
2 The Trace Formula
and Hecke Operators
JAMES ARTHUR

This lecture is intended as a general introduction to the trace formula.
We shall describe a formula that is a natural generalization of the
Selberg trace formula for compact quotient. Selberg also established
trace formulas for noncompact quotients of rank 1, and our formula
can be regarded as an analogue for general rank of these. As an
application, we shall look at the "finite case" of the trace formula. We
shall describe a finite closed formula for the traces of Hecke operators
on certain eingenspaces.
A short introduction of this nature will by necessity be rather

superficial. The details of the trace formula are in [l(e)] (and the
references there), while the formula for the traces ofHecke operators is
proved in [l(f)]. There are also other survey articles [1(c)], [l(d)], [5],
and [l(g)], where some of the topics in this paper are discussed in more
detail and others are treated from a different point of view.

1

Suppose that G is a locally compact group that is unimodular and that
r is a discrete subgroup of G. There is a right G-invariant measure on
the coset space F\G that is uniquely determined up to a constant
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multiple. We can therefore take the Hilbert space L2(F\G) of square
integrable functions on F\G. Define

(R(y)4)(x) = O(xy), 0 E L2(\G), x, y e G.
Then R is a unitary representation of G on L2(F\G).
One would like to obtain information on the decomposition ofR into

irreducible representations. Selberg approached the problem by study-
ing the operators

R(f)= f(y)R(y) dy, f C,(G),
G

on L2(F\G). If b belongs to L2(F\G), one can write

(R(f)(x) = f(y)m(xy) dy
G

= f(x- y)q)(y) dy
G

= I f(x - 1yy)i(yy) dyr\G yer

I (Z f(x- yy))O(y) dy.r\G yer

Therefore, R(f) is an integral operator with kernel

K(x, y) = f(x- ly). (1.1)
yer

Suppose first that F\G is compact. Then under some mild restriction
on f, the operator R(f) is of trace class, and its trace is equal to the
integral of the kernel on the diagonal. This is so, for example, if G is a
Lie group and f is smooth. One can then write

tr R(f = f E f(x- 1yx) dx
r\G yer

=f E E Ax-'1- Ybx) dx
J\G ye{r} 6$er\r

= fi(x- dx
ye{rF} ry\G

= I f f(x- lu -lyux) du dx
ye{r} Gy\G ry\Gy

= Z aG(y) f(x- yx) dx,
ye {r} Gy\G



The Trace Formula and Hecke Operators 13

where

a((y) = volume(Fr\G,).
Here, {F} is a set of representatives of conjugacy classes in F, and Fy
and Gy denote the centralizers ofy in F and G. Implicit in the discussion
is the absolute convergence of the various sums and integrals. Now it
can also be seen that R decomposes into a direct sum of irreducible
unitary representations with finite multiplicities. It follows that

tr R(f)= aG(7r) tr (f),
7erI(G)

where II(G) is a set of equivalence classes of irreducible representa-
tions of G, and a a)is a positive integer. We can therefore write

Z a((y)IG(y, f) = E ar(7)IG(7r, ), (1.2)
ye{r} nEl(G)

where

IG(Y, )= f(x x) dx
Gy\G

and

IG(I, f) = tr n7(f).
This is the Selberg trace formula for compact quotient, introduced in
[6(a)]. (Selberg's original formula actually took a slightly different
form. The present form is due to Tamagawa [9].)

Example 1. Suppose that G = R and r = Z. Then (1.2) becomes

E f(n) = E f(2rn), fe Cc (W),
neZ neZ

the Poisson summation formula.

Example 2. Suppose that G is a finite group and that F c G is an
arbitrary subgroup. Let n be an irreducible unitary representation of G
and set

f(x) = tr (x- 1).
Writing the left-hand side of the trace formula as

Etr ((x- lyx)-1) = IGI I-1 E tr (y-1),
xEr\G yer yer
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and applying the theory of characters, we find that ag(r) equals the
multiplicity of the trivial representation in the restriction of n to F.
But aG(n) is, by definition, the multiplicity of 7 in the representation of
G induced from the trivial representation of F. The equality of these
two multiplicities is just Frobenius reciprocity for finite groups.
Frobenius reciprocity applies more generally to an arbitrary irreduc-
ible unitary representation of F, but so in fact does the Selberg trace
formula. The arguments above apply equally well to spaces of square
integrable, F-equivariant sections on G. The Selberg trace formula is
therefore a generalization of Frobenius reciprocity.
We have chosen the notation IG(y, f) and IG(7, f) in (1.2) to emphasize

that as distributions in f, these functions are invariant. They remain
unchanged if f is replaced by a conjugate

fY(x) = fCxy - 1).
The importance of such distributions is that they are completely
determined from only partial information on f. One could expect to be
able to evaluate any invariant distribution only knowing the orbital
integrals offon the conjugacy classes of G, or alternatively, the values
of the characters at f of the irreducible unitary representation of G.

Consider, for example, the special case that G = SL(2, R). Assume
that fis smooth and bi-invariant under the maximal compact subgroup
S0(2, R). This was the case Selberg treated in greatest detail. The value
at f of any invariant distribution depends only on the symmetric
function

u)e/2_e_/x[e/2 0 )\g(u) =eu/2 -e-u2l { (x e-j/2j1x dx, u e R, u O,JA\G 0 e
u

e J/2
where A denotes the subgroup ofdiagonal matrices in SL(2, R). It could
equally well be expressed in terms of the function

h(r)= eirug(u) du = tr ir(f), r e R,

in which {Xrl is the principal series ofinduced representations. Written
in terms ofg and h, (1.2) becomes the more concrete formula given on

page 74 of [8(a)]. Selberg noticed a remarkable similarity between this
formula and the "explicit formulas" of algebraic number theory. The
analogue of the numbers

{log (pn):p prime, n > 1}
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is the set of lengths of closed geodesics on the Riemann surface

Xr = F\SL(2, R)/SO(2, R),
while the role of the zeros of the Riemann zeta-function is played by the
points

{ + lr:IrE n(G)}.

By choosing g suitably, Selberg obtained a sharp asymptotic estimate
for the number of closed geodesics of length less than a given number.
By varying h instead, he established an asymptotic formula for the
distribution of the eigenvalues of the Laplacian of Xr.
Now, suppose only that F\G has finite invariant volume. For

example, r could be a congruence subgroup
{y e SL(2, Z):y - l(mod N)}

of SL(2, R). Then everything becomes much more difficult. For G =
SL(2, R), Selberg derived a trace formula in detail. Among other things,
he gave a finite closed formula for the trace of the Hecke operators on
the space of modular forms of weight 2k, for k > 1. (See [8(a), p. 85].) In
the later paper [8(b)], Selberg outlined an argument for establishing a
trace formula for noncompact quotient when G has real rank 1. He also
emphasized the importance of establishing such a result in general.

In this lecture we shall describe a general trace formula. It will be
valid if G is an arbitrary reductive Lie group, and F is any arithmetic
subgroup that is defined by congruence conditions.

2

In dealing with congruence subgroups, it is most efficient to work over
the adeles. Therefore, we change notation slightly and take G to be a
reductive algebraic group over Q. The adele ring

A x =R A= x Q2x Q(3 X Q5 x *..

is locally compact ring that contains Q diagonally as a discrete
subring. Moreover, G(A) is a locally compact group that contains G(Q)
as a discrete subgroup. At first glance, G(Q)\G(A) might seem an
ungainly substitute for the quotient of G(IR) by a congruence subgroup.
However, the study of the two are equivalent. We shall assume for
simplicity that G is semisimple and simply connected, and that G(WR)
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has no compact factors. Let Ko be an open compact subgroup of the
group G(Ao) of finite adeles. The strong approximation theorem asserts
that

G(A) = G(Q)KoG(R). (2.1)

If follows that there is a G(R)-equivariant homeomorphism

r\G(R) G(U)\G(A)/Ko,
where

r = G(Q)Ko n G(R)

is a congruence subgroup of G(R). Conversely, any congruence sub-
group can be obtained in this way. Thus, instead of working with
L2(F\G(R)), one can work with the G(R)-invariant subspace of func-
tions in L2(G(Q)\G(A) that are right invariant under Ko. The advan-
tage of the adelic picture is that the conjugacy classes G(Q) are much
easier to deal with than those of F.
Suppose that f is a function in C (G(A)). This means that fis a finite

linear combination of functions fRfo, where fR belongs to Cc(G(R)) and
fo is a locally constant function of compact support on G(Ao). For
example, if one is interested in the action of a function fR on

L2(F\G(R)), one could take f to be the product of fR with the unit
function 1KO. (By definition, 1KO is the characteristic function of Ko
divided by the volume of Ko). Consider the values

K(x, x) = f(x- 1yx), x e G(Q)\G(A),
yeG(Q)

of the kernel on the diagonal. Since G(Q)\G(A) is not in general
compact, this function is not generally integrable. What causes the
integral to diverge? Experiments with examples suggest that the
contribution to the integral of a conjugacy class in G(Q) diverges when
the conjugacy class intersects a proper parabolic subgroup defined
over Q. The more parabolics it meets, the worse will generally be the
divergence of the integral. It turns out that by adding a correction term
for each standard parabolic subgroup of G, one can truncate K(x, x) in
a uniform way so that its integral converges. Let us briefly describe
this process in the special case that G = SL(n). (For a fuller illustration
of the case of SL(n), see the survey [1(c)].)



The Trace Formula and Hecke Operators 17

The standard parabolic subgroups P of SL(n) are parametrized by
partitions (nl, ..., nk) of n. To each such partition corresponds
subgroups

[I° L2

and
tI I0n
t0t

A-m Ap=

of SL(n). One has the decomposition
SL(n, A) = P()K N(A)M(A)K,

where
K = SOn(R) x (H SLn(Zp))

is the maximal compact subgroup. For any point

x = n k, neN(A), mieGL(ni, A), keK,

Hp(x) = (log det m], ..., log Idet mkl)
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Then Hp(x) takes values in the real vector space
aM = ap = {(ul,..., uk): Ui = 0}.

The truncation of K(x, x) will depend on a point
T = (tl,..., t), ti ERi, E ti = 0,

which is suitably regular, in the sense that ti is much larger than ti +
for every i. For any P, write

Tp = (tl + ' + tn, tnl+ + "* + tn, ...)
for the corresponding point in ap, and let Tp be the characteristic
function of

{(ul, ..., Uk)E ap:ul + * + ui > ui+1 + * + Uk, 1 < i < k}.

Example 3. Suppose that G = SL(3) and that P corresponds to the
minimal partition (1, 1, 1). Then ap is a two-dimensional space with six
chambers. The function

H - Tp(H - Tp), Heap,
is the characteristic function of the convex shaded dual chamber.

The notion of a standard parabolic subgroup exists, of course, for
arbitrary G, as do the other objects described for SL(n). For any P, we
have a kernel

K(x, y) = E f(x- ny) dn,
N(A) yeM(Q)

for the right convolution operator off on L2(N(A)M(Q)\G(A)). We can
now write down the truncated kernel. It is an expression

kT(x, f) = (- )dimAp Kp(6x, Sx)Ap(Hp(x) - Tp), (2.2)
P 5eP(Q)\G(Q)
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defined by a finite alternating sum over standard parabolic subgroups
P of G. The inner sum over 6 may also be taken over a finite set, but this
depends upon x. The purpose of this inner sum is to make the
corresponding term left G(Q)-invariant. Observe that the term corre-
sponding to P = G is just K(x, x). A term corresponding to P # G can be
regarded as a function that is supported on a neighborhood of infinity
in G(Q)\G(A).

Theorem 2.1.
(a) The function kT(x, f) is integrable over G(Q)\G(A).
(b) The function

JTY) kT(x, dx
JG(Q)\G(A)

is a polynomial, for values of T that are suitably regular.

(See [l(a), Theorem 7.1] and [l(b), Proposition 2.3].)
As a polynomial, JT(f can be extended to all values of T, even though

it is defined as a convergent integral only for T in some chamber. Set

J() = J(t).
Then J is a distribution on Cc (G(A)). An obvious question is how to
evaluate it more explicitly.

3

Theorem 2.1 is just the first of a number of steps. We have described it
in order to give some flavor of what is involved. The remaining steps
are more elaborate, and we shall discuss them in only the most cursory
manner.
Theorem 2.1 provides only a definition of a distribution J(f). There is

not yet any trace formula. For this, one needs to look at the representa-
tion theoretic expansion of K(x,x). Since G(Q)\G(A) is generally
noncompact, R is no longer a direct sum of irreducible representations.
Rather, we have

R = Rdisc O Rcont,
where Rdisc is a direct sum of irreducible representations, and Rcont
decomposes continuously. The decomposition ofR^ont can be described
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in terms of the constituents of the analogues of Rdisc for Levi compo-
nents of standard parabolic subgroups. This description is part of the
theory of Eisenstein series initiated by Selberg [8(a)] and established
for general groups by Langlands [6(b)]. We shall say here only that the
theory of Eisenstein series provides a second formula for the kernel.
One obtains

K(x, y) = E E E(x, Ip(R, tf), A)E(y, X, A) d), (3.1)
P1 4 iap,

where P1 is summed over standard parabolic subgroups, 4 is summed
over an orthonormal basis of Ld8c(P1(Q)Ap1(R)0Np1(A)\G(A)) (the
subspace that decomposes discretely under the action of G(A)), Ipl(G) is
an induced representation, and E(., , ,) is the Eisenstein series (or,
rather, its analytic continuation to imaginary A). Notice that the term
corresponding to P1 = G is just the kernel of the operator Rdisc(). More
generally, for any P, Eisenstein series give a second formula for the
kernel Kp(x, y). One has only to restrict the sum in (3.1) to those P1 that
are contained in P and to take partial Eisenstein series from P1 to P.
Substituted into (2.2), these formulas provide a second expression for
kT(x, ).
Thus, we have two distinct expressions for the integrable function

kT(x, ). One is a geometric expansion related to conjugacy classes,
which originates with the formula (1.1), and the other is a spectral
expansion related to representation theory, which originates with the
formula (3.1). We therefore obtain two expressions for the integral

JT) = kT(x, h dx.
G(Q)\G(A)

At this stage, the two expressions are too abstract to be of much value.
Nevertheless, it turns out that each can be rewritten in a rather
explicit form. This is by far the most difficult part of the process. In the
end, however, one obtains two different formulas for the polynomial
JT(). In particular, by specializing T one obtains two different formu-
las for the distribution J(f). One is a geometric expansion

J(f) = E Ich(aM) -1 aM(y)JM(y, f), (3.2)
M ye{M(Q)}

and the other is a spectral expansion

J() = ch(aM)I a ()JM(7, f) d7. (3.3)
hetrace formula can be regarded as the equality of the two.

The trace formula can be regarded as the equality of the two.
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We shall have to be content to say only a few words about the terms
in (3.2) and (3.3). In each case, M is summed over Levi components of
standard parabolic subgroups P of G, and Ich(aM)I denotes the number
of chambers in the vector space aM. In (3.2), {M(Q)} stands for the
conjugacy classes in M(Q). In (3.3), I(M) is a set of irreducible unitary
representations of the group

M(A)1 = {x M(A):Hpx) = 0},
equipped with a certain measure dr. The functions aM(y) and aM(r) are
global in nature and depend only on the subgroup M. If M(Q)\M(A)1 is
compact, they are equal to the coefficients aM(ql(y) andaiM(A)\r) that
occur in (1.2). The distributions JM(y, f) and JM(n, f) are local in nature.
If M = G, they equal the distributions IG(A)(Y, f) and IG(A)(, f) in (1.2).
ForM + G, however, they are more complicated. For example, JM(y, f)
is the orbital integral of f over the conjugacy class of y, but not with
respect to the invariant measure. The invariant measure has instead to
be weighted by the volume of a certain convex hull, which depends on
x.

Example 3 (continued). Suppose that G = SL(3), that M corre-
sponds to the minimal partition (1,1,1), and that y is a diagonal
element with distinct eigenvalues. Then

JM(, h = f(x- yx)vM(x) dx,
AM(A)\G(A)

where vM(x) is the volume of the convex hull of the set

{S- 1Hp(wSx):s E W(aM).
The Weyl group W(aM) here is isomorphic to S3, and for every element
s, Ws is the associated permutation matrix. The convex hull is repre-
sented by the shaded region
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The example illustrates a weakness of the identity obtained from
(3.2) and (3.3). Unlike the formula (1.2) for compact quotient, the
individual terms are not invariant distributions. They depend on more
than just the irreducible characters of f. Fortunately, there is a way to
rectify this. For technical reasons, one must insist that f be K-finite,
but this is of no great consequence. Then there is natural process that
associates an invariant linear functional I(f) to J(f). The same process
attaches invariant linear functions IM(y, f) and IM(r, f) to JM(y, f) and
JM(7, f) such that

I() = E ch(a)j-1 aM(y)IM(y, f)
M ye{M(Q)}

and

I(f) = E lch(aM)l a(n)IM(, h) dr.
M (M)

The invariant trace formula is just the identity

ch(aM)-1 aM(y)I(y, f)
M ye{M(Q)}

= ch(aM)l aM(n)Im, ) dn. (3.4)
M Jn(M)

(The details of the construction are contained in [l(e), Sections 1.2-1.3,
Sections 11.2-11,4]. For a general idea ofhow it works, see the introduc-
tion to [l(b)].) If M= G, the distributions JGy, f) and JG(n, f) are

already invariant, and the process does not alter them. Consider the
special case that G is anisotropic over Q. Then there are no proper
(rational) parabolic subgroups, and the only summands come from
M = G. The formula (3.4) reduces to (1.2), which is to be expected since
G(Q)\G(A) is compact. Thus, (3.4) is a generalization of (1.2) in which
the additional terms are contributed by the proper Levi components M.

In the interests of simplicity, we have passed over two technical
complications. On the left-hand side of (3.4) (as well as in (3.2)), the
notation should actually include a large finite set S of valuations of Q
(that depends in a simple way on I). For if y e M(Q) is unipotent, the
orbital integral on G(A) at y diverges. It must instead be taken over

G(Qs). The functions aM(y) and IM(y, f), and also the conjugacy relation
{M(Q)}, really depend implicitly on S. The other point is that the
integrals over H(M) in (3.3) and (3.4) are not known to converge. This is
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tied up with the fact that the operator Rdic(f) is not known to be of
trace class. However, there is a way to group the terms in the sum-

integral overM and H(M) to make them converge. This is supposed to
be implicit in (3.4). These complications are serious if one wants to
derive the kind of asymptotic formulas available for compact quotient.
However, they do not seem to be of any consequence in applications
such as base change, that entail a comparison of two trace formulas.
The expression (3.4) is certainly a formula, but the reader is perhaps

wondering where the trace is. It is buried in the term corresponding to
M = G, on the spectral side of (3.4). We have not described aG(R) in
general, but this function is actually defined explicitly as a finite sum
of terms, one ofwhich is the multiplicity with which n occurs discretely
in L2(G(Q)\G(A)1). If we were able to transfer everything but these
multiplicities to the left-hand side of (3.4), we would be left with a
formula for the trace of Rdisc(f). This, however, is not allowed, since we
don't know at the moment that Rdisc(f) is of trace class. What is known
to be of trace class is RCUp(f), the restriction of Rdi(f) to the space of
cusp forms. One can always rewrite (3.4) as a formula for the trace of

RCusp(f). It simply entails a convergent grouping of the terms that
would otherwise be the formula for the trace of Rdisc(f).

4

Suppose that Ko is an open compact subgroup of G(Ao). The Hecke
algebra

HKO= Cc(Ko\G(A0)/Ko)
acts on L2(G(Q)\G(A)/Ko) on the right by convolution. If

r = G(Q)K0 n G(R)
as before, we have a G(IR)-isomorphism

L2(G(Q)\G(A)/Ko) L2(\G(R)).
It is easy to describe the action ofHKo in terms of the space on the right.
Writing

g = gRgo, ga e G(R), go e G(Ao),
for any element ge G(Q), we first observe from (2.1) that

{go:gE G(Q)}
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is dense in G(A). We can therefore assume that he HK0 is the product
of vol(Ko)-1 with the characteristic function of

KogKo, g G(Q),
since any element in HKo is a linear combination of such functions. Let
) be a function in the Hilbert space, and take x e G(R). Then

( * h)(x) = (xy)h(y) dy
G(Ao)

=EZ (xkgo)
keKo/KongoKogo 1

E 0b(yogox)
ye rdiag/rdiagrgrdiagg-

E r(gly - 1X),
yREr/rFngRrgR

where

rdiag = G(W)KO n G(Q).
This is closer to the classical definition. Actually, in the special case
that G = SL(2) and F = SL(2, Z), the prescription above gives only the
classical Hecke operators

T(n), n eN,

in which n is a square. To get them all, one would need to take GL(2), a
nonsemisimple group that we excluded with our original simplifying
assumption.
Suppose that ilR is an irreducible unitary representation of G(R). Let

mdisC(7r, Ko) be the multiplicity with which ER occurs discretely in
L2(G(Q)\G(A)/K0). If h belongs to HKo, let Rdi8c(R, h) be the operator
obtained by restricting h to the 7R-isotypical subspace of
L2(G(Q)\G(A)/Ko). It can be identified with an mdisc(nR, K) x

mdisc(OR, Ko)-matrix. One would like an explicit formula for
mdisc(7R, Ko) or, more generally, a formula for the trace of RdisC,(n, h).
This, of course, is too much to ask in general. However, it is reasonable
to ask the question when nR belongs to IIdisc(G(R)), the discrete series
of G(R). This is essentially what Selberg's formula [8(a), p. 85] gives in
the special case that G = SL(2), F = SL(2, Z), and 7nr is any but the
lowest discrete series.

Recall that G(R) has a discrete series if and only if it has a compact
Cartan subgroup. Assume that this is the case. Then Idisc(G(IR)) is
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disjoint union of finite sets nIdisc(), parametrized by the irreducible
finite dimensional representations u of G. The number w(G) of elements
in a set HIdi8(u) equals the order of a quotient of Weyl groups and is
independent of /; the set itself contains all the representations in the
discrete series with the same infinitesimal character as M. These facts
are, of course, part of the classification [4(b)] of Harish-Chandra.
We shall describe a formula for the sum over nR e Idisc(P) of the

traces of the Hecke operators. We must first define the terms that
appear. Suppose that M is a Levi component of a standard parabolic
subgroup of G over Q. Let D((y, p) be the function on M(R) which
equals

|det(l - Ad(y))g/m 1/2 07rR(y)
7RE Idisc(O )

if y e M(R) is R-elliptic (i.e., belongs to a Cartan subgroup that is
compact modulo AM(R)), and which equals 0 otherwise. Here ,R
stands for the character lrR, and g and m are the Lie algebras of G and
M. One can express ;)(y, u) in terms of formulas of Harish-Chandra
[4(a)], which are reminiscent of the Weyl character formula. Observe
that DM(y, ku) vanishes unless y is semisimple. Now, suppose that y
belongs to M(Q) and is semisimple. Write

hM(y) = bSP(o)1/2 LX X h(k - lm ymnk) dm dn dk,
oKmax ...Np(o) My(Ao)\M(Ao)

where bp(yo) is the modular function of P, evaluated at the finite adelic
component of y, and Komax is a suitable maximal compact subgroup of
G(Ao). This is essentially an invariant p-adic orbital integral and is no
more complicated than the distributions in the trace formula for
compact quotient. Finally, there is a constant x(M,) which is defined if
y e M(Q) is R-elliptic. If G has no factors of type E8,

x(M,) = (- 1)q(My vol (MY(Q)\My(Ao))w(M)- 1,
where q(M,) is the dimension of the symmetric space attached to My
and My is any inner twist of My such that My(lR)/AM(R)° is compact.
This relies on a theorem of Kottwitz [5] that requires the Hasse
principle. Otherwise, x(My) must be given by a slightly more complicat-
ed formula.

Theorem 4.1. Suppose the # is an irreducible finite dimensional
representation of G whose highest weight is nonsingular. Then

E tr (Rdic(7r, h))
rRe IIdisc(p)
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equals

E(-1)dIAMIch (a)- X(My)w(y, /)hm(y).
M yE{M(Q)}

This theorem is proved in [l(f), Corollary 6.2]. It expresses the trace
of Hecke operators as a finite closed formula. The reader might want to
compare the formula with those in [8(a), p. 85] (for G = SL(2)), [2, p. 283]
(G = PGL(2)), and [7, p. 307] (G of real rank 1). The main step would be
to convert the p-adic orbital integrals into suitable finite sums. How-
ever, for future applications to Shimura varieties, the formula is best
left in adelic form. This is more natural for comparison with the
Lefshetz fixed point formula in characteristicp, as one can see from the
formulas for GL(2) in [6(a), Sections 5-6].
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Note Added in Proof.

The trace class problem has been recently solved by W. Miiller ("The
trace class conjecture in the theory of automorphic forms," preprint).
In particular, (3.4) can now be written as a formula for the trace of
Rdisc(f). It would be interesting to investigate the convergence proper-
ties of the other terms on the right-hand side of (3.4).


