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Suppose that G is a Lie group. which for the purpose of this introduction, we take 
to be a real form of a simply connected complex semisimple group. Suppose that 
square integrable representations for G exist and that f is a matrix coefficient of a 
square integrable representation belonging to the unitary equivalence class co. 
Harish-Chandra has shown how to evaluate the integral off with respect to the 
G-invariant measure on any regular semisimple conjugacy class. In fact suppose 
that h is a regular semisimple element of G. The Cartan subgroup T which central- 
izes h may be assumed to be stable with respect to a fixed Cartan involution Q. 
In other words, there is a &stable decomposition 

where TI is compact and TR is a vector group. Then according to Harish-Chandra, 

where 0, is the character of ca and e ( T )  equals 1 if T is compact and is 0 otherwise. 
Implicit in this formula is the absolute convergence of the integral on the left. The 
vanishing statement (the case that T is noncompact) is sometimes known as the 
Selberg principle. The purpose of this paper is to establish a formula which 
generalizes (1). 

If P is a parabolic subgroup of G, let 

be the "Langlands decomposition". It is not P that we want to fix, but rather A, 
and its centralizer M A .  In fact, let Y ( A )  be the set of all parabolic subgroups for 
which A is the vector group in the above decomposition. This set is finite. For each 
- 
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P = NAM in g>(A) and x e  G. put 

x = M ( x )  exp (Hp (x)) N(x) K(x) , 

for M(x)e M, Hp{x)ea=logA, N(x)eN and K(x) an element in K, the maximal 
compact subgroup of G fixed by 6. Fix a Euclidean measure on a. For any xeG, 
let v(x) be the volume in a of the convex hull of 

{ H p  (x): Peg>(A)]. 

As a function of x, r(x) is left MA-invariant. Choose T so that it contains A. Then 

Our formula is 

where p is the dimension of A and &(T, A) equals 1 if A =  Tm, and is 0 otherwise. 
In the particular case that A = TR we see that the character value of w on any 

regular semisimple conjugacy class can be obtained as the weighted average of 
any matrix coefficient of a> over the conjugacy class. This is a surprising and 
striking coincidence. The matrix coefficients of the discrete series are of central 
importance in the harmonic analysis on G but there has never been anything 
resembling a general closed formula for them. On the other hand, in the spirit of 
Weyl's character formula, % ( / I )  can be expressed as the quotient of two exponential 
polynomials. 

The product of the left hand side of (1) by a suitable function of /i yields Harish- 
Chandra's invariant integral, FJh), which one studies not just for the function 
given above but for any f in the Schwartz space of G. We shall consider the product 
of the left side of (I*) by the same function of h, again for any f in the Schwartz 
space. The resulting distributions 

turn out to have analogues of three fundamental properties of the invariant 
integrals. FAh) satisfies a family of differential equations in h. The same is true for 
Rr(h), although the equations here are more complicated. Ff (h) satisfies boundary 
conditions at the hypersurface defined by any singular imaginary root of (G, T). 
So does R#). However, Rf (h) also satisfies boundary conditions for each real 
root of (G, T), and it is these latter which most concern us. Finally, both FJh) 
and R#) are rapidly decreasing in the TR-component of h. Our starting point is a 
remarkable combinatorial lemma of Langlands, which is similar to the result 
announced in [4(b), 4 81. We reproduce Langlands unpublished proof in 5 2. 
Section 3 contains the main application of this lemma. There we derive a formula 
for v(x) which is used in everything that follows. In 4 4 we define the distributions 
and give some of their elementary properties. Sections 5-8 are essentially devoted 
to establishing the three main properties described above. We then prove formula 
(I*) in 4 9 by comparing these properties with the known behaviour of the functions 
@Ah). 
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The results of this paper are the generalizations to arbitrary rank of most of 
what is contained in [l(b)], although in that paper we did not recognize the 
appearance of the characters of discrete series. There is one formula for real rank 
one, though, ([l(b), Corollary 7.31) which does not yet have a general analogue 
in higher rank. It would be desirable to define distributions for any h o e T  and to 
relate them to the values of RAh) as h approaches ho. 

The integral on the left side of (1*) actually came up in another context. It was 
observed by Langlands some time ago that integrals of this type would arise if 
one attempted to generalize the Selberg trace formula to arbitrary reductive 
groups over Q. A general trace formula does not exist at this time. However, for 
groups of rank 1 we can see the integrals occurring in the trace formula in term 
(9.1) of [l(a)]. The role played by (1) in deducing the formula for the multiplicity of 
a) in the regular representation of G on L2 (F\ G). where F is a discrete co-compact 
subgroup of G, is by now well known (see [4(c)]). It seems reasonable to expect that 
( I*)  will play the same role in the more general situation where r\ G is only 
assumed to have finite G-invariant volume. 
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5 0. Notation 

If G is any Lie group, its Lie algebra will be denoted by g, and the complexification 
of g will be written as gc. We will generally let 3 denote the universal enveloping 
algebra of gir. We shall write Go for the connected component of 1 in G. 

5 1. Split Parabolic Subgroups 

Let G be a Lie group. Suppose that K ,  6 and B are fixed and that (G, K ,  0, B) 
satisfies Harish-Chandra's general assumptions ([2 (h)], [2 (i)]). For convenience 
we recall these assumptions. 

For a start, G itself satisfies the following four conditions. 
(i) g is reductive. 

(ii) If GC is the connected complex adjoint group of gc, Ad(G)c  GC. 
(iii) Let GI be the analytic subgroup of G corresponding to gi= [g, g]. Then 

the center of GI is finite. 
(iv) Go has finite index in G. 
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K is a maximal compact subgroup of G which meets every connected compo- 
nent of G and such that K n Go is a maximal compact subgroup of Go. 0 is an 
involution on g for which f is the + 1 eigenspace. Finally, B is a real symmetric 
bilinear form on g such that 

(i) B ( [ X , Y ] , Z ) + B ( Y , [ X . Z ] ) = O .  X.Y,Zeg,  
(ii) the quadratic form 

l ~ X ~ ~ 2  = - B(X, OX), Xgg,  
is positive definite on q, and 

(iii) B ( U ,  0 Y)=B(X, Y). X, Yeg. 

Suppose that t is any 0-stable abelian subspace of q. Write 

for the decomposition o f t  into its + 1 and - 1 0-eigenspaces. The restriction to t 
of the form B is just denoted by ( . ).  It is nondegenerate. We extend ( , ) to a 
symmetric form on to- and use it to identify to- with its complex dual space. This 
convention applies in particular to the case that t is a $-stable Cartan subalgebra 
of g. In that case define T, the Cartan subgroup associated to t. to be the centralizer 
o f t  in G. Then 

where 7, = Tn K ,  and To=exp tin. T normalizes each root space of (g ,  t). It follows 
that each root a of (g, t) gives rise to a quasi-character < of T. 

Recall that a subgroup P of G is called parabolic if it is the normalizer in G 
of a subalgebra p whose complexification contains a Bore1 subalgebra of go-. Then 
p is the Lie algebra of P and G = PK.  As usual, let N and n denote the nilradicals 
of P and p respectively, and put 

Let a, be the - 1 0-eigenspace of the center of I.  Finally, let L be the centralizer 
of a, in G. Then I is the Lie algebra of L and P = N L .  

It is customary to call exp al the split component of P and to refer to (P, exp al) 
as a parabolic pair. However, for some applications one wants to consider pairs 
which arise, via extension of scalars, from parabolic pairs over a subfield of R.  
The resultant objects over IR have been axiomitized in the early pages of [4(a)]. 
Suppose that a is a subspace of a, and A=exp a .  The action of a on g can be 
diagonalized over R. Let Q be the set of roots of (g, a), and let Qp be the subset 
whose root spaces lie in n. For any ;'eQ we denote the root space by g , .  and also 
by n if y happens to lie in Qp. Let m be the B-orthogonal complement of a in I.  A 
is said to be a split component of P if for any Yem and ;jeQp, 

tr (ad Y),,., = 0 

We shall call the pair (P, A) a split parabolic subgroup (of G). 
Suppose that ( P ,  A) is a split parabolic subgroup. Let M be the group of all 

meL such that 

det (Ad m),, = + 1 
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for each 7 in Qp. Then m is the Lie algebra of M. Moreover M n A = { l }  and 
L = AM, so that 

P=MAN.  
It is easily checked that no element in Qp is zero and that Q is the disjoint union 
of Qp. {O}, and -Qp. In particular the Lie algebra p. and hence the groups P, N ,  
and hl. are uniquely determined by A together with the subset Qp of Q. (See [4(a), 
pp. 2.2-2.51.) If xeG  we write 

x = M (x) (exp H p  (x)) N (x) K (x) 

for M(x)eM, Hp(x)ea, N(x)<=N and K(x)eK.  The vector Hp(,x) is uniquely 
determined. In the future we shall sometime index a split parabolic subgroup by 
a subscript or a superscript. In this case all the various objects associated to the 
parabolic subgroup (such as N ,  M ,  Hp etc.) will be indexed the same way, usually 
without further comment. 

Suppose now that A is any vector subgroup of G such that 0 is - 1 on a. As 
above we write Q for the set of roots of (9. a). Put 

6 {Hea:(;l, H) = O  for every yeQ}, 

and let a1 be the orthogonal complement of ao in a. Then 

and Q spans a'. We shall always denote the dimension of a1 by p. We shall say that 
A is a special subgroup of G if it is the split component of some parabolic subgroup 
P. Since 

Q=Qpu{O}u-Qp 

for any such P, A is special if and only if 

t r (ad X ) ,  = 0 

for all Xem and ";'Q. We shall write ,^(A) for the set of all parabolic subgroups 
with A as split component. 

Lemma 1.1. Let (P, A) be a split parabolic subgroup. There is a uniquely determined 
subset <Pp of  Qpfbr which any element in Qp can be uniquely written as a nonnegative 
integral linear combination of elements in QP. <Pn forms a basis o f  al.  l f  y1 and 
y2 are distinct elements in Qp, 

For a proof this lemma see [4(a), Lemma 2.21. The proof goes the same way 
as that of [2(c), Lemma 11. 

For the rest of this section A will be a fixed special subgroup of G. L is just the 
centralizer of a in G, so is defined independently of Pe?(A). The elements of 
Q - {O} define hyperplanes which partition a into a finite number of connected 
components called chambers. If PeY(A), put 

cp (a)̂ {Hea:  (;I, H) > 0 for all yeQp} 



210 J. Arthur  

This is called the positive chamber of P. In view of Lemma 1.1. it is defined by p 
hyperplanes, corresponding to the elements of Q p .  Distinct groups in ? ( A )  give 
rise to distinct positive chambers. On the other hand, suppose that c is an arbitrary 
chamber in a. Define Q p  to be the set of roots in Q which are positive on c and 
let n be the sum of the corresponding root spaces. Clearly Q is the disjoint union 
of Qp,  - Q p  and {O}. It follows easily that 1+n, evidently a subalgebra of g, is 
actually a parabolic subalgebra. Therefore, P, its normalizes in Q, is a parabolic 
subgroup of G. A is a split component of P and cp(a)=c.  We have shown that 

is a bijection from 2 ( A )  on the set of chambers in a. 
Suppose that Pe9"(A). Let (P*,  A*) be a split parabolic subgroup with PC= P* 

and A =3 A*. We shall say that ( P ,  A) domininates (P*,  A*) and write (P.  A) < (P*,  A*) 
if there is a sequence 

and 

Suppose that F is a subset of < P p .  Define 

a F = { H e a : ( y ,  H ) = 0  for all - , leF},  

and let \p be the centralizer of a? in 9. If QF is the set of roots in Q p  which do not 
vanish on a F ,  put 

5.. 

Then IF+nF is a parabolic subalgebra. Let PF be its normalizer in G and put 

A,..=exp a F .  

Lemma 1.2. The map 

is a bijection from the collection of subsets o f  <3Fp onto the set o f  split parabolic sub- 
groups which are dominated by (P, A). 

For a proof see [4(a), Lemma 2.31. Q 

Given ( P ,  A) ,  we write P < P* if ( P ,  A )  < (P*,  A*) for some A*. A* is uniquely 
determined, being equal to L* n A. ( P  n L*, A) is a split parabolic subgroup of L*. 
In fact given A and (P*,  A*), the map 

P-i. P n L *  
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is a bijection between the set of Pe?(A) which are contained in P* and $.(A), 
the set of parabolic subgroups of L* with A as split component. 

Define two groups P and P' in ^{A) to be adjacent if their chambers have a 
p - 1 dimensional wall in common. P is adjacent to exactly p groups in ^(A) ,  one 
for each simple root of ( P ,  A ) .  Suppose that P and P' are arbitrary elements in 
.^(A). A path of length n between P and P' is a set 

of elements in Â ¥ f ( A  such that JÂ and e l  are adjacent, 1 5  i s  n -  1. We write 
d ( P ,  P') for the length of the shortest path from P to P'. 

In this paper we will generally not need to normalize Haar measures. An 
exception is the measure on a. Here we take the Euclidean measure defined by 
the norm 1 1  1 1 .  We do the same for any vector subspace of a, and in particular for 
a'. Suppose that P e Â ¥ f ( A )  and that 

GJp={y':l ^ p } .  

Define 

Lemma 1.3. Fix i, 1 5 i 2 p, let F = {';'I, and define (P* ,  A*) = (Pp, A r ) ,  in the notation 
o f  Lemma 1.2. Then 

Proof. I f j  + i, define 7; to be the projection of / onto a*, the orthogonal complement 
of "/ in a. By changing the t ,  variable we see that for any (pe C:(al), 

equals 

. J i p ( t l  7; + ... + t p / p ) d t l  ... dt,. 

But 
GJp.={g: j+ i} .  

Therefore this last expression equals 
3" 

c (P* )  1 j ( p { t 1 y 1 + H * ) d H * d t L  
X (a* ) '  

= c ( P * )  ^/, /) { q ( H )  d H .  
a '  

On the other hand this equals 

c ( P )  \ ip ( H )  d H ,  
a ' 

so the lemma follows. 0 
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Corollary 1.4. If P and P' are in ?(A) ,  

Proof. Suppose that P and P' are adjacent. Let 7' be the root in Q p  which is ortho- 
gonal to the common wall of P and P'. Then - yi  belongs to Qn,. The other simple 
roots of P are different from those of P' but their projections onto the orthogonal 
complement of ", are not. It follows from the lemma that c (P)= 0'). The general 
case is obtained by taking a path from P to P'. 

Since the factor c ( P )  is independent of P?.^'(A) we will in future simply denote 
it by cA .  

5 2. Langlands' Combinatorial Lemma 

Suppose that V is a finite dimensional Euclidean space with a basis 

such that 

("A y j )  5 0 ,  

for i +j .  Let { p l ,  . . . , $'} be the corresponding dual basis. The following lemma 
is standard. For convenience we include the proof given in [4(a)]. 

Lemma 2.1. For all i and j ,  

Proof. The lemma is easy to establish if p = 2. Suppose then that p is greater than 2, 
and assume inductively that the lemma is valid for spaces of dimension less than 
p. Fix i and j. Choose k not equal to i or j, and project 

onto the orthogonal complement of /A This gives a basis {dl: l +  k }  of a p -  1 
dimensional Euclidean space. The dual basis is { p i :  1 + k } .  For l =+ k ,  m + k ,  

If 1 and m are distinct this is no greater than 0. Applying the induction hypothesis 
we see that 

(^)^O. 

Corollary 2.2. Suppose that H is a point in V such that (y', H) 2 0  for all i .  m e n  
(p i ,  H) 2 0 for all i. 

Proof. We can write 

H = x  c ip i .  

where each ci 2 0. The corollary then follows from the lemma. 0 
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If F is any subset of { 1, . . . , p}, let VF denote the subspace of V spanned by the 
vectors {y': i e F } .  If k belongs to F ,  set $=Â¥;I" However, if k is not in F let y k  be 
the projection of Â¥ onto the orthogonal complement of Vr. Finally, let {&} be 
the basis of V which is dual to {$I. 

Fix F c  { l ,  ... , p }  and j#F .  We can write 

for real numbers 5,. Now {?': i e F }  and {A: i e F ]  are dual bases of a subspace 
of V Since (Â¥ii -j) SO for each i e F ,  we must also have (&-, Â¥/ 5 0 for i e F ,  by the 
above corollary. It follows that 

c < O .  i e F .  

Consequently if H e V ,  and (-.^ H ) z 0  for all k ,  then we must have (& H ) z O  
for all k .  

If i e  F  and jq! F ,  then 

If both i and j are in F and i  + j, 

If neither i  nor; belongs to F ,  

= ( 7 ; .  7') 

= ( 7 ' 9  7 ; )  + 1 c L k ( A  -/), 
k s F  

which is no greater than 0 if i+j. It follows that for arbitrary distinct indices i  and j 

{;!a) 5 0. 

This implies that for all i and j ,  

Any hyperplane of the form 

{X:  (6, X) =0} or {X:  (A, X> =01, for 

some i and F ,  will be called a special hyperplane. We shall say that a point H e  V is 
regular if it does not lie on any special hyperplane. Fix a subset F  of {I ,  . . . , p} and 
a regular point A. Define a function I&! on the set of regular points of V to be the 
product of the characteristic functions of 

and 
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Let a$ denote the number of indices i e F  such that (?', A )  <0. Langlands' com- 
binatorial lemma is the following: 

Lemma 2.3. If (yi, A )  >O for all i then 

for all regular H .  I f  (yi, A )  < 0  for some i, then 

for all regular H .  

Proof. Suppose that (y', H )  is negative for all i. Then, as we have seen, each 
(?;, H ) ,  and therefore each ( p ; ,  H )  also, is negative. Hence $i{H)  vanishes for 
all A  unless F equals the set Fl = {\, . . . , p } .  Moreover, a ;  =0, and $ $ ( H )  equals 
1 or 0, depending on whether or not ("/, A )  is positive for all i. This proves the 
lemma for H  as above. 

Now suppose that H  and H' are two regular vectors. We have only to show that 

H  and H' can be joined by a polygonal path, no segment of which lies in a special 
hyperplane and no point of which lies on the intersection of 2 distinct special 
hyperplanes. We may assume that only one point of this path lies on a special 
hyperplane, say 

{ X :  ( a ,  X )  = O} ,  

and that H and H' lie on opposite sides of this hyperplane. In other words ( a ,  H) 
and ( a ,  H ' )  are of opposite sign. 

Suppose that F is a subset of { l ,  ... , p} and that no vector in either {d: j ^F}  
or {&: ie F }  is a multiple of a. Then 

( y i ,  H )  = ( y ; ,  H ' )  if j #  F ,  

and 

(4, ̂) = ( A ,  H ' )  if i e F .  

It follows that ( ^ ( H )  = $$(HI) .  

Let be the collection of those F such that for some k  not in F ,  7 ;  is a multiple 
of a, and let .9, be the collection of those F such that for some k  in F ,  pk is a multi- 
tude of a. In either case k is uniquely determined. .9, and .% are disjoint. Suppose 
F, q. We might as well assume that Fl = { I ,  . . . , k  - 1 }, for some k  S p, and that 
yk is a multiple of a. Let F2={1, ..., k } .  y; and & are both in the span of 
{ u k ,  ... , p p }  but both are orthogonal to { / / + I ,  ... , p p } .  Therefore, /4, is a multiple 
of y;, and hence of a. We note for later use that since 
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and 

(&,, /4,) equals 1, so that p i 2  is actually a p o s i t i ~ e  multiple of $, . At any rate, 
F2 belongs to Vi. Since the empty set does not belong to ,%, this process can be 
reversed. In this way we set up a one to one correspondence between ,9? and Y2. 
Let Fl and F2 be two corresponding sets, which we assume for simplicity are as 
above. We have only to show that 

Suppose that j >  k .  y i 2  is in the span of { /^I ,  . . .  , $'} but is orthogonal to 
hi: 12 k + 1 . 1  + j ] .  ; $  is in the span of {//. . . . , ,UP} but is orthogonal to 
[^: lzk, l + j } .  However. 

Therefore, 7 ;  - ';? is in the span of {/A . .. . / i p }  but is orthogonal to { P ~ + ' .  . . . , p p } .  
Now /4- also satisfies this property. It follows that 

If we take the inner product of this equation with -/r, and note that 

we discover that c 2 0. Suppose that i < k. Then we can make the same argument 
to show that 4 - &  is in the span of { p l ,  ... , p k }  but is orthogonal to 
{pl, ... , / i k - l ) ,  and that 

for d l  5 0. 

Now ( $ ,  H )  and H ' )  are of opposite signs. We can assume that ($, , H ' )  
is negative. Then $ ; ( H I )  vanishes for all A. We must show that 

Suppose first of all that $ ; ( H )  vanishes for all A. Then there is a j > k  such that 
( ^ p .  H )  is negative. Since y k ,  is not a multiple of a, ( y ; ,  H i )  is also negative. 
Therefore 

This means that ( 4 ,  H) is also negative, so that y ^ ( H )  and $ $ ( H 1 )  both vanish 
for all A. This proves (2.1) in the case under consideration. 

The other case is that $ $ ( H )  does not vanish for some A. This means that 
( y {  . H )  > 0 for each jz k. But then, for any j > k, 
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is positive. The same goes for ( y i ,  HI).  On the other hand. suppose AA:. If 
H )  is negative then 

is also negative, since ( A ,  H )  is a positive multiple of ( & ,  H ) ,  which is positive. 
If ( p b ,  H )  is positive then 

is positive, so that (A,, H )  is also positive. Therefore. the three numbers (,up,, H ) ,  
<̂ ;,, H ) ,  and (,uk2, H ' )  all have the same sign. Thus, to relate the right side of 
2 . 1 )  with the left side, we have only to consider the 2 opposite signs, 

Remembering that /4 is a positive multiple of y k ,  we see that if (9, A )  is positive 
the first sign above is negative. In this case y.g2 =$, . On the other hand, if ( ? ,  A> 
is negative, G2 = a { ,  + 1, and the second sign above is negative. Either way. the 
right side of (2.1) equals the left hand side. The lemma is proved. 0 

When we apply the results of this section it will be a little simpler if we don't 
have to always index the elements of <P. Therefore, in future F will denote only a 
subset of <?. Modulo this technicality V/-1 and a$ will have the same meaning as 
above. 

5 3. The Volume of a Convex Hull 

Fix a special subgroup A of G. Recall that a = aO @ at.  In this section we shall not 
distinguish between functions on a1 and aO-invariant functions on a. Let <Pp 
be the basis of a1 which is dual to Qp with respect to the bilinear form ( . ) on 
a'. It follows from Lemma 1.1 that the space al, taken with the basis <Pp,  satisfies 
the assumptions of 5 2. If A is any point in a', regular in the sense of 5 2, and F 
is any subset of <Pp,  we can define the function i/^,;- and the integer x g F .  We have 
indexed them to denote their dependence on P. 

Suppose that (P*,  A*)  is a split parabolic subgroup such that 

for some subset F of ( P P .  If the bases <Pp and <fn are indexed as in 5 2, we write x,,. 
for the characteristic function of the set 

and we write ( p i p ,  for the characteristic function of 



The Characters of Discrete Series 217 

Furthermore. we put 

Finally, we write y j  and for q ~ "  and p'j respectively. 

Suppose that 

is a set of points in a, indexed by .^(A). We shall say that 4Y is an A-orthogonal 
set if for any adjacent pair P and P' in J^(A), whose chambers share the wall 
defined by a uniquely determined simple root -;I of (P, A ) ,  then 

Yp- Yp = ry ,  reIR. (3.11 

Let A* be a special subgroup which is contained in A. and suppose that P*e.^>(A*). 
If Y is A-orthogonal, the set 

indexed via the bijection described in 4 1 by .̂ ,,{A), is an A-orthogonal set for the 
group L*. The projection of 

onto a* is independent of P. We denote it by Yp.. The set 

is an A*-orthogonal set. 

Suppose that in (3.1) the number r is actually nonnegative for each adjacent 
pair Pand P'. We shall label this stronger condition by saying that 9 is a positive 
A-orthogonal set. Let P be a group in ,^(A), and let A be any point in cP(a)na1. 
Then if P' is any other group in .^(A). it is easily seen by induction on d(P, P') that 

( A ,  Yp-Yp)zO. (3.2) 

We shall say that a point Aeal is strongly resular if for each PeY(A). A is a 
regular point associated with (a1, <fir) in the sense of 9 2. Denote the set of strongly 
regular points in a1 by a:.  If Y is an A-orthogonal set, let a,,.(-^) be the set of points 
H e a  such that for each PeY(A), the projection of 

onto a1 is strongly regular. 

Lemma 3.1. Suppose that W is an A-orthogonal set. Then for A e a ;  the function 

is independent of A. 
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Proof. By Lemma 2.2 the function is just the difference of 1 and 

In this expression we change the sum over F to a sum over all parabolic subgroups 
dominated by (P, A).  We obtain 

The expression in the brackets depends only on the projection of A onto the ortho- 
gonal complement of a* in a. It is simply the function 

**(H5 ̂*I 
associated with the group L*. Our lemma therefore follows by induction on the 
dimension of al.  

If "it is an A-orthogonal set, there is a uniquely determined vector X in aO such 
that the set 

lies in a'. Denote the convex hull of "it1 by C1(Y), and put 

Lemma 3.2. Suppose that = {Yp} is a positive A-orthogonal set. Let H be a point 
in a ( ^ } .  Then thefollowing conditions on H are equivalent: 

(i) $(H. g)^O, 
(ii) H e  C(Y), 
(iii) for each P .y{A) and p e <Pp , 

Proof. The characteristic function of C("it) and the function $(H, 9Y) are both 
invariant under translation by aO. We may therefore assume for the proof that 
a0 = {O}. We shall prove that (i) => (ii) => (iii) => (iv) => (i). 

Suppose that (i) is true. Fix an arbitrary point A in as,. In view of Lemma 3.1 
we can find a P e P ( A )  such that if y is any element in Qp and p is the corresponding 
dual basis element, 

Summing over y e Q p .  we see that the number 
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is negative. If H  were not in C ( W  we could, by a fundamental property of convex 
sets, find a Aea  such that 

( A H ) >  sup ( A . X ) .  
X â ‚ ¬ C ( ?  

We have just seen that this cannot happen if A is in a ,  a dense subset of a. It 
follows that H  belongs to C(Y). 

Next suppose that H  is in C(g ) .  Fix Pe.Y(A) and let A be any point in cp(a). 
By the Krein-Millman theorem, the linear functional defined by A assumes a 
maximum on C ( 9 )  at some extreme point. Therefore, there is a P1e9(A)  such that 

Combining this with (3.2) we find that 

But A was an arbitrary point of cp(a). It follows that for each ~ E < P ~ .  

<u, H -  Yp) 2 0 .  

Since H  belongs to as..(^). this inequality is strict. 

Suppose next that (iii) is valid. Fix PeY(A)  and Aecp(a). Then 

equals 1 if P'= P and equals 0 otherwise. It follows from Lemma 3.1 that 

This is just condition (iv), which trivially implies condition (i). 0 

Corollary 3.3. If 4Y is any A-orthogonal set, the support of the function 

is contained in C(9 ) .  
The proof that (i) implied (ii) above only made use of the fact that 9 was 

A-orthogonal. Q 

Let Y be a fixed A-orthogonal set. It is a consequence of Corollary 3.3 that 

is an entire function of A. Remember that dH is supposed to be the Euclidean 
measure on al. We are going to evaluate (3.3) at A =O.  

Let A be the real part of A, and choose I. so that A is strongly regular. Fix 
Pe;?(A). We claim that the integral 

is absolutely convergent. If <Pp = {yl, . . . , /'} and 
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is the corresponding dual basis, (3.4) is the integral of 

( -  l)Og p ( j . . H )  

over the set 

S = { H e a l : ( A . y ' )  ( ^ i } ,H-Yp )<O,  l S j < p ] .  

In the integral, write 

H = tl y1 + . . . + r p  7 p .  

With this change of variables we gain the factor 

I * cA=ldet ((7'. / ) ) I  s j , k s p  3 

discussed in 4 1. The integral becomes 

where 

sj= {r , :  ( A ,  "/) ( t j  - (^. Y p ) )  < O } .  

The above integral over S j  is obviously absolutely convergent, and is easy to 
evaluate. It equals 

We have shown that the integral (3.4) is absolutely convergent and is equal to 

Therefore the function (3.3)  equals 

This function is entire in A. To obtain its value at the origin we replace /. by 

z'/., z e c ,  

and let z approach 0. The resulting expression. 

is independent of 1.. We have proved the following 
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Lemma 3.4. Suppose that 9 is an A-orthogonal set and that /). is a point in a& whose 
real part is stronglj, regi~lur. Then the integral over Heal  of $(H,Y) equals 

111 particular the right side o f  this formula is independent of /.. 

Corollary 3.5. If 9 is a positive A-orthogonal set, the expression L {9} equals the 
volume o f  the coin-ex hull C1(?Y). 

The A-orthogonal sets which will concern us in this paper are given in the 
next lemma. 

Lemma 3.6. F i x  x e  G. Then 

i.s a positive A - o r t h o p l  5et. 

Proof. Suppose that P and P' are adjacent groups in ^>(A). Let the common wall 
of cP(a) and cp (a) be defined by "/% We must show that 

-lip{\}-(-Hp ( ~ 1 1  (3.5) 

is non-negative multiple of ;I 

Put 

Then (3.5) equals -Hp(n1). Corresponding to the subset {-/I of Qp we have the 
parabolic subgroup 

P* = M* A* N *  

of G, which contains both P and P'. Then 

(G.  A*)=(PnAf*,  A n M * )  

is a split parabolic subgroup of M* of parabolic rank one. Put 

nl=n*il*, i ~ * e N n  N f = N * ,  l l e N 1 n M * .  

We have 

- Hp(+ -Hp(n*)= -Hp  ( n  ) 
* * Â  

This vector is certainly a multiple of; That it is actually a nonnegative multiple 
follows from [2 (g), Lemma 851. 

If and 9' are (positive) A-orthogonal sets then 

^/+?Y'={Yp+ Y;:Pe.Y(A)} 

is a (positive) A-orthogonal set. 
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Corollary 3.7. Suppose that 9 is an A-orthogonal set. Then the function 

is independent of L e a k .  1 t is left-invariant under L = M A .  Q 

5 4. The Distributions 

Let A be a special subgroup of G. and as always, 

L=MA 

is the centralizer of A. Fix a 0-stable Cartan subalgebra tu of m, and let Ty be the 
Cartan subgroup of M associated to t M .  Then 

is a Cartan subalgebra of g, and 

T = T u A  

is the corresponding Cartan subgroup. We denote by Teg the set of h e T  such 
that (!;,(h) + 1 for every root x of (g, t). Fix a Haar measure on G. On TR= exp 
we take the Haar measure which corresponds under the exponential map to the 
Euclidean measure on b. These 2 measures determine a G-invariant measure 
on T e  G which we denote by dx. For any h e T  any A-orthogonal set 4Y and 
each function f e C: (G), define 

This integral is absolutely convergent and r (h:  W) is easily seen to be a distribution. 
For any f, (r (h : Y),V> is a smooth function of h e L g .  

It is these distributions that we primarily want to understand. Their study 
involves an inductive argument, however, which forces us to enlarge the collection 
of distributions under consideration. Before doing this, we must agree to some 
notations for differential operators. 

Let 9 and its/ be the universal enveloping algebras of gC and a r  respectively. 
9 can be identified with the algebra of left invariant differential operators on G. 
With this interpretation, an element Y e 3  maps any f e  C z  (G) to a new function 
whose value at xeG is denoted by ( Y f ) ( x )  or f (x; Y). On the other hand. from any 
element 

in 9 we obtain a right invariant differential operator Dv, defined by 
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for each f e  CYG). This last expression is also sometimes denoted by f  ( X i  x). 
The map 

X - + D x ,  X E ~ ,  

is an anti-isomorphism from 9 onto the algebra of right invariant differential 
operators. When we want to specify that the differentiation Dv applies to the 
variable x ,  we write Dv{x). Finally if 

f ( x , y \ ,  . . .  .}Â¥,, 
is a function of several variables, we shall denote the value of the function 

D A x l x o ) f ( x .  yl ,  . .  . , J,). 

If 42 is any vector subspace of 9, let 42, denote the set of elements U in 42 such 
that 

Ad ( a )  U = U  

for any a e A .  The additional distributions will depend on an element X e g A  as 
well as a point h e r ,  and an A-orthogonal set Y. We define them by 

There is a formula for Dv r( .x ,Â¥?/  which we must describe. Suppose that 
Pâ‚¬Y(A Define 

and 

p1 and v are subalgebras of q and there is a vector space decomposition 

Therefore, if & and Y are the universal enveloping algebras of pi- and vy respec- 
tively, 9 is linearly isomorphic to 9%3d@# . For each Xe'S , ,  define p p ( X )  to 
be the unique element in .ŝ  such that X - U p ( X )  belongs to 

There is a decomposition 

of 9 into subspaces which are normalized by the adjoint action of A. The compo- 
nent of X - p p ( X )  in .a/%' must actually lie in ,d. By the definition of ,up(X),  this 
component must vanish. It follows that X - p p ( X )  belongs to p1 29. In particular, 
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the map 

X ^ f i p { X ) ,  XE9,.  

is a homomorphism. From this discussion it is clear that for x e G  and Xe%.  

( A ,  Yp-log k - H p ( x ) y  
D X ~ - ( x , W = c ~ i p ! ) - ~  D p . x , ( h l l )  

P e 9 l A )  n <^ 7 )  
(4.1) 

, S O P  

Notice that for m e M A ,  

D f l ( r n  x, st/) = Dv lÂ¥{x CV) 

Another consequence of (4.1) is the commutativity formula 

for two elements X ,  andX-, in 9,. 

For any positive integer r  let %,(r) be the set of elements X in 9. such that 
for any PeJ ' (A ) ,  all the nonzero homogenous components of u ~ ( X }  have degree 
at least r. %(r)  is an ideal in 9, and %(r)  c ( r ' )  is contained in 9 < ( r  + r'). If X 
is in % , ( p +  1) then by (4.1) 

Suppose that A* is another special subgroup of G which is contained in A.  We 
claim that for any r, g A ( r )  is contained in gA,(r ) .  To see this. take any P* in .?(A*). 
There is always a P e . Y ( A )  which is contained in P*. in which case the group 

contains P1. If X belongs to v), pp , (X)  is the projection of p p ( X )  onto ..a/*. 
The claim follows. 

There is a decomposition 

where I is the identity. The projection of any X ^ S  onto C I  yields a complex 
number, which we denote by cO(X). 

Lemma 4.1. For any Xe^,  , 

X - c 0 ( X ) I  

belongs to Ul). 

Proof. The element 

Y = X - c 0 ( X } I  

is in 9.. But for any Pe^{A),  

c^niY))=c, ,(Y)=O, 

which proves the lemma. Q 
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Suppose that we K. If P<=,y{A), wPwpl belongs to ?(vvAw- ' ) .  
If 

x=urnnk ,  ueA, meM, n e N ,  M, 

write 

to see that 

Hwpw-1 ( W  x) = Ad(w)Hp ( x ) .  

If Y is an A-orthogonal set, 

I (Ad ( w )  /., Ad (1v) Yw-ipÃˆ H p ( w x ) ) p  
= c * ( p ! ) - I  = r ( w x .  1v^), 

P ~ - / l n  4 8  ' 1  

where 

( v  Y ) p  =Ad (w) Y K i p w ,  Pe^ (wAw- '1 .  

H'Y is a vi'Awl-orthogonal set which is positive whenever 3 is. If we make a 
change of variables in the integral which defines r ( h : Y : X )  we obtain the formula 

r(whvv-':wJy:Ad^\^Â¥)X)=r(h:-3/ X ) .  (4.2) 

We know that if our distributions are anything like Harish-Chandra's invariant 
integrals, it is natural to multiply them by a certain function of h. We take the 
definition of this function from [ 2  (i). 5 81. If 3 is the centralizer of in g, let Z(t) 
be the centralizer of 3 in K .  Let Rf be the set of positive roots of (3, t) relative to 
some order. Put 

and 

Finally, for c e Z ( t )  and H e  t, define 

d ( c , H ) = A f ( H )  A+(Cexp H ) .  

Let tr,,(L:) be the set of H  in t such that 

[  exp H  

is in T  Then if H e  treg(L,) and X  and Â¡ are as above, we define 
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We shall often write 

rf(h : W)= (r(h : Y), f ) ,  
and 

R , ( C , H : W : X ) = ( R ( C , H : V : X ) ,  f ) ,  

and when we want to emphasize the dependence of Rf(L H : V : X) on T and A, 
we will write 

R^C, H : W : X) = Rf(C, H : 9 : X). 

If the function A([, H) seems unfamiliar it is because we have not assumed 
that G is acceptable. Suppose that R+ is the set of positive roots of (q, t )  relative to 
some order, which we always assume is taken so that R,' is contained in R+ .  For 
G to be acceptable the function 

must lift to a function & on T For H in tmg(C), let U H )  be the number of positive 
real roots f i  in R + such that B(H) < 0. Define 

Then if G is acceptable A (C, H) equals the usual function 

A(CexpH)=t0(CexpH) ( l - M e ~ p H ) - ~ ) .  
~ E R  + 

In any case, A([, H) is analytic in H. 
There are still some other related distributions which we need to define. 

Suppose that /3 is a fixed real root of (g, t). Define 

Let X'p be a fixed root vector for f i  such that 

[X'p, -OX'a]=H'o, 

and put 

y= -OX; 

Define 

t o = { H ~ t : O ( H ) = O }  

and 
t* =to@ R(Xb - Yi). 

t* is a Cartan subalgebra, and we denote the corresponding Cartan subgroup by 
T*. Notice that Z(t*) is contained in Z(t). Suppose that [ is in Z(t). From the 
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theory of the split three dimensional real Lie algebra, we know that 

^ = ^ ( C ) =  Â±1 

This number equals 1 if and only if t, is in Z(t*) ,  which is the case if and only if 
Ad ( C )  commutes with Xk and Yg. 

Define 

a* = t nna ,  

and put A* =exp a*. Let nÃ§(A be the cosine of the angle between /? and the linear 
subspace a of k. If H is any point in t  such that B(H)+O, put 

Suppose that <eZ( t*) .  Then for X  and C?l as above, He t ( (  
define 

) and f e CXG), we 

Here C?l* is the A*-orthogonal set defined in 9 3. Note that if nÃ§(A is not 0 there 
is a unique reduced root yo of (9, a )  such that the restriction of f i  to a is a positive 
integral multiple of yÃ§ This gives rise to an injection 

j, : ̂ (A*)  ̂ ( A ) ,  

whose image is the set of P e ^ ( A )  for which yÃ is a simple root. The vector in '9* 
associated to any P*e^(A*) is the projection of T,p.l onto A*. 

The role played by these new distributions will become clear in Â 6. 

Lemma 4.2. For X ,  V as above and xeG, 

Proof. If nÃ§(A = 0 the lemma is obvious, so we assume nÃ§(A =)= 0. D xi v (x ,  Y) 
equals 

Y E @ P  

For any P,  

where cp(P) equals 1 or 0 according to whether 7, is a root of (P, A) or not. Therefore 
D Y g  Xex v ( x ,  9} equals 

where the summation is extended over all Pe!?P(A) for which y, is a root of (P, A). 
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Put 

where I.* is a point in a* such that (A*, y)  +0 for any root 7 of ( g ,  a )  which has 
nontrivial restriction to a*. We fix /* and let z approach 0. If 7 ,  is a root of ( P ,  A),  
and y e @ p ,  then (A*, 7 )  can be zero only if 7 equals the reduced root yo. In particulac 
y ,  must belong to Q p ,  which is the same as saying that P=jg (P*)  for some 
P* â‚¬^>(A* We find that (4.3)  equals 

From Lemma 1.3 and the definition of n,(A) we obtain 

It follows that (4.3)  equals 

which is what we were required to prove. 0 

Corollary 4.3. For X ,  9J and C, us above, H E  trÃ£(C,) and f e C^(G), 

Proof. The first equation follows from the lemma. The second is a consequence 
of the fact that RF-**(C,, H : 9P : Ya X i  X )  equals 0. 0 

The next four sections will be devoted to a more detailed study of the distribu- 
tions R(C, H : g: X )  and s^([ ,  H : 9 : X ) .  In these sections A,  t, T, 9 and X will be 
fixed and are to have the meaning ascribed above. The element ( is also to be 
fixed, and unless stated otherwise it belongs only to Z ( t ) .  

5 5. The Differential Equations 

As in the real rank one case ([I (b), 5 51) our distributions satisfy a linear non- 
homogenous differential equation. However, unlike the real rank one case it is 
not sufficient for us to consider only the Casimir element. Rather, we must derive 
a differential equation for each element of 3, the center of 92. 

Let F be the universal enveloping algebra of t c .  For any X â ‚ ¬  and Y e 9  define 

R x ( Y )  =YX, 

L v ( Y ) = X Y .  

It is easily verified [2(a), Lemma 151 that for every he T there is a unique linear 
mapping 

r,:92@.y->% 
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such that 

(i) J,,(1 @u)=u ,  u e r ,  
and 

(ii) &(XI ... Xr@ u)=(LAd,h- -Rx l )  ... (LAd(h-  I , ~ ~ - R ~ ~ )  u, 

for X I ,  . . . , X,.eg. 
Let 5 be the direct sum over all roots of (go tc) of the corresponding root 

spaces. 5 is a subspace of gC. Let 9 be the image of the symmetric algebra on 5 

under the canonical map from the symmetric algebra of gC to 9. Y is a vector 
subspace of 9. Denote by 9' the set of X e Y  such that cg(X)=O. 

Suppose mow that h is regular. In [2(a), Lemma 221 Harish-Chandra proves 
that 4 maps ,Y@X bijectively onto 9. In particular, for each z e S  there is a 
unique element Ph(z) in 7 such that 

z-/w 
belongs to R{Y1@.T). Therefore there are elements 

in 9' which commute with T, linearly independent elements 

in .̂  and analytic functions 

on xg such that for any h e  Lg, 

Fix f e C: (G). For y, y\ , y2 e G, let us write 

.f (}'I : y : Y2) =.f (Yl yŷ - 

We shall denote the function 

f (xplyx}= f(:<-l : y :  x), :<,yeG, 

by F ( x  : y). If z is, as above, in the center of 9, 

for each x e G .  Suppose that Xeg  and Ye^. Then 
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From this formula it follows easily that for any h in T e g ,  
F ( x :  h ;  &(X,Qui))=Dx,(:<) Du,(h) Fix : h). 

Here Xi is the image of Xi  under the anti-automorphism of 9 defined by 

Y, ... ŷ  ( -  1)' y ...  ̂ ,  Y,, ... . y e g c .  

Notice that for any pair of functions g, and g2 in CT(G) ,  

It follows that 

equals 

Du,(h) f (x- I  h x )  D x x ,  c(x, ̂) dx. 
TR-  G 

Now we shall write 

Let S(tc) be the symmetric algebra on tc. It is canonically isomorphic to 3. In 
particular any element ueS( t c )  defines a differential operator with constant 
coefficients on t, which sends any function (pe C x ( t )  to a new function which we 
denote by 

Let 1(tc. be the set of elements in S(tc) which are invariant under the Weyl group 
of ( g c ,  tc), and let y denote the isomorphism from ,2" onto I(tc). Harish-Chandra 
has proved [2(a), Theorem 21 that for (pe C Y t r e ( 0 ) ,  z eS f  and h as above, 

Finally, for each i, let i3L(z) be the operator which sends cpe C m ( t r e ( Q )  to 

Each Z^(z) is a differential operator on t ( ( ) .  It is a consequence of [2(a), Lemma 
231 that for every z and i there is a k such that the coefficients of the differential 
operator 

A ( C ,  HIk 

extend to analytic functions on t.  
We have virtually established 

Lemma 5.1. For any zeS f  we can find elements 

{x i :  1 5 i 5 r }  
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in G A ( l )  and differential operators 

{W- 1 S i s r }  

on txg(g  such that for any Het ,&)  and f e  C^(G), 

equals 
r 

RA^H;  : Y : X X L ) .  
1 = 1 

Proof. The equality of the two given expressions has been established by the 
discussion above. The assertion that each Xi belongs to ' S A ( l )  follows from 
Lemma 4.1. 0 

Suppose that f l  is a real root of (9, t ) .  Adopt the notation of the previous section. 
Fix c e Z ( t * ) .  We can easily transform the assertion of the lemma into a differential 
equation for Sg(C, H  : 9 : X ) .  Define 

P ( H )  -wJJ 
T ( H ) =  -- 2 log leT- e 1 = -nO(A)- '  llHPll T ( H ) ,  

if f i  (HI + 0. From Corollary 4.3 we have the formula 

If D is any differential operator on t r eB ( [ )  we write 

[D. T ( H ) l  

for the commutator of D and the operator given by multiplication by T[H).  
Applying the differential equation we have just proved to the two right hand 
terms in the above formula for S:, we find that for any z e T ,  SgC,  H ;  c ' (y(z))  : 3/ : X )  
is the sum of 

r 

S f / ( ,  H  : : X )  - s;(:, H ;  fc^(z): ??I : YpX'y X )  
1 = 1 

and 
R / [ ,  H ;  [C (y ( z ) ) ,  T ( H ) ]  : % : Yi X'y X )  

r 

+ R ^ , H ;  [%(A?). T ( H ) ]  : g : Y P ;  X X , ) .  
1=1 

The element Y; X'y is in % ( I ) .  It follows from (4.1) and Corollary 4.3 that for any 
X Â £ ^  

R,{^H:g:  Y ( ~ X ~ X ) = R ~ ( ( , H : Y : X Y ( ~ X ' ~ ) = S ^ ; , H : ? ? I : X Y ; X ; ) .  
We have shown that there exist elements 

in 'SA(l) and differential operators 
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on t ( ; )  such that 
i 

S;([,~:?(y(z)):?Y:x)=S:~(c, H : 9 : X ) -  1 S : ( < , H ; ? L ( Z ) : ~ : X ~ J .  (5.1) 
7 - 1  

The logarithm which is in the formula for T ( H )  disappears from the coefficient 
functions of the differential operators [? ( y ( z ) ) ,  r {H) ]  and 

It follows that for each / '  and z  there is an integer k such that the coefficients of 
the differential operator 

A ([, H f  ;i ( z )  

extend to analytic functions on t .  
The above differential equations can be written down explicitly if 2 is the 

Casimir element in 9. The calculation proceeds as in the case of R-rank one. 
The analogue of Corollary 4.3, for B an arbitrary root of (g ,  t), allows one to 
express the non-homogenous components of the differential equation in a partic- 
ularly simple form. Here, however, we need this more explicit formula only in a 
special case, and we may as well just quote the result from [ I ] .  

Suppose that, as above, fJ  is a real root of (g, t). Let ga be the centralizer of 
to in g. Let Ga be the analytic subgroup of G corresponding to go. Finally let So, 
be the center of the universal enveloping algebra of gat. and let so denote the 
reflection in t y  about the hyperplane t o ,  ̂ . Then we have the isomorphism ";' from 

onto the set of elements in S (tc) which are invariant under so. Suppose that H 
is a point in t such that B{H)+O. For any (pe CT (G) we write, in the usual notation 
for the invariant integral. 

TIR -- G 13 

We also write 

R , ( H ) = R ( l , H : O :  1 )  

and 

S , (H)=S; ( I ,  H : o : ~ )  

for the values at (p of the distributions R and Sa associated with the group Go 
and for which (=1 ,3 /=0and  X = 1 .  

The element 

~ = ~ ( H ' g ) 2 + ~  y 1 + l y ' X '  +I a a  4 a  es 
is in So. Its image in S ( i e )  under is i (H 'g)2  

Lemma 5.2. For (pe C: (G) we have 

Proof. First of all we quote the differential equation satisfied by R,(H) from [ l  ( b ) ] .  
Go is not semisimple and need not be a matrix group but this does not affect the 
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outcome. R,(H) is actually a multiple of the distribution defined in [1 (b)]. In 
fact if 11 belongs to the subgroup exp(R Yi)  of Go.  ~ ( u ,  0 )  equals 

We must therefore multiply the differential equation of [I, Theorem 5.11 by 
1 1  Hi l l .  The result is 

(The reader might feel more comfortable deriving this equation directly.) 
Now 

we have only to look at the commutator 

This is just 

The lemma follows. 0 

Corollary 5.3. S ~ l p p o w  thut z e T O  and q e  C: (GO). n ~ e n  n~odulo u f u r ~ c t i o ~ ~  bv/~ic/~ 
extends to a smooth function o f  H e t ,  S ( H ;  f (y , , ( z ) )  equals S ( H ) .  

Proof. J^ is generated. over the universal enveloping algebra of the center of g o o  
by 01. The corollary follows by induction provided that we can prove the result 
for z=w. It is known that F ( H )  extends to a smooth function of H e t .  Since 

we have 

F,AHn)=O 

if l](Hy}=0. Therefore 

H 4 coth / ? ( H I .  F ( H )  

extends to a smooth function on t .  The corollary now follows from the lemma. 

5 6. Boundary Values 

Let j be a real root of ( g ,  t). In this section we shall investigate the behaviour of 
Sx. H :$: X )  as H approaches the hyperplane t,,. Adopt the notation of 5 4 and 



234 J .  Arthur 

Â 5. In addition, define K p ^  K n Gg , N p  = exp (R X a  and UÃ = exp (IR 5). Then 

G g = T m N g K g = T m U o K g .  

We have already normalized the Haar measure on Tm. and we have also fixed 
some Haar measure on G. In this chapter we shall need to use Haar measures 
on Go, No,  Ug and K g ,  as well as a G-invariant measure on Gg\ G. At this point 
we assume only that they are normalized to satisfy the obvious compatibility 
conditions. Put 

A is an automorphism of g o y .  We have A(t(.)= t$ and 

A H h = i ( X -  Ya). 

Let us decree that an imaginary root a of (g, t*)  with nontrivial restriction to 
( X i  - Y i )  is positive if and only if x ( 1  ( X i  - Yi ) )  is positive. This condition, 

together with our fixed order on the imaginary roots of (g,  t). serves to order the 
imaginary roots of (g ,  t*). 

In this section we assume that < actually lies in Z ( t * ) .  Then we can consider 
the distributions KT*-*"(C, H* : Y *  : X ) .  Moreover, any element 

CexpHo, Hoe to ,  

commutes with Go.  Define t o r ( i ^ )  to be the set of points Ho on to such that 

for any root 7 of (g,  t )  not equal to B or - f l .  It is an open dense subset of t o .  If S 
is any function on t ( i ^ ) ,  and H & , ( [ ) ,  we shall write 

s ( H ~ ) ^  lim S(Ho+tH' , , ) .  
t -  Â ±  

Fix an open subset Qo of t o r ( [ )  which is relatively compact in t o  reg(<).  

Theorem 6.1. Suppose that [ e  Z ( t * ) ,  u e  S(t(.) and fe CX (G). Then the limits 
Sr(!Ã Ho ; ?(u ) :  (iy : X ) +  and S!(C, H0 ; C(u):  9: X ) -  both exist, uniformly for H& Qo. 
The first limit minus the second one equals 

n,(A)\!: Rf*,A*(C. H,,+e(X;- Y,Y; r{A(sg  u - u ) ) : Y * :  X ) .  

Proof. We shall put 

for some fixed positive number E. Let 0 be the set of H so obtained, and let Q be 
the set of H ~ f i  for which t  + 0. We take e to be so small that for any H in the closure 
of and any root y of (g, t ) ,  7 + i-B, 
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The function 

is a smooth function of  HE^. Define 

Then for H E  Q, S$ (<, H :~9 : X )  equals the product of do (c. H )  with 

We have used the fact that the function 

is left invariant under G o .  It follows from the definition of Q and the fact that f 
is compactly supported. that the integral over Gf\ G may be taken over a relatively 
compact subset F of G which is independent of H .  We rewrite the above integral as 

If n,,[A)=O, Go is contained in M .  As a result, (6.1) reduces to the integral 
over y e F  of the product of D x r ( j . , J )  with 

This last expression is a smooth function of H e f i ,  so there is nothing further to 
prove. 

Therefore we may assume that rig(A)+O, and that the restriction of j8 to a 
is a positive multiple of the reduced root ;) f  of (9, a). In the formula for 

namely, 

we consider separately summations 1 and 1 over those P e g ( A )  for which y f  is, 
P P 

and respectively is not, a root of ( P ,  A). If y f  is not a root of ( P ,  A ) ,  

If y o  is a root of ( P ,  A ) ,  write 

u = exp H f  (u )  - N ( u )  K (u )  , 
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where N ( u ) e N g ,  K ( ~ ) E  K ' ,  and H d u )  is a multiple of Ha. Then 

Dv v ( u  k y, Y) becomes the sum of 

( A .  Yp  - H p  (11))" 
C ~ I P ' I - '  D v l i l l ~ ~ l ~  

(;.,;,) P 

This last expression we rewrite as the sum of 

In (6.5), Qp(/.) is a polynomial in j., which of course depends on K ( u )  k y .  
Put 

j"=zya+j.*, Z E C ,  

where /.* is a point in a* such that (A*, 7 )  +0 for any root 7 of (g, a )  which has 
nontrivial restriction to a*. For u as above 

We fix /.* and let z approach 0. If is a root of ( P ,  A) ,  and 7 6 Q p ,  then ( i * ,  7 )  can 
be zero only if 7 equals the reduced root }Ã£ In particular 2 must be in <Pp, which 
is the same as saying that P=j'(P*). P*e,^(A*).  At any rate, there is, for fixed P,  
at most one 7 in <Pp such that ( A * ,  7 )  = O .  It follows that the limit of (6.5) as z 
approaches 0 is 0, while the limit of (6.4)  is 

In view of Lemma 1.3, this expression is just the product of 

(7' 3 Hfl  ("1) 
(7' 3 7B>T 

with 

Dvv*(K(u)ky,y*}=Dxv*(y,9*) .  



The Characters of Discrete Series 237 

It follows that the limit as z approaches 0  of the sum of (6.2) and (6.3) exists and is 
independent of A*. 

Let us denote the terms (6.2) and (6.3) by $- ( z ,  k y }  and I)+ ( z ,  K ( u )  k  y) respec- 
tively. Each of these functions is meromorphic in the first variable and smooth 
in the second. For any z 

Since F and K g  are compact, the constant term of the Laurent expansion about 
z=0 of this function extends to a smooth function of H E Q .  Next. examine the 
contribution the term (6.3) makes to (6.1). This is 

e'-e-'1 j J q , ( k E 1  u E 1  exp H u k ) ^ { / + ( z ,  K ( u ) k y ) d ~ l d k d y  
f K p  L a  

= Id-e-'\ J f q , ( k - l ( u ~ ( u ) - l ) - l  expH ( u K ( u ) - l ) k )  I)+(?, k y } d u  dk  dy.  
I K IJ  [I 

Now 
(6.6) 

As may be seen by direct calculation on SL(2, R), the map 

is a diffeomorphism from 5 to ND which preserves the Haar measures. It follows 
that (6.6) equals 

Once again, the constant term of the Laurent expansion about z = 0  of this function 
extends to a smooth function of HEQ. 

We have so far shown that SgL H  : <Y : X) is the integral over y e f  of the 
product of 

This last expression is just 

Define 
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Lemma 6.2. For each u?S( tc )  the limits S ( H O ;  ?(uj)* and 

lim F&(HO + 0 ( X i  - Y;) ; 2 ( A  u j )  
9-*+O 

all exist uniformly/or H o e O o  and y e F .  Moreover the two sided limit 

l i m F ~ ( H o + B ( X ~ - Y s ) ;  Z ( A s o u ) - Z ( A u ) )  
9-- 0 

exists and equals 

Sq , (HO;  P ( ~ i j ) +  - Sq , (Ho;  C^u))-.  

Let us assume the proof of this lemma for the moment while we complete the 
proof of the theorem. Define 

Q * = { H * = H ~ + ~ { x - Y , ) : H & Q . ,  ~ E ( - E , c ) } ,  

and let Q* be the complement of Qo in a * .  Suppose / f * (C ,  H*)  is our usual function 
associated with t*. The function 

extends smoothly to a * .  In order to reduce the proof of the theorem to Lemma 6.2, 
we must compare the differential operators 

?(u)o  A,,(',, Hj ,  HeQ,  

and 

?(Aso1~-Au)o / ) , * ( ' , ,H*) .  H * E ~ *  

By Leibnitz' rule there are elements 

Let R t  be the set of roots of (g, t )  which do not equal p or - p  and which do 
not vanish on tn .  Then for H E Q .  An{̂ ,, H) equals 

Let y be a real root in R t  which is positive on a. Then ^ (< )  = t - ,  (c) = Â 1. There- 
fore the contribution of y and - y  to the above product is 

e ^ - ^ ) - l  e-̂'̂. 
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Suppose that 7 is a complex root in R ^ .  Then the root 

n ,  - - 7- Q-: 

is different from y ,  and 
- 

U!,) = < $ -  l =<>,(a. 
The contribution of 7, - ;. 7 and -7 to the above product is 

(<,,(l) e-^ ( H ) )  (<,(l) p + 7 W  - o- i" ' ^^~  , - 
It follows that A,,(:, H)  is a polynomial in the variables 

?H)* x , .=P1  

indexed by the roots of (9. t). We claim that A$(c. H*) is the same polynomial, 
but with each x7 replaced by 

y i  = ̂ (.I 7 )  ( H " )  

For any 7 we have 

If Ay is an imaginary root of (9, t*). c , ^ , ( C ) =  1. These two facts follow from the 
definition of Z(t*). and they suffice to establish our claim. 

If Eet,, 

? ( E ) x Ã £ = ~ ' , \ { E ) x Ã  

while 

?(AE)y,=$ A7(AE)j~;,=\y(E)y.,. 

It follows inductively that for any reS(tC),  A*(^, H*:?(Av))  may be obtained 
from do([ ,  H ;  ?(t3)) by replacing each variable x by b. Now set both H and H* 
equal to H,, , a fixed point in Qg . Then each x,, = y,. Therefore 

On the other hand, 

Consequently, for any re  S(t,,-), 

Applying these remarks to the elements {ui: 1 gim, we see that the local 
expressions at H* = H = Ho of the differential operators (6.7) and (6.8) are 
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and 

>, A((, H o ;  <"(u,)) ? ( A %  Ã‡ - A  ul)  
I 

respectively. 
It follows that all the assertions of Lemma 6.2 remain valid when the differential 

operators ? ( u )  and Â £ ( A s  - A u) are replaced by (6.7) and (6.8) respectively. It is 
in this form that the lemma leads to the proof of Theorem 6.1. To transform the 
data given by the lemma to data required by the theorem, we merely multiply by 

l lp (A)  Dx v*(Y,  ̂ *I 
and integrate over y e F .  With the observation that 

equals ~;*%^(i,, H* : Jt/* : X), the proof of the theorem is complete. 0 
We still have to prove Lemma 6.2. The existance of the limits involving F* 

follows from a general result of Harish-Chandra [2 (i). Theorem 9.11, so we can 
concentrate on those assertions that concern S ^ ,  . Any u e S ( i c )  is a sum of elements 
of the form 

l l ^  = y p ( 4  J ,  

where z is in and J equals either 1 or Hb>From Corollary 5.3 we know that. 
modulo a smooth function of yeF and He^>, S,,,(H; ( ( 1 1 ~ ) )  equals S z V s ( H :  C ( J ) ) .  
Therefore the first statement of the lemma would be proved if we could establish 
the uniform existance of the limits S ( H o ;  <"(J))' for any function ( ~ E C X G ~  
which varies continuously with a parameter y e F .  Note that 

A ( s g  ul - u 1 )  = y*(z) A(sa J - J ) ,  

where y$ is the isomorphism from TP to the invariants of S(tg). It follows from the 
differential equations satisfied by F z  that 

for any H*eQ*. It is therefore enough to prove the lemma for u = J .  

It would be possible to extract what remains to be proved of Lemma 6.2 from 
the results for groups of real rank 1 in [l(b)]. However, it is perhaps safer to 
proceed directly. To simplify matters, we replace ( p  by an arbitrary (pe C: ( G g )  
which we assume varies continuously with a parameter y e F .  It will be clear that 
the limits we establish will be uniform in J ,  so we will not allude to this point again. 

Let d k  be the Haar measure on K O  for which the volume of K g  is 1. Let du and 
da be the Haar measures on UP and & respectively, obtained via the exponential 
map from the Euclidean measures on the corresponding Lie algebras (with respect 
to the norm 11 11). The Haar measure on G p  is of course defined by the product 
measure da du d k .  If H = H o  + t H i  belongs to Q ,  
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For xeIR define 

u (x) = exp (x Yi ). 

The restriction of the form B to go is a multiple of the Killing form Bg on QÃˆ Since 

Bg(Xi. d Xa} = B O G .  0 Yi) =$ Bo(H;. H'g). 

we have 

In particular, for any function pe C: (UB). 

We have 

Therefore. 

l o  d-e-t12 -~(Hg(u(x) ) )= log  {1 + x 2 ) ( l  - c 2 ^ ) ' }  + 2 t .  

From these facts it follows easily that S ( H )  equals 

where 

(p (H : x) is smooth in H. and as a function of x, is smooth and compactly supported. 
In particular, (6.9) is continuous for H in a. This proves the lemma for u = J =  1. 

The only other case left to prove is for u = J = Hi .  The operator ?(Hi) is just 
differentiation with respect to f. The function 

x 

2 t  J (p{H:x)dx 
- x 

is smooth for HEQ. Therefore we can omit the factor 2r from (6.9). Moreover, 
the function 

-r 

(p ( H  : x) log (x2) cix 
- GC 
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is also smooth in H .  We therefore have only to consider the limit as t approaches 
+ 0 of the difference of 

and 

The term (6.10) equals 

x 1 
4 ~ ~ '  1 q ( H o + t H e  : ( l - e - 2 r ) . x -  dx. 

- x 1 + x 2  

The limit of this expression exists uniformly in H 0 .  By the dominated convergence 
theorem the limit is 

By a similar argument the limit of (6.1 1) exists uniformly in H o ,  and equals 

- 47T q ( H 0  : 0). 

We have shown that 

equals 

To this last expression we apply a general limit formula of Harish-Chandra. 
In fact, according to [2(i), Lemma 17.5 and Theorem 37.11 

Here of course f l  is to be regarded as a vector in t. But 

so that 

It follows that (6.12) equals 

lim F;(Ho + Q{X; - Y;); ? { A ( . T ~  Hi, - H'^} 
9-* 0 

This completes the proof of Lemma 6.2. 0 

The distributions R(c, H  : Y : X) also satisfy boundary conditions at any 
singular imaginary root. Here the situation is the same as for the invariant integrals. 



The Characters of Discrete Series 243 

Lemma 6.3. Suppose that CeZ(t*), ueS(tC) and fe CXG). Then the limits 

lim R~A~,Ho+0(Xp-Yp);c[Au):9*:X) 
6 - . + o  

and 
lim RT*.A'  

f l - . -O f 
(L. Ho+O(Xb- Y;): ?(Au) :$*:X)  

both exist. uniformly for Hoe  fir,. The first limit minus the second one equals 

-~~1 / -1 \H /~ l l  l i m R ~ * A ~ , H o + t H ~ :  f(u) :Jy*:X}.  
1-0 

This lemma is proved by an argument similar to but easier than that used 
above. Proceeding as in the proof of Theorem 6.1 one shows that it is enough to 
treat the case that G =Go.  But in this case the lemma is well known. See [2(i), 
Theorem 9.11. 

5 7. A Growth Condition 

In this section we estimate the growth of our distributions as the t, component 
of H gets large. At the same time we shall show that the distributions are tempered. 
As usual, this leads to a study of inequalities. 

In order to estimate the functions r(x, 9) we will first verify a couple of easy 
and more or less standard facts. To state them it is useful to fix a maximal special 
subgroup ^A of G, and a minimal parabolic subgroup 

in Y('O9). We assume that TR is contained in (')A. Recall that the Schwartz space, 
% (G), is the space of all / in Cx (G) such that 

for any g, and g-, in 9 and r in R. Here S is defined as in [2(g), 5 71 and o- is defined 

by 
a ( k l . e x p H - k 2 ) = \ \ H \ \ ,  He'O'a, k l . k 2 e K .  

Suppose that n is an irreducible finite dimensional representation of G, which 
by convention here we always take to act on the right. It is possible to fix an inner 
product on the space on which n acts so that different root spaces are orthogonal 
and so that for any xeG, 

If xeG, we write lIn(x) I-, for the Hilbert-Schmidt norm of n{x}. We can always 
write such an x as 

kl exp H kp k l  , b e  K ,  H ~ c , ~ , ~ ( ~ ~ ' a ) .  

Then 



244 J. Arthur  

If @(n) is the set of weights of n with respect to (g, ("'a) and p+  is the highest weight, 

In particular ~ln(.x)~12 is no less than 1. Therefore we can find a constant c such 
that 

The inequality remains valid if we remove the hypothesis of irreducibility of n., 
since 

for two positive numbers rl and t 2 .  

Next we will check that there is a finite dimensional representation n and a 
constant c such that 

where we have put 

It is clearly enough to prove the formula obtained by replacing the left side of 
(7.2) by 

where p  is any arbitrary element in &J,~,. Let n. be an irreducible representation 
whose highest weight on (')'a equals k p ,  for k  a positive real number. Let <p be a 
highest weight vector of unit length. We have 

The right hand side of this formula is clearly bounded by 1~7r(.v)~~ 2 .  If ( p ,  (O'H(x))  
is positive we are done. Suppose that ( p ,  (OIH(s)) is negative. Let n' be the irre- 
ducible representation of G whose lowest weight is - k p ,  and let 9' be a lowest 
weight vector of unit length. Note that 

which leads to the inequality 

This establishes (7.2). 
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Lemma 7.1. There is a constant c such that for every XE~O'II, 

Proof Embed ^a in a 0-stable Cartan subalgebra, '^t, of q. Let R denote the set 
of roots y. of (g, ""t) such that the root space g, of Y lies in For Xe^)n and yeR, 
let X, be the component of X in 9, relative to the decomposition 

It would be enough to prove that there is a c such that for any Xe^)tt, 

Let r be the height of 7 relative to some order for which every root in R is positive. 
We shall verify the above assertion by induction on r,  starting at r=O where of 
course there is nothing to prove. 

Let TI be any finite dimensional representation of G for which there are weights 
on ("t of the form p and p +; Let (p and (pl be corresponding unit weight vectors. 
Then 

is a nonzero linear functional on the one dimensional space g7. Define 

where the sum is over all roots y. of R of height less than r.  There is a polynomial 
q on c, ( ( O h )  such that 

Therefore there are constants c ,  and c-, such that 

for each Xe^n .  Now 

In addition, we can find constants c, and d such that 

Formula (7.3) now follows from (7.1) and our induction hypothesis. 0 
Consider the set of numbers 

indexed by the roots y. of (g, t) which do not vanish on a. Our distributions are not 
defined when any of these numbers equals 0. This shows up in the growth condi- 
tions. Define L(( exp H )  to be the absolute value of the logarithm of the smallest 
of these numbers. 
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For each N .  define 

I,,,([, H)= lA([, H)\ f ~ { x - l  *PH +u(xu1 i: exp H x ) r \  
T v  G 

\D,u(x, %)I dx, H 6 treg(i:). 

If H e t, we put 

H=HI+HR,  H I â ‚ ¬  HRâ‚¬t 

Lemma 7.2. For each integer n we can find constants c and N such that 

I&, H)Sc{l  + L([ exp H))p(l + \ \ H ^ r \  Hetreg(;). 

Proof. Fix a parabolic subgroup P= NAM in ^(A). For H e t ( [ ) ,  Iv(L H) equals 

\A(;, H}\ J J &((exp R)-I ,u (exp R)) IDx r(exp R. ̂ )I dR dm. 
.M n 

where we write 

, u = m l  cexp Hin  

and 
L&(x)=E(x)(l+o(x))-I\  xeG. 

Consider the polynomial map 

(p :R-+log(exp( -Ad( ,u - l )R)expR) .  R e  

of n to itself. Since H e  t ( [ ) ,  

A,,: R -r -Ad( ,u- l )R+R,  Ren ,  

is a linear isomorphism of n. It follows from [2{f), Lemma 101 that the inverse 
of ( p  exists and is also a polynomial function from 11 to itself. 

According to [2(f), Lemma I I], the diffeomorphism < y >  transforms the Haar 
measure on n by the factor 

<5([ exp H ) =  ldet (1 -Ad (i: exp H)-l)nl. 

This is just 

where the product is taken over all roots a of (g ,  t) whose corresponding root 
spaces lie in n, and 

p0 =$ tr (ad H}., . 

It follows easily that l/)(C, H)\  is the product of 

8 (c exp H) - eO1"' 
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the function we have defined earlier, but associated with the group M .  Therefore 
IJ(.'. H) equals 

A closer look at the proof of [2 (0, Lemma 101 reveals that, relative to a suitable 
fixed basis of 11, the coefficients of the polynomial function ( p i 1  can be bounded 
by a polynomial in the Hilbert-Schmidt norms of A  and A ' .  But the matrix 
coefficients of A$ are just polynomials in the matrix coefficients of A ,  divided 
by the determinant of A .  The absolute value of this determinant is 

For R e rl, define 

Rn,,(p)=Ad (p - ' )  R. 

It follows that there are constants cl and dl such that for all R and p under con- 
sideration 

ll(%-I R , I S c , ( ( l  +K exp H ) - I ) ( l  + l J ~ , M ( ~ ~ ) ! l ) ( l +  IIRII))*'. (7.4) 

Referring to formula (4.1). we see that there is a constant c2 such that for all 
p and R, IDy r(exp < p  ' R, ̂) I  is bounded by 

By (7.2) there is a finite dimensional representation n of G and a constant c, such 
that this last expression bounded by 

i--3(l + log(1 + lin(exp <p/ R)!!))". 

Now the Hilbert-Schmidt norm 

can certainly be bounded by a polynomial in 11511, since 

S+n(exp S), Sen. 

is a polynomial on 11. Therefore, in view of (7.4), there is a constant c4 such that 
IDx r(exp < p  * E,  $ ) I  is no greater than 

c4(l + log(1 + O ( C  exp H)- ' )+log(l+ l17c,v(p)l!)+ log(l+ I 1  Rll))p. 

Finally, applying (7.1) to the representation n,, of M ,  and referring to Lemma 7.1, 
we find that there is a constant c, such that \D  ̂r(exp 0, ^)I is bounded by the 
product of 

cs ( l+ log( l  + G e x p  H) - l ) )p  (7.5) 

and 
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Now 

l+o-(exp R ) S l  +o-(pexp R)+a(^-I)  

= 1 +o(pexp  R)+o-(p) 

^ ( l+o (pexp  ^) ) ( I  + o - ( P I ) .  

by [2(g), Lemma 101. Therefore the second factor in the above product is no 
greater than 

(1 + o(p  exp R)Ip (1 + *))-". 

We have shown so far that for hTelR, and Hetreg(<),  I%(:, H)  is bounded by 
the product of (7.5) with the integral over m e M  of the product of 

\A.II(<, H)l (1 +a[mpl ( exp H ~ ) ) ' P  (7.6) 

and 

edH' Z ( m l  C exp H - m exp R) (1 +(r(m-' < exp H m exp R))-^'*p dR. (7.7) 
n 

If N, is any real number, we can, by [2(g), Lemma, 211. choose N and c, such that 
for all m and H,  (7.7) is no greater than 

c6 & ( m l  exp H m)(l  + c r ( m l  ( exp H m ) )  - '"I .  

For suitable N,,  the product of this expression with (7.6) is integrable over M .  
In fact, by the results of [2 (g)], we can, given n, choose N ,  and c,  so that the integral 
over M of this product is bounded by 

c7( l  + 1 1  HR1l)-n. 

We still have the term (7.5). However, with a little manipulation of the formula 
for S(( exp H)  given above, one sees that for some constant c8 ,  

l+ log( l+8(exp  H j - ' ) ~ ~ ( l + L ( < e x p ~ ) ) .  

This last inequality completes the proof of our lemma. 0 
Recall that a distribution is said to be tempered if it extends to a continuous 

linear functional on WG). From the lemma we obtain immediately 

Corollary 7.3. For each Hetreg(;) the distribution R(<, H : 9:X) is tempered. If 
f E%?(G) the integral 

A(;, H) f f (x-I . S exp H . x) Dx u(x, 9) dx 
T w  G 

is absolutely convergent, and equals 

(R(;, H : 9Y : X), f ). 

Corollary 7.4. For every integer n there is a continuous semi-norm v on (̂G} such 
that for all f e^(G) and H t ( ! , ) ,  

Rf(C, H : g: X}\ S v ( f )  (1 + L(C exp H)Ip (1 + 11 HRl1)-". 0 
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5 8. The Mapping /-+ S$ 

Our final task is to extend our earlier results to the Schwartz space. In particular, 
we must show that for je^{G) the functions R,(C, H : -9 : X) and Sv, H : 9 : X) 
are smooth in H e  t , ( Q .  We must then prove that the earlier differential equations 
and boundary conditions apply to this more general setting. We neglected to do 
this in [l(bj]. However, it is not a serious problem in the case of real rank 1, 
essentially because one has Helgason's explicit formula for 

In the higher rank case there is no such explicit formula. The matter is further corn- 
plicated by the fact that the group M is not compact. It would therefore seem 
unfeasible to prove what is needed by the method of [2(g), Lemma 221. Instead 
we will use the technique by which Harish-Chandra proved [2(e), Theorem 31. 

Suppose that /? is a fixed real root of (g, t). Adopt the notation 4 4 and 4 5. Let 
C be in Z(t*). It follows from Corollary 7.3 that the distribution 

are tempered. Let treg(C. /?) be the union of tw(<j and to, reg(g. It is an open subset 
of t. Suppose that Q is an open subset of t r e (C)  which is relatively compact in 
t ( : ,  /?). We can certainly choose a c such that 

It follows that there is a continuous semi-norm v on %(G) such that for all fe%(G), 

Suppose that E is an open set in a finite dimensional Euclidean space V 
For any u in the symmetric algebra of V and any integer n. put 

for q l C v ) .  Define ^[Z) to be the set of all q in C V )  such that for each LL and n,  

Let y{G) be the set of continuous semi-norms on % (G). 

Lemma 8.1. Suppose that CeZ(t*) and t / ~ t  Q is an open subset of t ( C )  which is 
relatively compact in treg(C, p). Then the map 

extends to a continuous linear map from % (G) to WQ). 
Proof. Suppose that X E 9f i ) .  We shall prove the lemma by decreasing induction 
on r. If r > p  we have 
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in view of formula (4.1). Therefore fix r, O<r<p, and assume that the lemma is 
valid for all Q if X is replaced by any X, e q r , ) ,  r, > r. 

The first stage of the proof is to show that for any fixed z e 3 ,  the map which 
sends f e C^[G} to 

extends to a continuous linear map from %(G) to %(!2). According to (5.1), 

d f ( ~ ) =  - I s% H ; $ ' ( Z ) : ~  :x Xi). 
1 

We can choose a positive integer n so that for each i the differential operator 

B(HY 3'(z) 
has analytic coefficients on tEg(C, fl). Each 2, belongs to % ( I )  so we may apply 
the induction hypothesis. It follows that the map which sends f e  C 3 G )  to 

extends to a continuous linear map from %(G) to ^(Q). 

If the closure of Q does not meet t o ,  the first stage of our proof is established. 
Therefore, to complete this first stage, we may assume that 

where Qo is an open subset of to and e > 0.  
For (o e  V ( Q )  and Ho e Qo , define 

n - 1  
l k  dk 

ip lH0+{HJ=!-"  i f i (Ho+tHb)-  - lim Ã ‘ ( p ( ~ o + ~ ; ) }  
= ,  k !  s-+ads 

if t belongs to (0 ,  E). If t belongs to (- E ,  O), define ({' (Ho  + t Hi) in a similar way. 
It follows from the integral form of the remainder term in the Taylor expansion 
of a function of one variable that 

( P - x p ,  (PEW), 
is a continuous linear map of î{Q) to itself. Now it is a consequence of Theorem 
6.1 that for any f e C^{G), the function 

df(H), HeQ,  

belongs to ̂ {Q. This means that 

We have shown, for Q as in (8.2) and hence for all required Q, that the map 

extends to a continuous linear map from V ( G )  to %(a) .  Combining this fact with 
(8.1). we find there are constants c and N such that 
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where 
vZv( , f )=sup  \ ( z f ) ( x ) - E ( x ) - . l  . ( l  +a{x))-~'I 

X E G  

is a continuous semi-norm on %(G). 

The second stage of our proof is to combine what we have shown so far with 
the proof given by Harish-Chandra for [2(e), Lemma 481. In order to convince 
the reader that it actually applies to the situation at hand, we repeat the relevant 
portion of Harish-Chandra's argument. Suppose then that u  is an arbitrary element 
of S(tc) of degree d. Let OJ be the element in S(tc) such that ?(a) is the Laplacian on t ,  
with respect to our Euclidean norm. For any integer m 2 1 we can choose an integer 
r and elements 

in 3! such that 

If wi is sufficiently large there is a function En in C 2 m ( r - 1 ' + d  ( t )  which is of class C3 
away from 0, such that ? ( f c > ) " " '  EÃ equals 6 ,  the Dirac delta distribution at the 
origin [2(e). Lemma 571. 
Define E = P (u)* En.  where the star denotes adjoint, and 

Then E  is of class C2m(1-1' .  and is of class CX away from 0. From the relation 

we obtain the formula 

Let \1/ be a function in C Z ( I R )  which equals 0 on ( -  x. 01, 1  on [I, x) and such 
that 

Given e, O<e<+,  define 

yÃ£(H)=>A(c- IIHll-2), H e t ,  

E ^ ( H ) = Y E ( H ) E j ( H ) ,  H o t ,  l s r ,  
and 

r 

B e ( H )  = z(-,'{zj))* (E,, , (H) - Ej (H) ) ,  H e  t .  
j= 1 

Y ( H )  equals 1 if 1 1  H  \ \ 2 2 and equals 0 if I! H  I ]  2 3 6. B A H )  vanishes unless 
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We can find positive integers b and n (which depend on u but not on E )  such that 

sup \B,(H)\^ b e c n ,  
H e t  

(see [2 (e), p. 4981). 
The formula 

1 C(;j(z))* Ej,z=?(u)* 5+Bz  
J = l  

follows from the definitions. Suppose H is a point in Q. Choose e = + ,  with 
O < e g ,  such that the distance from H to any point in the complement of t ( < )  
in t is greater than 48. Then is supported on tIeg(i;,'). It follows from integration 
by parts that for any (p<= C'x{t̂ (̂!,)), q ( H :  ?(LL)) equals 

For each j, 

Using the above estimate for BE and (8.3), we can obtain a v in Y ( G )  such that for 
every f eCzG) ,  

sup IS;([, H ;  Â £ ( u  : 9:X) /?(H)'\ 5 4 f ). 
H e n  (8.4) 

In the case that the closure of Q does not meet to this last inequality suffices 
to prove the lemma. Therefore, we may assume that Q is of the form (8.2). The 
third and final stage of our proof is based on the method of [2(e), Lemma491. 
Choose elements 

in S(tc) such that 

For each i there are elements 

in 3 such that 

For HeQ,  put 
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From the first stage of our proof we know that there is a v, in y { G )  such that for 
f e  C 3 G ) ,  H e  Q and 1 5 i < ?-, 

It follows that there is a v, in .Y (G) ,  which depends on e but not on Ho or t ,  such 
that 

& 

l $ f . l ( H o + f H p ) \ ^ v , U ~ +  j I I iAz , J , . , (HO+.~Hp) l  d s .  (8.6) 
f J  

It follows from (8 4) that there is a \'e9 ( G )  and a positive integer N such that for 
all g e CT (G). Ho e  Qo and s e ( 0 ,  L) ,  

Therefore I$[, , (Ho  + t H i ) \  is bounded by 

But the semi-norm 

f -+ 1 11 (zi j f l ,  f e  C: ( G )  . 
J 

is in , Y (G) .  It follows that in (8.7) we can replace ŝ ' by s - ( ' ^ " - "  if N 2 2 ,  and by 
log(e/s) if N =  1. Of course the new inequality would hold for some different 
ve.y{G). By induction there is a ve.y{G) such that for all g, Ho and s, 

Once again, we apply this inequality to the integrand in (8.6). We conclude that 
there is a v ,E .Y(G)  such that for any H o e Q w  re(O,e), f e  C X G )  and 1 Sisr, 

By a similar argument we may assume that this inequality holds also for r e ( - e ,  0). 
Let u be an arbitrary element in S( t r ) .  Then 

for elements :ST. For H e Q  and f e  CF (G) ,  IS; (L ,  H ;  r ' (u) :  9: X ) ]  
is bounded by the sum of 

and 

IS$(<, H ;  ?(11,):9: X ) l .  
1 
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We know from the first stage of our proof that there is a v e Y ( G ) ,  independent 
of H ,  such that the first expression is bounded by v(f). That the same is true for 
the second expression follows from (8.8). Our proof of the lemma is complete. 

Corollary 8.2. Suppose that < e Z ( t * )  and that fâ ‚¬%(G Then the function 

is infinitely differentiable. Moreover the differential equations given in formula 
(5.1) remain valid. 

Proof. It is enough to prove the corollary on any open set Q which is relatively 
compact in t ( 0 .  Fix feV[G),  and let f,, be a sequence of functions in C: (G)  
which converge to f in the topology of %(G).  By the lemma the sequence 

is Cauchy in (̂Q), so it must have a limit in %(Q). The limit function must equal 
the pointwise limit of (8.9), which by definition is S$L H : 8 :  X ) .  In particular. 
this latter function is smooth. Suppose that z e S .  It follows from the lemma and 
what we have just proved that the map which sends f ~ g ( G )  to 

is a continuous linear map from %(G) to %(Q). Since it is zero on the dense sub- 
space C: (G),  it must be identically zero. Q 

Lemma 8.3. Suppose that I ,Â£Z( t*  and that Q* is an open subset of t T ( C )  which 
is relatively compact the union of t&(<)  and t o  Then the map 

extends to a continuous linear map from % ( G )  to %(Q*) 

This lemma is proved exactly the same way as Lemma 8.1, except that the role 
of Theorem 6.1 is played by Lemma 6.3. 

Corollary 8.4. The statement of Theorem 6.1 remains true for f e%(G)  

Proof. This corollary follows directly from Lemmas 8.1 and 8.3. Q 

Lemma 8.5. Suppose that < e Z ( t )  and that f e ^ ( G ) .  Then the function 

is infinitely differentiable. Moreover, the diffi~ential equations given in 77zeorern 5.1 
remain valid. 

Proof. If Q is an open relatively compact set in t ( 0 ,  the map 

extends to a continuous linear map from %(G) to ^{a). 
This is verified by a repetition of a part of the proof of Lemma 8.1. One then 

argues as in Corollary 8.2 to prove the lemma. 
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1 9. The Main Theorem 

For this section suppose that the rank of G equals the rank of K .  In particular 
the split component of the center of G is trivial. Let S-,{G) denote the set of equi- 
valence classes of irreducible unitary square integrable representations of G. For 
any coe&(G) let K,(G) be the closed subspace of %(G) spanned by the K-finite 
matrix coefficients of any representation in the class a. For each such o we let 
0 be the character of a>. It is a tempered distribution on G which coincides with 
a locally integrable function, also denoted by 0.,. 

As always A is a special subgroup of G of dimension p. T is a 0-stable Cartan 
subgroup of G containing A, and 4Y is an A-orthogonal set. We are ready to state 
and prove our main theorem. 

Theorem 9.1. Fix OJE&(G) and j ~ u G ) .  Then i f  a+t,,, 

Define E(T A) to be 1 if a = tR and to be 0 otherwise. We shall actually prove 
the following 

Theorem 9.1 *. For any XE$ and he T ,  

Proof. We will prove Theorem 9.1 * by induction on p. Suppose that p=0.  Then 
A =  {1}, 9,=G, and 

It follows that 

Therefore p: :̂X) equals the product of eo (X) and 

r,(/i)= f f(rl h x W .  
Tm-'G 

If T is not compact we know from [2(g), Theorem 1 I ]  that 

If T is compact, we appeal to [2(g), Theorem 141 to see that 

(For these last two formulae see also [2(i), Lemma 8.2, and the corollary to 
Lemma 27.41.) The theorem is thus valid for p = 0 .  

Fix p > 0. Suppose the theorem is true for any 7, and A ,  with dim Al < p .  
Let X belong to q r ) .  To prove the theorem for T and A we shall use a second 
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induction, this time a decreasing induction on r. If r>p ,  we have 

from formula (4.1). Therefore fix r, 0 5  r z p ,  and assume that the theorem is valid 
with X replaced by any Xl â‚¬ (rJ, rl > r .  

Fix ^ e Z ( t ) .  For any H e  t ( C )  define 

&(( ,  H ) = A ( N )  0- H ) .  

Let R&) be the set of real roots f t  of (g, t )  such that ^{^)= 1. Let t R r ( c )  be the 
set of points in tR on which no root in R&) vanishes. Suppose that U is a connected 
open subset of tr such that for any non real root (3 of (q, t )  

for all H e  U .  The set 

is contained in T ,  and the union over all c and all such U of the corresponding 
sets is dense in T .  Therefore. to complete the proof of the theorem we must 
show that for all HE U + tR ( c ) ,  

equals 0. We will prove this by combining the differential equations of $ 5,  the 
boundary conditions of 5 6 and the growth condition of $7.  

From Harish-Chandra's characterization of the discrete series [2(g), Theorem 
161 and [2(i), 4 271 we know that there is a regular linear functional v on tc such 
that for every qeI(tc),  

If z e 9  and 7(2 )=q  then v also has the property that 

z f=ci{v) f ,  

since fe^.fG). Now look at the equations satisfied by R (c, H :  ̂ /: X). If X, belongs 
to 9,. (l), XX, belongs to (S., ( r  + 1) .  By our induction hypothesis on i\ 

It follows from Lemma 8.5 that if z and q are as above, 

We have shown that 

Fix a real root /?Â£RR(O We continue to use the notation related to f l  which 
we set up in 5 4 and 5 5. Then ceZ(t*) .  Fix a point Ho in (7 + tR such that for any 
root a of (q, t ) ,  
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equals 1 if and only if y. equals f l .  Define 

@K, H)= A(! , ,  H )  W exp H ) = e R ( H )  ̂ ( i ,  H I ,  H e t r e g ( Q ,  

and let 

@*(<. H * ) = e i ( H * )  $* ( ( .  H * ) ,  H * E ~ * ~ ~ ( < ) ,  

be the corresponding function associated with t*. It is known [3,  p. 2831 that the 
limits 

lim @ ( C .  H0  + t  H',, : 2 (Hh))  
r-0 

and 
lim <?* (c, H0 + 0  ( X ;  - Ye);  Z ( A W a ) )  
0 - 0  

exist and are equal. Now for t  and 0 sufficiently close to 0, 

E ~ ( H ~  + t H i )  = sign t . $ ( H o  + 0 ( X f l -  Yi)). 
It follows that 

& ( C .  Ho  ;Z(H',,))+ - N, HG ? ( H i ) ) -  = H i m  <P* (!,, Ho + Q ( X ;  - Ye);  ? ( A H ; ) ) .  
0-0  

(9.2) 

We shall use this fact to show that Y ( H O  + tH'g) is continuously differentiable 
at r=0. First of all, we should see that it is continuous. By our induction hypo- 
thesis on p  

R & , H o + t H ~ : W : X ) = ~ ~ + t H ' e . 9 : X ) .  

By Corollary 8.4. this function is continuous at r=0. It is known that the same 
is true for 

^, HO+tH'g). 

Therefore 1' ( H O  + tH',,) is continuous at r = 0. We have only to check that the left 
and right derivatives of 9" ( H O  + tH',,) are equal at t = 0. Since 

A(sn  Hh)-A(H'e}= - 2 A ( H h ) ,  

we obtain from Corollary 8.4 the equality of 

R f ( L  H o ;  ? ( H ' g ) : Y :  X ) +  -Rf(!, ,  H 0 ; 2 ( H b ) : 9 : X )  - (9.3) 

and 
- 2 n D ( A ) l i m  RF*,A*(c, HO+f l (X 'g-  Yi);  ? ( A H J : Y * : X ) .  

0 - 0  

It is clear that e ( T ,  A ) = e ( T * ,  A*) and that p* = p  - 1 .  Therefore by our induction 
hypothesis on p ,  (9.3) equals 

2 n e ( A )  e(T, A )  c 0 ( X ) ( -  l)p R(f) 1im <P* (L  H ~ + O ( X I , -  Yg); c{AHe)) .  
0-0 

Combining this with (9.2) we find that 

Y ( H o ;  ?(H;))+ - Y ( H o ;  ?(Hb))' 
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equals 

2 ( n p ( A ) -  l)&(T. A) c o ( X ) ( - 1 ) "  Om(fllim $*(<, H ~ + ~ ( X ; -  Y;); Â£'(AH;)) 
0 - 0  

If e (T, A )  =0  this expression is 0. If e(T. A )  = 1  then a = tm, so that ito (A) = 1. Again 
the expression is 0. We have shown that Y (H,, + tH;)  extends to a continuously 
differentiable function at t = 0. 

Suppose that F is any connected component of tR  ( c ^ ) .  Then the restriction 
of Y to the open connected set U + F  is a smooth function which satisfies the 
equations (9.1). We repeat the argument used in [2(a), Theorem 31 to show that 
Y is actually analytic on this set. Let m be the element in S( tc )  such that ?(c0} is 
the Laplacian on i with respect to our Euclidean norm. We can find a positive 
integer n and elements 

in I ( t c )  such that 

It follows from (9.1) that 

The restriction of f to U + F  is a solution of a linear elliptic differential equation 
and is therefore analytic. This fact, combined with the differential equations (9.1), 
is exactly what is needed to apply another basic technique of Harish-Chandra. 
According to [2(b), p. 1021 there are complex numbers 

indexed by the Weyl group of (gC,tir), such that for any H â ‚ ¬ L r +  

Y ( H )  = cs esv(H' .  
s e w  

Suppose that F' is another component of t h ( O  such that the chambers F  
and F' have in common a wall defined by a real root p in R d ) .  We can assume 
that p ( F )  is positive. If Vm is the interior of this common wall, then 

is an open subset of 

Any point H,, in V satisfies the hypothesis we made above. Moreover if r is suffi- 
ciently close to 0, Y ( H Q  + tHh)  belongs to either F of F'. Suppose that Wn is a set 
of representatives in W of the cosets { l ,  s p }  \ W .  Let 
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be the set of constants associated to F'. Then for every point Hoe V we can find 
a positive number e(Ho) such that 

if 0 < t <Â£(Ho) and 

if - i-. (Ho)  < t < 0. It follows from the fact that Y (Ho+ tH'g) is continuously differ- 
entiable at t = 0 that 

and 

( c ,  - G, - c i  + c&) ( s  v ( H J )  en(Ho) = 0 
S E W , ,  

for all Ho in V. 

Suppose that s v - s ,  v is orthogonal to to for two elements s and s, in Wo. 
Then if % = s ,  v, and r= . s s r l .  

Since r is an orthogonal map, x must either equal 0 or - 2  q. This second 
II H'e I1 

alternative is impossible because it would lead to the equation 

which, in view of the regularity of v, would mean that s = sa s l .  Therefore s must 
equal s,. From this it follows that the set of functions 

indexed by Wo, is linearly independent. On the other hand, the regularity of v 
implies that for all se Wo, 

We obtain, for each s e  Wo, the equations 

and 

cs-cs,,3-c~+c'SgS=0. 

Thus for each s e  W cs equals e l .  We have shown that the formula 

Y ( H )  = cs P " ' ( ~ '  
S E W  

is valid for all H in the domain of Y .  
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Now we can apply Harish-Chandra's growth condition [2(i), Theorem 12.11 
to the tempered, invariant, 3-finite distribution 0,,. Combining this with the 
growth condition of Corollary 7.4. we obtain constants C and Ãˆ such that 

As in Corollary 7.4, we have put 

Let /., , . .. , /.k be the distinct vectors obtained by projecting 

{ s v :  S â  W )  

onto (t&. Each of these vectors is real. It is well known that, since G has a compact 
Cartan subgroup, there exists a real root of (9, t). Therefore by the regularity of v, 

For 1 5  i s  k, let q be the set of s e  W such that the projection of sv onto (t& is 
A,. If sew,.. 

where /he1/- it, Then for H e  U + tR 

After a moment's reflection one realizes that the growth condition (9.4) will fail 
unless each coefficient function 

vanishes. Distinct elements s e  give rise to distinct vectors ;us. Therefore (9.5) 
is a linear combination of linearly independent functions. In other words. 

We have shown that 

Y ( H ) = O ,  Hâ‚¬U+t^^ 

and thereby have completed the proof of Theorem 9.1 *. 
Remark. Theorem 9.1 is at variance with the formula given in [l (b)]. The mistake 
there was the result of using two different Haar measures on the group 

Nl = exp IRX', 

(in the notation of [l(b)]. One measure, on page 579, was normalized by the 
restriction to nl of the Killing form of g, whereas the formula quoted on page 581. 
line 12, was based on the measure normalized by the Killing form of 9,. The - 
measures differ by the factor e. It is this factor which should be removed from 

4 
the formulae in Theorem 7.2 and Corollary 7.3. 
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