, PA))
Arguing as in Lemma 11.1, we see that
~L /¥ _di ~
Fir(Ta, pa) = £-AmAMIAL) N T T (6ra, Eph),
§eCm/CL
for any p’' € X'(p) with A(r,p’) # 0. In particular, the expression on the
right is independent of p'. Moreover,
A(rp)= Y. An/),
P'€Z'(p)
since eg = 1 for any large finite set S of valuations. Therefore

L (Ta, pa) = £-4im(An/AL) Z E A(r, p') Fhps(ETae, Ep50).-
§€Cm/CL P'E€T(p)



152 Chapter 2

Since A(T,p') equals A(é7,£p’), this becomes
[—dim(AM/AL) Z Z rlﬂll,’(grz\')fp,k’)y
£ p

as required. I
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12. A formula for If(f)

We return to our discussion of Theorem B. We established the local
assertion (i) in §10, so we can concentrate on the global assertion (ii). Our
goal for this section is to obtain an expansion for I¢ (f) which is dual to that
of Proposition 5.1. However, we must first establish an inversion formula

for I§;(x, f).
LEMMA 12.1: . Suppose that 7 € Iyt (M ’(A)l). Then the distribution
v ~
Iy(r.f)= Y Iw(er,f)
§€Cm
equals
v
a2y Y Oy vk Gama) I (ma, ) d,
LeL(M) reli+(M(A)) VeMHioy,/io}

where €y is a small point in general position in a},.

Remark. Only those = with §(7,7) # 0 will contribute to (12.1). Since 7
is assumed to be unitary, any such = will have a unitary central character.
Consequently, 7 may be identified with an orbit {m)} of ia}, in II* (M (A)).

Proof. For the proof, it is convenient to re-label the summation index L in
(12.1) by L;. We can then insert the expression

Sy ¥ B, (Tt ) IE (rt s ) i

QEP(L1) LeL(L1) peT+(M(A)) Veatioy, [io}

for Ifl(ﬂ')‘, f) into the formula. The point eg can be taken to be small
relative to the point e5r. Since A belongs to epr + ia},, we can deform the
contours of integration in y from eq + ia} /ia} to ia} /ia}. Therefore
(12.1) equals the sum over elements Ly, L € L(M), with L, C L, of

/ , .rf}(;'/,\,n)"f,(ﬂ,P,\)If(m,f)d/\~
reII+(M(A)) peS+(M(A)) YEMFiay [ia]

We shall take the sums over L; and 7 inside the integral. Their contribution
will be given by

v
S 3 BEam)rE ().

1I' {thMCLxcL}
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This expression comes from a product of two (G, M) families. In fact, by
(11.4), it equals

o) Y S(rmA(,p).
r€M+(M(A)!)
But
Z 6(1',11’)A(7r,p) = Z A(T,Pl) Z F(pl,w)A(w,p) :A('r’p).

e+ (M@A)') PETH(M@A))  mellt(M(A))

Since the product of this with 7{,(¥A,p,\) equals rﬁ,(;/'A,p,\), (12.1) can be
written as

v
(12.2) > >, / i) IE(ea, £ d)
LeL(M) peT+(M(A)!) oM+t /icL
Now, consider the expression
v
Z rllill(TX’p/\)If(pz\af)‘
PETH(M(A)')
By Lemma 11.4, this equals
amAulAD Y TN Y i En €0 IE (o, )-
p p'EX(p)EECM/CL
But Lemma 8.1 permits us to write
If(px, ) = ) T (CEdn 1),
(eCL
so the expression equals
gamAnAD NN ST (€m0 I (€, ).
P P'EZ(p)EECH
If p € £(M’(A)!) does not belong to one of the sets X'(p),

IL‘(ep/A': fl) = Or

by Proposition 10.3 of [1(g)]. We may therefore sum over all p’ in Z(M’(A)').
The expression equals

e AimAn /A NN (€, €5 ) L (€Rh f)
P EECM

= ¢~ ImAn /A NN L €, o3 L (P, ).
€
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We substitute this expression into (12.2). Since d\ equals £3im(Am/AL)d)/
we obtain

[ rhaen i £ ax
€€C LEL(M) p'€T(M' (A1) VM +iay [ia}

But 7 is unitary, so we can apply the formula quoted at the beginning of
§8. It follows that (12.2) equals

E fM’(ET) f’)a

£eCm
as required. il

In §5 we defined I as the pullback to G of the distribution I on G'.
Applying (9.1) to G’, we obtain

E(f) =Y _IE(),
t>0

where

FO =1 = WS [ ol £
Lel! TI(L,t)

According to Proposition 8.2 of [1(h)], IL(r, f’) vanishes unless L is the

image of an element in L. Therefore,

123 E( =YX WS [ &M (Ol )
MeL (M’ t)

We would like to transform this into a formula involving the functions aM-€

and If,.

For convenience we shall define II§,.(M;,t) to be the subset of
I+ (M;(A)!,t) consisting of irreducible constituents of induced representa-
tions

o', LeLfM, oelt(L(A)1), A€ a}/ia},,
in which o, satisfies the following two conditions.
(i) agi(o) # 0.
(ii) There is an element s € WM 1(aL)reg such that sox = o).
But for the superscript £, this definition is identical to that of Mgisc(Mj,t).
It follows from our induction assumption that I1§;, . (M3, t) equals Myisc (M, t)
if My # G. Copying the definition of II(M,t), we take II¥(M,t) to be the
disjoint union over M; € LM of the sets

05, (M,t) = {7 =m : m € U§.(My,1), A€ iay, /iaks }.
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PROPOSITION 12.2: . Suppose thatt > 0 and f € H(G(A)). Then
OVF E()= X WHWE [ a @
MeL 8 (M, 1)

Proof. Tt follows from the formulas above that If (f) equals

> e [ oo o
{MI,MEL M:)Ml} Tenduc(M
Replace each 7 by &7, € € Cu,, and then sum over £. Since ¢ per-
mutes Igisc(M7, ), this will still equal If(f) provided that we multiply
by £-4im(4sm)_ According to Lemma 4.3 of [1(h)),

adlsc(ﬁf) - adlSC(T)

Consequently If(f) equals the sum over {M; C M} of the product of
(12.4) emamian )| | | Wi |~

with

Z[a‘ Jias, adlsc(T)( E rﬁZ(ETA’)jMI(ff)\/,f’) dA')

E€CM,

The expression

Y- i) D (era, f)

E€CM,
can be written as
Yo @) Y hu(Cenn, ).
§€CMm, /CM CECMm
We observe from a variant of Lemma 8.1 that
- v
Y De(Cern, ) = g (€)Y, f) = g (T, f).
(€Cm
Therefore, by Corollary 11.2, the expression reduces to
glman Al (13) I (T2, ).
Substituting the expansion from Lemma 12.1, we obtain
prtai £ S
1
LEL(M) =, €IT+(M,(A)L 1) Y EMHiay, [ia]

\"
X Tar (Tt T a4 u) IE (T a4, ) dpt.
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(We should actually sum over = € II*(M(A)*), but the general position of A
means that this sum reduces to one over II*(M;(A)?). Since ||Im(v;)|| = ¢,
the summand vanishes unless 7; actually belongs to II*(M;(A)!,t).) We
insert this expression back into the formula for If (f). Since

d\ = [—dim(AMl [AMm) dA,

we may write If(f) as thesum over {My, L : M; C L} and m € T (My(A) ¢)
of the product of 12.4 with

(12.5)

X . Z adlsc(T)er(T)\)rM(TA’ m )‘)If(wl As .f)dA
{M:M cMcL} MY, [30] remg (M1 1)

The summand in (12.5) corresponding to a given 7 will vanish unless
8(r,m) # 0. Among all such 7 fix one, say o. Then for any other such 7,
we can write

M= Y B @G T).
{L:MCL,CM}
Substitute this expression into (12.5), and take the sum over L; outside
the integral. By a variant of Lemma 11.3, the function FII‘I{ (21",\,1!)\) is
slowly increasing and regular for A in a cylinder about the imaginary space
ia}s,. We may therefore deform the contour of integration in (12.5) from
em +iay [ia} to ep, +iay, /ia}, where €, is a small regular point in
a7, which depends only on L;. This leaves us free to bring the sum over
M in (12.5) inside the integral and the sum over L; and 7. But by (11.5),

~] v v v ~ v
ST (oA, Tk (Ta, ) = 8(r, m)FE (04, T ).
{M:L,cMcCL}
Moreover,
> agii(n)s(n,m) = Al (),
Tendilc(M]'Jt)

since m; belongs to II*(M;(A)!,t). Therefore (12.5) equals
(12.6)

pdim(Anr,) E / agf;c’e(wl)r (UA)rLl(tr,\,rl,A)If(m,)‘,f)dA.

{Ll 2M1 CL1 CL} €L1 +ia;"l /'al‘
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The expression (12.6) clearly simplifies if M; = G. The contribution of
all such terms to the final formula for If(f) is just

(12.7) Z agisclg(w)f)'

xells. (G,t)

disc
If M; # G, we make use of our induction assumption that ag{s‘ég(wl)
equals agi{s‘c(wl). In particular, we may assume that m; € Igjsc(My,t). But

Lemma 11.3 then tells us that ?fl(g';\, m1,2) is analytic for A in a cylinder
about the imaginary space iayy, . Moreover, we saw in §10 that

Ii("rl,Xv f) = IL(WI,A) f))

and it is known (Lemma 3.4 of [1(g)]) that the function on the right is
also analytic for A near ia}, . We may therefore deform the contour of
integration in (12.6) from e, + iy, /ia} to iayy, /ia}. We can then take
the sum over L; in (12.6) inside the integral, and we obtain
Vop ¥
Z "ILu', (UA)"f, (Ox,m10) = r}Ifll(”l,A),
{thMchch}
from Lemma 11.3. Thus, if M; # G, the expression (12.6) equals
im(An,) . ag{;f(m)ri’ll(rl,A)If(wl,A,f) dA.
‘“7\11 [ia}

Putting these formulas together, we see finally that If(f) equals the sum
of (12.7) and

SO et Y / QM (my)rly. (m10)

-

L {M,CL:M,#G} x1 €Mgsec (M 1) taMl/s'ai
x IE(my 5, ) d).

By definition this is just

S WS [ ke, gy dr

LeL I (L,t
the required formula. |

LEMMA 12.3: . Suppose thatt >0 and f € H(G(A)). Then
EN-1LH)= Y (afiuc(m) - agisc(m)) tra(f),

r€ll+(G(A)L,t)

where f1 is the restriction of f to G(A)'.
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Proof. We use the formulas (9.1) and (9.1)° to expand the difference be-
tween If (f) and I;(f). Suppose that M; C M C G, with M; # G. Then
the induction hypothesis of §9 implies that the set Hiﬁ (M,t) is the same
as I, (M,t), and that

aE(x) = aM(m), 7 € I, (M, 2).

In particular, these numbers are both zero unless 7 is unitary. But we saw in
§10 that for unitary =, I5,(w, f) was equal to Ip(m, f). Therefore, the only
contribution to the expansion of If (f) — I;(f) comes from M; = M = G.
However, if 7 is any representation in II*(G(A)!), we have

I&(x, f) = Io(m, f) = tr(f).

(The first formula follows, for example, from Theorem 10.2(d).) The corol-
lary follows. §

Chapter II has consisted so far of two parallel discussions. Paragraphs 3-7
have dealt with the geometric sides of the two trace formulas, while Para-
graphs 8-12 have been concerned with the spectral sides. We should be
aware of the similarities between results in these two passages. For exam-
ple, besides the obvious duality of Theorems A and B, there is the paral-
lelism of Propositions 5.1 and 12.2 and also of Lemmas 5.2 and 12.3. In the
next paragraph we shall begin a study of the geometric sides which has no
analogue for the spectral sides. This will eventually allow us to exploit the
two different formulas for

I*(f) - I(f)
given by Lemmas 5.2 and 12.3.
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13. The map ey

It is known that the trace formula simplifies greatly if the orbital integrals
of f are supported on the elliptic sets at two places. We shall exploit a
similar idea, but with a progressively less stringent restriction on f. For
each M € L, we define H(G(A), M) to be the subspace of H(G(A)) spanned
by functions

F=1] fo €H(F,)),

which have the following property. For two unramified finite places v; and

V2,
fuiL =0, LelL,i=1,2,

unless L contains a conjugate of M. If S is a finite set of places which
contains Sram (and at least two other places), we define H(G(Fs), M) the
same way. It is a subspace of H(G(A), M).

At this point, we fix a Levi subset M € L such that M # G. We are
already carrying the induction hypotheses that Theorems A and B hold if G
is replaced by any proper Levi subset. We shall now take on the additional
induction assumption that

If(‘Y»f):IL(‘Y)f): 7€L(FS)’ fGH(G(Fs)),

for any S O Sram and any L € £, with M g L. In §17 we shall show
that this formula also applies to M, thereby completing the proof of The-
orem A(i). Until then, M will be fixed, and the last induction hypothesis
will remain in force. Notice that the induction begins with M maximal
(and proper), where the required formula is just (3.9).

LEmMMA 13.1: . For f € H(G(A), M), the distribution
I (f) - I(f)

equals the sum of
W)™ D (SN ) - In(r, /)
YE(M(F))m,s

and
Y (@S ) - a(S,u)s(Eu, f).
feAa(F) ue(ug(F))c,s

(As in §5, S is a finite set of valuations of F that is suitably large in a
sense that depends only on supp (f) and V(f).)
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Proof. Suppose that S is the disjoint union of Sp, S; = {v1} and Sz = {v,},
where Sy contains Sram and v; and vy are arbitrary unramified valuations.
We can assume that

2
f = Hfi: ft' € H(G(FS.)))
1=0

where
fiL =0, Lel, 1=1,2,

unless L contains a conjugate of M. Applying the formula (5.6) twice, we
see that

2
IE(n N = Ie(r, /) = Y TE( £) = Ilr, ) [T M (1. fin)s
i=0 i#i
for any L € £ and ¥ € L(F). This expression vanishes unless L contains a

conjugate of M. On the other hand, it is known (formula (2.4*) of [1(g)])
that

IwLw‘l(w7w_1a f) = IL(7’ f)

for any w € Wy. A similar assertion holds for I£(y, f). It follows from
the latest induction assumption that I£(v, f) equals Ir(y, f) unless L is
actually conjugate to M. But the number of L which are conjugate to M
equals

(W [ IWg |7 W (ape)| "
Our lemma therefore follows from Lemma 5.2. |

We would like to be able to assert the equality of I°(f) and I(f). At the
moment, however, this is far from clear. In order to go further, we must
turn to a technique introduced by Langlands in seminars at the Institute
for Advanced Study. (See “Cancellation of singularities” and “Division
algebras,” Lecture Notes, .A.S.). We have defined the spaces H(G(Fs))°
in §7. We shall show that each function

7_)II€I(7;f)—IM(7;f)) fEH(G(FS))O) SDSram;

is the orbital integral of a suitable function on M(Fs). This will allow
us to apply the trace formula for M to the corresponding expansion in
Lemma 13.1.

It is best to treat the general situation, in which S is any finite set of
valuations with the closure property. Our latest assumption hypothesis
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means that Theorem 6.1 applies to any L € £(M) with L # M. Therefore,
the constants e(S) are defined, and

EH= Y, IP(en(S)f),  7€L(Fs), f €H(G(Fs)).
L,eL(L)

PROPOSITION 13.2: . Let S be any finite set of valuations with the closure
property. Then there are unique maps

er 1 H(G(Fs))" = Tac(L(Fs)), L€ L(M),

such that
(13.1)

K= Y Ih(e), 7€ M(Fs), feH(G(Fs))".
LeL(M)

The maps have the descent property

(132)  em(Hm, =Y d5, (M, L)ty (fr), MiCM,
L

and the splitting property
(13.3) em(f) = Y dy(L1, La)eR} (Fre,)ént (faLa)

Ly,L;
for f = f1f2 as in (3.4).

Remarks. 1. Since a function in Z,.(M(Fs)) is uniquely determined by
its orbital integrals, the uniqueness of the map follows inductively from
(13.1). Notice that (13.1) also implies that the map ey is supported on
characters. Therefore the notation ép(fg) = eum(f), which appears in
(13.2) and (13.3), makes sense.

2. The proposition is to be regarded as a weaker version of Theorem A(i).
For suppose that

Li(v, f)=Iu(v.f), 7€ M(Fs), f € H(G(Fs)),
whenever S O Sram. Then Theorem (6.1) holds for M, and

L(nH)= Y, I(ne(S)fL)

LeL(M)

for any S. Proposition 13.2 follows inductively from this, with
em(f) = em(S)fm.
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3. The induction hypothesis at the beginning of this paragraph allows to
apply the last remark to any L 2 M. We may therefore assume that

(13.9) e(f) = er(S)ft, L2 M.

The defining formula (13.1) then takes the form

(13.1%) M (vem() = 5(n 1) = Y T (ren(S)fi).
LM

If M; G M, the formula (13.2) can be written

(13.2%) em(Fat, = emat, (S) ey,

where

emm(S)= Y, di, (M, L)k, (S).

LeLl(M,)
Formula (13.3) becomes
(13.3%) em(f) = em(fi) fou + frmem(f2) + 5 (S1, S2) fm,
with
d(S1,5) = ), dfy(L1, La)e}(S1)enf(Sa).
Ly,Ly€L(M)
Ly, La#M

4. Suppose that S either contains Syam Or consists of one unramified val-
uation. Then the constant €;(S) vanishes if M g L G G. Formula (13.1%)
becomes

(131%)  I5 (7, )= In(v, f) = I} (v, em(£)),  f € H(G(Fs)).

This is the form in which ep(f) will be applied to Lemma 13.1. Also,
€57, (S) vanishes if My G L G G, so that (13.2*) simplifies to

(13.2%*) em(f)m, =0, M, G M.

5. Suppose that S is a disjoint union of Sy and S; = {v}, where S,
contains Sram and v is unramified. If f = fof;, the formula (13.3*) yields

(13.3**) em(f) = em(fo) fi,m + fomem(f1)-

Suppose that f; is equal to the characteristic function of K, 4 . Then
Lemma 4.3 combined with (13.1**) implies that

em(fi)=0.
Consequently, ep will extend to a map from 'H(G(A))o to T, (M (A))
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Proof. We now begin the proof of Proposition 13.2. It will consume most
of the next paragraph as well as what remains of this one. Fix S and f.
As in §6, set

em(, ) =Ig(n N - Y Iy(vec($)f), 7€ M(Fs).
L2M

This is equal to the right hand side of (13.1*). To prove the existence of
the map €pr, we must show that ep(7, f) is an orbital integral in v of a
function in M, (M (Fs)). We must also check the properties (13.2) and
(13.3). Let us comment on these first.

As we remarked after its proof, Lemma 6.2 is valid under the induction
hypothesis we took on at the beginning of this paragraph. The required
properties (13.2) and (13.3) will then follow immediately from (6.2*) and
(6.3*), once we have established the existence of the map e(f). Notice
that (6.3*) provides a formula for ep(y, f) in terms of functions defined
for single valuations v € S. It therefore reduces the proof of the existence
of ep(f) to the case that S consists of one valuation. We shall deal with
this in §14, treating the real and p-adic cases separately. We conclude this
section by discussing some preliminary properties of the functions € (7, f).

Suppose that v is a general element in M(Fs). Let us apply the formulas
(3.1) and (3.1)° to ep(y, f). We see that ep(7, f) equals the limit, as a
approaches 1 through regular values in Ap(Fs), of

Yo o) @ H- > I (av.en(h)).
LioM {LeL(L):L#£M}

If Ly # M, the sum on the right can be taken over all L € £(L,), and the
expression in brackets vanishes. However, when L; = M, the expression in
the brackets is just equal to epr(ay, f). We have shown that

5M(77f) = (ll_’n} €M(a')',f).

This formula is consistent with our hope that e (7, f) be the orbital inte-
gral of a function in M(Fg). In fact, it tells us that we need only consider
points v such that M, = G,. But properties (3.2) and (3.2) tell us that
we need only consider points ¥ € M(Fs) which are G-regular. Thus, we
have only to show that

7_')€M(7)f)) 7€M(FS)nGl‘eg9

equals the orbital integral in v of a function in H,.(M(Fs)). As agreed
above, we may assume that S = {v}.
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We have discussed the distributions “Ip(7) and °I%,(7) in §10. If ¥ €
M(Fs) N Greg, define

eu( ) =Ty - Y,  eu(SLMf).
{LeL(M):L£G)}

In some respects, this function is easier to handle than ep(y,f). For
Lemma 4.4 of [1(g)] implies that % (7, f) has bounded support as a func-
tion of  in the space of M%(Fs)-orbits in M (Fs). Happily, there is a simple
formula relating the two functions.

LEMMA 13.3: . Suppose that y belongs to M(Fs) N Greg. Then

em(7, F) = em(v, £) = I (7,05 (f) — 0m(F)) = I (7, Oma(f) — D54 (f))-
Proof. The function eps(7, f) was defined to be
(n )= Y Iy(r.en(S)f).
L2M

However, applying the descent properties (3.3) and (6.2) to the sum on the
right, we obtain

em(n )= - D eI f)
{Li1€L(M):L1#G}

It follows from (10.2) and (10.2)¢ that

em(7, f) — em(v, f)
= (i N -Tam D)= D>, eSO, ) = I, (v, f))

{L1€L(M):L1#£G}

=Y {If (L65(N) - Y e (S)IE (v,60(N)}-

L#G LieLL(M)

Consider a summand corresponding to L 2 M. Given the induction hy-
pothesis at the beginning of this paragraph, we can apply Theorem 10.2
and Corollary 10.3. We obtain

Tyt (1,05()) =T (r,00(N) = Y eB(S)IE (v,60(P)),
Lieclt (M)

and so the summand vanishes. The summand corresponding to L = M is
just

IM (v, 05 (f) — 0m(f))-
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The first identity of the theorem follows. The second identity is an imme-
diate consequence of the formula

65 (f) = 0m(f) = B (F) — 04 (),

which follows from (10.1), (10.1), Theorem 10.2, and our induction hy-
pothesis. I
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14. Cancellation of singularities

We continue with the proof of Proposition 13.2. It remains for us to
establish for any valuation v of F', and any f € H(G(F,))°, that the function

7"’€M(7af)’ 7€M(Fu)nGreg’

is the orbital integral of a function in Ha.(M(Fy)).
Suppose first that v is nonArchimedean. Fix a function f € H(G(F,))°,
and let o be a semisimple element in M(F,). We shall show that

(14‘1) 5M('Y’f) (%0) 0, Y€ O'Mo(Fv) n Greg-

Assume first that ap, # ap. Then oM,(F,) is contained in a proper
Levi subset M; of M. We have already seen in §13 that if v belongs to
My (F,) N Greg, then

5M(7’ f) = EM,M, (v)iﬁ: (7) fMl)
In particular, the function on the right is an orbital integral on M(F,), and

(14.1) holds in this case.

Next assume that apr, = ap. It follows from (3.6) and (3.6)° that the
function

em(r, ) =I(n. )= Y. Ip(r.e0.(f))
Li2M
is (M, o)-equivalent to

Y. s OUEGH - Y e ()

LeL(M)s€a(Us,(Fy)) h f;ﬁ')

We can assume that L 2 M in this sum, for if L = M the functions g¥ (v, 6)
are (M, o)-equivalent to 0. However, if L 2 M, we can sum L; over all
elements in £(L) and the expression in the brackets vanishes. It follows
that (14.1) holds in general.

By Lemma 13.3, ex(7, f) equals the sum of °cps(7, f) and the invariant
orbital integral (in 7) of “Opr(f) — °65,(f). The functions °dp(f) and
°6%,(f) both belong to Z,.(M(F,)). But v is nonArchimedean, so the spaces
Zoo(M(F,)) and Z,.(M(F,)) coincide. (See [1(g), §4].) In particular,

a M,o
By, com(f) - 05(5) "X 0, yeoM,(R).
It follows from (14.1) that

cem(v, f) (27) 0, v € oMy(F,) N Greg.
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In other words, epm(7,f) equals the orbital integral of a function in
H(M(F,)) for any regular element v € o M,(F,) which is close to ¢. But
by Lemma 4.4 of [1(g)], “em(7, f) has bounded support as a function of
7 in the space of M°(F,)-orbits in M(F,). Appealing to a partition of
unity argument, we find that only finitely many o need intervene, and
that epm (7, f) is everywhere an orbital integral. In other words, there is a
function “ep(f) in Z(M(F,)) such that

ceM('Y) f) = iﬁ(?’) ceM(f))
Therefore
em(f) = “em(f) + Om(f) — 0% (f)

is the required function.

Now, suppose that v is Archimedean. We adopt the notation of the last
part of §4. In particular, we shall regard G°(F,) as a real Lie group. Let
f be a fixed function in the space H(G(F,))°, which in this case equals
H(G(Fy)). The main step in proving the existence of £ps(f) is to show that
em (7, f) behaves like the orbital integral of a Schwartz function on M(F,).
Let T = Ty % 6 be an arbitrary “maximal torus” in G which is defined over
F,. This means that T is the centralizer in G of an element 7 in Greg(Fy).
We are going to prove that the restriction of the function e (y, f) to T(F,)
satisfies two conditions. We shall show that any derivative of epr(y, f) is
locally bounded on T'(F,), and that the function has appropriate behaviour
across the singular hyperspaces of T'(Fy).

Before establishing the first condition, we shall examine the differential
equation satisfied by ep(y, f). Suppose that z is an element in Z, =
Z(G(F,)). By (3.5) and (3.5)%, the function

em(v,2f) = I (v, 2f) = D I (. (2f)n, e, (v)

Li2M
is equal to
Y ()N - Y 1P fren ().
LeL(M) L}'e:‘(;)

If L # M, we can sum L; over all elements in £(L), and the expression
in the brackets vanishes. If L = M, the expression in the brackets is just
em (v, f). Moreover, by Lemma 12.4 of [1(e)],

o (v, 2m) = O(hr(2)),
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where 8(hr(z)) is the invariant differential operator on T'(F} ) obtained from
z by the Harish-Chandra map. It follows that

(14.2) em(v,2f) = 8(hr(2))em(1, f), 7 € Treg(Fo)-

This differential equation can be combined with a technique of Harish-
Chandra [20(a)] to establish that the derivatives of ep(y, f) are locally
bounded. The technique is a fairly standard one, and it has been described
clearly in this context in a lecture of Langlands. We shall just sketch the
argument.

Let Q be a compact subset of T'((F}), and set Qreg = QN Treg(Fy). If O(u)
is an invariant differential operator on T'(F, ), there are constants ¢(f) and
q such that

10(w) I (7, H) < e(HIDE()I79, 7 € Rueg-

(See [1(g)], formula (2.8).) Both constants depend on d(u), but ¢ is inde-
pendent of f. A similar assertion holds for I§,(7, f), and therefore also for
em (7, f). Suppose that 8(u,),... ,0(u,) are generators over d(hr(Z2,)) of
the module of differential operators on T'(F,) of constant coefficients. Then
any O(u) can be written

0(u) = 0(u1)hr(21) + . .. + O(un)hr(zn), % € 2.

Applying the differential equation (14.2), we see that

dwem(r. )= 3 0w )en(r, % ).

i=1

It follows that

0(Wer (v, HI S (NPT, 7 € Treg(F),

where ¢ may now be chosen to be independent of d(u). This inequality will
then lead to the property we want, namely that 9(u)e (7, f) is bounded on
Qreg. The result is an immediate consequence of the following elementary
lemma. (See the notes of Langlands’ lecture, “Cancellation of singularities
at the real places,” .A.S., p. 21-22.)

LEMMA 14.1.: Let Ay,...,Ax be a finite set of linear forms on R™, and
let ¢ be a smooth function on the set

B= {s eR™: el <1, Hm(e)#o}.

i=1
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Suppose for any differential operator A of constant coefficients on R™ that

k
H/\i(f)

=1

where q is independent of A. Then A¢ is bounded on B'. |}

-9

|A¢(6)] < ca , C€B,

The second condition concerns the behaviour of ey (7, f) across the sin-
gular hyperplanes. Recall that a semisimple element o € T(F,) is called
semiregular if the derived group of G, is three dimensional. The condition
may be summarized as the requirement that ep7(7, f) be (M, ¢)-equivalent
to 0, for any such ¢ and for G-regular points v in T(F, ) near 0. If M, = G,,
this fact follows from (3.2) and (3.2)%.

Suppose then that o is a semiregular point in T(F,) with M, # G,.
This means that o lies on a hyperspace in T(F,) defined by a real root §
relative to the action of T(F,) on the Lie algebra of GO(F,). The co-root
B belongs to the Lie algebra of Ty(F,). Set

- = gexp(rf), reR.

It is enough to show for any invariant differential operator d(u) that the
function d(u)epm(7r, f) is smooth at » = 0. Associated to Ty and 3, we
have a Cayley transform

C : T0—>T01.

This is an inner automorphism on G, which maps 7T to a torus Tg; in G,
which is F,-anisotropic modulo the center of G,. Let M; € L(M) be the
Levi subset such that

AMl = Apm NTo:.
Then Cp is a noncompact imaginary root of M (F,), and
s = o exp(sCBY), s€R,

is a G-regular point in
Ti(Fy) = 0oTor(Fy),

for s small and nonzero. If wg is the reflection about gV,
0(u1) = 8(Cwpu — Cu)
is an invariant differential operator on T3(Fy). By formula (2.7) of [1(g)],

Jdim (8(w) I}y (9, ) = 8Ty (v=r, )) = np lim B(u1) Int (55, f),
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where

IIQI(’)’; f) = IM(7: f) + ”ﬂx{" log(l‘yﬁ - 7_p|)IM1 (7)f)’ 7€ TNG(FU)'

Here ng is the cosine of the angle between Y and au, and ||B);|| denotes
the norm of the projection of 8¥ onto aj;. We shall apply the same formula
to G’. The objects 3, v:, u, etc. can all be mapped to corresponding objects
B’y 7:, o, etc. for G, and it is easily seen that ng: = ng. It follows without
difficulty that

Jim (0L (v, ) = 8@ (v-r, ) = mp lim (un) I3 5, ),
where

I (v, f) = I (v, £) + 1Byl Yog(1v? = v PDIE, (7, f), 7 € Tregl(Fo)-

Now

(143) lim O(wem(3, )~ Owlent(1-r, 1)
equals the jump at r = 0 of
W) Ig (v, £) = Y Ot (rren,(f))-
Li2M

If L, does not contain M;, o will be regular in L,, and the summand will
be smooth at r = 0. We may therefore take the sum over L; € L(M;).
Moreover, we have

183 IIlog(1v* — +~71) (Ifi},(% n- > I (v,eL,(f))) =0,

L,eL(M,)

from our induction hypothesis. Therefore, (14.3) equals the jump at r = 0
of the expression

OV O B S () X CARIN ¢ 3)
L,d>M,

Applying the two formulas above, we can therefore write (14.3) as

ng lim (u1) (Iff, 6= > I («keu(f))) :

L,eL(M,)

But M, 2 M, so the term in the brackets vanishes by our induction hy-
pothesis. Thus, the function

O(w)em(vr, f)
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is smooth at » = 0. This is equivalent to

M,
EM(7af) (~'7) 0

the required second condition.

We have verified the two conditions. These are two of the three condi-
tions of Shelstad [38(a), Theorem 4.7] that are necessary and sufficient for
em(7, f) to be the orbital integral of a Schwartz function on M(F,). To
avoid introducing extraneous questions in invariant harmonic analysis, we
shall not work directly with the Schwartz space. However, the inductive
arguments in [38(a)] do suggest how we should proceed.

Let us first recapitulate how eps (7, f) behaves under descent. The descent
properties (3.3), (3.3), (6.2*) and (13.2*) are purely local. If S = {v}, they
are valid if M; belongs to £, rather than just £, as stated. (Recall that
L, consists of Levi subsets over F,.) Suppose that M; is an element in £,
which is properly contained in M. The induction hypothesis taken on at
the beginning of §13 allows us to apply (6.2*). (See the remark following
the proof of Lemma 6.2.) Moreover, we are assuming that

e, (v, fu) = I (v, €k, (fL)) = ek, (0) 2 (v, ),

for any L ;Ct G. It follows that

5M(7: f) :sM,Ml(v)iﬁ:('Y;fM,); v € Ml(Fv)nGreg,

y Y GT(Fv)nGreg;

where

eM;Ml('U) = Z dgll (M’ L)sﬁll ('U).
Lecl(M,)

We claim that the constant ear a, (v) is independent of M;. It is enough
to show that

emm:(v) = em,m, (V)
for any M{ € L, which is contained in M;. Now
emm ()= D e Y di(My, L)d§, (M, L),
L'ec(M!) {LeL(M):LOL'}

since we can assume that 611(!1 (v), L g G, satisfies the descent property
(6.2). It follows from [1(g), (7.1)] that this equals

Z 6}&4’; ('U)dG ! (M, L,) = EM,M{ (v),
L'ec(M!)
as required. Thus
em(v) = ema, (v)
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is independent of M, g M. We have shown that

e (v, f) = emm, (V)12 (v, or,) = em (v) 34 (7, Fu),

for any ¥ € M1(Fy) N Greg, as above.

If M/F, is not minimal, we have just seen how to define the number
em(v), even though we cannot yet apply Theorem 6.1 to M. Set

, em(v), if M/F, is not minimal,
em(v) = { 0 . C
, if M/F, is minimal,
and define
e (1, f) = em(r, ) — eha (DI (v, fur)-

Since IM(, fu) is just the orbital integral of a function in H(M(F,)),
e (7, f) satisfies the same two conditions established for (7, f). Observe
also that if 7 belongs to M;(F,) N Greg, for M, g M as above, then

eu(r,f)=0.

Now suppose that T is an elliptic “maximal torus” of M over F,. That
is, T is not contained in any proper Levi subset M; of M. Then e},(y, f),
suitably normalized, extends to a smooth function of y € T(F,). More
precisely, there is a locally constant function

¢: Treg(Fy) > {z€C:|z| =1}
such that the function

Eu( ) =cMem(,F), 7 € Treg(F),

extends to a smooth function on T'(F,) which is skew-symmetric under the
Weyl group
WM(T) = Normg(M°) / Centp(M°).

This follows in a standard fashion from the two conditions and the vanishing
property above.
Observe that for any point X € a,s, the set

T(F,)* = M(F)* nT(F,) = {z € M(F,) : Hu(z) = X} N T(F,)

is compact. Let us write I}, (M(F,)) for the set of representations in

Ep (M (F,)) which are not of the form
™M m € I (Mi(F)), My € Ly, M1 G M.
The function ¢(v) above has the additional property that the set of functions
@x(7) = cMNIDMNI7?0x(7), 7€ T(F),
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in which 7 ranges over a set of representatives of orbits of iaj, in
I, .(M(F,)), forms an orthogonal basis of a Hilbert space of functions on
T(F,) which includes &},(-, f). Indeed, each ® is just a fixed multiple of
the skew-symmetrization of a 1-dimensional character on T(F,). This is
a well known result of Harish-Chandra if G = G°; if G # GY, it follows
from [11(a), Theorem 8.1] and the corresponding fact for G = G°. (In
fact, the existence of the elliptic torus T means that M° is a product of
several copies of GL(2) and GL(1), so the property actually follows from
local Archimedean base change for GL(2).) Define

() mX) =W [ B b

v

if 7 is any representation in IIJ; (M (F,)). If 7 belongs to the complement

of M}, (M(F,)) in IIE,,,(M(F,)), we shall simply set e (f,7, X) = 0.
We claim that €),(f, 7, X) is a Schwartz function of X. Since the function

is smooth, it suffices to show that for any invariant differential operator A

on ayy, the function
Ash(f,ﬂ',X), X € ayy,

is rapidly decreasing. Observe first that ¢j,(f, 7, X) equals an integral,
over the set of M°(F,)-orbits in M(F,)X, of the product of €},(7, f) with
|DM (7)|"?@+(y). But Lemma 13.3 tells us that we can write ¢/,(7, f) as
the sum of

“en (7, ) = € (V)34 (7, fur)

and
I3 (v, 0m(f) = *65(£)),

for any G-regular element v in M(F,)X. The first function has bounded
support (on the M°(F,)-orbits in M(F,)X), and vanishes if X lies outside
a compact set. The integral of the product of the second function with
|DM (7)/?©x(v) equals

“Om(f,m,X) — 05 (f, 7, X).

It follows that

erg(f,m,X) = Oy (f,m,X) — 05 (f, 7, X),

for any point X € aps outside a fixed compact set. Now Corollary 5.3 of
[1(g)] tells us that A9 (f, 7, X ) is arapidly decreasing function of X € apy.
A similar assertion applies to A9, (f, 7, X). Consequently, the function
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A€y (f,m, X) is rapidly decreasing, and €},(f, 7, X) is indeed a Schwartz
function of X.

We would like to show that as a function of (7, X), €4,(f, 7, X) belongs
to the space Z,.(M(Fy)). There are two further properties to establish. We
must show that the function is (K, N M°(F,))-finite. That is, we need to
find a finite subset T'ps of II(K, N M°(F,)) such that e}, (f, 7, X) vanishes
unless the restriction of = to (K, N M°(F,)) contains a representation in
Iam. We must also show that for each X € aps, the function ej,(f, 7, X)
belongs to the Paley-Wiener space in the natural coordinates (taken modulo
iajs) on It (M(F,)). This second property poses no problem. For the
Paley-Wiener requirement is trivial unless 7 is properly induced, in which
case €j,(f,m,X) = 0. To establish the first property, we shall use the
differential equation (14.2). Set

eju(f,w)=/a e (f,m, X)dX, T € I (M(F)).

It follows from the differential equations, the definition (14.4), and the fact
that ey, (f, 7, X) is a Schwartz function of X, that

em(zf, T) = ”(ZM)s}t{(f’ ), TE H;tamp(M(Fv)):

where m(zpr) denotes the infinitesimal character of 7 evaluated at zps. Thus,
as a function of f, €%,(f, 7) is an invariant eigendistribution of Z,. By first
taking 7 to be in general position, one sees easily that

eu(f, ) = e(m)tr(Zp(r, f)),

where P € P(M) and c(r) is a smooth function on I, (M(F,)). Since
[ is K,-finite, there is a finite subset T' of II(K,) such that tr(Zp(m, f))
vanishes unless the K,-spectrum of Zp(7) meets I'. The first property then
holds if we take I'ps to be the set of irreducible constituents of restrictions
of elements in T to K, N M°(F,). This proves that the function

eu(f) : (m,X) > ey (f,7,X)

belongs to Zo.(M(F,)). In particular, the orbital integral I} (v, ()
is defined, for any v € M(F,). Applying Fourier inversion on T'(F,)* to
(14.4), one sees without difficulty that

I (v, (f)) = e (7, £).

We are almost done. Define

em(f) = ep(f) +em(v)fu-
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Since far belongs to Z(M(F,)), the function exs(f) belongs to Zs.(M(Fy)).
The formula

B (v.em(f)) = em (7, f)
follows from the definitions and the analogous formula for ¢};(f). We have
thus defined the required map €3 when S consists of one Archimedean
valuation. This was our final step, so the proof of Proposition 13.2 is at
last complete. |l

COROLLARY 14.2: If S is any finile set with the closure property,
em(f) = em(f) + “Om(f) = *03(f),  f € H(G(Fs))",

where ep(f) is a function in f(M(FS)) In particular, for any
m € It (M(Fs)), em(f, 7, X) is a Schwartz function of X € ap 5.

Proof. By Lemma 13.3,

e (f) = em(f) = O (f) + 0% (f)

is a function in I, (M(Fs)) whose orbital integral at any v € M(Fs) N Greg
equals ®epr(7, f). But it follows inductively from [1(g), Lemma 4.4] that
%(+, f) vanishes if X = Hp(7) lies outside a compact set. Since % (f, m, X)
equals the integral of the normalized character of 7 against ®ep (7, f),
this function also vanishes if X is large. Therefore, “cpr(f) belongs to
Z(M(Fs)). The second assertion of the corollary follows from [1(g), Corol-
lary 5.3], as we saw above in the special case that S consists of one Archime-
dean prime. i

As we noted in §13, ep extends to a map from H(G(A))? to Z,.(M(A)).
In [1(f), §11] we introduced a space of moderate functions, which lies be-
tween Z(M(A)) and Zo.(M(A)). (See also the appendix to [1(h)].) There
is no need to repeat the definition here. Let us say only that for a function
é € T,.(M(A)) to be moderate it must satisfy a weak growth condition
and an equally weak support condition.

COROLLARY 14.3: For each f € H(G(A)), em(f) is a moderate function.
Proof. We can assume that f is of the form [], f,. By (13.3%),

em(f) =) emo(f) +dofu,

where dg is a constant and

emu(f) =em(fo) [ fom
w#v
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Almost all the functions epr,(f) vanish. The function far belongs to
Z(M(A)), and is certainly moderate. It is therefore enough to fix a val-
uation v and prove that for a fixed function f € H(G(F,))°, em(f) is a
moderate function in Z,.(M(F,)).

There are two conditions to check. They must be established for any
function

X, = em(f, iy, X)em XD dA,
ia;wl_v/ia;,,v

in which Mj is is a Levi subset of M over F,, m belongs to I, ,(M1(Fy)),
and X; is a point in aps, , whose projection onto ay, equals X. If M, g
M, the formula (13.2*) implies that the function is compactly supported. If
M; = M, Corollary 14.2 asserts that the function belongs to the Schwartz
space. In each case, the required growth and support conditions hold. §

Finally, we shall show that €37 behaves nicely under multipliers. Let h! be
the orthogonal complement of ag in the space §) defined in §9. Multipliers
are attached to elements a in £(h')W, the convolution algebra of compactly
supported, W-invariant distributions on h!. Recall that there is an action

f — fa of the algebra £(h')" on H(G(A)) such that
Ip(7, fa) = a(ve)Ip(n, f),  w eI (M(A)).
There is also a compatible action ¢ — ¢4 of £(§*)" on Z,.(M(A)) which
for any 7 € II{,,,(M(A)) and X € ap is given by
ba(mX)= [ #Y) [ (4 wetF D duay,
o, ia}, fiad
The reader can check that there is a natural map a — o’ from £(h*)¥ to
E(bn f)')W' such that
(fa) =fa,  fEH(G(A)).
COROLLARY 14.4.: em(fo) =em(f)a, f € H(G(A))?, a € E(HH)W.

Proof. Let us fix a function

fo= II fo f, € H(G(F,)),
v finite
with the property that for any f. € H(G(Fw)), the function f = fofo
belongs to H(G(A))?. We shall vary f.,. Suppose that 7 = 7o, ® g is a
representation in I, ,(M(A)). Using the differential equations (14.2), we
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can argue as above to show that if

en(f,m) = / en(f,m, X) dX,

then
em(f,m) = c(m, fo) tr(Zp(7eo, foo)),
where P € P(M) and ¢(x, fo) is a scalar which is independent of f,. It
follows that for any a € £(h*)¥,
em(far ) = (7, fo) tr(Zp(Too, (foo)ar)
= a(vx)e(m, fo)tr(Zp(Too, foo))

= a(vx)em(f, ).
We obtain
ext(form, X) = / et (far ma)e= ) dA
‘“7\4
= [ eulfum¥) &{v + W)eH X duay,
a$, ia}, fial,

as required. i
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15. Separation by infinitesimal character

We can now apply the map e to the formula for I¢(f)— I(f) in Lemma
13.1. Let us define H(G(A), M) to be the space of functions f in

H(G(A), M) NH(G(A))°

which satisfy one additional condition. We ask that f vanish at any element
in G(A) whose component at each finite place v belongs to Ag(F,). This
last condition is of course vacuous unless £ = 1. Combined with the earlier
definition of H(G(A))?, it is designed to ensure that the orbital integrals
of f vanish at any element

7 =&y, § € Ag(F), u € Ua(F).

Notice that f may be modified at the Archimedean places, and the function
will still remain in H(G(A), M)°.

LEMMA 15.1.: Suppose that f belongs to H(G(A), M)°. Then
I5(f) = I(f) = (W (an) | M (em (£)),
where IM is of course the analogue for M of I.

Proof. Consider the formula for 1€ (f)— I(f) provided by Lemma 13.1. The
conditions on f imply that the second term in the formula vanishes. By
formula (13.1**), the first term equals

Wan)l™ Y. aM(S I em(h)),
YEM(F))M,s

where S is a large finite set of valuations. Now ep(f) is a function in
Zae(M(A)) which is cuspidal at two places. In other words, ep(f) is a
finite sum of functions [], ¢, in Z,.(M(A)) such that for two unramified
places v; and vy, and any M, g M,

bv;m, =0, i=1,2.

This follows from (13.2%), (13.3* and the fact that f belongs to H(G(A)M).
Applying (3.4) to M, we find that

fﬁl(‘szM(f)) = 0) v € MI(F)’
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for any such M. It follows from (5.1), applied to M, that
Yoo (S (v.em(f))

YE(M(F))m,s
= Y WhIwHt Y aM(S I (v em(f))
MyeLM YEM1(F))m, s
= M (em(f)).

The lemma follows. J

We fix the function f in H(G(A), M)°. Combined with the expansions
I =%,1f and I = ¥, I, Lemma 15.1 yields the formula

(15.1) (L) - L) - W (@)l P (em(£)) =0.

>0

We are going to apply the spectral expansions of the distributions on the
left. We will then try to deduce what remains of Theorem B. As we re-
marked in §9, however, our control over the convergence is very weak. In
this section we shall simply isolate the terms in (15.1) according to their
Archimedean infinitesimal character.

We shall use an argument based on multipliers. Associated to the real
Lie group G°(F.,)!, we have the real vector space h', defined in §14. It is
convenient to work with a subset of the complex dual space b/ ag c of bt
which contains the infinitesimal character of any unitary representation of
G°(Fw)!. Let b2 denote the set of points v in b /iak such that T = —sv
for some element s € W of order 2. Here ¥ denotes the conjugation on b
relative to h*. The Archimedean infinitesimal character v, associated to
any m € II} ;. (G(A)?) belongs to the subset

() =bun(' Nhhe
of by It is clear that for any nonnegative numbers r and T, the set
bu(rT) ={v e by :|[Re()|| < r, [[Imv|| > T}

is invariant under W. (An element v € b}, is just a coset of iaf in b, but
||v]| is understood to be the minimum value of the norm on the coset.) The
multipliers enter through an estimate from [1(h)]. The result pertains to
functions ¢ € Z,.(G(A)) which are moderate in the sense described at the
end of the last section. Suppose that ¢ is a given moderate function. Then
Corollary 6.3 of [1(h)] provides positive constants C, k, and r such that for
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any T > 0 and any o € C¥(h')W, with N > 0, the inequality

7 EN -
(15.2) 2_; [t(éa)| < Ce ve ﬁ;‘&m(la(”)l)’
holds.

We return to our original function f € H(G(A), M)°. It follows easily
from the definitions that if « € £(h*)W, the function f, also belongs to
H(G(A), M)°. In particular, f, satisfies (15.1). Therefore, for any T' > 0,
the expression

(15.3)

3 (1 (fa) = Lilfa) = W (@) B (e (1)) ’

t<T

is bounded by
3 (IRl + )l + W (@) B ene(f))]) -
t>T

We can write

L(fa) = 1i(fc,a);
Ite(fa) = ft((fa)l) = ft(f;'),
and
em(fa) = em(f)a,
by Corollary 14.4. Consequently, (15.3) is bounded by

D HE (el + DM (fadl + W (@)™ 3 1B (eae(£)a)l-
>T t>T >T
The functions f¢ € Z(G(A)) and f' € Z(G’'(A)) are of course both mod-
erate, and by Corollary 14.3, the same is true of the function ep(f) €
Tac(M(A)). We can therefore apply the estimate (15.2) to these three dif-
ferent functions. Observe that (§')}(r,T), the set defined above but with
G replaced by G, is actually contained in b(r,T). It follows that there
are positive constants C, k, and r such that for any a € C(h")W, with
N > 0, and for any T > 0, the expression (15.3) is bounded by
154 Ce*N  su a(v)|).
(154 2 ()
Let v; be an arbitrary but fixed point in h}. Enlarging the constant r in
(15.4) if necessary, we may assume that v; belongs to the cylinder

ba(r) = bu(r,0).
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LEMMA 15.2.: There is a function oy € C2(h')W such that &; maps b (r)
to the unit interval, and such that the inverse image of 1 under &1 is the
finite set

W(v) = {sv, :s € W}.

Proof. Consider the space of functions
v — &(v), veb;, aeCe(H)¥,

on h}. It is clear from the definition of h; that the real and imaginary
parts of any such function also belong to the space. We can therefore find a
function ag € CX(h1)W, with éo(v1) # 0, such that &y is real valued on b,.
Let po =1, p1,... ,pm be a set of generators of the algebra of W-invariant
polynomials on b /ag; c. We can assume that each p; is real valued on bj.
Since @ is rapidly decreasing at infinity on b}(r), the function

B(v) = (po(¥)o(v), - ., Pm (¥)do(v))

maps b (r) continuously to a compact rectangle [a,b]™*! in R™*1. Set

s = (50,51,--- ,5m) = B(n1).
Then
B~ ({s}h) = W(n).
For each 1, let
g : [a,0] = [0,1]

be a real polynomial such that ¢;"}({1}) equals {s;}. Since so # 0, we can
assume that go has no constant term. Consequently

a1(v) = H gi(pi(v)éo(v))

is the Fourier-Laplace transform of a function a; € CX(h')W. It clearly
satisfies the requirements of the lemma. §

Fix o1 as in the last lemma. Then a; belongs to Cg, ()W for some
Ny > 0. If r and & are as in (15.4), choose T' > 0 so that

|61 (v)] < ™M

for all v € h}(r,T). This is certainly possible, since &; is rapidly decreasing
on b} (r). For each positive integer m, define

Qm = Q1 ¥ %Oy .
e,

m
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Then a,, belongs to C2y, (h')7, and
am(v) =@ (v)™.
Taking o = oy, above, we see that the expression
(155) D (F(fam) — hlfam) = W(@r)| ™ 4 (et(f)ern)
1<T
is bounded in absolute value by

Ce-kN;m

Consequently, (15.5) approaches 0 as m approaches oco. This assertion is
a signficant improvement over the formula (15.1). For the sum in (15.5)
can be taken over a finite set which is independent of m. This will allow
us to take the expansions of the terms in (15.5) and study the limit as m
approaches oo.

Apply Lemma 12.3 to the function f,, . Since
tr 7((fan)') = tr (x(f))ar(ve)™,

we see that

3" (fam) = E(fan))

t<T
equals

(15.6) Yo Y (afiee(m) = adisc(m))ir ((f1))ar (ve)™

t<T relI+(G(A)! 1)

Next, we expand IM(ep(f)a,,). The function 3 (f)a,, is a finite sum of
functions which are cuspidal at two places. It follows from Theorem 7.1(a)
of [1(h)] that

MeuNe)= Y ahomil(men(Han).
ﬂ'endi-c(Myt)
We require a lemma.
LEMMA 15.3.: Suppose that w € II} ;. (M(A)'). Then there is a Schwartz
Sfunction
A—em(flm2),  Aeia),/iak,
on iay, /ial; such that for any a € CX(H1)VW,

M(mem(fa) = / em(f1,m, N)é(ve + A) dA.

ia* /ia*
SGM 106
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Proof. As a function in Z,.(M(A)), em(f)a is a priori defined only on
O mp(M(A)) x ap, but it may be naturally extended to a function on
IM*(M(A)) x ap. (This is a reflection of the fact that a function in
Hae(M(A)) is compactly supported on any set M(A)X, and can there-
fore be integrated against a nontempered character.) Identify = with an
orbit {m} of ia}, in I}, (M(A)). By definition, IM (7,ep(f)a) is the
value of ep(f)q« at (my,0). It follows from the formula (6.1) of [1(h)] that

B (ren(Da) = [ em(fym,Vam(m, —¥) v,

LS
for any A, where
au(mn, =)= [ G+ A+ wed
iay [iag
This last expression is compactly supported as a function of Y € a§;, so

the integral over a§; above converges. Our lemma will follow from Fourier
inversion if we can show that

EM(f;”X’X)) XEC‘M,

is a Schwartz function on aps. This is actually a sensitive point. What
saves us is the unitarity of =.
We can assume that f is of the form [], f,. By (13.3%),

em(f) =) emo(f) +dofu,

where dj 1s a constant and
emo(f) = em(fo) H Jwm-
w#v
Since
fM(W)H-u); H S iujl{a

is a Schwartz function of g,
i X) = [ Iu(on)e O dy, X €an,
ia},

is a Schwartz function of X. This leaves the functions e (f). Almost all
of them vanish, so we have only to show that for a fixed v, ep,(f, 2, X)
is a Schwartz function.

Fix A, and write

=T, Q7" Ty € H:nit(M(Fv))’
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where
¥ = ® Tw, Tw € H:nit(M(Fw))'
w#v
Then
sM)'l(fll’rX)X): Z A(””’pu)stu(f’pv®7rv’X)’
Pv€2+(M(F’))

where, as we recall,

tr(m)= > Am,p)tr(py)
pueEt(M(Fy))
is the decomposition of =, into standard representations. The unitarity of
m, implies that any p, with A(m,,p,) # 0 is either tempered or induced
from a proper parabolic subset. If p, is properly induced, it follows easily
from (13.2*) that

era(frp0 ® 7, X) = ent.on, (v) / Fut((po ® 7)) *Xd,
aa,‘w

for some proper Levi subset M, g M. This is a Schwartz function of
X € apr. On the other hand, suppose that p, is tempered. Then Corollary
14.2 insures that ep(fy,py, Xy) is a Schwartz function of X, € ap,. It
follows easily that ear(f, pv ® 7Y, X) is a Schwartz function of X € ayps.
We have thus established that e (f, 72, X) is a Schwartz function. The
lemma follows. i

Apply the lemma to the formula for M (3(f)a,, ) above. We see that

S W (an)| " M (em(Fam)

t<T
equals
(15.7)
W)Y, Y. all(m [ em(ffm N)an(vs + A)™d.
t<T x€laisc(M,t) iy /iag

We have shown that (15.5) equals the difference between (15.6) and
(15.7). Consequently, this difference approaches 0 as m approaches oco.
In each of the expressions (15.6) and (15.7), the sums over ¢ and = are
finite. We first apply the dominated convergence theorem to (15.7). Since
em(f!,m,)) is a Schwartz function on iaj},/ia, and

(15.8) 0<dy(ve+2)< 1,
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except possibly at a finite number of A, we see that the expression (15.7)
approaches 0 as m approaches co. The same is therefore true of (15.6). We
next consider the terms in (15.6). If 7 does not belong to the set

I} (G(A)") = {m € I*(G(A)") : v € W(1)},
the inequality (15.8) holds. Consequently, the corresponding term in (15.6)
approaches 0 as m approaches co. On the other hand, if 7 belongs to
I} (G(A)'), the term simply equals
(agisc(”) - adisc(ﬂ')) tr 7r(fl)'

We can certainly assume that |[Im(v1)|| < 7. This insures that all such
terms will be included in (15.6). Letting m approach oo, we obtain the
following important result.

LEMMA 15.4.: For each f € H(G(A), M)° and v, € b, we have
D (0Guc(m) = dgise(m) trw(f1) = 0.

€I, (G(A))
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16. Elimination of restrictions on f

With Lemma 15.4 we have reached a watershed. For certain functions f
we will be able to prove the equality of I°(f) and I(f). However, for this
to be effective, we must first extend the formula of Lemma 15.4 to a larger
class of functions.

As in the last section, let »; be an arbitrary but fixed point in §};. Let

K= ][] Ki»

v finite

be an open compact subgroup of G%(Agy). (We are writing Agy for the
finite adéles.) We shall write I} k,(G(A)!) for the set of representations
7 € II*(G(A)?!) such that v, € W(v), and such that 7 contains a K;-
fixed vector. By Lemma 4.2 of [1(h)], there are only finitely many = €
I} ,(G(A)') such that agisc(7) # 0. Now

aGe(m) = £78m(A0) N~ g8 (r)6(r, 7).
T€M(G'(A)Y)

Using Corollary 8.3, one sees easily that there is an open compact sub-
group Ki of G'(Asn) such that if §(7,7) # 0 for some = € I} x (G(A)Y),
then T belongs to H,‘f{ K (G(A)'). But there are only finitely many 7 €
H:'{’K{(G(A)l) with a§, () # 0, by Lemma 4.2 of [1(h)] again. Conse-
quently, there are only finitely many = € I}  (G(A)') with a§;.(7) # 0.

Write H(G(A), M)k, for the subspace of functions in H(G(A), M) which
are bi-invariant under K, and set

H(G(A), M), = H(G(A), M)k, N"H(G(A), M)".
Then Lemma 15.4 tells us that

Y. (afiae(m) — adgise(m)) tra(f1) = 0,

€M} . (G(A))

for any f € H(G(A), M)%,. The sum can be taken over a finite set which
depends only on (v, K;). We can write

tra(f!) = Z A(m, p) tr p(f1),

PESY, 4 (G(A))
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where =} ¢ (G(A)') is the set of representations p € L+(G(A)') such
that v, € W(v1) and such that p contains a K;-fixed vector. Then

(16.1) > A)ua(f)=0,  fEH(GA), M),
PETE i (G(A)Y)
where
(162) A= Y (aGiec(m) ~ adne(m)A(7, p).
rellf . (G(A)Y)

Our goal in this section is to show that (16.1) holds if f belongs to
H(G(A), M)k,, rather than just H(G(A), M)% . In so doing we may as-
sume that £ = 1, since the two spaces are otherwise equal. Then G = G°,
and G is the group of units of a central simple algebra. We shall use an
approximation argument. Let v be a fixed valuation from the exceptional
set Sg, and write £ = K1 ,. Then H(G(F,))? is the space of compactly
supported functions f, on G(F,) which are bi-invariant under « and such
that

Ig(€u, fu) =0
for any £ € Ag(Fy) and any element u # 1 in Ug(F,). Write AY for the
ring of adeéles which are 0 at v.
LEMMA 16.1.: Suppose that f* is a smooth, compactly supported function
on G(A") such that (16.1) holds for any function f = f'f, with f, €
H(G(F,))2. Then (16.1) also holds for f = f*f, with f, € H(G(Fy))x-

Proof. Let C be a fixed finite subset of the lattice
agy = {Hg(z) : z € G(F,)}.

We shall simply write H, for the subspace of functions in H(G(F,)), which
are supported on

{z € G(F,) : Hg(z) € C},

and we shall write

HY = H, NH(G(F,))".
Let I be the finite set of pairs i = (€, u), in which £ ranges over the elements
in Ag(Fy)/Ag(Fy) Nk such that Hg(€) belongs to C, and u ranges over
the nontrivial unipotent conjugacy classes in G(Fy). Set J; = Ig(€u). Then
{Ji : i € I} is a linearly independent set of linear forms on H, whose kernel
is HO. Choose elements {f : j € I} in H, such that

- {L

BT, i
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Then .
fo "’fu =fv"EJi(fv)f;; fo €EH,,
iel
is a projection of H, onto H2. By assumption,

S A up(fTF)=0, fo €He.
P

We therefore obtain

(16.3) DA rp(ff) =3 BUf), o €M,
P [

where

B =3 Alp)trp(f* £}).

We must show that each side of (16.3) vanishes.
There are only finitely many pairs (L, 0), in which L is a group in £,
and o is an orbit of the compact group

iap, = i(ap/Hom(ar v, Z))

in Igisc(L(Fy))x. (Here Igisc(L(Fy))x denotes the set of representations
in Mtemp(L(Fy)) which are square integrable modulo the center and which
contain a k N L(F,)-fixed vector.) For any such orbit, let W, be the sta-
bilizer of o0 in W(ar). Let £, be the set of p € T} x (G(A)') which are
restrictions to G(A)! of representations of the form

pv ® IP(U;J)’

with p¥ € B} ¢ (G(A%)), P € P(L), 0 € 0, and p € a}. The point o, in
0 X a7 is uniquely determined as a W,-orbit, modulo translation by ia; ,
in 0. We shall write X, = o,. It is clear that two sets £, and X, are
either equal or disjoint, depending on whether 0 and o’ are Wy-conjugate
or not. It is also clear that I} f (G(A)!) is a union of sets £,. It will
therefore be enough to show that for each o, and f, € H,, the number

(16.4) Y- Alp)tro(f )
PEZ,

vanishes.

We shall fix (L, 0) and the function f, € H,. Let Z, be the space of
functions

¢:0—-C

which satisfy the following three conditions.
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(i) For each o € 0, ¢(0a) is a finite Fourier series in A € iaj .

(i) ¢(wo) = ¢(0), geo, weW,.

(iii) ¢(on) = ¢(0), A€iag,.

Notice that the second and third conditions insure that the number ¢(X,)
are well defined. For each ¢ € T, there is a function f¢ € H, such that the
number

tr p(f°£9),  peX] K (GA)Y),

is zero unless p belongs to X;, in which case

tr p(f* ££) = tr p(£° £)8(X,)-

The existence of f? follows from the trace Paley-Wiener theorem for G(F,)
([6]). We replace f, by f¢ in (16.3). The left hand side becomes

Z cod(X,),

pEZ,
where

co = A(p) tr p(f* fo).

To evaluate the right hand side, we use the fact that every unipotent class
in G(Fy) is induced. For any u € (Ug(F,)) there is a Wo-orbit £(u) in L,
such that for each L; € £(u) and @ € P(L1), uN Nq is dense in Ng. If
i = (g) u)’

5($2) = [ Biloyeto)do,
]
where B; is a smooth function on 0. More precisely,

Bi(0) = X0 ()" pi(0)tx(Tp(0, f1)), P EP(L),

where x,(§) is the central character of o at £, and uf (o) vanishes unless L
is contained in an element L; € £(u), in which case pf (o) is the Plancherel
density associated to the Levi subgroup L of L;. Notice that since u # 1,
Bi(¢) = 0if L equals G. The equation (16.3) becomes

(16.5) 3 erd(X) = [ Bloy(e) do
pEZ, °
where

B(o) =} _#'Bi(0),

a smooth function on 0 which vanishes if L = G.
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Our final step is to show that each side of (16.5) is zero. This is almost
obvious. We can assume that L # G, so that

o' = ofiag,

is a compact torus of positive dimension. On the right hand side of (16.5)
we have a distribution on o! which is a smooth function, and on the left we
have a finite sum of point distributions on the complexification of o!. Since
the points {X,} are only defined as W,-orbits anyway, and B is symmetric
under W,, we do not even need to assume that ¢ is symmetric under W,.
It can be any finite Fourier series on o!. Its Fourier transform can be any
compactly supported function on the dual lattice. Consider the Fourier
transform of each side of (16.5) as a distribution on the dual lattice. The
left hand side is a finite sum of exponentials, while the right hand side is a
rapidly decreasing function. It is clear from this that each side vanishes.

Having shown that each side of (16.5) is zero, we take ¢ = 1. We obtain

The expression on the left is just (16.4), so the proof of the lemma is
complete. |

We apply the lemma to each place in Sg. It follows inductively that (16.1)
holds for any function in H(G(A), M)k, which vanishes on G(Fi,)Ag(Agy)
It is easy to remove this last restriction. For we are free to modify an
arbitrary function f € H(G(A), M)k, outside a finite set S of valuations.
Choose any unramified place w outside of S such that K, equals K,,,
the standard maximal compact subgroup. Let h be a variable function in
H(G(Fuw))k,,, and evaluate the left hand side of (16.1) on the function

fA(z) = f()h(zw), z € G(A).

The expression vanishes if h is zero on Ag(Fy), so as a linear form in h
it may be expressed in terms of the Plancherel density. On one hand, the
Plancherel density is a continuous function on the unramified representa-
tions in Iemp(G(Fy)), while on the other hand, the sum in (16.1) may be
taken over a finite set. It follows that the linear form vanishes on any h.
Therefore, (16.1) holds for any function f € H(G(A), M)k, .

We return to the case that £ is arbitrary. It is best to translate (16.1) back
into a sum over irreducible representations. Given f € H(G(A), M)k, , we
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substitute (16.2) back into (16.1). We obtain
(16.6) Y. (a§iec(m) — adisc(m)) trm(f1) = 0.
mell} . (G(A))

If 7 belongs to the complement of I}  (G(A)') in I} (G(A)'), tr = (f?)
equals 0, so we can certainly take the sum over the larger set. But any
function in H(G(A), M) belongs to H(G(A), M)k, for some K. It follows
that

(16.7)

Y. (@fie(m) —agisc(m) r(f) =0, € H(G(A),M).
€I}, (G(A))

PROPOSITION 16.2.: For any f € H(G(A), M), we have
IF(f) = 1(f).
Proof. Let t be any nonnegative real number. Then for any f € H(G(A), M),

FH-LH= Y Y (aGie(m) = adise(m)) trm(f1) = 0,

{va:lllmun[|=t} €T, (G(A)Y)

by Lemma 12.3 and (16.7). We therefore obtain
IE(f) =Y I () =D L) = I(),
1 t

as required. [
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17. Completion of the proofs of Theorems A and B

Having established Proposition 16.2, we shall return to the geometric
sides of the trace formulas. We are at last ready to deduce the equality of

I§¢(7) and In().
Suppose that f € H(G(A),M). Then by Lemma 13.1 and Proposition
16.2, the sum of the expressions

(17.1) W)™ > M NI ) - In(r, )

YE(M(F))m,s

and

(17.2) Yo Y (F(S ) - a(S,u)is(Eu, f)
§€AG(F)ueUa(F))a,s
vanishes. As usual, S D S;am is a large finite set of valuations depending
only on supp (f) and V(f), and the sums in (17.1) and (17.2) can each be
taken over finite sets that also depend only on supp (f) and V(f).
We can assume that S is the disjoint union of a given finite set Sg O Spam
with further sets

Si={v}, 1<i<k,

where v; and v, are fixed valuations at which G splits, and {vs,... ,v;} is
a large additional finite set of unramified places. If

k
f=1l% £ eH(G(EFs)),
1=0

it follows inductively from (5.6) that

k
i=0 i#i
for any element ¥ € M(F). We shall take v to be a regular element in
M(F) which is elliptic at v; and v,. This means that the torus M, /Ay
is anisotropic over v; and vs. We shall use v; and vy to isolate the con-
tributions from « to (17.1). Indeed, for i = 1,2, we can choose f; to be
supported on a very small neighborhood of ¥ in G(Fs,), and so that

M fim)=1Ic(v, fi) =1

Then f; will be supported on the F,-elliptic set in M, and the function
f above will belong to H(G(Fs),M). Apply the splitting formula (17.3)
to the terms in (17.1). Shrinking the functions f; and f; around v does



194 Chapter 2

not increase the support of f or the set V(f). Therefore, the set S may be
chosen independently of f; and f,, and the sums in (17.1) and (17.2) may
be taken over fixed finite sets. It is thus clear that f; and f, may be chosen
so that (17.2) vanishes and so that the only contributions to (17.1) come
from conjugates of . But

Ifu(“"r’w-lyf) - IM('U)")"lD_l,f) = Ifl(%f) - IM(7)f)) we W(aM))

so we actually need consider only the summand in (17.1) corresponding
to v. Moreover, v is semisimple, so if S is large enough (in a sense that
depends only on ¥), we have

a(8,7) = vol(M, (F)\M,(A)),

by Theorem 8.2 of [1(d)]. In particular, this constant is not zero. It follows
that

k
i=0 J#s
for v, f1 and f2 as above.
Suppose now that V is any finite set of valuations of F' which either
contains Syam or consists of one unramified valuation v. We can obviously
arrange that V equals one of the sets S; above, with ¢ # 1,2. Choose an

element v € M(F) as in (17.4), and let fy be an arbitrary function in
H(G(Fv)). We suppose first that

MGy, fvm) = Ie(y, fv) = 0.

Then the only contribution to (17.4) will be the summand corresponding
to V = S;. For the sets S; other than S, S; and Sj, choose f; to by any
function such that

IAIJt‘ll[(%fj,M) # 0.
The left-hand side of (17.4) becomes a nonzero multiple of
I (v, fv) = Im(7, fv).

We conclude that this distribution vanishes for any fy whose orbital inte-
gral vanishes at 7. It follows that there is a constant eps(7) such that

(17.5) Ii(y, fv) = In(v, fv) = emMIa(r, fv),
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for any function fy € H(G(Fv)). Let V* be the union of V with the
valuations v; and vy above. Write Uy +(M) for the set of elements

H Vv Tv € M(Fv)nGreg;
veV+
such that for i = 1,2, v,, is Fy,-elliptic in M(F,,). Then Uy +(M) is open
in
M(Fys)= [[ M(F).
vev+
The set M(F) is dense in M(Fy+), so the intersection of M(F) with
Uy+(M) is dense in Uy+(M). It follows that we can approximate any
G-regular element vy € M(Fy) by elements v which occur in (17.5). Since
I& (v, fv), In(v, fv) and Ig(yv, fv) are smooth on M(Fy) N Greg, we
see that €37 extends to a smooth function on this space, and that
(17.6)
(v, fv) = Im(wv, fv) = em(w)lc(w, fv), v € M(Fy) N Greg.

We want to show that ep(yv) = 0.

Consider first the case that V consists of one unramified valuation v.
Take fy = f, to be the characteristic function of K, x 6. Then by Lemma
4.3, the left hand side of (17.6) vanishes. On the other hand, if v, belongs
to K, % 0, the orbital integral Ig(vy, fy) does not vanish. It follows that
em(7y) = 0 for any such 7,. Suppose in addition to being unramified, that
G splits completely at v. Then by Lemma 4.2, the left hand side of (17.6)
vanishes if f, is any K,-bi-invariant function in H(G(F,)). For a given 1,
we can always choose such an f, so that Ig(y,, f,) # 0. It follows that
em(7v) = 0 in this case for all 7,.

Now take V = Sy to be any arbitrary finite set which contains Syam, and
let

k
S= US; =SoU{v1,..., vk}
=0
as at the beginning of the argument. Choose v € M(F) as in (17.4), and let
7; be the image of v in M (Fs,). We then substitute the formula (17.6) (with
V replaced by S;) into (17.4). Choosing the functions f; appropriately, we
find that

k
> em(n) =0.
1=0
We are free to drop any of the terms in this sum corresponding to unramified
valuations at which v is integral. This means that we can take vy to be any
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G-regular element in M(F) which is elliptic at v; and v,, and which is
integral outside S. Suppose that G splits completely at each of the places
v1,...,V; . Then
em(7) =0, 1<i<k.
It follows that
em(10) =0

for any such y. But as long as k is large enough, the set of elements
v € M(F) which are integral outside of S, and which are elliptic at v; and
vg, projects onto a dense subset of M(Fs,) = M(Fy). It follows that

em(w) =0, v € M(Fy)N Greg.
We have thus established the formula

Iil(’Y)f):IM('Y:f): fGH(G(Fv)),

where V is any finite set of valuations which contains S;ay,, and v is a
G-regular element in M(Fy). It then follows from Lemma 3.6 that the
formula holds for any element ¥ € M(Fy). So we have finally finished the
induction argument begun in §13, where we first fixed M. In other words,
the formula holds for any M € L. This completes the proof of the local
assertion (i) of Theorem A.

We agreed that the global assertion (ii) of Theorem A was a consequence
of the induction hypothesis of §5 unless M = G and

v =¢€u, £ € Ag(F), u € (Ug(F))g,s,

for any large finite set S. To deal with this last case, we go back to the
discussion at the beginning of this paragraph, with M a minimal element
in £. Then H(G(A), M) equals H(G(A)). Since we have established the
local assertion of Theorem A, the expression (17.1) vanishes. Therefore so
does (17.2). Now G is such that (Ug(F))g,s equals (Ug(F)), the set of
unipotent classes in G defined over F'. It follows that

Y Y @(Sw)-aSu)leEuf) =0,
£€AG(F)u€e(Ua(F))
for each f € H(G(A)). Fix an arbitrary element u; € (Ug(F)), and choose
f € H(G(A)) such that
1, if(&u)=(1,w),

0, otherwise.

Ig(&u, f) = {
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We then see that a®(S,u;) equals a(S,u;). This finishes the remaining
case of the global assertion (ii) of Theorem A. The proof of the theorem is
therefore complete. I

We proved the local assertion (i) of Theorem B in §10. The induction
hypothesis of §9 reduces the global assertion (ii) of Theorem B to proving
the equality of a§;,.(7) and agisc(7), for # € II(G(A)!). Any such 7 belongs
to a set I} x (G(A)') so we shall fix v; and K;. Since we have now

established Theorem A, we are at liberty to apply (16.6) with any M €
L. Taking M to be minimal, and then noting that H(G(A), M)k, equals
H(G(A))k,, we obtain

Y (aise(®) - adgisc(m)) trw(f) =0, fE€H(G(A))K,.
vell} . (G(A))

The sum may be taken over a finite set. However, the set of linear forms

foun(fl), feH(GA))x,
parametrized by I}, ;. (G(A)'), is linearly independent. This follows from
the linear mdependence of Archimedean characters, and the non-Archime-
dean trace Paley-Wiener theorem ([6], [33(c)]). It follows that
aGisc(T) — adisc(7) =0, 7w €I}, £, (G(A)").
This completes the proof of Theorem B. §

It is of course the global assertion (ii) of Theorem B which is relevant to
the comparison of automorphic representations. It tells us that

dxsc(”) - adxsc(”) TE H+(G(A)1)'

Recall that Iyisc +(f) is the linear combination of characters on G(A)! given
explicitly by the expression (9.2). Then

Idisc,t(f) = Z accl:isc(“)IG(W: f)

r€l+(G(A),1)
= z adlsc(7r)18 (1l' f)
r€ll+(G(A)L,1)

It follows easily from the definition (9.4) and the trivial case (M = G) of
Lemma 12.1 that this last expression equals

Yo a§e(Dia(r, f).

TEM(G'(A),1)
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This in turn is just equal to fdisc,t( f'). Theorem B therefore provides an
identity

(17.7) Idisc,t(f) = jdisc,t(f,)

between the “discrete parts” of the trace formulas of G and G’.

Instead of using characters on G(A)! it is sometimes more convenient
to deal with characters on G(A) which are equivariant with respect to a
subgroup of the center. For example, we could take

AG,OO = AGQ (R)O)

where Gq is obtained from G by restricting scalars from F' to Q, and Ag,
is the corresponding Q-split component of the center. Then Ag o is a
subgroup of [[,cs_ Ag(Fy). The map

HG :AG,oo — Qg

is an isomorphism, which we use to pull back the Haar measure on ag to a
Haar measure on Ag . If 4 belongs to iaf;, define

Idisc,t,p(f) = / Idisc,t(fa)eﬂ(HG(a))d(ly

AG,oo
where
fa(2) = f(az), z€G(A), a € Ag -

This serves to transform the characters on G(A)! which occur in Igisc ¢
to p-equivariant characters on G(A). We can of course repeat the same
construction for G'(A). Since

(fa) = far,
eH(Ha() = ou'(Hgi(a")
and
da’ = {da,
we obtain
(17.8) lgisc,t,u(f) = Tdisc . (f')

from the identity (17.7).



CHAPTER 3
Base Change

1. Weak and strong base change: definitions

In this chapter E/F will denote a cyclic extension of degree I of number
fields. We write v for the places of F', w for the places of E; other notations
are as in Chapter I. In particular, A = Ap, Ag = AQ® E, and G again
stands for GL(n).

If 7 is an automorphic representation of G(A), we have = = Q) 7, where

v

m, 1s unramified for almost all v.

For any finite prime v unramified in E, we have the base change homo-
morphism b : Hg, — HF, (cf. §1.5; we use the notation there). By duality,
to an unramified representation w,, we may associate an unramified repre-

sentation II, = @ II, of G(E,) = [] G(Ew).

In terms of Hecke eigenvalues (cf. e.g. §6.3) the correspondence is de-
scribed as follows: if f, is the residual degree of E above an unramified v,
then for any w|v:

(11) (tr,v)f" = tl'[,w~

DEFINITION 1.1.: Let m, Il denote automorphic representations of G(A),
G(AE) respectively. We say that Il is a weak base change lift (to G(AEg))
of m if the relation (1.1) is satisfied for almost all finite primes v, w.

This definition may be strengthened using the theory of local base change:
DEFINITION 1.2.: We say that Il is a strong base change lift of © if, for

any (finite or infinite) w|v, the component Il,, is a base change lift of m,.

We will use Definition 1.2 only when the components of = and II are
generic, so that, according to §1.6, base change is expressed by character
identities.
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2. Some results of Jacquet and Shalika

To extract the lifting results from the identity of traces obtained in Chap-
ter II, we will have to use deep facts about L-functions of pairs of represen-
tations proved by Jacquet and Shalika in [27(a),(b)]. We now review those
results.

Let F be anumber field, A = Ap. Assume 7, o are cuspidal automorphic
representations of GL(n, A) and GL(m, A) respectively. We will assume
that 7, o are unitary.

Let S be a finite set of primes such that 7, o are unramified outside S.
We form the L-function

LS(s,m®0) = H det (1 —to0 @ tr gy ®) " .
vgS

Here t, , and t,, denote the Hecke matrices, considered as diagonal endo-
morphisms of C”, C™: their tensor product is an endomorphism of C*™.}

We will use the following properties of these L-functions:
(2.1) The Euler product L5 is absolutely convergent for Res > 1. (cf.

[27(a), Thm. 5.3].)

(2.2) Let X be the set of s on the line Res = 1 such that 7® | |*~! is
equivalent to &, the contragredient of o. (Thus X contains at most
one point.) Then the function LS extends continuously to the line

Res = 1 with X removed. Moreover, it does not vanish there.
(2.3) If s € X, the limit

lim (s — s50)L5 (5,7 ® 0)
Res>1
exists and is finite and non-zero.

(cf. [27(b), Prop. 3.6]. The non-vanishing part of these results is due to
Shahidi [36(a)]).

More generally, suppose that 7 and o are cuspidal automorphic repre-
sentations of Levi components M C GL(n) and L C GL(m) of parabolic
subgroups. For almost all v we again have the conjugacy classes t,, C
GL(n,C) and t,, C GL(m,C). We then have the following consequence
of the facts above ([27(b), Theorem 4.4]).

(2.4) Suppose that m = n and that ¢, , = t,, for almost all v. Then the
pairs (M, x) and (L, o) are conjugate in GL(n).

tJacquet-Shalika write L5(s, 7 X o). We use the older ® because we will need the symbol
X for something else.
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3. Fibers of global base change

In this paragraph we prove a result which in essence describes the fibers
of the global base change correspondence; we will need to know it, however,
before proving the lifting results, and its statement has nothing to do with
base change. (Note that it has been used already in §1.6.) At this point we
do not assume ! prime.

THEOREM 3.1.: Let m, n’' be cuspidal automorphic representations of G(A).
Assume that, for almost all v:

(t, v)f., = (tx, v)f..‘
Then 7' = ® @ x, for some character x of F*N(AE)\A*.
Proof. Let n be a character of A* vanishing exactly on F*N(A%L). We
compare the products H LS(s,7® % ®n') and H L5(s,m® ¥ ®n') where

& denotes the contragredlent. of 7.
If v is a finite place of F, the factor of the first product at v is equal to
the inverse of

Hdet(l —t, @1 ¢ g7

i=1
with # denoting the adjoint of t, = t,,, and {, = 7(&,). We take S so
large that E/F is unramified for v ¢ S. Then (, is a root of unity of order
fu. Consequently this product is equal to

det (1 -t} @ (tL~g;7+)
which, by assumption, is equal to the corresponding term in the second

product. We have therefore

! !

HLS(s,1r®‘7r'®n") = HLS(s,w®i‘r®n‘).

= i=1
We may assume =, 7’ unitary. By (2.2) and (2.3), the product on the right
has a pole at s = 1; so the product on the left must have one also, and
since its terms do not vanish on the line Re (s) = 1, we see using again the
results in §2 that 7/ = 7 ® * for some i. I
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4. Weak lifting

In this section we will prove the results concerning weak lifting. We
must first restrict the class of automorphic representations that we con-
sider: we have to do so because of our ignorance of the residual spectrum
of GL(n). Assuming the conjectural description of the discrete spectrum
given in [24(d)], our results could be extended to all the automorphic forms
appearing in the decomposition of L(G(F)\G(A)).

DEFINITION 4.1.: We will say that the automorphic representation = of

G(A) is induced from cuspidal if there is a cuspidal unitary representation
o of M(A), where P = MN is an F-parabolic subgroup of G, such that

G(A)
M(A)N(A)

7 = ind (c®1).

Note that  is then unitary irreducible ([4]).

We now state in one theorem the main results concerning base change
for cyclic representations of prime degree.

We will denote by = a representation of G(A), by II a representation of
G(AE). Let n be a character of A* vanishing exactly on F*N(A%). Assume
n = ab is a decomposition of n. If II; (i = 1,...b) is an automorphic
representation of GL(a,A), we denote by II; X --- x II; the representation
of G(A) induced from the representation II; ® - - - ® I; ® 1 of the parabolic
subgroup of type (a,...a). We will write “II lifts #” to say that Il is a
weak lifting of  in the sense of Definition 1.1.

THEOREM 4.2: (WEAK LIFTING). All representations are induced from
cuspidal; E/F s cyclic of prime degree |.

(a) Assume 7 is cuspidal, ¥ # ® @ 7. Then there is a unique o-stable
representation Il of G(Ag) lifting n; Il is cuspidal.

(b) Assume m = 7 ®n,  cuspidal. Then there is a cuspidal representation
1, of GL(n/l,Ag), with Ty % 1, such that M =10, x --- x 17" is the
only lift of w.

(c) Assume w is induced from cuspidal. Then there ezists Il, induced
from cuspidal, unique, lifting w.

(d) Assume I is cuspidal, I = M oo. Then there is m cuspidal lifting to
II; all such = are conjugate by tensor product by a power of n; they satisfy
TETQ7.

(e) Write n = Im; let T, be a cuspidal representation of GL(m,AEg),
I, % 0. Then II; x O x --- x H‘l"-l = II is o-stable and lifts some
cuspidal representation 7; w is unique and T = 7 Q 7).
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(f) Assume II is induced from cuspidal and o-stable. Then II lifts at least
one w; 7 is then induced from cuspidal.

Before starting the proof, we recall that at the end of Chapter II we
obtained an identity (17.8) of the discrete parts of the trace formulas for
G(AFr) and G(AEg) x 0. Write FZ for the subgroup of the Archimedean

ideles

II &

V€S
obtained by taking the diagonal image of the group of positive real numbers.
We shall regard F3 as a subgroup of the center of G(Afr). Let p be
a unitary character of F3 . Then ug = po N is a unitary character of
E%,. In the present context, (17.8) may be stated as the identity of the
expressions

(4.1)
YWHIWET Y [ det(s — 1)ag [7F tr(M(5,0)pQ,4,u(0, £)),
M s€ W(“M)reg
and
(4.2)
DY IWMIWET Y [ det(s - 1)ag | tr(M(s,0)0pq,1,45 (0, 4)),
M ’eW(aM)reg

in which ¢ > 0, and ¢ and f are functions on G(Ag) and G(AFr) which are
associated in the sense of §1.3. Here

PQ,1.u(0) = @PQJ(O)

is the representation of G(A) induced from the subspace of u-equivariant
automorphic forms on M(A) which decomposes as a direct sum of irre-
ducible representations 7 such that the imaginary part of the Archimedean
infinitesimal character of 7 has norm ¢, while

pQr‘)"E (0) = @ pr”E (0)
Ly}

is the analogous representation for G(AEg).

We now begin the proof of Theorem 4.2. We start with (a). Assume that
7 2% T ® 1 is cuspidal. We must find II lifting 7. We assume all statements
of Theorem 4.2 known up to n — 1. We consider the identity of (4.1) with
(4.2). Note that since the imaginary infinitesimal characters have fixed
norm, the expressions (4.1) and (4.2) each contain a fixed finite number of
terms as soon as the Kp and Kg types of f and ¢ have been fixed.
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Let S be a finite set of places containing all ramified places of x. Then,
taking f, unramified for v ¢ S, we may write (4.1) as

trws(fs) [T £ (tew) + -

vgS

where (if the ramification of f is fixed) the remainder is a finite combina-

tion of independent characters of H® = @ H.. By (2.4), these characters
vgsS

are independent of the character f — [] f)(tx) determined by 7. (One
needs to recall that any contribution to (4.1) from the noncuspidal dis-
crete spectrum of M is obtained by induction from a cuspidal automorphic
representation of a proper Levi subgroup of M.)

Let H3 = @ @ Hw. We have the base change homomorphism b :
v¢Swly

H3 — M5 (taking S so large that E/F is unramified outside S). If a
representation 7’ of G(A) yields the same character of H3, as 7, we must
have, by Theorem 3.1, 7/ = 7 ® n' for some i. Thus, if f5 = b¢5, (4.1)
equals

Ztrace (s ® 15)(fs) H boy (txv)+ .- s

i vgS
the terms in the remainder being independent homomorphisms of b(H3).
The term in square brackets is of the form Y n; trace m;(fs), with n; > 0,
and can therefore be made # 0 for some fs. The identity then shows that
there is a representation II of G(AEg), occurring in (4.2), which is a weak
lift of 7. We want to show that II is cuspidal. We will need the following
lemma.

LEMMA 4.3.: Assume II; is a weak lift of m; (i = 1,2) (1I;, m; automorphic).
Then, for large S:

i
L5(s, I @) = [[L(s, m @ m ® 7).

i=1

Of course the product on the left must be taken on places w above v ¢ S.
The proof is an easy computation, left to the reader. J§

By the theory of Eisenstein series, we may write II as a subquotient of
a representation II; x Il x --- x II,, where n = ny + --- + n, and II;
is a cuspidal representation of GL(n;, Ag). Then II? is a subquotient of
I x --- x IIZ. Using Theorem 4.4 of [27(b)], we see that since Il = 117, II
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is a subquotient of a product

1

)

(T x T x .. 0™ x e x (M x O x - x WZ ™
X Myp1 X Mygp X - X II;

the factors on the first line satisfy II; % II7, the other ones are o-stable.
We want to show that u =0 and ¢t = 1.

Let us denote by A(Il;) € R the parameter A defined by |wr,| = | |i’:,
where | |o, is the adéle norm on A%, wn; is the central character of II;
and |wp,| its (complex) absolute value. (The same notation applies over
F)

Up to a reordering, we may assume that A(II,) or A(Il;) is minimal
amongst the A(Il;). Assume first that A(Il;) is minimal. If n, = n, our
proof is complete. So, we may assume n; < n. Since LS(II @ I') =
[T1L5(I; ® I), for any automorphic II’, we see, using the properties in §2

and the minimality of A(IL), that

LS(s, M@ 1L) = LS(s, I, ® ;) [ L5(s + X — A, TI{ @ TIY)
i#t
(where A; = A(I;) and 1Y = II; ® | |~* is unitary) has a pole at s = 1.
However, since n; < n, we may apply Theorem 4.2(d) to II;: if II; lifts the
representation 7, ® 7Y (j = 1,... 1) we have by Lemma 4.3:

LS(s, @My = [[LS(s, 7@ 7 ® 7).
i
Therefore one of the factors on the right should have a pole at s = 1: thisis
impossible (§2) since n; # n, L3(s, 7@ 7 ® ) = L5(s — A\, 7@ (#)° @ 1Y)
and A; < 0 by minimality.

So we are reduced to the case that (v > 0) and A(II,) is minimal. By
similar arguments, we see that LS(s, 1 ® (I, x --- x I’ ~")) has a pole
of order at least ! at s = 1. Assume first that n, < n/l. Using Theorem
4.2(e) inductively we have a representation 7, of GL(In,, A) such that
O, x -+ x wzl_l lifts x,; m, is cuspidal and 7, = 7, ® 7. By Lemma 4.3,
[T1L(s,m ® %, ® 7¥) has a pole of order at least ! at s = 1; moreover, we

j

have again A(m,) < 0. Since In, < n, we obtain, as above, a contradiction.
We are left with the case when n, = n/l. Then II is a subquotient of

My x -+ % Hzl_lz since this is induced in the unitary range, and therefore

irreducible, we have

MM, x---x I3 .
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But then L(s,II ® II) has a pole of order I at s = 1; since L(s, 1 @ I) =
[1L(s,m ® # ® 1Y), this contradicts the fact that # £ 7 ® n/ for j # 1. We

}fa.ve proved part (a) of the Theorem—the uniqueness of II is obvious by
(2.4).

We begin the proof of (b) in the same manner and obtain likewise II; x
--- x II,. lifting =. We have assumed 7 = 7 ® ) and we must now show that
t =0 and u = 1. Assume first A(Il;) minimal. If n, < n, the argument
given above still holds. Assume n, = n. We would then have a cuspidal
representation I = II; of GL(n, Ag) lifting 7. In the identity

Lis, i) =[] Ls,r®@7®7),
j
the left-hand side has a pole of order 1 and the right-hand side a pole of
order ! at s = 1, whence a contradiction.

So we see that A(Il,) must be minimal. If in, < n, we use Theorem
4.2(e) inductively to obtain m, lifted by IT, x - - - x HZM. Proceeding as for
(a), we obtain a contradiction by comparing L-functions. Thus n, = n/I,
and by irreducibility of the induced representation we must have II = II,, x
cee X IIZ'—I. This yields (b); again uniqueness follows from (2.4).

To prove (c), we just use (a) or (b) as the case may be, and then induce.
Again, the representation II we obtain is induced from cuspidal. Since
unitary induction produces irreducible representations, the uniqueness of
IT comes from (2.4).

We now prove the “going down” part of the theorem, starting with (d).
Assume II 2 IToo given. The identity of (4.1) with (4.2) shows the existence
of at least one representation 7 of G(A) lifted by II. We first show that =
is cuspidal.

We may write 7 as a subquotient of w3 X - - - X 7., where =; is a cuspidal
representation of GL(n;,Ar). We assume A(7,) minimal. We must show
that » = 1. Assume not. Using inductively Theorem 4.2(a) or (b) we may
lift w, to I, or O, x IIZ X --- x H;fl_l. In the first case, the identity

LS(s, 0 @1,)=[[ Lo, 7@ 7 @)
j
yields a pole for L5(s, 1 ® II,.) at s = 1. Since n # n, and A(Il,) < 0, this
is impossible by §2. In the second case, we obtain likewise a pole for

-1 _
[[2°Gneny)

=0
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at s = 1; this is impossible for the same reasons. So r = 1 and 7 is cuspidal.
Moreover, the identity

L5(s, T x ) = HLS(s,1r®1"r®17j)
j
shows that the product on the right has only a simple pole, whence = %
7 ® 7. Finally, Theorem 3.1 now shows that the 7 ® 7' are the only repre-
sentations lifted by II. (Note that we have already shown that any such is
cuspidal, so we can use Theorem 3.1).

For (e), assume I, 2 II{ is a cuspidal representation of GL(m, AE).
Then the representation I = II; x --- x H‘l’l_‘ of GL(n,AE) is unitary
irreducible, and o-stable since I’ = ind(I{ @ --- @ I’ ® 1) is isomorphic
to II by the standard intertwining operator. Therefore, for a suitable choice
of ¢, the term

trace (M(S, O)UPQ,'A'E (Or ¢))

in formula (4.2), gives a non-zero contribution to the twisted trace formula.

We get a number of terms with the same family of Hecke eigenvalues
from formula (4.2): they will appear for each Levi subgroup M D M,
conjugate to the standard Levi subgroup of type (m,m,... m); and, M
being fixed, for the I! representations of M(AEg) obtained by permutation
of the components of I, @ @ --- @ I

Because of the obvious symmetries (cf. the remarks in [1(c), p. 1293-94]),
the contributions from the different M are equal; if we write, as usual, wM
for the Weyl group Nas(A)/Zp(A) of a special torus A in the Levi group
M, the number of relevant Levi subgroups is equal to

Ws'l
(Wt | IWg |’
A being the split component of M.

Consider now the I! terms associated to a fixed—say, the standard—
M. In the case of GL(n), Shahidi [36(c)] has shown that the intertwining
operators M(s, ) could be normalized in the way predicted by Langlands
[30(d), Appendix II]. In particular, let 7 =, ® --- ® H‘I’M; for r € G,
denote by 7mE the representation of M(Ag) obtained by permuting the
indices by 7. If s is the Coxeter element in W(a) = W$ such that sorg =
7mg—s0 s is the permutation sending (1,...1) onto (I,1,...,I — 1)—the
Coxeter element s’ such that s'o(rmg) = T is clearly 7s71. Let us write
M (s,0,7%) when we want to specify the representation 7 we consider. By
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Shahidi’s result we may write:
M(s,0,7g) = N(s,0,7g) - m(s,0,7g)

where N(s,0,7g) is the normalized intertwining operator (denoted by
a(0, 7g, s) in [36(c)]) and

l§

(4.3) m(s,0,7g) = H

i=1

L(0,1; ® fif’)
L(1,1, @ 02°)e(0,IT; @ Y7, )

It is easy to infer from [36(c)] that we have also
M(rst™1,0,77g) = N(rst~1,0,775)m(s,0, 7g) :

the normalizing constant is the same. The normalized operators satisfy the
product relation

N(s182,0,7) = N(s1,0,s2m)N(52,0,7)
([36(c), Thm. 3.1]), from which we obtain
(4.4) N(rst™!,rwg) = N(r,smg)N(s,7g)N(r71, 7).

(We have dropped the mention of “0” from the notation.)
Moreover, the operators M (s, A, ) are obtained by integration over sub-

groups which can be taken over F'; that operation commutes with the action
of Gal(E/F), and therefore

Mt~ rag)o = oM(‘r'l, ‘m'lﬂ'};).

Since the normalizing factors m are invariant if we conjugate repre-
sentations by o—assuming we take the character 1 in (4.3) invariant by
Gal (E/F)—we also have

N(r~Y,r7g)o = aN (v}, 707 ).
Combining this equality with (4.4) yields
N(rst~!,r7g)o = N(1,s7g)[N(s,7g)o]N(r7}, ro " xg).
Using the fact that stz = o~ '7g, and the product relation, we obtain

N(r,smg)™' = N(r7}, 707 17p).
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Since the normalizing constants are equal, we have then:

trace (M(rst™ !, 77E)0pQ,rx5($))
=trace (N (1, s7g)M(s, 7)o N(7,57E) " pg rxs(9))
=trace (N (1, s7g)M(s,7E)0pQ »s($)N(r,5m5)" ")
=trace (M(31 WE)UPQJE (#)),

using the basic property of intertwining operators. We have shown that
all contributions associated to elements of &; are equal; remembering the
counting involved, we see that the sum of all terms of the type considered
in (4.3) is equal to

| det(s — 1)~ trace (M (s,0)0pq x5 (0, 9)).

It is easy to check that, for the Coxeter element, s, |det(s —1)| = I. Now
the identity of (4.1) and (4.2) implies the existence of some representation
7 of G(A) lifted by II. Remark that, if (7;), ¢ € I, is the set of all such
representations, we have, by the identity of traces:

Z trace m;(f) = trace (M(s,0)o1I(¢))

for associated f and ¢. Since the operator M(s,0) is unitary, the local
theory already implies that there must be only one representation on the
left. We will also obtain this fact from the consideration of L-functions.

We now proceed to show that 7 is cuspidal.

Assume 7 is a subquotient of 7 X - - X =, a product of cuspidal repre-
sentations; we take /\(7r,) rmnlmal If r # 1, we may, by induction, lift =,
to I or I, x IIZ x xH"

In the first case, we have

L5(s, (I x Y x - x 7 )@ fi,) = [[ L5(s, 7 @ %, @ ).
J

The right hand side has a pole at s = 1; thus the left-hand side has one
also; since II; is unitary and A(II,) < 0, this implies (using again §2) that
L5(s, 1" ®11,) has a pole at 1, for some i. Therefore m = n, and II, = ng
which is impossible since II, is o-stable and II; is not.

In the second case, we have

=1 ) i
(4.5) II 2860  (1,)7) = [[ L5 (s, 7 @ #r @ 7).
J

i,j=0



210 Chapter 3

The right-hand side has a pole at s = 1; thus we must have a pole at
s =1 for some L5(s, 11" ® (1I,)°’). This implies again that n, /I = m and
I, = H‘{k for some k.

Thus we see that r = 1 and = is cuspidal. Moreover, in (4.5), the left-
hand side has a pole of order I exactly at 1. Thus the same must be true
for the left-hand side []LS(s,7 ® # ® 7). Therefore 7 = 7 ® 1.

j

This proves (e).

Finally, (f) is then proved by induction. Of course there are a finite
number of = lifted by II, and their number can be determined using the
cuspidal representation defining II and parts (d) and (e) of the theorem. i

In the next proposition we collect some further properties of base change;
the local analogues have been proved earlier. We denote, as earlier, by wy
the central character of .

PROPOSITION 4.4.: (i) The notion of base change lifting is independent of
the choice of the generator o of X.
(ii) If O is a base change lift of ,

Wi = Wy ONE/F-

(iil) Assume
E
|
F
I

L

is a diagram of Galois extensions, with E/F cyclic as above. Let 7 €
Gal(E/L). Then, for =, II representations of G(A) and G(AEg), " and
" are defined.

Then, if I lifts =, II” lifts ="

Proof. (i) is clear since the notion of weak base change defined by (1.1) is
independent of o.

(ii) is also an easy consequence of (1.1), since the central characters are
determined by their values almost everywhere.

For (iii) we may use the proof of the local analogue at the end of §1.6.2.
If IT lifts w, then at almost all finite primes, II, lifts 7,—in the sense of
Hecke eigenvalues and also, by the considerations in §1.6.2, in the sense of
character identities. By the proof there, II7 lifts #] in the character sense.
But for two unramified representations, one checks easily that this identity
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of characters is equivalent to the identity of Hecke eigenvalues (1.1). Thus
1" is a (weak) lift of #7. I

Remark. When we have proved Theorem 5.1, Proposition 4.4 will immedi-
ately hold for strong lifting.
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5. Strong lifting

With the notions defined in §1, we will now prove the following (the
assumptions are as in Theorem 4.2):

THEOREM 5.1: (STRONG LIFTING). Assume =, I are representations
induced from cuspidal of G(A), G(AEg) respectively.
If 1l is a weak lifting of 7, then Il is in fact a strong lifting of m.

Proof. Since weak and strong lifting survive induction, we may assume that
7 is cuspidal. We distinguish two cases, corresponding to parts (a) and (b)
of Theorem 4.2.

Assume first that = 2 7#®n. Then, separating strings of Hecke eigenvalues
in the identity (4.1) as in the proof of Theorem 4.1, we obtain the equality

!
Z trace (7 ® n°)(f) = I trace (11(¢)1,),
i=1
whenever f and ¢ are associated. Note that by the vanishing conditions on
the orbital integrals of f (Proposition 1.3.1), this is in fact equivalent to

trace 7(f) = trace (II(¢)I,).

Let v be a place of F. This global identity obviously implies that, I, ,

being the normalized intertwining operator at v between II, = @ II,, and
wlv
Il, o o, we have, for f, and ¢, = @) ¢ associated:
wlv

trace 7, (f,) = ctrace (I,(¢y) o 0),

¢ being some non-zero constant. By Weyl’s integration formulas, this im-
plies

(6.1) On,,0 = Oy, o N

where O, , denotes the character twisted by I ,.

Now m,, as a local component of a cuspidal 7, is a generic representation.
By an easy extension of the results of §I.6 (cf. [11(a)] in the real case),
there exists a generalized principal series representation II9 of G(E,) such
that, for the normalized operator I, of §1.2, extended to the non-unitary
parameters in the obvious way:

(5.2) Omeo = Or, O N

where Oryg , is defined by I,. From (5.1) and (5.2) we obtain the equality
One o = Om,,s- Of course, 12 might so far be reducible. This is a linear
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relation between standard (= generalized principal series) twisted charac-
ters. However, the same argument as in the non-twisted case (cf. [11(d),
Prop. 2]) shows that these twisted characters are independent—here we
have to use the Langlands classification for o-stable representations, cf.
before Proposition 1.6.9, and the independence of the twisted characters
(Lemma 1.6.3). Therefore we must have 119 = II,, ¢ = 1 and

en"g = 9,, ON.

This finishes the proof in this case.

If * =2 7 @ 7, the identity (4.1) reads—using the counting arguments in
the proof of Theorem 4.2(e)

tracew(f) = '11_1 Z trace (M (5y,0)0pur5(0,¢)).

Here 7p = I; @ I @ --- ® I{' ', where I, is cuspidal and II; 2 M¢:
thus 7g is a representation of M (AE)I. The subscript w runs over &;;
wrg is the obvious permutation of g and s, is the only cycle of length
lin &; such that s, - (wmg) = o(wmg). All terms on the right side are
proportional, with the same constant, to trace(H(qS)I ) where I, is now
normalized as in §1.2, and T =T x --- x II" is generic.

Thus we obtain an identity

trace 7(f) = ctrace (IL(¢)I,).

From then on the argument is the same (note that the local components
of I are induced from generic representations and irreducible, and hence
generic). This finishes the proof. i
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6. Base change lift of automorphic forms in cyclic extensions

In this section we will show that the base change results we obtained
allow one to “induce” cusp forms on linear groups from one global field to
another. This is expected as a part of the general Langlands conjectures
and is best explained in terms of the (conjectural!) Tannaka group. We
refer to Langlands [30(c)] and to [26(b)] for more information.

Let F be a number field. From what is known so far about the proper-
ties of automorphic forms, it seems natural to surmise that automorphic
representations of GL(nAF) (in fact isobaric representations [30(c)] should
correspond bijectively to completely reducible representations of degree n
of some conjectural group, denoted by Grr).

Of course the local analogue is the so-called “local conjecture” of Lang-
lands, describing representations of local groups GL(n, F') by representa-
tions of degree n of the modified Weil group Wr x SL(2,C) = Wg. Local
and global conjectures should be compatible, i.e., there should be, for each
completion F, of the global field F', natural homomorphisms

W, —— G(r)

such that, if the automorphic representation = is associated to ¢ : Grry —
GL(n,C), m, should be associated to the representation ¢ o, of W, .

Now assume E/F is an extension of global fields, that we take to be
cyclic. It seems, again, natural to expect an exact sequence, analogous to
the one relating Weil groups:

1 = Gy — Gnr) — Gal(E/F) — 1.

In particular, a representation of Grg), of degree n, should induce to
yield a representation of degree nl of Gryr). Consequently, one should be
able to associate, to an automorphic representation of GL(n, Ag), an auto-
morphic representation of GL(nl,Af). It is easy now to describe directly
(without the Tannaka group) what this correspondence should be. Let 7g
be the automorphic representation of GL(n, Ag).

For almost all places w of E, the representation 7g o, is unramified, and
is thus naturally associated to a representation of degree n of Wg which
is a sum of unramified Abelian characters. We define a (hypothetical)
representation mp of GL(nl, Ap) by defining its Hecke eigenvalues almost
everywhere. Let v be a place of F, unramified in £ and such that 7g,,
is unramified for any w|v. We define the local representations of Wg, as
follows:
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(1) If v is inert, we have an exact sequence
1—- Wg, » Wr, — Gal(E/F) — 1.

We obtain a representation of Wr,, of degree nl, by inducing that of Wg,, .
(Of course w is the only place of E above v.)

(ii) If v splits in E, and wy, ... w; are the places of E above v, we obtain
a representation of Wr, = Wg,_ by taking the direct sum of the represen-
tations of Wg,, (i=1,...1).

(iii) The composite case may be left to the reader.

DEFINITION 6.1.: (E/F cyclic). Ifmg, mp are automorphic representations
of GL(n,AEg), GL(nl, Af) respectively, we say that mp is automorphically
induced from wg if their Hecke eigenvalues are associated as in (i)—(iii)
above.

THEOREM 6.2.: Let E/F be a cyclic extension of global fields of degree
(prime or not).

Then, if Tg is a representation of GL(n, Ag) induced from cuspidal, there
exists one, and only one, representation mp of GL(n,AFr) automorphically
induced from wg. Moreover np is induced from cuspidal.

Notice first that it suffices to prove the theorm for 7g cuspidal; the
general case follows by induction. We will see in the proof that 7 is induced
from cuspidal, and therefore determined by the knowledge of its Hecke
eigenvalues at almost all primes. Thus the uniqueness of 7 is obvious.

To prove the existence of a representation 7p with the correct Hecke
eigenvalues at almost all primes, we first notice that automorphic induction,
as defined in Definition 6.1, satisfies the usual property of “induction by
stages”. Namely, if E/E, /F is a diagram of extensions, all cyclic, if g, is
automorphically induced from 7z and 7 from 7, , then 7p is automorphi-
cally induced from 7g. (The verification in terms of Hecke eigenvalues—or
Weil group representations—using Definition 6.1, is left to the reader).

Hence Theorem 6.2 can be proved by considering a sequence of cyclic
extensions of prime order. In this case, assuming E/F cyclic of order I, we
may reformulate Definition 6.1 as follows. Assume E,, /F,, is an unramified
field extension, with x,, an unramified character of E,,. Then

. Wr .
™ e = Y X
XvON=Xw

it is the sum of the I characters of F,’ that compose with the norm to yield
Xw- Using this fact, it is easy to see that Definition 6.1 is equivalent to
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the following formulas at almost all places. Let ¢ be a primitive I*! root of
unity.
Then 7p is automorphically induced from #g if:

(6.1) trpy = lrgw Olaguw, @ Olrgu,

(v split into wy, ... w;)

(6.2) trew = tipw O (L, & @ (T,
(v inert, w|v).

In (6.2), t'/" denots any I*" root of the diagonal matrix ¢; note that ¢, ,
is unambiguously defined (up to permutation of entries), since we then add
all the products by powers of (.

To prove the existence of 7, we rely on Theorem 4.2(d) and (e). Assume
first that mg & 7, where o generates Gal(E/F). By Theorem 4.2(d), 7g
lifts exactly I representations 7,7, ®7,... T, ®7'~!, where 7, is a cupidal
representation of G((n, Ar). Set

T=Tp =T X (T ®N) X - -+ X (7r,,®17"1).
We check that the ¢, , are given by (6.1) and (6.2). Note that we have

(6.3) trpw =txgw, v split, w|v,

(6.4) (trnw) =tegw, v inert

In particular, tyg w, = trgw, if w; # w;, w; above v. It is then obvious
that (6.1) is satisfied.
Assume v is inert: thus n(@,) = ¢, a primitive I*" root. Then

t'y'-' = t'n»” ® Cttny” ® e ®<1_1t”n»"'

By (6.4), tr, o is an I'" root of ¢y, 4. So tr, has the value specified by
(6.2).

Assume now that 7g # 7%. By Theorem 4.2(e), 7g x 7% x --- x wg‘—l
defines a unique representation 7 of GL(nl, Ar); moreover, 7 ® n = .
Again, we check that (6.1) and (6.2) are satisfied by m. By construction we
have

(6'5) try =trguw O Olrgu, v split,

(6‘6) ti’,u = tn;,w b--- @tﬂ's,w’ v inel’t,
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(It is easy to check (6.5) by composing Galois action and parabolic in-
duction at a split place.) Thus (6.1) is satisfied. As for (6.2), note that
7 = 7 Q®n; if { is identified with a diagonal matrix, this implies that
(try = 8-tz Where s is an element of &,,;. Setting t =, ,, we see that,
up to a reordering of the indices, we can write

t=(t1,Cty, ... ¢ My, b, (M, ().
Set T = tyyw = (T1,...T). We have the equality (6.6), which is true of

course modulo permutation. It implies that, up to reordering,

1 4 { [t l
(B8, 8, Bty )
W W
1 terms { terms

is equal to [ times the segment (T3, T3, ...Ty).

Obviously this means that, upon reordering, we may assume #; = T,-I/ !
where the I*® roots are arbitrary; this implies that—always mod &,,;—
t is equal to TY' @ (T @ .- @ ¢('"1TY/'. That is the equality (6.2).
Theorem 6.2 is proved. §

We now observe that more information may be obtained on the repre-
sentation mr. We will need two lemmas:

LEMMA 6.3.: Assume wg is cuspidal and 7g = %, where o is a generator
of Gal(E/F). Then there are ezactly l representations of GL(n, AF) lifted
by mg. They are of the form wp,7r @ NE/F,... ,7F ®1)ET/IF, where wp is
one of them; mp is cuspidal, Tp = T Q Ng/F.

Here of course ng/F is a generating character of F*NAL\A}.

Proof. Of course if [ is prime this is part of Theorem 4.2. We reduce to the
prime case. Let E/E;/F be a composite extension, with [E : E;] prime.
Given g, we obtain g, lifted by 7 (Theorem 4.2), then = lifted by 7,
using Lemma 6.3 inductively. By transitivity of the lifting identities (1.1)
we see that g lifts 7p and 7p ® n}é /F for any i. Moreover the identity

L3(s,me ® %) = [ [ L5(s,7F ® 7r ® niz/r)
f

shows that the 7p ® * are distinct; one has only to compare the orders of
poles at s = 1 on each side. |

LEMMA 6.4.: Assume wg is cuspidal and g % 1r§’; for any ¢ < I. Then
there is a unique representation mp of GL(nl, AFr) lifted by g x wE XX
wg;_l. It is cuspidal and 7p = 7F @ ng)F.
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Proof. Again, assume ! = l 1k is composite, [E : Ei] =, [E, : F] =
ky. Thus E, is the field fixed by r = ¢¥. Since 7p = Ty, We obtain a
representation of GL(nl1, Ag,), say mg,—this is part of Theorem 4.2. It
is cuspidal. Moreover, assume g, = 1r}’,3" for some ¢ < k;. By Proposition
4.4(iii), we get 7g = 7%, contrary to our assumption. Thus 7g, % wg:,
and applying Lemma 6.4 inductively we get 7p, a cuspidal representation
of GL(nl, AFr). Again, the identity of L-functions shows that 77 & 7p ®
ne/r- 1

We now give a more explicit description of the “induced” representation
obtained in Theorem 6.2. Assume that 7g = 7%, where 7 = 0 for 1 <
a < I, and a is minimal: 7g % wg;' if £ < a. Let L be the fixed field of .
By Lemma 6.3, g lifts the representations 7,7, ® ng/L,... , 7L ® 7)%:7},
of GL(n,AL). Now 7y % n{ for i < a, since 7g % 7% (again Proposition
4.4(ii1)); the same applies to all the twists up to 7 ® n}’;/i Threefore
there is a unique cuspidal representation 7% of GL(na, Ar) lifted by 71 x
S X wzd-l. By class field theory, we may write ng;L = ng/r o Np/F.
Just by using Theorem 3.1, we see that the representation of GL(nl,AF)
automorphically induced from IIg (which exists by Theorem 6.2) is 7% x
T @ NE/F X -+ X 7p @ nfjp: the theorem implies that one is the twist
of the other by a power of ng/r, and both are stable by such a twist.
We have ’733/15' =1lon Ny/rAj, and nf,;/ F is a generator of the character
group of F*NA}\A%. Thus by Lemma 6.4 applied to L/F, we see that
T3 @ Npyp = 7. We record this in
COROLLARY 6.5.: Under the assumptions of Theorem 6.2, assume wg cus-
pidal. Let 7 = 0% a minimal, be a generator of the stabilizer of np
in Gal(E/F). Let L be the fized field of . Then the representation of
GL(nl, Af) automorphically induced from ng is of the form

1p = (1p @) X -+ X (7 @ 1)

where 7% is a cuspidal representation of GL(na,AFr) and n; ranges over
the characters of F* N AL\ A} modulo those vanishing on NA}. Moreover,
for any character n of F*NA}\A}, 7% @ n = x3.

We end up this section with a lemma which has been used in §1.6. No-
tations are as above.

LEMMA 6.6.: Assume mp is cuspidal and salisfies 7p = 7p @ nfg/F with
b minimal. Then, if I is the lift of mp to GL(n, AEg), we have Il = II; x
Iy x --- x II"{"‘, II; being a cuspidal representation of GL(b, Ag) such
that Iy 2 ¢ fori<a=3%.
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Proof. Using Theorem 4.2 inductively we may find II; it is induced from
cuspidal. Since IT = II?, we see that II is a product (for the operation
denoted by x) of blocks of type I; x --- X II{'-l with II; cuspidal and
¢ = I, and a minimal. Using the “going down” Lemma 6.4, and the
considerations of §2, one easily sees that there must be only one block if
np is cuspidal. Finally, one checks that a = 2 by using the identity of
L-functions (Lemma 4.3) at s = 1.
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7. The strong Artin conjecture for nilpotent groups

Let E/F be a Galois extension of number fields, with Galois group T'. If r
is a complex representation of I', we denote by L(s,r) the Artin L-function
associated to r ([2(a), (b)]). It is a product of local factors L, (s, ).

We will call “strong Artin conjecture” the following assertion: if r is
irreducible, there should exist a cuspidal representation = of GL(n,Ap)—
where n is the degree of r—such that, for some finite set of places of F
containing all ramified primes for r and =:

Ly(s,r) = Ly(s, ). (véS)

This conjecture was made by Langlands [30(a)]. Since the Frobenius
eigenvalues of r at the other places are unitary, it is easy to check that it
would imply the holomorphicity of L(s, ).

THEOREM T7.1.: Assume that E/F is a Galois extension of number fields
with nilpotent Galois group T'. Then, if r is any irreducible complez repre-
sentation of T', the strong Artin conjecture is true for r.

Of course this says nothing new about the Artin conjecture itself, which
is true in this case since irreducible characters are monomial.

Remark. The method used to prove Proposition 1.6.9 implies the stronger
result that L(s,r) = L(s, 7), i.e., the L-functions coincide at all places.

We will in fact deduce Theorem 7.1 from a stronger result.

Let us call a representation r of Gal(E/F) = T' automorphic [27(b)] if
there is an automorphic representation = of GL(n,Ar), where n is the
degree of r, such that L,(s,r) = L(s,,), (v ¢ S) for large S.
PRrOPOSITION 7.2.: Let E/F be a solvable Galois extension of number
fields, with Galois group I'. Assume that r is an irreducible representation
of T, and that its character belongs to the subgroup of the Grothendieck
group of characters of I' spanned over Z by characters of the form

(7.1) indf, (x),
where Ty 1s a subgroup of I' admitting a subinvariant series
Foal'yaTy--- <, =T

with all factors cyclic, and x is an Abelian character of I'y.
Then r is automorphic, associated to a cuspidal representation. In par-
ticular, the strong Artin conjecture holds for r.

Since nilpotent groups are monomial, and any subgroup I'y of a nilpotent
T’ has the property stated in Proposition 7.2, this implies Theorem 7.1.



Base Change 221

Remark. E. C. Dade [16] has shown that the characters verifying the as-
sumptions of Proposition 7.2 are monomial. Therefore the Artin conjecture
was already known for r. We don’t know for which finite groups the group
of characters is spanned by characters of type (7.1).

Proof of Proposition 7.2. We will rely on a result of Jacquet-Shalika [27(b)].
Consider first a representation r = ind(x) of I' as in (7.1). (Thus r is not,
in general, irreducible). If Lg is the fixed field of 'y, the character x of
Gal(E/L) is associated, by Abelian class field theory, to a character of
Lg\A7, that we denote also by x. Using Theorem 6.2 repeatedly in the
tower of fields associated to the normal series I'y C 'y ... C T, we otain
an automorphic representation 7 of GL(n,AFr), where n = degr = [I' :
T'o]. The identities (i-iii) in Definition 6.1 show that 7 has (for almost all
primes) Hecke eigenvalues corresponding to the Frobenius eigenvalues of .
Therefore, r is automorphic.

If now r is an irreducible representation of degree n of I' satisfying the
assumptions of Proposition 7.2, we may write it, in the Grothendieck group,
as r = v’ — ", where ' and r” are sums of representations of the form
ind(x), as in (7.1). By the previous paragraph, r’ and "’ are automorphic.

By Theorem 4.7 of [27(b)], we conclude that r is also automorphic, asso-
ciated to an automorphic representation 7 of GL(n, Ar), and = is cuspidal.
This concludes the proof. |l

The proof of Theorem 7.1 implies that the automorphic representations
of GL(n,AF) associated to representation of Gal(E/F) can be multiplied
by arbitrary automorphic representations of GL(m, Ar). Recall that if =,
T are cuspidal representations of GL(n,Ar) and GL(m, AF) respectively,
Langlands’ principle of functoriality implies that there should exist an auto-
morphic representation Il = 77 of GL(mn, Ar) whose Hecke eigenvalues
satisfy (up to permutations, and at almost all primes):

(7'2) tl'[,v = tr,v ® tr,v

(see [8(b), 30(c)]. The representation II will not, in general, be cuspidal but
should be induced from cuspidal, in the sense of this chapter, for unitary =,
T.

THEOREM 7.3.: Let E/F be a finite nilpotent extension of F, with Galois
group I'. Let r be an irreducible representation of T' of degree n, and w the
associated cuspidal representation of GL(m,AF), there ezists a unique au-
tomorphic representation &7 of GL(mn, Ap) verifying (7.2); it is induced
from cuspidal.
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Proof. Write r = ind?o(x), Iy = Gal(E/F,) being a subgroup of T
and x a one-dimensional character of I'y. We can find a tower of fields
F=F, CF,_1C---C Fyassociated tosubgroupsTyCI'y C---CT, =T
with cyclic quotients (of prime order). The representation 7 associated to
r is then obtained by automorphic induction (Thm. 6.2) from GL(1, Ag,)
to GL(n,AF), where n = deg(r), from the one-dimensional character of
GL(1,AF,) associated to x. We denote it by «f; (x), ¢ standing for auto-
morphic induction.

In the same situation, we may also apply automorphic induction to
any representation 7r, of Gn(Afr,). Consider the representation 7f, of
Gm(AF,) obtained from 7 by repeated base change in the tower
(F,Fy-1,...,Fy). We denote it by pr_, r,(7); it is obtained by automorphic
restriction from 7 (for Galois representations, this would translate restric-
tion). We will prove that

(7.3) 1 (X ® pr—F,7) = h X BT,

this being taken to mean that the representation on the left (which exists by
the results of this chapter) has Hecke eigenvalues equal almost everywhere
to those of the (conjectured) right-hand side. This implies the existence of
w7; its uniqueness follows from the fact that the operations involved in L;:o
and pp_ F, preserve the category of representations induced from cuspidal:
these are determined by their Hecke eigenvalues almost everywhere.

One should notice that, in the case that 7 is associated to a represen-
tation r’ of Gal(E/F) (maybe for a larger, non-nilpotent E/F), (7.3) just
translates on the automorphic side the standard isomorphism

(7.4) ind[, (x ® resp_r,r') & indf, x ® 7'

between representations of I'.

Notice also that (7.3) can be obtained by repeated cyclic lifting. Indeed,
replacing F = F, by F,_; in (7.3), and 7 by pr_p,_, 7, assume we have
proved

(7.5) U (X ® pr—FoT) B T X B ppoF, T

in the sense indicated above (note that pr._,_.F, © pror,_, = pr—r,)-
Then, applying (7.3) in the cyclic extension of prime degree F._;/F,, we
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obtain:

Lﬁ(x ® PF—F,T) = zfsr_ltﬁ')“ (X ® pF—~F,T)

—,F F,_
—"F,-_l(l’F; lXEPF—'Fr—l‘r)

= cﬁx R

The first equality uses only the obvious transitivity of ¢; the second is
(7.5); the third uses (7.3) in the prime cyclic extension F,_;/F; however,
we see that we must extend (7.3) so as to deal with the non-Abelian rep-
resentation Lf.;" X. Therefore the proof will be completed by the following

lemma:

LEMMA 7.4.: Let E/F be a cyclic extension of prime degree, I a repre-
sentation of G,(AE) induced from cuspidal, 7 a cuspidal representation of
Gm(AFr). Assume I pp_ g7 exists and is induced from cuspidal. Then

FORpp_pr) = SORT.

Of course ezists means that there is an (induced from cuspidal) represen-
tation with the correct eigenvalues almost everywhere, and the last equality
has the meaning explained after (7.3).

The proof is an easy computation, relying on formulas (6.1) and (6.2)
in §6, and is left to the reader (alternately, one can use, in the inert case
at least, the interpretation of the functors ¢ and p in terms of Weil group
representations (Def. 6.1) and an obvious extension of (7.4) to this case). |

The proof of Theorem 7.3 is now complete. |

We conclude with a tantalizing remark. Consider the regular represen-
tation r of a solvable Galois group T on the space C[I'] of functions on

I:
r=EDdeg(p) p
pel
where T is the dual of T. By solvable base change, as in the proof of

Proposition 7.2, we know that there exists an automorphic representation
7 of GL(n,AF), where n = [E : F], such that

L(s,m)= L(s,r) = H(L(s,p)deg”.
P
(As remarked after Theorem 7.1, we may even get the identity of L-functions

at all places.) Write =, as in [25b], as a formal sum of cuspidal representa-
tions m; of GL(n;, Afr); # = dymy + damg + - - - + dgmE, m; non-isomorphic,
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diny +dsns + - - -+ dgn; = n. The consideration of the poles of L(s, 7 ® )
and L(s,r ® r) at s = 1 shows that

d+dj+---+df =) deg(p)’ =n.
P

Showing that each p € T is associated to a cuspidal 7;, however, seems to
be difficult.
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