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ABSTRACT. We report briefly on the present state of the trace formula and
some of its applications.

This article is a summary of the two hour presentation/discussion on the trace
formula. The proposed topic was very broad. It included a recapitulation of the
trace formula, past and present, as well as an outlook for its future. The article
will treat these matters in only the most concise terms.

I include just two references [A] and [L]. The first of these is a general (and
detailed) introduction to the trace formula and related topics. It contains refer-
ences to just about everything discussed in this article. The second is a review by
Langlands of his ideas for possible application of the trace formula to the general
principle of functoriality. We shall discuss this topic at the end of the article.

1. Invariant trace formula

Let G be a connected reductive algebraic group over a global field F' of charac-
teristic 0. Then G(F') embeds as a discrete subgroup of the locally compact adelic
group G(A). We write R for the unitary representation of G(A) on L?(G(F)\G(A))
by right translation. For any function f in the global Hecke algebra H(G) (with
respect to a suitable maximal compact subgroup K C G(A)), the average

R(D= [ )Ry
G(A)
is an integral operator on G(F)\G(A), with kernel

Ky = > flz"'yw).

YEG(F)

Suppose for a moment that G(F)\G(A) is compact. Then R decomposes dis-
cretely into a direct sum of irreducible representations, each occurring with finite
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multiplicity. The operator R(f) in this case is of trace class, and

tr(R(f)) :/ K(x,z)dz.
G(F)O\G(A)
In addition, any element v € G(F) is semisimple. Let G, denote the identity
component of its centralizer in G. Then the quotient of G.,(A) by G (F) is compact,
and f(z~'yz) is integrable as a function of z in G, (A)\G(A). These facts are all
closely related. Taken together, they lead to an identity

(1.1) Y. ety = Y af(mfa(m),

ve(G) mell(G)
where I'(G) denotes the set of conjugacy classes G(F'), and II(G) is a set of equiv-
alence classes of irreducible unitary representations of G(A). For any v and 7,

a%(y) = Vol(GV(F)\GW(A))
and
a%(m) = mult(n, R),

while

fal) = / fayz)da
G (AN\G(A)

is the invariant orbital integral of f at v, and

fa(m) = tr(n(f))
is the drreducible character of f at w. This identity is known as the Selberg trace
formula for compact quotient. It was apparently introduced by Selberg only after he
had established his considerably more sophisticated trace formula for noncompact
arithmetic quotients of SL(2,R).

In general, G(F)\G(A) is not compact. Then the properties on which the
proof of (1.1) rests break down. In particular, R has a continuous spectrum, and
R(f) is not of trace class. Moreover, elements v € G(F') may not be semisimple,
G (F)\G+(A) need not be compact or even have finite volume, and f(z~'yx) need
not be integrable over z in G, (A)\G(A). It thus becomes much more difficult to
establish a trace formula in general. The failure of the various properties leads to
several kinds of divergence, in integrals of terms in both the geometric and spectral
expansions of K (x, z). However, it turns out that the geometric and spectral sources
of divergence are parallel. To make a long story short, one finds that they cancel
each other, in some natural sense. The final result is an explicit trace formula,
whose terms are parametrized by Levi subgroups M of G (taken up to conjugacy).

THEOREM (Invariant trace formula). There is an identity

(1.2) dowaniTt Yo a()Iu(y f)
M

y€eT (M)
= -t M(x ™ us
> /H(M)“ () Ias (, f)d,

for invariant linear forms Ini(7y, f) and Ip(w, f) in f € H(G), and coefficients
aM(v) and a™ (7).
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The set W(M) here is the Weyl group of G with respect to the split part
Aps of the center of M, while dr is a natural (but rather complicated) measure
on II(M), which has both a continuous and a discrete part. If M = G, Ip(x, f)
equals the linear form fg(*), which we recall is either an invariant orbital integral
or an irreducible (invariant) character. If M # G, however, Iy (x, f) is a more
complicated invariant linear form, built out of a combination of weighted orbital
integrals and weighted characters. (We recall that a linear form I on H(G) is
invariant if I(f1 * f2) equals I(fy* f1) for every f1 and f5.) The coefficients a™ ()
and a™ (7) depend only on M. They are essentially as before (in case M = G) if y
is an elliptic semisimple class in G(F') or 7 is an irreducible representation of G(A)
that occurs in the discrete spectrum. However, they are more elaborate for general
~v and 7.

In the interest of simplicity, we have suppressed two technical matters from the
notation (1.2). The left hand side really depends implicitly on a large finite set
V of valuations of F. This reflects the lack of a theory for (invariant) unipotent
orbital integrals over G(A). In addition, the convergence of the sum-integral on the
right hand side is conditional, at least insofar as matters are presently understood.
These difficulties are in some sense parallel to each other. It would be interesting
to resolve then, but they are not an impediment to present day applications of the
trace formula.

There is one part of the invariant trace formula (1.2) that is particularly relevant
to applications. It is the discrete part, defined as the contribution of the discrete
part of the measure dm to the term with M = G on the spectral side. It satisfies
the explicit formula

13) Y wAnTt > [det(l = w)ay, jae |t (Mp(w)Zp(f)),
M

WEW (M )reg

expressed in standard notation. In particular, Zp is the representation of G(A)
induced parabolically from the discrete spectrum of L? (M (F)Aj\'/[ \M(A)), while
Mp(w) is the global intertwining operator attached to the Weyl element w. The
sum over M in (1.3) is of course different from that of (1.2), since it represents only
a piece of the term with M = G in (1.2). The term with M = G in (1.3) gives
the discrete spectrum for GG, which is of course where the applications are aimed.
However, in the comparison of trace formulas, one cannot separate this term from
the larger sum over M.

2. Stable trace formula

For the comparison of trace formulas on different groups, one needs a refinement
of the invariant trace formula, known as the stable trace formula. Stability is a local
concept, which was introduced by Langlands. It is based on the three basic notions
of stable conjugacy class, stable orbital integral, and stable linear form.

Suppose that v is a valuation of F. We consider elements v, € G(F,) that
are strongly G-regular, in the sense that their centralizers in G are tori. Recall
two such elements are said to be stably conjugate if they are conjugate over G(F,).
Any strongly G-regular stable conjugacy class 0, € Agreg(Gy) is a finite union of
G(Fy)-conjugacy classes {7, }. The stable orbital integral of a function f, € H(G,)
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at ¢, is the corresponding sum

ff((sv) = va,G(’Yv)

Yo

of invariant orbital integrals. Lastly, a linear form S, on the local Hecke algebra
H(G,) of G, = G/F, is said to be stable if S,(f,) depends only on the function

JG: Agaeg(Gy) — C
defined by the stable orbital integrals of f,. In other words,
Su(fo) = Bu(f),  fo €H(GL),
for a linear form §U on the space
S(Gy) ={f7: f, e H(Gy)}.

Suppose that G is an endoscopic datum for G over F,, a notion we shall recall
presently (but only in the briefest of terms). We assume for simplicity that G,
comes with an L-embedding G/ C LG, of its L-group into that at G,. This is
something that can always be arranged if, for example, the derived group of G is
simply connected.

Given G}, Langlands and Shelstad have introduced a transfer mapping f, — f
from functions f, € H(G,) to functions f, on Ag-reg(GY). It is defined by a sum

f;(é;) = ZA((S;v’YU)fU,G(’Yv)v 51/) € AG-reg(G;)’

Yo

where 7y, ranges over the set I'grcg(Gy) of strongly G-regular conjugacy classes,
and

A AG—reg(G;> X FG—reg(G'u) — C

is a Langlands-Shelstad transfer factor. We recall that A(d.,~,) is a complicated
but ultimately quite explicit function, which for any 0, vanishes for all but finitely
many ,.

CoNJECTURE (Langlands, Shelstad). For any f, € H(G,), the function f], =
£S5 lies in the space S(G).

There is a famous (even notorious) variant of the Langlands-Shelstad Conjec-
ture, known as the Fundamental Lemma. It applies to the case that G, is unram-
ified, which is to say that v is p-adic, and that the group G, = G/F, is quasisplit
and split over an unramified extension of F,.

VARIANT (Fundamental Lemma). Assume that G, is unramified, and that f,
is the characteristic function of a hyperspecial maximal compact subgroup K, C
G(Fy). Then f) equals h?“, where h, is the characteristic function of a hyperspecial

mazimal compact subgroup K! C G'(F,).

THEOREM (Shelstad). The Langlands-Shelstad transfer conjecture holds if v is
archimedean.

THEOREM (Waldspurger). The Fundamental Lemma implies the Langlands-
Shelstad transfer conjecture for any p-adic v.
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The Fundamental Lemma is now known to be valid (though it can scarcely
be called a lemmal!). A recent paper of B.C. Ngo, in combination with a separate
result of Waldspurger, has yielded a proof of the Fundamental Lemma in general.
This comes after the special case of G = U(n) treated earlier by Laumon and Ngo,
which was based on the new geometric ideas introduced by Goresky, Kottwitz and
MacPherson. It follows that the Langlands-Shelstad transfer conjecture is valid for
any G and v.

Suppose that G’ is an endoscopic datum for G over F. Then the correspondence

f=1]r — =11

extends to a global transfer mapping from H(G(A)) to the global stable Hecke
space S(G'(A)). Notice that the Fundamental Lemma has a dual role here. It is
the required hypothesis for Waldspurger’s theorem. But it also tells us that f’ is
globally smooth, in the sense that at almost all places v, it is the image of the
characteristic function of a hyperspecial maximal compact subgroup of G'(F,).

As promised, we include a few remarks on the notion of endoscopic datum. We
confine these comments to the global case, in which we regard G as a group over
the global field F'. Recall first that the L-group LG of G is a semidirect product
G % T of the complex dual group G of G with the Galois group I' = T'p of F/F.
An endoscopic datum for G over F is a quasisplit group G’ over F, together with
a semisimple element s’ € G such that

(i) G’ = Cent(s,G)°
and
(ii) TG' C Cent(s, LG).

We retain here our simplifying convention that G’ comes with an L-embedding of
LG" into L'G. This embedding has to satisfy (ii), a constraint that still leaves room
for a choice beyond that of the semisimple element s’. Recall also that G’ is elliptic
if the image of G’ is not contained in any proper Levi subgroup “M of G. There
is a natural notion of isomorphism of endoscopic data, and we write Eq1(G) for the
set of isomorphism classes of elliptic endoscopic data for G.

EXAMPLES (Quasi-split orthogonal and symplectic groups).

(i) G=S80@n+1), G=Sp2n,C),
G' = Sp(2m,C) x Sp(2n — 2m, C),
G'=8S0(2m+1) x SO(2n —2m +1).

(ii) G =Sp(2n), G=S50@2n+1,C),
G’ = SO(2m +1,C) x SO(2n — 2m, C),
G’ = Sp(2m) x SO(2n — 2m).
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(iii) G =250(2n), G=S50(2n,C),
G’ = SO(2m,C) x SO(2n — 2m, C),
G' = S0(2m) x SO(2n — 2m).

In cach case, s’ is an element in G with (s')2 = 1. In (i), its centralizer in G is
connected, and both G and G’ are split. In (ii) and (iii), however, the centralizer of
s’ has two connected components (except when s’ is central). There is consequently
a further choice to be made in that of the group “G’. This amounts to a choice of
an automorphic character 7’ for F' with (n')? = 1, which specifies G’ as a quasisplit
group over F. In cases that G’ has a factor SO(2,C), one must in fact take a
nontrivial outer twist in order for G’ to be elliptic. With this proviso, the list of G’
in each case gives a complete set of representatives of E.i(G).

There is a generalization of the Fundamental Lemma, which applies to weighted
orbital integrals of the characteristic function of a hyperspecial maximal compact
subgroup. We assume it, without giving the precise statement, in what follows.

THEOREM 2.1 (Stable trace formula).

(a) There is a decomposition

(2.1) Lise(f) = > UG, G)Shiee(f)
G'€€en(G)
of Luisc(f), for stable linear forms S, = SS.. on H(G'), and explicit

coefficients (G, G").

(b) If G is quasisplit (which is to say that G itself represents an element in
Ean(G)), SS..(f) is the discrete part of a stable trace formula

(2:2) SwanTt > bM(6)Sm(S, f)
M

SeA(M)
= W (M|t M ()8 d
S Iw ) A(M) (6)Sa (6, F)do,

an identity that is parallel to the invariant trace formula, and whose terms
are stable linear forms.

The proof of (b) comes first. It is very elaborate. All of the terms in (2.2) are
defined inductively by setting up analogues of (2.1) for the corresponding terms in
the invariant trace formula (1.2). The identity (2.1) in (a) comes at the very end
of the process, as a consequence of the corresponding identities for all of the other
terms, and the invariant trace formula.

The identity (2.1) is what one brings to applications. How useful is it? Well,
taken on its own, it has definite limitations. Suppose for example that G is quasisplit
(such as one of the groups SO(2n + 1), Sp(2n) and SO(2n) whose endoscopic data
we described above). Then (2.1) represents only an inductive definition of the
summands on the right hand side, in terms of the explicit formula (1.3) for the left
hand side. All it says is that the term S$_.(f) with G’ = G in (2.1), expressed

by means of Igis.(f) and the other terms on the right hand side, is stable. An
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interesting result, no doubt, but certainly not enough to classify the representations
that make up the terms in Igisc(f)-

The solution, at least for many classical groups, is to combine (2.1) with a
similar identity that applies to twisted groups. By a twisted group, we shall mean a
pair G = (GY,0), where 0 is an automorphism of GY over F. In this case, we take
f to be an element in the Hecke space H(G) of functions on G(A) = G°(A) x 6.

Much of the discussion above carries over to twisted groups. For example, the
twisted version of the invariant trace formula (1.2) has been established. Its discrete
part Iiisc(f) takes the form (1.3), with the terms interpreted as twisted induced
representations and twisted intertwining operators. Twisted versions of endoscopic
data also make sense. Given the twisted analogue of our earlier simplifying con-
vention, a twisted endoscopic datum for G over F is a quasisplit group G’ over F,
together with a semisimple element s’ in the set G=Gx 67, such that

(i) G = Cent(s', G%)°

and

(ii) TG’" C Cent(s', LGY).

Kottwitz and Shelstad have constructed twisted transfer factors, which they use to
define a local correspondence f, — f, from H(G,) to functions on Ag-res(GY).

It is expected that the identity (2.1) will remain valid as stated for a general
twisted group G = (G°,6). The proof will require a twisted fundamental lemma,
and its generalization to twisted weighted orbital integrals. There is reason to hope
that the recent proof by Ngo of the ordinary fundamental lemma can be generalized.
We note that D. Whitehouse has used special methods to establish all forms of the
Fundamental Lemma for endoscopic data of the twisted form of GL(4). The proof of
(2.1) will also require twisted versions of the theorems of Shelstad and Waldspurger
stated above. Finally, it will require a stabilization of the twisted trace formula
for G. This has not been done, although many of the techniques that lead to the
stabilization of the standard invariant trace formula should carry over in some form.

3. Classical groups

We describe work in progress on the automorphic representations of quasisplit
orthogonal and symplectic groups. These are the groups whose endoscopic data we
described in the three examples above. We first look at a fourth example, that of
twisted endoscopic data G for general linear groups G.

ExAMPLE. G = (G°,6), G = GL(N), (z) = ta~ 1,
G=G"%6=GL(N,C) x 0,
G = SO(N,,C) x Sp(N_,C), N =N,N_

G SO(N4) x SO(N_ +1), if Ny is even,
© | Sp(Ny —1) x SO(N_ + 1), if Ny is odd.
We take

O(x)=J Va1, J = . ,
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for the dual automorphism, since it stabilizes the standard splitting of GL(N). The
semisimple element attached to G is of the form

+1 0
5= x 6.
0 +1

~

The centralizer of s in G° has two connected components (unless N, = 0), so there
is a further choice to be made in that of the subgroup “G of LGO, 1f N, is even,
this serves to define the factor SO(Ny) of G as quasisplit group over F. If N, is
odd, it serves only to define the embedding of G into © éo’ since G must be split.
In either case, the supplementary choice is tantamount to that an automorphic
character n for F' with n? = 1. Like in the earlier examples, n must be nontrivial
if N = 2 if G is to be elliptic. With this proviso, our list of G gives a complete
set of representatives of the set Sen(é) of isomorphism classes of elliptic (twisted)
endoscopic data for G. We shall say that G € 5e11((~;) is simple if it has only one
factor, which is to say that N equals either N, or N_, in the notation above. In
the first case, G equals SO(N,C) and G equals SO(N) or Sp(N — 1), according
to whether N is even or odd. In the second case, G equals Sp(N,C) and G equals
SO(N +1). Simple endoscopic data play a special role, since one would expect to

apply induction arguments to the factors of any G € & (G) that is not simple.

The problem, then, is to try to classify the automorphic representations of a
group G that represents a simple endoscopic datum for G = GL(N) x 6. We have
at our disposal the identity

O Iae(H)= Y. GGG (), fEMG),

G'€€an(G)

for any G € Eai(G), and its twisted analogue

() Jase(f) = Y (G OSEFY),  feH(E),

GEEan(G)
for G. This is the raw material we have to work with. It consists of the original
explicit formulas for the left hand sides of (i) and (ii), the inductive definition of
S$..(f) provided by the right hand side of (i), and the explicit identity among these
distributions provided by the right hand side of (ii).

The goal is to describe representations of G in terms of the self dual represen-
tations of G° = GL(N). Since the argument is based on the trace formula, it is
focused on all of the automorphic representations in the spectral decomposition.
This means that generic representations will have no special role in the proof. In
general, both the trace formula and the endoscopic transfer of functions are theories
that are founded on characters. Any classification to which they might lead has
also to be character theoretic. This is probably a necessary condition for a proper
understanding of the zeta functions and cohomology of Shimura varieties.

The argument is long. However, it also seems to be very natural. Here are
some fundamental properties of representations that must be brought to bear on
the identities (i) and (ii).
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(1) The classification of isobaric representations of GL(N) (Jacquet-Shalika),
which generalizes the theorem of strong multiplicity one.

(2) The classification of automorphic representations that occur in the spectral
decomposition of GL(N) (Meglin-Waldspurger).

(3) The local Langlands classification for GL(N) (Harris-Taylor, Henniart).

(4) Trace identities for normalized intertwining operators (beginning with work
of Shahidi).

(5) Twisted orthogonality relations, which follow from the twisted form of the
local trace formula.

(6) Duality for representations of p-adic groups.

To this mix, we must also add the indisputable (but critical) fact that an irreducible
representation in the automorphic discrete spectrum occurs with positive, integral
multiplicity!

I will not state the theorems that are likely to follow from this analysis. Let
me just say that for a quasisplit orthogonal or symplectic group G, they include
the following results.

(1) A description of local and global representations of G in terms of packets
(L-packets, A-packets).

(2) A classification of the expected counterezamples of the analogue of Ra-
manujan’s conjecture for G.

(3) A formula for the multiplicity of an irreducible representation in the au-
tomorphic discrete spectrum of G.

(4) The local Langlands correspondence for G (up to automorphisms in the
case G = SO(2n)).

(5) Proof of functoriality for the L-embeddings *G' C *G and *G C Lgo,
This in turn implies basic properties of Rankin-Selberg L-functions for
representations of G.

(6) Proof of conjectural properties of symmetric square L-functions L(s,,S?)
(and skew-symmetric square L-functions L(s,m, A?)), and of orthogonal
root numbers (%, m X T2).

Finally, let me add the likelihood of establishing the conjectured existence of
Whitaker models for certain representations of G. That this should then follow
from the work of Cogdell, Kim, Piatetskii-Shapiro and Shahidi, and of Ginzburg,
Rallis and Soudry, has been pointed out by Rallis and Shahidi. It thus appears
that the two general approaches to the study of automorphic forms, L-functions
and the trace formula, might in fact be complementary.

4. Beyond endoscopy

I was asked to include some discussion of Langlands’ recent ideas for a gen-
eral study of the principle of functoriality. The conjectural theory of endoscopy,
represented in small part by our discussion above, is really aimed at the internal
structure of representations of a given group. Its application to the principle of
functoriality is incidental, and quite limited. In its most general form, the theory
applies only to an endoscopic embedding

gli LGI _ LG
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of L-groups, where G’ represents a (twisted) endoscopic datum for G (relative to an
outer automorphism ¢). One would hope to compare the (twisted) trace formula for
G with stable trace formulas for groups G’, using the Langlands-Shelstad-Kottwitz
transfer f — f’ of functions.

Suppose now that G and G’ are arbitrary reductive groups over F', and that

p: ta — L@

is an arbitrary embedding of their L-groups. Are there trace formulas for G and
G’ that one can compare? How might one transfer a function f € H(G) from G to
G'?

What is needed is some sort of trace formula for G that applies only to a part
of the discrete spectrum. Omne would like a trace formula that counts only those
automorphic representations w of G that are tempered and cuspidal, and more to
the point, are functorial transfers from G’. Now, the question of whether 7 is as a
functorial transfer should be reflected in the analytic behaviour of its automorphic
L-functions L(s, 7, r), for finite dimensional representations

r: G — GL(N,C).

Specifically, one should be able to characterize those 7 that come from G’, perhaps
up to some measurable obstruction, in terms of the orders of poles of L-functions
L(s,m,r) at s = 1. One can thus pose an alternate problem as follows. For a given
r, find a trace formula in which the contribution of 7 is weighted by the order of the
pole of L(s,m,r) at s = 1. This is still a very tall order. For among other things,
we are far from knowing even that L(s,,r) has meromorphic continuation.

In any case, suppose that r is fixed, and that 7 is a tempered, cuspidal auto-
morphic representation of G. The partial Euler product

LV(S,TF,T) = H det (1 - T(C(Wv))qzjs)_l’
vV

defined for any finite set V' of valuations of F' that contains the set Syam(m,r) at
which either 7 or r ramify, converges if Re(s) > 1. Suppose that this function also
has meromorphic continuation to the line Re(s) = 1. Then the nonnegative integer

d %
n(m,r) = res (— e log L (5,77,1"))

is defined, and is equal to the order of the pole at s = 1 of LY (s, m,7). If Re(s) > 1,
we have

d d .
% log LY (5,7, 1) = 1%‘:/ = log (det (1 —7(c(m))q,®))

oo k ks
= Z Zlog(qv)tr(r(c(m)) )qvk .
vV k=1
It then follows from the Wiener-Ikehara tauberian theorem that
. 1
n(m,r) = A}gnoo <N Z log(qv)tr(r(c(m))>.
{vgV:q, <N}

Suppose that f € H(G) is fixed, and is unramified outside of V. For any N,
define a function hY in the unramified Hecke algebra H(GY,KV) for G(AY) by
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setting
tr(h%(ﬂv)) = Z log(gu)tr(r(c(my))),
{UgV:Qv SN}
for any unramified representation
v = ® Ty

vEV
of G(AY). We use this to form a new function f% in H(G) by setting

fr(z) = f@)hy(z"),  zeGA).

Here 2V is the projection of x onto G(AY). We then have a limit formula

@) Y (M fo(m) = Jim (<t (Bompen(75))).

™
where Riemp cusp 1S the regular representation of G(A) on the tempered, cuspidal
part of the discrete spectrum of L? (G(F)AJCS,OO\G(A)), and Miemp cusp () i the
multiplicity of 7 in Riemp,cusp-

The formula (4.1) holds under the assumption that for each m with miemp,cusp (7)
positive, LY (s, 7, ) has meromorphic continuation to the line Re(s) = 1. Lang-
lands’ proposal, which he has called a “pipe dream”, is to try to show that the limit
exists without this assumption. The linear form

Itemp,cusp(f]T\‘/') = tr(]%temp,cusp (f]?/))
can be regarded as a piece of Igisc(fk), and hence as a part of the invariant trace
formula. The idea would be to prove that the limit
. 1
]énemp,cusp(f) = J\;gnoo (N[tempﬂusp(f]’:/')>

exists, by establishing corresponding limits for all of the other terms in the invariant
trace formula. The resulting formula I{,,, .., (f) would then be a trace formula
for those m with n(m,r) > 0.

It is better to think of these ideas in the context of the stable trace formula. Let
Stemp,cusp (fy) be the tempered, cuspidal part of the stable trace formula (evaluated
at fy). By this, I mean the contribution to Sgisc(f) from global L-packets of
tempered cuspidal representations.

I take the liberty of dividing the implications of Langlands’ proposal, as they
apply here, into three parts.

P1pE DREAM. (a) Prove that the limit

r . 1 r
Stemp,cusp(f) = ]\;lm (Nstempﬁusp(fN))

— 00

exists, by establishing corresponding limits for all of the other terms in the stable
trace formula.

A solution of (a) would give a stable trace formula for S{, ., ..sp(f), though it
would undoubtedly be very complicated. Whatever its nature, such a formula is
unlikely to be of much use in isolation. One would also need something with which
to compare it.

Assume that the local Langlands classification holds for G. This means (among

other things) that for any v, the stable Hecke algebra S(G,) may be regarded as
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a Paley-Wiener space on the set ®iemp(Gy) of tempered Langlands parameters ¢,
for G,. Given an L-embedding p, whose domain G’ also satisfies this assumption,
we define local mappings

fo — f5
from H(G,) to S(G.) by setting

@) =f(podn), &, € Premp(Gy).
We can then form the global mapping

f=11r — =11

from H(G) to S(G'). Tt is appropriate to call this mapping functorial transfer of
functions, since it is quite different from endoscopic transfer f — f’, even when p
happens to be an endoscopic embedding.

PirE DREAM. (b) Given r, prove that

‘;renlp,cusp (f) = Z O’(T, P)S\tcmp,cusp(fp),

p

for C?'-conjugacy classes of elliptic embeddings p, with coefficients o(r, p).

The focus is here slightly at odds with that of Langlands, insofar as r is fixed.
It has the attraction of showing off some formal similarities with the theory of
endoscopy, even if they may not be entirely appropriate. In the end, however, one
will have to try to invert the identity of (b).

PIPE DREAM. (c) Establish the principle of functoriality from (b) by allowing
r to vary.
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Supplementary remark (added in proof)

The weighted Fundamental Lemma, mentioned prior to the statement of The-
orem 2.1, has recently been proved by Chaudouard and Laumon, building on the
work of Ngo. General results of Waldspurger on descent now yield the twisted Fun-
damental Lemma, both ordinary and weighted. Waldspurger has also used these
results to extend his p-adic transfer theorem to twisted groups. Finally, Shelstad is
preparing a paper that will extend her archmedian transfer theorem to the twisted
case.
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